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Abstract

The notion of user preference is adopted for the representation, interpretation and

measurement of the relevance or usefulness of documents. User judgments on docu-

ments may be formally described by a weak order (i.e., user ranking) and measured

using an ordinal scale. Within this framework, a new measure of system performance

is suggested based on the distance between user ranking and system ranking. It only

uses the relative order of documents and therefore confirms to the valid use of an

ordinal scale measuring relevance. It is also applicable to multi-level relevance judg-

ments and ranked system output. The appropriateness of the proposed measure is

demonstrated through an axiomatic approach. The inherent relationships between

the new measure and many existing measures provide further supporting evidence.
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1 Introduction

Representation of user judgments on the usefulness of documents is fundamental to

the development of reliable methods and techniques for measuring the effectiveness

of information retrieval systems. Typically, user judgments are described using the

concept of relevance (Bookstein, 1979; Cooper, 1971; Cuadra & Katter, 1967; Sarace-

vic, 1970, 1975). A document is relevant if the user considers the document to be

useful, otherwise it is non-relevant. Based on such dichotomous decisions, a number

of performance measures have been proposed, such as precision, recall, fallout, nor-

malized precision and recall, and the expected search length (Bollmann et al., 1992;

Cooper 1968; Robertson, 1969; Salton, 1992; Salton & McGill, 1983; Sparck Jones,

1981; van Rijsbergen, 1974, 1979). However, the use of the dichotomous notion of

relevance has led to some criticism of these measures (Janes, 1991; Robertson, 1969;

Saracevic, 1970). The insufficient treatment of the ranking effect of a retrieval system

in the standard measures of precision and recall has also been questioned by many

authors (Cooper, 1968; Raghavan, Bollmann, & Jung, 1989; Robertson, 1969). Al-

though some research has been done on the evaluation of retrieval performance, using

a multi-valued relevance scale (Bollmann et. al, 1986; Frei & Schäuble, 1991; Keen,

1971; Rocchio, 1971), there is still a lack of rigorous investigation on this important

topic.

One difficulty in using a multi-valued relevance scale is that there is no clear

guidance of how to design such a scale. Various proposals have been suggested,

ranging from numeric quantification to verbal qualification. For example, Keen (1971)

used a four-valued scale called point grade which assigns four to the most relevant

documents, three to the next, and two and one to the final two groups. Saracevic et

al. (1987) used a three-valued scale consisting of relevant, partially relevant, and non-

relevant. Maron and Kuhns (1970) adopted an even finer relevance scale consisting

of very relevant, relevant, somewhat relevant, only slightly relevant and non-relevant.

Since a universal interpretation for these multi-valued relevance scales does not appear

to exist, the compatibility between them is not entirely clear. If the numbers or the
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verbal descriptions are not fully understood, a multi-valued relevance scale may be

easily misused in relevance assessment and system evaluation (French, 1986; King,

1968). For instance, there may exist a potential problem in using Keen’s revised

precision and recall measures. On the one hand, the addition of relevance grades

suggests that a document with grade two is equivalent to two documents with grade

one. On the other hand, a user may not be aware of this implication when assessing

the relevance grade for each document. The same observation is also true for the

calculation of the average of rank used by Rocchio (1971). The investigation of

Eisenberg and Barry (1988) further indicated that the adoption of a finite and fixed

multi-valued relevance scale may be inappropriate for measuring and reflecting user

judgments. They suggested that an open-ended scale (i.e., magnitude estimation)

should be used in which the user is not constrainted to use a prefixed set of relevance

values.

In this paper, the concept of user preference is adopted from decision and mea-

surement theories as a primitive notion. Within this framework, instead of stating

whether a document is relevant or not, a user specifies whether a document is more,

or less relevant than another document, i.e., whether the user prefers one document to

another (Wong, Yao, & Bollmann, 1988). One of our goals is to establish a basis for

the study of the representation, interpretation and measurement of user judgments

on the usefulness of documents, using a multi-valued relevance scale. A list of prop-

erties is explicitly stated regarding user preference on documents. Under this set of

properties, a user in fact provides a ranked list of documents. Any measurement of

relevance is therefore based on an ordinal scale. This interpretation of relevance has

an important impact on the design of system performance measures. For example, the

use of the absolute values as in Keen’s revised precision and recall measures may not

necessarily be meaningful, as they are not invariant to strictly monotonic increasing

transformations of the absolute values.

Another objective of this paper is to propose a new system performance measure.

Since many experimental retrieval systems provide a ranked list of documents, a
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measure of effectiveness may be defined by examining the agreement or disagreement

between the user and the system rankings. For this purpose, it is suggested that a

normalized version of Kemeny and Snell’s distance function between rankings is used.

This new measure only uses the information about the relative order of documents

in a ranking. It confirms to the valid use of an ordinal scale. The appropriateness of

the proposed performance measure is demonstrated through an axiomatic approach.

The rationale behind the axioms on the distance function is explained in the context

of information retrieval. Supporting evidence is further provided by showing the

relationships between the new measure and many existing measures.

2 Representation and Measurement of User Judg-

ments on Documents

The notion of user preference has been discussed in the literature of information re-

trieval, although its usefulness has perhaps not been fully explored. It was implicitly

used in the work of Cooper (1971) to differentiate two different interpretations of rel-

evance: relevance as a logical relation between documents and queries, and relevance

(or its judgment by a user) as a utility or significance judgment. Kochen (1974) for-

mally defined the notion of utility in terms of user preference. Robertson and Sparck

Jones (1976) pointed out that user preference may be used as a basis for computing

term weights. Bookstein (1983, 1989) suggested using the preference structure to

estimate the expected cost of retrieving a document or a set of documents in a set-

oriented retrieval framework. Based on measurement theory, Bollmann and Wong

(1987) discussed the necessary and sufficient conditions on the user preference for

the justification of using linear functions in many retrieval models. Similarly, Wong,

Bollmann and Yao (1991) attempted to establish a measurement-theoretic foundation

for information retrieval. Based on the results of these studies, the concept of user

preference is adopted for the measurement of relevance in the present investigation.

The user preference on documents can be described through a pairwise comparison

of documents. Given two documents in a collection, it is assumed that a user is able
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to decide if one document is more useful or relevant than the other document. Let

D denote a finite set of documents. The user preference may be formally defined by

a binary relation ≻ on D: for d, d′ ∈ D,

d ≻ d′ ⇐⇒ the user prefers d to d′. (1)

The relation ≻ is called a (strict) preference relation, which is a subset of the Cartesian

product D × D:

≻ = {(d, d′) | the user prefers d to d′}. (2)

Using a preference relation, a user only provides the relative relevance judgments on

documents without referring to any predefined relevance scale. If d ≻ d′ holds, d is

said to be preferred to d′. This may be paraphrased as d being more useful or relevant

than d′ (Rocchio, 1971; Wong & Yao, 1990; Wong, Yao, & Bollmann, 1988). In the

absence of strict preference, i.e., if both ¬(d ≻ d′) and ¬(d′ ≻ d) hold, d is said to be

indifferent to d′. An indifference relation ∼ on D can be defined as follows:

d ∼ d′ ⇐⇒ (¬(d ≻ d′), ¬(d′ ≻ d)). (3)

The indifference relationship between documents d and d′ may have several interpre-

tations (Wong & Yao, 1990). A user may consider d and d′ to be equally useful.

Documents d and d′ may be incomparable because it does not make sense to compare

them from the user point of view. This situation may occur when a user is asked to

judge between two documents which are both entirely irrelevant to the user’s infor-

mation needs.

We assume that the user reviews the entire set before making any ranking decision.

The user ranking may be considered as the optimal arrangement of documents that

is most beneficial to the user. There are many factors that may affect the user

preference. For example, user preference may be influenced by the order in which

documents are presented (Eisenberg & Barry, 1988). For simplicity, no attempt is

made to define preference in terms of other concepts in this paper. A preference

relation may have either an objective or a subjective interpretation, as in the case of
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relevance. The discussion of performance measures is independent of any particular

interpretation.

User judgments with some of the existing relevance scales may be easily interpreted

in terms of user preference. Suppose D1, D2, . . . , Dm are subsets of documents being

arranged in decreasing order of relevance under a m-valued relevance scale (Robertson,

1969; Rocchio, 1971). Such user judgments may be equivalently represented by a

preference relation defined as:

d ≻ d′ ⇐⇒ ∃i, j(i < j, d ∈ Di, d
′ ∈ Dj). (4)

The corresponding indifference relation is given by:

d ∼ d′ ⇐⇒ ∃i(d ∈ Di, d
′ ∈ Di). (5)

When m = 2, the standard two-valued relevance scale is obtained. In this case, the

set of document D is divided into two disjoint subsets, the set of relevant documents

rel and the set of non-relevant documents nrel. An equivalent representation, using

a preference relation, is given by:

d ≻ d′ ⇐⇒ (d ∈ rel, d′ ∈ nrel). (6)

With this definition, the indifference relation is:

d ∼ d′ ⇐⇒ (d, d′ ∈ rel) or (d, d′ ∈ nrel). (7)

For the three-valued relevance scale used by Saracevic et al. (1987), a preference

relation may be defined such that the relevant documents are preferred to partially

relevant documents, which in turn are preferred to non-relevant documents.

From a measurement-theoretic point of view, it is important to identify the desired

properties that a preference relation must satisfy, and determine if the preference

can be measured using a particular relevance scale (French, 1986; Roberts, 1979).

Consider the following two axioms:

Asymmetry : d ≻ d′ =⇒ ¬(d′ ≻ d),

Negative transitivity : (¬(d ≻ d′),¬(d′ ≻ d′′)) =⇒ ¬(d ≻ d′′).
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The asymmetry axiom requires that a user cannot prefer d to d′ and at the same time

prefers d′ to d. The negative transitivity axioms states that if a user does not prefer d

to d′, nor d′ to d′′, the user should not prefer d to d′′. A preference relation satisfying

these two axioms is called a week order. If a preference relation is a weak order, it

is transitive, i.e., d ≻ d′ and d′ ≻ d′′ imply d ≻ d′′. In the context of information

retrieval, it seems reasonable that a user preference relation should satisfy these two

properties. In a subsequent discussion, the preference relations that are weak orders

will be considered.

A few additional properties of a weak order are summarized in the following lemma

(Fishburn, 1970).

Lemma 1 Suppose a preference relation ≻ on a finite set of documents D is a weak

order. Then,

a. the relation ∼ is an equivalence relation,

b. exactly one of d ≻ d′, d′ ≻ d and d ∼ d′ holds for every d, d′ ∈ D,

c. the relation ≻′ on D/∼ defined by

X ≻′ Y ⇐⇒ ∃d, d′(d ≻ d′, d ∈ X, d′ ∈ Y ),

is a linear order, where X and Y are elements of D/∼.

A linear order is a weak order in which any two different elements are comparable.

This lemma implies that if ≻ is a weak order, the indifference relation ∼ divides the

set of documents into disjoint subsets. Furthermore, for any two equivalence classes

X and Y of ∼, either X ≻′ Y or Y ≻′ X holds. In other words, if a preference

relation ≻ is a weak order, it is possible to arrange the documents into several levels

so that documents in a higher level are preferred to documents in a lower level, and

documents in the same level are indifferent (Cooper, 1968). For convenience, a user

preference relation is also called a user ranking.

In the measurement-theoretic terminology, the requirement of a weak order in-

deed suggests the use of a multi-valued relevance scale, as shown by the following

representation theorem (Fishburn, 1970; Roberts, 1979).

7



Theorem 1 Suppose D is a finite non-empty set of documents and ≻ a relation on

D. There exists a real-valued function u : D −→ R satisfying the condition,

d ≻ d′ ⇐⇒ u(d) > u(d′) (8)

if and only if ≻ is a weak order. Moreover, u is uniquely defined up to a strictly

monotonic increasing transformation.

The numbers u(d), u(d′), . . . as ordered by > faithfully reflect the order of d, d′, . . .

under ≻. The function u is referred to as an order-preserving utility function. It

quantifies a user preference relation and provides a measurement of user judgments.

The quantity u(d) may be interpreted as the relevance value of document d. Accord-

ing to Theorem 1, the axioms of a weak order are the conditions which allow the

measurement. There are two ways to view these axioms (Fishburn, 1970). The pre-

scriptive or normative interpretation is concerned with the principles that a user must

follow to specify a preference relation. The axioms are looked upon as conditions of

rationality. A rational user’s judgments must allow the measurement in terms of a

quantitative utility function. On the other hand, the descriptive interpretation treats

the axioms as testable conditions. Whether can measure the user judgments depends

on whether the user preference relation is a weak order.

In the following corollary, Theorem 1 is extended to situations where the user

judgments are measured, using a predefined multi-valued relevance scale.

Corollary 1 Let L be a linearly ordered set with a binary relation >. There exists

a mapping u : D −→ L satisfying the condition,

d ≻ d′ ⇐⇒ u(d) > u(d′) (9)

if and only if ≻ is a weak order and |D/∼| ≤ |L|, i.e., the number of equivalent classes

in D/∼ is less than or equal to the number of elements in L.

When using a multi-valued relevance scale, it is necessary to have different values

from L for distinct equivalence classes of D/∼. The additional condition |D/∼| ≤ |L|
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is therefore needed in the corollary. According to the corollary, the three-valued

relevance scale { relevant, partially relevant, non-relevant } cannot be used to measure

a preference relation that induces four equivalence classes.

Example 1 Suppose a user preference relation ≻ on D = {d1, d2, d3, d4} is specified

by the following weak order:

d3 ≻ d1, d4 ≻ d1, d3 ≻ d2, d4 ≻ d2, d4 ≻ d3.

The corresponding indifference relation ∼ has three equivalence classes {d4}, {d3},

and {d1, d2}. According to ≻′, these equivalence classes may be arranged into three

levels:

{d4} ≻′ {d3} ≻′ {d1, d2}.

Obviously, the utility function defined by:

u1(d1) = 0, u1(d2) = 0, u1(d3) = 1, u1(d4) = 2,

provides a measurement of ≻. To serve the same purpose, another utility function

may be used:

u2(d1) = −1, u2(d2) = −1, u2(d3) = 1, u2(d4) = 4.

Let L = { relevant, partially relevant, non-relevant }. The preference relation ≻ may

also be measured, using a non-numeric utility function:

u3(d1) = non−relevant, u3(d2) = non−relevant,
u3(d3) = partially relevant, u3(d4) = relevant.

Although, u1, u2 and u3 use different absolute values, all of them preserve the same

relative order for any pair documents. 2

In the above discussion, only the asymmetry and negative transitivity axioms are

considered, and consequently the ordinal scale for the measurement of user judg-

ments. A crucial question is whether an ordinal scale is appropriate. In reviewing the
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experimental results of Cuadra and Katter (1967), and Rees and Schultz (1967) on

relevance judgments, Saracevic (1970) stated an important conclusion, namely that

although the ratings of the degree of relevance by different users may be scattered, the

relative position of documents as to their relevance may be expected to be remarkably

consistent. The same results were also reported in a study by Lesk and Salton (1968).

Such evidence indeed suggests that an ordinal scale should be used. There are also

many advantages in using an ordinal scale. The notion of weak order is rich enough

to represent any use judgments that can be expressed using a multi-valued relevance

scale. The axioms of a weak order may be easily explained so that a user is guided

in making preference assessment. There are no such restrictions as that only a lim-

ited number of levels can be used in expressing the user judgments with a predefined

multi-valued relevance scale. This scheme is compatible with the open-ended scale for

measuring relevance adopted by Eisenberg (1988), and Eisenberg and Barry (1988).

One important implication of Theorem 1 is that if only the two axioms of weak

order are required, the user preference is measured by an ordinal utility function. For

an ordinal scale, it is meaningful to examine the order induced by the utility function.

In other words, comparison is a valid operation. Other arithmetic operations, such

as addition and subtraction, are not necessarily meaningful (French, 1986). This

observation is very crucial for the design of a system performance measure. One

must be cautious when using an arithmetic operation on the absolute values of the

utility function that measure the relevance of documents. Under the constraint of

measuring relevance with an ordinal scale, we propose and examine a new system

performance measure based on the distance between system and user rankings.

3 Distance Between Rankings

This section reviews the axiomatic approach used by Kemeny and Snell (1962) for

the definition of a distance function between two rankings that are weak orders. By

examining rationality of the required list of axioms in the context of information

retrieval, it is argued that the distance function is suitable for the evaluation of a
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retrieval system.

Before stating the axioms for distance between two rankings, a few important

concepts are first introduced. Given a ranking ≻ on a set of documents D, the

restriction of ≻ on a subset S ⊆ D is defined by:

≻(S) = ≻ ∩ (S × S) = {(d, d′) | d ≻ d′ and d, d′ ∈ S}. (10)

Two rankings agree on a pair of documents d, d′ ∈ D if both of them rank d and d′

in the same order, i.e., ≻1({d, d′}) = ≻2({d, d′}). They contradict on {d, d′} if one

ranking puts d higher and the other ranking puts d′ higher. They are compatible on

{d, d′} if one ranking puts d or d′ higher and the other ranking has d′ and d tied.

A ranking ≻2 is between two rankings ≻1 and ≻3, written B(≻1,≻2,≻3), if for each

pair of documents d and d′, ≻2({d, d′}) is between ≻1({d, d′}) and ≻3({d, d′}). That

is, if ≻1 and ≻3 agree on {d, d′}, then ≻2 must agree with them. If ≻1 and ≻3 are

compatible on {d, d′}, then ≻2 must agree with either ≻1 or ≻3. In the case that ≻1

and ≻3 contradict on {d, d′}, ≻2 must declare a tie of d and d′.

A subset S of D is a segment in a ranking ≻ if every element d ∈ D − S is either

above every element of S or below every element of S. If S 6= D, S is a proper

segment. Let S≻ denote the set of documents above S under ≻, and S
≻

the set of

documents below S under ≻. They are also segments. The rankings ≻(S), ≻(S≻),

and ≻(S
≻
) are the restrictions of ≻ on the segments S, S≻, and S

≻
. Consider two

rankings ≻1 and ≻2 and a common segment S. It may be said that ≻1 and ≻2 agree

outside S if S≻1
= S≻2

, S≻1
= S≻2

, ≻1(S≻1
) = ≻2(S≻2

), and ≻1(S≻1
) = ≻2(S≻2

).

Let Γ(D) denote the set of all rankings over the set of documents D. A distance

measure between rankings is a real-valued function β : Γ(D)×Γ(D) −→ R. It seems

reasonable that a distance function should satisfy the following axioms (Kemeny &

Snell, 1962; Roberts, 1976): for all ≻1,≻2,≻3 ∈ Γ(D),

Axiom 1.1 β(≻1,≻2) ≥ 0, with quality if and only if ≻1 = ≻2.

Axiom 1.2 β(≻1,≻2) = β(≻2,≻1).

Axiom 1.3 β(≻1,≻2) + β(≻2,≻3) ≥ β(≻1,≻3), with equality if and only if
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B(≻1,≻2,≻3).

Axiom 2 If ranking ≻′

1 results from ranking ≻1 by a permutation of the set D

and ≻′

2 results from ≻2 by the same permutation, then β(≻1,≻2) = β(≻′

1,≻
′

2).

Axiom 3 Suppose ≻1,≻2,≻
′

1 and ≻′

2 are rankings with a common segment S.

If

(i) ≻1 and ≻2 agree outside S,

(ii) ≻′

1 and ≻′

2 agree outside S, and

(iii) ≻1(S) = ≻′

1(S) and ≻2(S) = ≻′

2(S),

then β(≻1,≻2) = β(≻′

1,≻
′

2).

Axiom 4 The minimum postive distance between elements in Γ(D) is 1, i.e.,

for all ≻1,≻2 ∈ Γ(D), β(≻1,≻2) = 0 or β(≻1,≻2) ≥ 1, and for some ≻1,≻2 ∈ Γ(D),

β(≻1,≻2) = 1.

Axioms 1.1-1.3 are the usual properties of any distance function. Axiom 2 states

that a measure of distance does not depend on the particular objects chosen for

ranking. That is, a distance measure is independent of how we label the documents

in the collection. A relabeling of the set of documents does not affect the distance. For

example, the distance between d1 ≻1 d2 ≻1 d3 and d3 ≻2 d2 ≻2 d1 is the same as the

distance between d2 ≻
′

1 d3 ≻
′

1 d1 and d1 ≻
′

2 d3 ≻
′

2 d2, since ≻′

1 and ≻′

2 can be obtained

from ≻1 and ≻2 by changing d1 to d2, d2 to d3, and d3 to d1. Axiom 3 suggests that

if two rankings are the same at both the top and bottom, and differs only on a set of

documents in the middle, then the distance between these two rankings should only

depend on the ranking of the documents in the middle. Axiom 4 is introduced only

for the sake of choosing a unit of measurement.

Axioms 1-4 are consistent. They are both necessary and sufficient for the existence

of a unique distance measure (Kemeny & Snell, 1962; Roberts, 1976).

Theorem 2 For every finite set D with two or more members, there is a distance

function β on Γ(D) × Γ(D) which satisfies axioms 1-4. Moreover, β is uniquely

determined.
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Suppose ≻1 and ≻2 are two rankings on D. A distance function satisfying axioms

1-4 can be constructed as follows. First, define the distance between rankings with

respect to a pair of documents d, d′ ∈ D. Let δ≻1,≻2
(d, d′) count 0 if ≻1 and ≻2 agree

on d and d′, let δ≻1,≻2
(d, d′) count 1 if ≻1 and ≻2 are compatible on d and d′, and

let δ≻1,≻2
(d, d′) count 2 if ≻1 and ≻2 contradict on d and d′. The overall distance

between two rankings can be calculated by:

β(≻1,≻2) =
∑

d,d′

δ≻1,≻2
(d, d′), (11)

where the summation is over all unordered document pairs. Clearly, the computation

of the distance between two rankings only depends on the relative order of documents.

Example 2 Consider the following two rankings on the set of documents {d1, d2, d3, d4}:

d1 ≻1 d2 ≻1
d3

d4
,

d2 ≻2
d1

d3
≻2 d4 .

For these two rankings, they yield:

δ≻1,≻2
(d1, d2) = 2, δ≻1,≻2

(d1, d3) = 1, δ≻1,≻2
(d1, d4) = 0,

δ≻1,≻2
(d2, d3) = 0, δ≻1,≻2

(d2, d4) = 0, δ≻1,≻2
(d3, d4) = 1.

From these values, the distance between ≻1 and ≻2 is given by:

β(≻1,≻2) = 2 + 1 + 0 + 0 + 0 + 1 = 4. 2

4 Distance-based Measures of Retrieval Effective-

ness

Normally, the result of a retrieval process is a ranked list of documents which is

a weak order (Cooper, 1968). Let ≻u denote the user ranking and ≻s the system

ranking. In the ideal situation, a retrieval system is expected to produce the user
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ranking, i.e., ≻s = ≻u. This requirement is known as the perfect ranking criterion.

A much weaker criterion may also be used in which a system is only required to

rank preferred documents higher than the nonpreferred ones (Wong & Yao, 1990,

Wong, Yao, & Bollmann, 1988). Such an acceptable ranking can be derived by

arbitrarily rearranging the documents in the same equivalence class. Under this

acceptable ranking criterion, the system performance is evaluated independent of how

the system ranks the documents in the same equivalence class. Depending on the

criterion adopted, the system performance may be measured in terms of the divergence

of ≻s from, or the closeness of ≻s to, the ideal ranking ≻u or an acceptable ranking

of ≻u. In other words, we assume that a system producing a ranking closer to the

user ranking is better than another system producing a ranking further away.

For a given ranking ≻, the converse ranking ≻c is defined by:

≻c= {(d′, d) | d ≻ d′}. (12)

That is, the converse ranking can be obtained by reading the original ranking back-

ward. Based on the notion of converse ranking and the perfect ranking criterion, the

numbers of agreeing pairs C+, contradictory pairs C−, and compatible pairs C0 for

two rankings ≻u and ≻s are given by:

C+ = | ≻u ∩ ≻s |,

C− = | ≻u ∩ ≻c
s | = | ≻c

u ∩ ≻s |,

C0 = | ≻u ∩ ∼s | + | ∼u ∩ ≻s | = Cu + Cs, (13)

where | · | denotes the cardinality of a set. From equation (11), the distance between

≻u and ≻s can be computed by the formula:

β(≻u,≻s) = 2C− + C0 = 2C− + Cu + Cs. (14)

Wong, Yao and Bollmann (1988) argued that the acceptable ranking criterion may

be more suitable for information retrieval. Rocchio (1971) explicitly stated that the

objective of a retrieval system is to produce an acceptable ranking. Many performance

14



measures such as precision, recall, normalized precision, and expected search length

are in fact based on this criterion. This would suggest that a performance measure

may be derived by using the distance between ≻s and an acceptable ranking of ≻u.

There are many acceptable rankings with respect to ≻u. From the point view of

effectiveness, all these acceptable rankings are equivalent. For the definition of a fair

measure, one should choose an acceptable ranking closest to ≻s. Let Γu(D) denote

the set of all acceptable rankings of ≻u. The following distance-based performance

measure (dpm) is suggested:

dpm(≻u,≻s) = min
≻∈Γu(D)

β(≻,≻s). (15)

Based on the properties of the distance function, if ≻s is an acceptable ranking, then

dpm(≻u,≻s) = 0.

Let ≻a denote an acceptable ranking closest to ≻u. The definition of the distance

function implies that δ≻a,≻s
(d, d′) is minimum for every pair of documents. Accord-

ing to its definition, an acceptable ranking of ≻u may be obtained by rearranging

the documents in the same equivalent class. For two documents with d ∼u d′, we

must have ≻a ({d, d′}) = ≻s({d, d′}), for otherwise δ≻a,≻s
(d, d′) is not minimum.

Therefore, the ≻a can be constructed by:

≻a = ≻u ∪ (∼u ∩ ≻s). (16)

Moreover, ≻a is the only acceptable ranking closest to ≻s. Consequently, the distance-

based performance measure can be equivalently defined by:

dpm(≻u,≻s) = β(≻a,≻s). (17)

The computation of pbm can be easily carried out as follows. For rankings ≻a and

≻s, the number of agreeing, contradictory, and compatible pairs are:

| ≻a ∩ ≻s | = |(≻u ∩ ≻s) ∪ (∼u ∩ ≻s)| = C+ + Cs,

| ≻a ∩ ≻c
s | = | ≻u ∩ ≻c

s | = C−,

| ≻a ∩ ∼s | = | ≻u ∩ ∼s | = Cu. (18)
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From these values, dpm is given by:

dpm(≻u,≻s) = β(≻a,≻s) = 2C− + Cu. (19)

Since both C− and Cu can be directly calculated from ≻u, in practice, it is not

necessary to construct the acceptable ranking ≻a. This formula only differs from

equation (14), derived from the perfect ranking criterion, by a value of Cs. That is,

dpm excludes the contribution of these document pairs (d, d′) such that d ∼u d′, but

d ≻s d′ or d′ ≻s d. This result is in fact consistent with the interpretation of the

perfect and acceptable ranking criteria.

Example 3 Let
d1

d2
≻u d3 ≻u

d4

d5

be a user ranking on a set of five documents D = {d1, d2, d3, d4, d5}, and

d1

d5
≻s

d2

d4
≻s d3

be a ranking generated by a retrieval system. With respect to ≻u, the closest accept-

able ranking to ≻s is given by:

d1 ≻a d2 ≻a d3 ≻a d5 ≻a d4.

Based on the performance measure (19), we have:

dpm(≻u,≻s) = β(≻a,≻s) = 8.

Note that the same result can be obtained directly from equations (18) and (19),

using the user ranking ≻u. 2

The performance measure (19) is defined for a single query. In practical situations,

it is usually necessary to find the average performance of a system for a group of

queries (Cooper, 1968). Let Q be a set of M queries. The mean distance is given

simply by:

dpm =
1

M

M
∑

i=1

dpm(≻ui
,≻si

) =
1

M

M
∑

i=1

β(≻ai
,≻s1

) =
1

M

M
∑

i=1

(2C−

i + Cu
i ), (20)
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where ≻ui
, ≻si

and ≻ai
represent, respectively, the user ranking, system ranking and

the closest acceptable ranking for a particular query qi. The motivation for using

mean distance measure is similar to that of mean expected search length proposed by

Cooper (1968). This means that a retrieval system should be designed to minimize

the total distance between a set of user rankings and system rankings.

5 Normalized Performance Measure

The distance-based performance measure dpm provides an appropriate basis for com-

paring various retrieval systems with a fixed query. It may be considered as an ab-

solute (unnormalized) distance function. Although the mean distance measure with

absolute distance is appealing, it does not evaluate the performance of every query

equally. For example, a performance improvement which reduces distance from 200

down to 100 for one query is considered to be the same as the one which reduces

from 2 to 1 for 100 queries. To resolve this problem, relative (normalized) distance

measures may be used.

A normalized distance-based performance measure may be defined in terms of

distance relative to the maximum distance, namely,

ndpm(≻u,≻s) =
dpm(≻u,≻s)

max≻∈Γ(D) dpm(≻u,≻)
, (21)

where max≻∈Γ(D) dpm(≻u,≻) is the maximum distance between ≻u and all rankings.

In effect, the actual distance is scaled relative to the potentially realizable distance.

The value of ndpm lies between 0 and 1. Any acceptable ranking would have a

distance of 0, and a ranking farthest away from ≻u would have a normalized distance

of 1. Consequently, all queries are evaluated on a common basis. The use of relative

measures can also be found in the comparative percentage improvement figure (Harper

& van Rijsbergen, 1978), the normalized recall (Rocchio, 1971) and the expected

search length reduction factor (Cooper, 1968).

Intuitively, the worst ranking provided by a retrieval system is the one that reverses

the user ranking. Based on the definition of dpm, it can be easily verified that the
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converse ranking ≻c
u indeed produces the maximum dpm value, namely,

max
≻∈Γ(D)

dpm(≻u,≻) = dpm(≻u,≻
c
u) = 2| ≻c

u | = 2| ≻u | = 2C. (22)

Moreover, ≻c
u is the only ranking having the maximum value. Combining equa-

tions (19), (21), and (22), the normalized distance-based measure can be calculated

by:

ndpm(≻u,≻s) =
dpm(≻u,≻s)

dpm(≻u,≻c
u)

=
2C− + Cu

2C
. (23)

For example, given the two rankings in Example 3, the normalized measure gives

ndpm(≻u,≻s) = 8/16. For a set of M queries, the mean normalized measure can be

computed as:

ndpm =
1

M

M
∑

i=1

dpm(≻ui
,≻si

)

dpm(≻ui
,≻c

ui
)

=
1

M

M
∑

i=1

2C−

i + Cu
i

2Ci

. (24)

The rationale behind the proposed normalized measure is similar to that of the

expected search length reduction factor and the expected precision gain factor pro-

posed by Cooper (1968). A system’s performance is compared with that of a purely

random retrieval. A zero rating will be assigned for a system which is equivalent to a

random search of the entire document collection, a positive rating for system which

is better than random retrieval, and a negative rating for system which is worse than

random retrieval. The purely random retrieval can be characterized by the empty

relation ≻0= ∅, which represents the degenerate weak order having only one level.

For a user ranking ≻u, it is indeed the acceptable ranking closest to ≻0. There is no

contradictory pair and the number of compatible pairs is | ≻u |. Thus,

dpm(≻u,≻0) = β(≻u,≻0) = | ≻u |. (25)

The distance reduction relative to that of the random retrieval, called distance reduc-

tion factor, is given by:

distance reduction factor =
dpm(≻u,≻0) − dpm(≻u,≻s)

dpm(≻u,≻0)
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= 1 −
dpm(≻u,≻s)

dpm(≻u,≻0)

= 1 −
dpm(≻u,≻s)

| ≻u |

= 1 − 2 ndpm(≻u,≻s). (26)

That is, the distance reduction factor is only a transformation of the normalized

measure so that its range is [−1, 1], with −1 for the worst performance, 1 for the best

performance and 0 for a system equivalent to random retrieval. For the evaluation of

system performance, either of these two measures may be used.

6 Relationships of Distance-based Measures to Other

Performance Measures

This section shows the inherent relationships between the proposed measure and other

standard performance measures.

6.1 Precision, recall and fallout

The standard precision, recall and fallout measures require a two-level relevance judge-

ment, i.e., relevant and non-relevant. According to the results of a retrieval system, a

document collection is divided into two subsets, the retrieved subset and non-retrieved

subset. Let X denotes the subset of relevance documents and Y the subset of retrieved

documents. It is convenient to summarize such information in the following 2×2 table:

Relevant Non-relevant

Retrieved X ∩ Y X ∩ Y Y

Not retrieved X ∩ Y X ∩ Y Y

X X D

In this table, X = D −X denote the complement of X. The standard precision (P ),

recall (R) and fallout (F ) are defined as:

P =
|X ∩ Y |

|Y |
, (27)
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R =
|X ∩ Y |

|X|
, (28)

F =
|X ∩ Y |

|X|
. (29)

These three measures are related by the following functional relationship:

F =
G(1 − P )

(1 − G)P
R, (30)

where G = |X|/|D| is called generality which measures the density of relevant docu-

ments in the collection.

Within this framework, both the relevance judgments and the retrieval results can

be expressed in terms of two-level rankings, namely

X ≻u X and Y ≻s Y . (31)

For these two rankings, we have:

C− = | ≻u ∩ ≻c
s |

= |(X × X) ∩ (Y × Y )|

= |X ∩ Y ||X ∩ Y |, (32)

Cu = | ≻u ∩ ∼s |

= |(X × X) ∩ ((Y × Y ) ∪ (Y × Y ))|

= |X ∩ Y ||X ∩ Y | + |X ∩ Y ||X ∩ Y |, (33)

C = | ≻u | = |X × X| = |X||X|. (34)

According to equation (23), the normalized measure is calculated by:

ndpm =
2C− + Cu

2C

=
2|X ∩ Y ||X ∩ Y | + |X ∩ Y ||X ∩ Y | + |X ∩ Y ||X ∩ Y |

2|X||X|

=
1

2

(

1 +
|X ∩ Y |

|X|
−

|X ∩ Y |

|X|

)

=
1

2
(1 + F − R). (35)
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In this special case, the proposed measure may be interpreted as the difference be-

tween recall and fallout. From equation (26), the distance reduction factor is defined

by R−F . This quantity was used by Goffman and Newill (1966; Robertson, 1969) as

a measure of retrieval effectiveness. Furthermore, equation (35) can be equivalently

expressed as:

ndpm = 1 −
1

2
(R − F + 1) = 1 − A. (36)

The quantity A = (R−F + 1)/2 is Swets’ measure A for the 2× 2 table (Robertson,

1969; Swets, 1969).

From equation (30), the proposed measure can also be expressed in terms of

precision, recall and generality as:

ndpm =
1

2

(

1 +
R(G − P )

P (1 − G)

)

. (37)

Therefore, in the case of 2 × 2 table, ndpm may also be viewed a single-valued com-

posite measure of precision and recall. In particular, if P is assumed to be a constant,

ndpm increases with respect to R for P in [0, G] and decreases for P in [G, 1]. If R is

assumed to be a constant, ndpm decreases with respect to P .

6.2 Marczewski-Steinhaus metric

Heine (1973) suggested that the Marczewski-Steinhaus metric, or MZ-metric for short,

may be used to evaluate a retrieval system. For the standard 2 × 2 table, the MZ-

metric is defined by:

M =
|X ∆ Y |

|X ∪ Y |
= 1 −

|X ∩ Y |

|X ∪ Y |
, (38)

where X ∆ Y = (X ∪ Y ) − (X ∩ Y ) denotes the symmetric difference of two sets.

Clearly, the measure M lies between 0 and 1. Based on its properties, the MZ-metric

may be viewed as a distance between two sets (Marczewski & Steinhaus, 1958). In

terms of precision and recall, the MZ-metric can be expressed by:

M = 1 − [P−1 + R−1 − 1]−1. (39)
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By combining equations (37) and (39), the following is obtained:

ndpm =
1

2

(

1 +
(1 − M)(G − P )

(P (2 − M) + (M − 1))(1 − G)

)

. (40)

If P is assumed to be a constant, ndpm decreases with respect to M for P in [0, G]

and increases for P in [G, 1]. Similarly, ndmp can be expressed through R and M .

The measure M , defined by equation (38), has little in common with ndpm.

However, when the MZ-metric is applied to ≻a and ≻s, instead of the sets of relevant

and retrieved documents, a very close relationship between MZ-metric and ndmp

emerges. For two sets (rankings) ≻a and ≻s, we have:

| ≻u | = |(≻u ∩ ≻s) ∪ (≻u ∩ ≻c
s) ∪ (≻u ∩ ∼s)|

= | ≻u ∩ ≻s | + | ≻u ∩ ≻c
s | + | ≻u ∩ ∼s |

= C+ + C− + Cu, (41)

| ≻s | = |(≻u ∩ ≻s) ∪ (≻c
u ∩ ≻s) ∪ (∼u ∩ ≻s)|

= | ≻u ∩ ≻s | + | ≻c
u ∩ ≻s | + | ∼u ∩ ≻s |

= C+ + C− + Cs,

| ≻a ∩ ≻s | = | ≻u ∩ ≻s | + | ∼u ∩ ≻s | = C+ + Cs, (42)

| ≻a ∪ ≻s | = | ≻a | + | ≻s | − | ≻a ∩ ≻s |

= | ≻u | + | ∼u ∩ ≻s | + | ≻s | − | ≻a ∩ ≻s |

= 2C− + C+ + Cu + Cs, (43)

| ≻a ∆ ≻s | = | ≻a ∪ ≻s | − | ≻a ∩ ≻s |

= 2C− + Cu. (44)

Therefore, the application of MZ-metric to ≻a and ≻s results in:

m =
| ≻a ∆ ≻s |

| ≻a ∪ ≻s |
=

2C− + Cu

2C− + C+ + Cu + Cs
=

dpm

2C− + C+ + Cu + Cs
. (45)

Comparing this result with that of equation (23), one concludes that the numerator

is the unnormalized distance between two ranking. Since 0 ≤ m ≤ 1, it provides an

alternative normalized distance between two rankings.
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Van Rijsbergen (1974, 1979) considered another normalized symmetric distance

between two sets, namely:

e =
| ≻a ∆ ≻s |

| ≻u | + | ≻s |
=

dpm

| ≻a | + | ≻s |
. (46)

This measure differs from m only in the normalization denominators. Consider a

special case in which ≻s is a linear order, i.e., there is only one document in each

level. If the system ranking ≻s is a linear order, the closest acceptable ranking ≻a is

also a linear order. In this case,

| ≻a | = | ≻s | =
1

2
N(N − 1). (47)

Substituting it into equation (46), the measure e becomes:

e =
dpm

| ≻a | + | ≻s |
=

dpm

N(N − 1)
=

1

2
(1 − τ), (48)

where

τ = 1 − 2
dpm

N(N − 1)
, (49)

is the a correlation coefficient between two linear orders used by Kendall (1955; Bog-

art, 1973; Roberts, 1976). In fact, the measure τ is the distance reduction factor for

the case of linear orders. For any two arbitrary rankings ≻ and ≻′, it can be proved

that β(≻,≻′) ≤ N(N − 1). Therefore, equation (48) may be considered as another

version of normalized distance in which the normalization factor does not depend on

either user or system ranking.

6.3 Normalized recall

In many cases, the standard 2×2 table is only an over-simplification of a real retrieval

situation. Consider now a case in which the user ranking is still two levels and the

system ranking is a linear order. This situation is referred to as the vertical extension

of the standard 2 × 2 table (Robertson, 1969). For a linear order, Rocchio (1971)

proposed the normalized recall measure Rnorm which can be calculated as follows. A

recall versus rank-level graph is drawn for each of the best ranking (i.e., the closest
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acceptable ranking), the actual system ranking, and the worst ranking (i.e., the rank-

ing farthest away from ≻u). Rnorm is computed as the area between the actual case

and the worst case relative to the area between the best and worst cases (Bollmann,

1983; Robertson, 1969). Explicitly, Rnorm is given by:

Rnorm = 1 −

∑n
i=1 li −

∑n
i=1 i

n(N − n)
= 1 −

∑n
i=1(li − i)

n(N − n)
, (50)

where n = |X| is the number of relevant documents, N = |D| is the number of all

documents in the collection, and li is the level of i-th relevant document.

Since there is only one document in each level of the system ranking, the number

of compatible pairs is 0. The i-th relevance document on the level li induces (li − i)

contradictory pairs. In sum, for the n relevant documents, the normalized measure

gives:

ndpm =
2C−

2| ≻u |
=

2
∑n

i=1(li − i)

2n(N − n)
= 1 − Rnorm. (51)

Thus, Rocchio’s normalized recall may be considered as an inverse function of the

proposed measure ndpm, with 0 for worst performance and 1 for best performance.

Robertson (1969) proved that the normalized recall is equivalent to Swets’ measure A

obtained by the area under the recall-fallout graph on linear scales. Bollmann (1983)

pointed out that the normalized recall may be expressed in terms of either the ex-

pected search length or the GRE measure used by Noreault, Koll and McGill (1977).

This shows that the proposed measure is related to these measures.

If a system ranking is not a linear order but a weak order, it is difficult to interpret

and calculate Rocchio’s normalized recall. In addition, the normalized recall cannot

be directly applied to situations where the user ranking has more than two levels.

The solutions proposed by Rocchio (1971) are not very convincing because ad hoc

methods are involved. To resolve these problems, Bollmann et al. (1986) proposed

the following generalized normalized recall:

Rnorm =
1

2

(

1 +
the No. of agreeing pairs − the No. of contradictory pairs

the maximum No. of agreeing pairs

)

=
1

2

(

1 +
C+ − C−

| ≻u |

)
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=
1

2

(

1 +
C+ − C−

C

)

, (52)

which reduces to the Rocchio’s normalized recall in the special case discussed earlier.

On the other hand, ndpm can be rewritten as:

ndpm =
2C− + Cu

2C

=
(C+ + C− + Cu) − (C+ − C−)

2C

=
1

2
−

C+ − C−

2C

= 1 −
1

2

(

1 +
C+ − C−

C

)

(53)

= 1 − Rnorm. (54)

The same relationship still holds between proposed measure and the generalized nor-

malized recall.

6.4 Ranking-based precision and recall

The standard notions of precision and recall cannot be directly applied to situations

where a user ranking has more than two levels, i.e., a horizontal extension of the

standard 2×2 table (Robertson, 1969). By modifying these notions, they are applied

to the user and system rankings as suggested by Frei and Schäuble (1991).

Given a user ranking ≻u and a system ranking ≻s, we may conveniently describe

them by the following revised 2 × 2 table:

User ranking Non user ranking
System ranking ≻u ∩ ≻s ≻u∩ ≻s ≻s

Non system ranking ≻u ∩≻s ≻u ∩ ≻s ≻s

≻u ≻u D × D

where the complement of a relation is defined by ≻ = D × D − ≻. If the perfect

ranking criterion is adopted, the ranking-based precision (p) and recall (r) are defined

as:

p =
| ≻u ∩ ≻s |

| ≻s |
, (55)
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r =
| ≻u ∩ ≻s |

| ≻u |
. (56)

That is, ranking-based precision is defined as the proportion of the system ranking

actually agreeing with the user ranking, and ranking-based recall as the proportion

of the user ranking provided by the system ranking.

For the special case where both user and system rankings have only two levels,

the ranking-based precision and recall can be computed as:

p =
| ≻u ∩ ≻s |

| ≻s |
=

|X ∩ Y ||X ∩ Y |

|Y ||Y |
= P · P ′, (57)

r =
| ≻u ∩ ≻s |

| ≻u |
=

|X ∩ Y ||X ∩ Y |

|X||X|
= R · R′, (58)

where

P ′ =
|X ∩ Y |

|Y |
, (59)

denotes the precision with respect to non-relevant documents, and

R′ =
|X ∩ Y |

|X|
, (60)

the corresponding recall. It is interesting to note that P ′ = 1 − F and R′ = 1 − B,

where B is a measure used by Robertson (1969). It can be proved that p is a monotonic

increasing function of P and r is a monotonic increasing function of R. Thus, it would

be expected that there is a similar behavior for both standard and ranking-based

recall-precision graphs.

If the acceptable ranking criterion is used, another version of ranking-based pre-

cision and recall is given by:

pa =
| ≻a ∩ ≻s |

| ≻s |
, (61)

ra =
| ≻a ∩ ≻s |

| ≻a |
. (62)

Using pa and ra, performance measures m and e, defined by equations (45) and (46),

can now be rewritten as:

m =
| ≻a ∆ ≻s |

| ≻a ∪ ≻s |
= 1 − [p−1

a + r−1
a − 1]−1, (63)
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e =
| ≻a ∆ ≻s |

| ≻a | + | ≻s |
= 1 − 2[(p−1

a + r−1
a ]−1. (64)

The proposed measure ndpm may be expressed as:

ndpm =

(

1 −
2

p−1
a + r−1

a

)

| ≻a | + | ≻s |

2| ≻u |
. (65)

Thus, the distance-based measures may be interpreted as composite measures of

ranking-based precision and recall.

To some extent, the appropriateness of the proposed distance-based performance

measures depends on whether axioms 1-4 are meaningful empirically. Although one

may question the validity of these axioms, they do clearly state the conditions under

which one may use a distance-based measure. The close relationships between the

proposed measures and many existing measures examined in this section suggest that

similar axioms are indeed implicitly adopted. The explicit statement of the axioms

involved makes the proposed measures to be more transparent, on which further

investigation may be based.

7 Conclusion and Futher Research

Based on the notion of user preference, an attempt is made to examine the funda-

mental issues regarding the representation, interpretation, and measurement of user

judgments on documents. It seems reasonable that a user preference relation on

documents must obey two basic axioms, asymmetry and negative transitivity. This

guarantees the measurement of user judgments with an ordinal scale. The use of an

ordinal scale implies one must be cautious when using the absolute relevance value of

a document. A performance measure that uses the information about the relative or-

der induced by the relevance values confirms to the valid use of an ordinal scale, as it

is invariant to strictly monotonic increasing transformations of the absolute relevance

values. A performance measure using such information is proposed based on a dis-

tance function between user and system rankings. The distance function is uniquely

determined by a set of reasonable axioms. In special cases, the proposed measure has
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close relationships with the standard measures, such as recall, precision, normalized

recall, and MZ-metric.

There are two types of uesr preference in information retrieval, the user preference

on documents and the user preference on retrieval results (i.e., system rankings). By

examining the user preference on retrieval results, many authors have attempted to

establish a basis for existing performance measures (Bollmann, 1977; Bollmann &

Cherniavsky, 1981; Bollmann & Raghavan, 1988; Cherniavsky & Lakhuty, 1971; van

Rijsbergen, 1974). Their investigations consider a simple two-level user preference

structure on documents. On the other hand, this paper only concentrates on the

user preference on documents. The use preference structure on system rankings is

not explicitly stated. The discussion relies on an implicit, and intuitively appealing,

assumption that a user would prefer a ranking closer to the user ranking to another

ranking further away. The closeness between rankings is measured by a distance

function. The choice of the distance function is justified by quantitative axioms 1-4.

Moreover, the use of arithmetic mean distance suggests that it should be based on an

interval scale.

The present investigation and the existing studies are complementary to each

other. Each of them captures some important but distinct aspects of system eval-

uation by focusing on different types of user preference. A measurement-theoretic

foundation of system evaluation should take both types of preference into account. It

is important to establish a more general framework by extending and combining these

results. In particular, we need to examine the empirical validity of axioms 1-4. We

also need to investigate the qualitative properties of the user preference on retrieval

results that permit the use of the proposed performance measures as an interval scale.

The results of such further research may lead to a more solid measurement-theoretic

foundation for system evaluation.

Many practical issues have not been addressed in this study. The application of

the proposed measure requires the user preference over the entire document collection

that is usually not available. It is important to ascertain how to use this measure
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when only partial user preference information is given (Frei & Schäuble, 1991; Fuhr,

1989). An empirical examination of the measure will be useful and complement to

the theoretical analysis.
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