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Summary. Many measures have been proposed and studied extensively in data
mining for evaluating the interestingness (or usefulness) of discovered rules. They are
usually defined based on structural characteristics or statistical information about
the rules. The meaningfulness of each measure was interpreted based either on in-
tuitive arguments or mathematical properties. There does not exist a framework
in which one is able to represent the user judgment explicitly, precisely, and for-
mally. Since the usefulness of discovered rules must be eventually judged by users,
a framework that takes user preference or judgement into consideration will be very
valuable. The objective of this paper is to propose such a framework based on the
notion of user preference. The results are useful in establishing a measurement-
theoretic foundation of rule interestingness evaluation.
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1 Introduction

With rapidly increasing capabilities of accessing, collecting, and storing data,
knowledge discovery in databases (KDD) has emerged as a new area of re-
search in computer science. The objective of KDD systems is to extract im-
plicitly hidden, previously unknown, and potentially useful information and
knowledge from databases [7]. A core task of the KDD field, called data min-
ing, is the application of specific machine learning algorithms, knowledge
representations, statistical methods, and other data analysis techniques for
knowledge extraction and abstraction. The discovered knowledge is often ex-
pressed in terms of a set of rules. They represent relationships, such as cor-
relation, association, and causation, among concepts [49]. For example, the
well-known association rules deal with relationships among sale items [1, 3].
Some fundamental tasks of data mining process in KDD are the discovery,
interpretation, and evaluation of those relationships.
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There are many types of rules embedded in a large database [47]. Further-
more, the number of rules is typically huge and only a small portion of rules
is actually useful [36]. An important problem in data mining is the evaluation
of the interestingness of the mined rules and filtering out useless rules [36].
Many measures have been proposed and studied to quantify the interesting-
ness (or usefulness) of rules [11, 15, 35, 36, 49]. The results lead to an in-depth
understanding of different aspects of rules. It is recognized that each measure
reflects a certain characteristic of rules. In addition, many studies investigate
and compare rule interestingness measures based on intuitive arguments or
some mathematical properties. There is a lack of a well-accepted framework
for examining the issues of rule interestingness in a systematic and unified
manner.

We argue that measurement theory can be used to establish a solid foun-
dation for rule interestingness evaluation. The theory provides necessary con-
cepts and methodologies for the representation, classification, characteriza-
tion, and interpretation of user judgment of the usefulness of rules. A measure
of rule interestingness is viewed as a quantitative representation of user judg-
ment. The meaningfulness of a measure is determined by the users’ perception
of the usefulness of rules.

Existing studies of rule interestingness evaluation can be viewed as measure-
centered approaches. Measures are used as primitive notions to quantify the
interestingness of rules. In contrast, our method is a user-centered approach.
User judgment, expressed by a user preference relation on a set of rules, is used
as a primitive notion to model rule interestingness. Measures are treated as a
derived notion that provides a quantitative representation of user judgment.

The rest of this chapter is organized as follows. In the next section, we
introduce the basic notion of evaluation and related issues. A critical review
of existing measures of rules interestingness is presented, which reveals some
limitations with existing studies. The third section provides motivations to
the current study. The fourth section presents an overview of measurement
theory. The fifth section applies measurement theory to build a framework
of rule interestingness evaluation. Finally, the conclusion in the sixth section
gives the summary of this chapter and discusses the future research.

2 Introduction of Evaluation

The discussion of the basic notion of evaluation is aimed at improving our
understanding to the rule interestingness evaluation methodologies.

2.1 What is the Evaluation?

Many approaches define the term of evaluation based on specific views [13,
32], such as qualitative assessments and detailed statistical analysis. Suchman
analyzes various definitions of evaluation with regard to the conceptual and
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operational approaches [38]. Simply speaking, the evaluation can be defined
as the determination of the results, which are attained by some activity for
accomplishing valued goals or objectives. The practice of evaluation can in
fact be applied to many processes and research areas, such as the systematic
collection of information of programs, personnel and products for reducing
uncertainties, improving effectiveness, and making decisions [28].

Three basic components of an evaluation are summarized by Geisler [13].
The first component is the subjects for evaluation, which is what or whom
needs to be evaluated. For the discovered rules, the subjects for evaluation
are the properties or characteristics of each rule such as the association rela-
tionship between sale items and a type of business profit. The formulation of
the subjects is always done in the first step of the evaluation procedure. The
more the subjects are distinguished precisely, the better the framework and
measurement can be produced.

The users who are interested in and willing to perform the evaluation
are considered as the second component of an evaluation. Knowing who will
participate in judging or who will benefit from the evaluation will help to
clarify why the evaluation is performed and which measures or methods of
evaluation should be used. Since the qualities of objects or events must be
eventually judged by users, an evaluation needs to consider the user judgment.
The users can be humans, organizations, or even systems. Different types of
participants may have different purposes of conducting an evaluation and lead
to different results of an evaluation.

The processes for evaluation and concrete measures are the evaluation’s
third component. Clarification of the criteria for the measures and design-
ing the implementation for the evaluation are the key points in this compo-
nent. One must consider the first two components, the subjects and the users,
and then develop the processes and measurements of an evaluation. As Such-
man points out, an evaluation can be constructed for different purposes, by
different methods, with different criteria with respect to different users and
subjects [38].

2.2 How to Do the Evaluation?

According to the definition of evaluation, the procedure of evaluation can be
simply and generally described as follows [13, 38]:

• Identification of the subjects to be evaluated.
• Collection of data for the evaluation.
• Users analyze and measure those data to summarize their judgments based

on the criteria and conduct the process of the evaluation for decision mak-
ing.

The real procedures of an evaluation can be very complicated and might be
iterative [38]. Furthermore, identifying and accurately measuring or quantify-
ing the properties of subjects is very difficult to achieve. More often than not,
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an approximate approach can be accepted by general users. In the processes
of an evaluation, it is very important that users determine an appropriate
evaluation as the means of measuring.

2.3 Measurement of Evaluation

During the procedure of an evaluation, the measurement always plays a cru-
cial role and the measurement theory provides the necessary concepts and
methodologies for the evaluation. The subjects of measurement in measure-
ment theory are about estimating the attributes or properties of empirical
objects or events, such as weight, color, or intelligence [29]. The measurement
can be performed by assigning numbers to the objects or events in order that
the properties or attributes can be represented as numerical properties [17].
In other words, the properties of the quantity are able to faithfully reflect the
properties of objects or events to be evaluated.

2.4 Subjectivity of Evaluation

From the discussion of the definition and procedure of evaluation, it is rec-
ognized that evaluation is an inherently subjective process [38]. The steps,
methods, and measures used in an evaluation depend on the users who par-
ticipate in the evaluation. The selection of the criteria and measures reflects
the principles and underlying beliefs of the users [13].

Mackie argues that subjective values are commonly used when one evalu-
ates objects, actions, or events [24]. Objectivity is only related to the objective
measures and implementation of the measurement. People always judge the
subjects with their subjective interests. Different people have different judg-
ments on the same object, action, or event because they always stand on their
own interests or standards of evaluations. In other words, the objective mea-
surement is relative to personal standards of evaluations. In this regard, there
are no absolutely objective evaluations, only relatively objective evaluations
for human beings.

Nevertheless, these standards of evaluations can be derived from human
being’s subjective interests. In fact, the user preference is indeed realized as a
very important issue for an evaluation to occur [13]. It can be described as the
user’s discrimination on two different objects rationally [23]. The users can
simply describe their preference as “they act upon their interests and desires
they have” [6]. In measurement and decision theories, user preferences are
used to present the user judgments or user interests and can be viewed as the
standards of an evaluation [12, 23, 29, 33]. The user preference or judgment
should be considered in the process of an evaluation.
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3 Rule Evaluation

As an active research area in data mining, rule evaluation has been considered
by many authors from different perspectives. We present a critical review of
the studies on rule evaluation in order to observe their difficulties. This leads
to a new direction for future research.

3.1 A Model of Data Mining based on Granular Computing

In an information table, objects can be described by the conjunctions of
attribute-value pairs [50]. The rows of the table represent the objects, the
columns denote a set of attributes, and each cell is the value of an object
on an attribute. In the model of granular computing, the objects in an in-
formation table are viewed as the universe and the information table can be
expressed by a quadruple [46, 50]:

T = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}), (1)

where U is a finite nonempty set of objects, At is a finite nonempty set of
attributes, Va is nonempty set of values for a ∈ At, and Ia is a function to
map from U to Va, that is, Ia : U → Va.

With respect to the notion of tables, we define a decision logic lanaguage [31].
In this language, an atomic formula is a pair (a, v), where a ∈ At and v ∈ Va.
If φ and ψ are formulas, then ¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, and φ ≡ ψ are also
formulas. The set of objects that satisfy a formula φ are denoted by m(φ).
Thus, given an atomic formula (a, v), the corresponding set of objects can be
m(a, v) = {x ∈ U | Ia(x) = v}. The following properties hold:

(1) m(¬φ) = ¬m(φ),

(2) m(φ ∧ ψ) = m(φ) ∩m(ψ),

(3) m(φ ∨ ψ) = m(φ) ∪m(ψ),

(4) m(φ→ ψ) = ¬m(φ) ∪m(ψ),

(5) m(φ ≡ ψ) = (m(φ) ∩m(ψ)) ∪ (¬m(φ) ∩ ¬m(ψ)).

The formula φ can be viewed as the description of the set of objects m(φ).
In formal concept analysis, every concept consists of the intention and

the extension [41, 42]. A set of objects is referred to as the extension, and
the corresponding set of attributes as the intention of a concept. Therefore,
a formula φ can represent the intention of a concept and a subset of objects
m(φ) can be the extension of the concept. The pair (φ,m(φ)) is denoted as a
concept.

One of the important functions of data mining of KDD is to find the strong
relationships between concepts [49]. A rule can be represented as φ⇒ ψ, where
φ and ψ are intensions of two concepts [46]. The symbol ⇒ in the rules are
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interpreted based on the types of knowledge and rules can be classified ac-
cording to the interpretations of ⇒. In other words, different kinds of rules
represent different types of knowledge extracted from a large database. Fur-
thermore, based on the extensions m(φ), m(ψ), and m(φ∧ψ), various quanti-
tative measures can be used for the rules evaluation. A systematic analysis of
quantitative measures associated with rules is given by Yao and Zhong [49].

3.2 A Critical Review of Existing Studies

Studies related to rule evaluation can be divided into two classes. One class,
the majority of studies, deals with the applications of quantitative measures
to reduce the size of search space of rules in the mining process, to filter out
mined but non-useful rules, or to evaluate the effectiveness of a data mining
system. The other class, only a small portion of studies, is devoted solely
to the investigations of rule evaluation on its own. We summarize the main
results from the following different points of views.

The roles of rule evaluation

It is generally accepted that KDD is an interactive and iterative process con-
sisting of many phases [7, 14, 22, 26, 37, 54]. Fayyad et al. presented a KDD
process consisting of the following steps: developing and understanding of the
application domain, creating a target data set, data cleaning and preprocess-
ing, data reduction and projection, choosing the data mining task, choosing
the data mining algorithm(s), data mining, interpreting mined patterns, and
consolidating, and acting on, the discovered knowledge [7, 8]. Rule evaluation
plays different roles in different phases of the KDD process.

From the existing studies, one can observe that rule evaluation plays at
least three different types of roles. In the data mining phase, quantitative
measures can be used to reduce the size of search space. An example is the
use of the well known support measure, which reduces the number of item
sets need to be examined [1]. In the phase of interpreting mined patterns, rule
evaluation plays a role in selecting the useful or interesting rules from the set of
discovered rules [35, 36]. For example, the confidence measure of association
rules is used to select only strongly associated item sets [1]. In fact, many
measures associated with rules are used for such a purpose [49]. Finally, in
the phase of consolidating and acting on discovered knowledge, rule evaluation
can be used to quantify the usefulness and effectiveness of discovered rules.
Many measures such as cost, classification error, and classification accuracy
play such a role [11]. Rule evaluation in this regard is related to the evaluation
of a data mining system.

The process-based approach captures the procedural aspects of KDD. Re-
cently, Yao proposed a conceptual formulation of KDD in a three-layered
framework [47]. They are the philosophy level, technique level, and applica-
tion level. The philosophy level focuses on formal characterization, description,
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representation, and classification of knowledge embedded in a database with-
out reference to mining algorithms. It provides answers to the question: What
is the knowledge embedded in a database? The technique level concentrates on
data mining algorithms without reference to specific applications. It provides
answers to the question: How to discover knowledge embedded in a database?
The application level focuses on the use of discovered knowledge with respect
to particular domains. It provides answers to the question: How to apply the
discovered knowledge?

With respect to the three-layered framework, rule evaluation plays the
similar roles. In the philosophy level, quantitative measures can be used to
characterize and classify different types of rules. In the technique level, mea-
sures can be used to reduce search space. In the application level, measures
can be used to quantify the utility, profit, effectiveness, or actionability of
discovered rules.

Subjective vs. objective measures

Silberschatz and Tuzhilin suggested that measures can be classified into two
categories consisting of objective measures and subjective measures [35]. Ob-
jective measures depend only on the structure of rules and the underlying
data used in the discovery process. Subjective measures also depend on the
user who examines the rules [35]. In comparison, there are limited studies on
subjective measures. For example, Silberschatz and Tuzhilin proposed a sub-
jective measure of rule interestingness based on the notion of unexpectedness
and in terms of a user belief system [35, 36].

Statistical, structural vs. semantic measures

Many measures, such as support, confidence, independence, classification er-
ror, etc., are defined based on statistical characteristics of rules. A systematic
analysis of such measures can be performed by using a 2×2 contingency table
induced by a rule [49, 51].

The structural characteristics of rules have been considered in many mea-
sures. For example, information, such as the size of disjunct (rule), attribute
interestingness, the asymmetry of classification rules, etc., can be used [11].
These measures reflect the simplicity, easiness of understanding, or applica-
bility of rules.

Although statistical and structural information provides an effective indi-
cator of the potential effectiveness of a rule, its usefulness is limited. One needs
to consider the semantic aspect of rules or explanations of rules [53]. Seman-
tics centered approaches are application and user dependent. In addition to
statistical information, one incorporates other domain specific knowledge such
as user interest, utility, value, profit, actionability, and so on. Two examples
of semantic-based approaches are discussed below.
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Profit-based or utility-based mining is one example of a special kind of
constraint-based mining, taking into account both statistical significance and
profit significance [18, 40]. Doyle discusses the importance and usefulness of
the basic notions of economic rationality, such as utility functions, and sug-
gests that economic rationality should play as large a role as logical rationality
in rule reasoning [4]. For instance, one would not be interested in a frequent
association that does not generate enough profit. The profit-based measures
allow the user to prune the rules with high statistical significance, but low
profit or high risk. For example, Barber and Hamilton propose the notion of
share measure which considers the contribution, in terms of profit, of an item
in an item set [2].

Actionable rule mining is another example of dealing with profit-driven
actions required by business decision making [19, 21]. A rule is referred to
as actionable if the user can do something about it. For example, a user
may be able to change the non-desirable/non-profitable patterns to desir-
able/profitable patterns.

Measures defined by statistical and structural information may be viewed
as objective measures. They are user, application and domain independent.
For example, a pattern is deemed interesting if it has certain statistical prop-
erties. These measures may be useful in the philosophical level of the three-
layered framework. Different classes of rules can be identified based on statisti-
cal characteristics, such as peculiarity rules (low support and high confidence),
exception rules (low support and high confidence, but complement to other
high support and high confidence rules), and outlier patterns (far away from
the statistical mean) [52].

Semantic-based measures involve the user interpretation of domain specific
notions such as profit and actionability. They may be viewed as subjective
measures. Such measures are useful in the application level of the three-layered
framework. The usefulness of rules are measured and interpreted based on
domain specific notions.

Single rule vs. multiple rules

Rule evaluation can also be divided into measures for a single rule and mea-
sures for a set of rules. Furthermore, a measure for a set of rules can be
obtained from measures for single rules. For example, conditional probability
can be used as a measure for a single classification rule, conditional entropy
can be used as a measure for a set of classification rules [48]. The latter is
defined in terms of the former.

Measures for multiple rules concentrate on properties of a set of rules. They
are normally expressed as some kind of average. Hilderman and Hamilton
examined many measures for multiple rules known as the summarization of a
database [15].
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Axiomatic approaches

Instead of focusing on rules, the axiomatic approaches study the required
properties of quantitative measures.

Suppose that the discovered knowledge is represented in terms of rules of
the form, E ⇒ H , and is paraphrased as “if E then H”. Piatetsky-Shapiro [30]
suggests that a quantitative measure of rule E ⇒ H may be computed as a
function of support(E), support(H), support(E ∧ H), rule complexity, and
possibly other parameters such as the mutual distribution of E and H or the
size of E and H . For the evaluation of rules, Piatetsky-Shapiro [30] introduces
three axioms. Major and Mangano [25] add the fourth axioms. Klösgen [16]
studies a special class of measures that are characterized by two quantities,
confidence(E ⇒ H) and support(E). The support(H ∧ E) is obtained by
confidence(E ⇒ H)support(E). Suppose support(E,H) is a measure associ-
ated with rule E ⇒ H . The version of the four axioms given by Klösgen [16]
is:

(i). Q(E,H) = 0 if E and H are statistically independent,
(ii). Q(E,H) monotonically increases in confidence(E ⇒ H) for a fixed

support(E),
(iii). Q(E,H) monotonically decreases in support(E) for a fixed support(E ∧

H),
(iv). Q(E,H) monotonically increases in support(E) for a fixed

confidence(E ⇒ H) > support(H).

The axiomatic approach is widely used in many other disciplines.
An axiomatic study of measures for multiple rules has been given by Hil-

derman and Hamilton [15].

3.3 A Direction for Future Research

From the previous discussions, one can make several useful observations. Stud-
ies on rule evaluations can be classified in several ways. Each of them provides
a different view. Most studies on rule evaluation concentrate on specific mea-
sures and each measure reflects certain aspects of rules. Quantitative measures
are typically interpreted by using intuitively defined notions, such as novelty,
usefulness, and non-trivialness, unexpectedness, and so on. Therefore, there
is a need for a unified framework that enables us to define, interpret, and
compare different measures.

A very interesting research direction for rule evaluation is the study of
its foundations. Several issues should be considered. One needs to link the
meaningfulness of a measure to its usage. In theory, it may not be meaningful
to argue which measure is better without reference to its roles and usage.
It is also necessary to build a framework in which various notions of rule
evaluation can be formally and precisely defined and interpreted. The study
of rule evaluation needs to be connected to the study of foundations of data
mining.
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4 Overview of Measurement Theory

For completeness, we give a brief review of the basic notions of measurement
theory that are pertinent to our discussion. The contents of this section draw
heavily from Krantz et al. [17], Roberts [33] and French [12].

When measuring an attribute of a class of objects or events, we may as-
sociate numbers with the individual objects so that the properties of the at-
tribute are faithfully represented as numerical properties [17, 29]. The prop-
erties are usually described by certain qualitative relations and operations.
Consider an example discussed by Krantz et al. [17]. Suppose we are measur-
ing the lengths of a set U of straight, rigid rods. One important property of
length can be described by a qualitative relation “longer than”. Such a rela-
tion can be obtained by first placing two rods, say a and b, side by side and
adjusting them so that they coincide at one end, and then observing whether
a extends beyond b at the other end. We say that a is longer than b, denoted
by a � b, if a extends beyond b. In this case, we would like to assign num-
bers f(a) and f(b) with f(a) > f(b) to reflect the results of the comparison.
That is, we require the numbers assigned to the individual rods satisfy the
condition: for all a, b ∈ U ,

a � b⇐⇒ f(a) > f(b). (2)

In other words, the qualitative relation “longer than”, �, in the empirical
system is faithfully reflected by the quantitative relation “greater than”, >, in
the numerical system. Another property of length is that we can concatenate
two or more rods by putting them end to end in a straight line, and compare
the length of this set with that of another set. The concatenation of a and b can
be written as a◦ b. In order to reflect such a property, we require the numbers
assigned to the individual rods be additive with respect to concatenation.
That is, in addition to condition (2), the numbers assigned must also satisfy
the following condition: for all a, b ∈ U ,

f(a ◦ b) = f(a) + f(b). (3)

Thus, concatenation ◦ in the empirical system is preserved by addition +
in the numerical system. Many other properties of length comparison and
of concatenation of rods can be similarly formulated. For instance, � should
be transitive, and ◦ should be commutative and associative. The numbers
assigned must reflect these properties as well. This simple example clearly
illustrates the basic ideas of measurement theory, which is primarily concerned
with choosing consistent quantitative representations of qualitative systems.

Based on the description of the basic notions of measurement theory in
the above example, some basic concepts and notations are introduced and the
formal definitions and formulations of the theory are reviewed.
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4.1 Relational Systems

Suppose U is a set. The Cartesian product of U with U , denoted U × U , is a
set of all ordered pairs (a, b) so that a, b ∈ U . A binary relation R on a set U ,
simply denote (U,R), is a subset of the Cartesian product U×U . For a, b ∈ U ,
if a is related to b under R, we write aRb or (a, b) ∈ R. For example, consider
the binary relation “less than” (<) relation on real numbers. An ordered pair
(a, b) is in the binary relation if and only if a < b. Similarly, “greater than”
and “equals” also can be defined as the binary relations on real numbers.

With the set U , a function f : U → U can in fact also be thought of
as a binary relation (U,R). A function f : Un → U can be an (n+1)-ary
relation (U,R). The functions from U into U is called binary operations, or
just operations for short. For example, for addition (+), given a pair of real
numbers a and b, there exists a third real number c so that a+ b = c.

A relational system (structure) is a set of one or more relations (operations)
on an arbitrary set. That is, a relational system is an ordered (p + q + 1)-
tuple A = (U,R1, . . . , Rp, ◦1, . . . , ◦q), where U is a set, R1, . . . , Rp are (not
necessarily binary) relations on U , and ◦1, . . . , ◦q are binary operations on
U . If the binary operations are considered as a special type of relations, a
relational system can be simply denoted as a (p+1)-tuple A = (U,R1, . . . , Rp).
For convenience, we separate the operations from other relations.

If U is the set (or a subset) of real numbers, such a relational system is
called as a numerical relational systems. As illustrated by the example of rigid
rods, for measuring the property of length, we can start with an observed or
empirical system A and seek a mapping into a numerical relational system
B which preserves or faithfully reflects all the properties of the relations and
operations in A.

4.2 Axioms of the Empirical System

Based on the definitions of the relations and operations in the relation sys-
tems, we should describe the valid use or properties of these relations and
operations in order to find the appropriate corresponding numerical systems.
Many properties are common to well-defined relations. The consistency prop-
erties to be preserved are known as axioms. For example, if U is a set of real
numbers and R is the relation of “equality” on U , R is reflexive, symmetric,
and transitive. However, if U is the set of people in the real world and R is
the relation “father of” on U , R is irreflexive, asymmetric, and nontransitive.

The set of axioms characterizing the relations in an empirical system
should be complete so that every consistency property for the relations that
is required is either in the list or deducible from those in the list [12, 17, 33].

4.3 Homomorphism of Relational Systems

Consider two relational systems, an empirical (a qualitative) system A =
(U,R1, . . . , Rp, ◦1, . . . , ◦q), and a numerical system B = (V,R′

1
, . . . , R′

p, ◦
′

1
, . . . ,
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◦′q). A function f : U → V is called a homomorphism from A to B if, for all
a1, . . . , ari

∈ A,

Ri(a1, . . . , ari
) ⇐⇒ R′

i(f(a1), . . . , f(ari
)), i = 1, . . . , p,

and for all a, b ∈ A,

f(a ◦j b) = f(a) ◦′j f(b), j = 1, . . . , q.

The empirical system for the earlier example is denoted by (U,�, ◦), where
U is the set of rigid rods and their finite concatenations, � is the binary
relation “longer than” and ◦ is the concatenation operation. The numerical
relation system is (<, >,+), where < is the set of real numbers, > is the usual
“greater than” relation and + is the arithmetic operation of addition. The
numerical assignment f(·) is a homomorphism which maps U into <, � into
>, and ◦ into + in such a way that > preserves the properties of �, and +
preserves the properties of ◦ as stated by conditions (2) and (3).

In general, a measurement has been performed if a homomorphism can be
assigned from an empirical (observed) relational system A to a numerical rela-
tional system B. The homomorphism is said to give a representation, and the
triple (A,B, f) of the empirical relational system A, the numerical relational
system B, and the function f is called a scale or measure. Sometimes, a ho-
momorphism from an empirical relational system into the set of real numbers
is referred alone as a scale (measure).

With given numerical scales (measures), new scales or measures defined
in terms of the old ones are called derived scales or derived measures. For
example, density d can be defined in terms of mass m and volume v as d =
m/v. The density d is the derived scale (measure), and the massm and volume
v are called as primitive scales (measures).

4.4 Procedure of Measurement

Generally, there are three fundamental steps in measurement theory [12, 17,
33]. Suppose we are seeking a quantitative representation of an empirical
system. The first step, naturally, is to define the relations and operations
to be represented. The axioms of the empirical system are determined. The
next step is to choose a numerical system. The final step is to construct
an appropriate homomorphism. A representation theorem asserts that if a
given empirical system satisfies certain axioms, then a homomorphism into
the chosen numerical system can be constructed.

The next question concerns the uniqueness of the scale. A uniqueness the-
orem is generally obtained by identifying a set of admissible transformations.
If f(·) is a scale representing an empirical system and if λ(·) is an admissible
transformation, then λ(f(·)) is also a scale representing the same empirical
system.
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If the truth (falsity) of a numerical statement involving a scale or mea-
sure remains unchanged under all admissible transformations, we say that it
is quantitatively meaningful. A numerical statement may be quantitatively
meaningful, but qualitatively meaningless. In order for a quantitative state-
ment to be qualitatively meaningful, it must reflect or model a meaningful
statement in the empirical system.

Examples of the discussed view of measurement theory include the axioma-
tization of probability and expected utility theory [27, 34], the axiomatization
of possibility functions [5] and the axiomatization of belief functions [43].

5 Application of Measurement Theory to Rule

Evaluation

Given a database, in theory, there exists a set of rules embedded in it, in-
dependent of whether one has an algorithm to mine them. For a particular
application, the user may only be interested in a certain type of rules. There-
fore, the key issue of rules evaluation is in fact the measurement of rules’
usefulness or interestingness expressed by a user preference relation. Accord-
ing to the procedure of measurement, for rule evaluation, we follow the three
steps to seek a quantitative representation of an empirical system.

5.1 User Preference Relations

In the measurement theory, the user judgment or user preference can be mod-
eled as a kind of binary relation, called user preference relation [33]. If the user
prefers a rule to another rule, then we can say that one rule is more useful or
interesting than the other rule.

Assume we are given a set of discovered rules. Let R be a set of rules. Since
the usefulness or interestingness of rules should be finally judged by users, we
focus on user preference relation as a binary relation on the set of discovered
rules. Given two rules r′, r′′ ∈ R, if a user judges r′ to be more useful than
r′′, we say that the user prefers r′ to r′′ and denote it by r′ � r′′. That is,

r′ � r′′ ⇔ the user prefers r′ to r′′. (4)

In the absence of strict preference, i.e., if both ¬(r′ � r′′) and ¬(r′ � r′′)
hold, we say that r′ and r′′ are indifferent. An indifference relation ∼ on R

can be defined as follows:

r′ ∼ r′′ ⇔ (¬(r′ � r′′),¬(r′′ � r′)). (5)

The empirical relational system can be defined as following:

Definition 1. Given a set of discovered rules R and user preference �, the
pair (R,�) is called the (empirical) relational system of the set of discovered
rules.
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The user judgment on rules can be formally described by a user preference
relation � on R. In our formulation, we treat the user preference relation � as
a primitive notion. At this stage, we will not attempt to define and interpret
a user preference relation using other notions.

5.2 Axioms of User Preference Relations

The next issue is to identify the desired properties of a preference relation so
that it can be measured quantitatively. Such consistency properties are known
as axioms. We consider the following two axioms:

• Asymmetry:
r′ � r′′ ⇒ ¬(r′′ � r′),

• Negative transitivity:
(¬(r′ � r′′),¬(r′′ � r′′′)) ⇒ ¬(r′ � r′′′).

The first axiom requires that a user cannot prefer r′ to r′′ and at the same
time prefers r′′ to r′. In other words, the result of a user preference on two
different discovered rules is not contradictive. In fact, this axiom ensures the
user preference or user judgement is rational. The second is the negative tran-
sitivity axiom, which means that if a user does not prefer r′ to r′′, nor r′′ to
r′′′, the user should not prefer r′ to r′′′.

If a preference relation is a weak order, it is transitive, i.e., r′ � r′′ and
r′′ � r′′′ imply r′ � r′′′. It seems reasonable that a user preference relation
should satisfy these two axioms.

A few additional properties of a weak order are summarized in the following
lemma.

Lemma 1. Suppose a preference relation � on a finite set of rules R is a
weak order. Then,

• the relation ∼ is an equivalence relation,
• exactly one of r′ � r′′, r′′ � r′ and r′ ∼ r′′ holds for every r′, r′′ ∈ R.
• the relation �′ on R/∼ defined by X �′ Y ⇔ ∃r′, r′′(r′ � r′′, r′ ∈ X,

r′′ ∈ Y ), is a linear order, where X and Y are elements of R/∼.

A linear order is a weak order in which any two different elements are
comparable. This lemma implies that if � is a weak order, the indifference
relation ∼ divides the set of rules into disjoint subsets.

5.3 Homomorphism based on Real-valued Function

In the measurement-theoretic terminology, the requirement of a weak order
indeed suggests the use of an ordinal scale (homomorphism) for the measure-
ment of user preference of rules, as shown by the following representation
theorem [33]. That is, we can find a real-valued function u as a measure.
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Theorem 1. Suppose R is a finite non-empty set of rules and � a relation on
R. There exists a real-valued function u : R −→ < satisfying the condition,

r′ � r′′ ⇔ u(r′) > u(r′′) (6)

if and only if � is a weak order. Moreover, u is defined up to a strictly mono-
tonic increasing transformation.

The numbers u(r′), u(r′′), . . . as ordered by > reflect the order of r′, r′′, . . .
under �. The function u is referred to as an order-preserving utility function.
It quantifies a user preference relation and provides a measurement of user
judgments. According to Theorem 1, the axioms of a weak order are the con-
ditions which allow the measurement. Thus, to see if we can measure a user’s
preference to the extent of producing an ordinal utility function, we just check
if this preference satisfies the conditions of asymmetry and negative transi-
tivity. A rational user’s judgments must allow the measurement in terms of a
quantitative utility function. On the other hand, another interpretation treats
the axioms as testable conditions. Whether can measure the user judgments
depends on whether the user preference relation is a weak order [45].

5.4 Ordinal Measurement of Rules Interestingness

In the above discussion, only the asymmetry and negative transitivity axioms
must be satisfied. This implies that the ordinal scale is used for the measure-
ment of user preference. For the ordinal scale, it is meaningful to examine the
order or compare the order induced by the utility function.

The main ideas can be illustrated by a simple example. Suppose a user
preference relation � on a set of rules R = {r1, r2, r3, r4} is specified by the
following weak order:

r3 � r1, r4 � r1, r3 � r2, r4 � r2, r4 � r3.

This relation � satisfies the asymmetry and negative transitivity conditions
(axioms). We can find three equivalence classes {r4}, {r3}, and {r1, r2}. In
turn, they can be arranged as three levels:

{r4} �′ {r3} �′ {r1, r2}.

Obviously, we can defined the utility function u1 as follows:

u1(r1) = 0, u1(r2) = 0, u1(r3) = 1, u1(r4) = 2.

Another utility function u2 also may also be used:

u2(r1) = 5, u2(r2) = 5, u2(r3) = 6, u2(r4) = 7.

The two utility functions preserve the same order for any pair of rules, al-
though they use different values.
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Based on the formal model of measurement on rules interestingness, we can
study different types of user preference relations. In order to do so, we need
to impose more axioms on the user preference relation. The axioms on user
preference relations can be easily interpreted and related to domain specific
notions.

Luce and Suppes discuss the user preference and the closely related areas
of utility and subjective probability from mathematical psychology point of
view [23]. The utility is defined as a type of property of any object, whereby
it tends to produce benefit, advantage, pleasure, good, and happiness, or to
prevent the happening of mischief, pain, evil, or unhappiness. In other words,
utility is a type of subjective measure, not objective measure. The utility of
an item depends on the user preference and differs among the individuals. In
the theory of decision making, utility is viewed as essential elements of a user
preference on a set of decision choices or candidates [9, 12].

6 Conclusion

A critical review of rule evaluation suggests that we can study the topic from
different points of views. Each view leads to different perspectives and different
issues. It is recognized that there is a need for a unified framework for rule
evaluation, in which various notions can be defined and interpreted formally
and precisely.

Measurement theory is used to establish a solid foundation for rule evalu-
ation. Fundamental issues are discussed based on the user preference of rules.
Conditions on a user preference relation are discussed so that one can obtain
a quantitative measure that reflects the user-preferred ordering of rules.

The proposed framework provides a solid basis for future research. We will
investigate additional qualitative properties on the user preference relation.
Furthermore, we will identify the qualitative properties on user preference
relations that justify the use of many existing measures.

References

1. R. Agrawal, T. Imielinski and A. Swami, “Mining association rules between
sets of items in massive databases”, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, 207-216, 1993.

2. B. Barber and H. Hamilton, “Extracting share frequent itemsets with infrequent
subsets”, Data Mining and Knowledge Discovery, 7, 153-185, 2003.

3. M.S. Chen, J. Han, and P.S. Yu, “Data mining: an overview from database
perspective”, IEEE Transactions on Knowledge and Data Engineering, 8, 866-
833, 1996.

4. J. Doyle, “Rationality and its role in reasoning”, Computational Intelligence, 8,
376-409, 1992.



A Measurement-Theoretic Foundation of Rule Interestingness Evaluation 17

5. D. Dubois, “Belief structures, possibility theory and decomposable confidence
measures on finite sets”, Computers and Artificial Intelligence, 5, 403-416, 1986.

6. P.A. Facione, D. Scherer, and T. Attig, Values and Society: An Introduction to
Ethics and Social Philosophy, Prentice-Hall, Inc., New Jersey, 1978.

7. U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowl-
edge discovery: an overview”, in: U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth
and R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining,
AAAI/MIT Press, 1-34, 1996.

8. U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowl-
edge discovery in databases”, AI Magazine, 17, 37-54, 1996.

9. P.C. Fishburn, Utility Theory for Decision Making, John Wiley & Sons, Inc.,
New York, 1970.

10. W. Frawely, G. Piatetsky-Shapiro, and C. Matheus, “Knowledge discovery in
database: an overview”, Knowledge Discovery in Database, AAAI/MIT Press,
1-27, 1991.

11. A.A. Freitas, “On rule interestingness measures”, Knowledge-Based Systems,
12, 309-315, 1999.

12. S. French, Decision Theory: An Introduction to the Mathematics of Rationality,
Ellis Horwood Limited, Chichester, West Sussex, England, 1988.

13. E. Geisler, Creating Value with Science and Technology, Quorum Books, London,
2001.

14. J. Han and M. Kamber, Data mining: Concept and Techniques, Morgan Kauf-
mann, Palo Alto, CA, 2000.

15. R.J. Hilderman and H.J. Hamilton, Knowledge Discovery and Measures of In-
terest, Kluwer Academic Publishers, Boston, 2001.

16. W. Klösgen, “Explora: a multipattern and multistrategy discovery assistant”,
in: U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (Eds.),
Advances in Knowledge Discovery and Data Mining, AAAI Press / MIT Press,
249-271, 1996.

17. D.H. Krantz, R.D. Luce, P. Suppes, and A. Tversky, Foundations of Measure-
ment, Academic Press, New York, 1971.

18. T.Y. Lin, Y.Y. Yao, and E. Louie, “Value added association rules”, Advances
in Knowledge Discovery and Data Mining, Proceedings of 6th Pacific-Asia Con-
ference (PAKDD 2002), 328-333, 2002.

19. C. Ling, T. Chen, Q. Yang and J. Chen, “Mining optimal actions for profitable
CRM”, Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM 2002), 767-770, 2002.

20. B. Liu, W. Hsu, and S. Chen, “Using general impressions to analyze discov-
ered classification rules”, Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining (KDD-97), 31-36, 1997.

21. B. Liu, W. Hsu, and Y. Ma, “Identifying non-actionable association rules”,
Proceedings of the 7th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 329-334, 2001.

22. C. Liu, N. Zhong, and S. Ohsuga,“ A multi-agent based architecture for dis-
tributed KDD process”, Foundations of Intelligent Systems, Proceedings of 12th
International Symposium (ISMIS 2000), 591-600, 2000

23. R.D. Luce and P. Suppes, “Preference, utility, and subjective probability”, in:
R.D. Luce, R.R. Bush and E. Galanter (Eds.), Handbook of Mathematical Psy-
chology, John Wiley and Sons, Inc., New York, 249-410, 1965.



18 Yiyu Yao, Yaohua Chen, and Xuedong Yang

24. Machie, J.L. Ethics: Inventing Right and Wrong, Penguin Books Ltd., Har-
mondsworth, 1977.

25. J. Major and J. Mangano, “Selecting among rules induced from a hurricane
database”, The Journal of Intelligent Information Systems, 4, 1995.

26. H. Mannila, “Methods and problems in data mining”, Database Theory, Pro-
ceedings of 6th International Conference (ICDT-97), 41-55, 1997.

27. J. Neumann and O. Morgenstern, Theory of Games and Economic Behavior,
Princeton University Press, 1944, 1947, 1953.

28. M.Q. Patton, Practical Evaluation, Sage Publications, Newbury Park, 1982.
29. J. Pfanzagl, Theory of Measurement, John Wiley & Sons, New York, 1968.
30. G. Piatetsky-Shapiro, “Discovery, analysis, and presentation of strong rules”,

in: G. Piatetsky-Shapiro and W.J. Frawley (Eds.), Knowledge Discovery in
Databases, AAAI/MIT Press, 229-238, 1991.

31. Z. Pawlak, Rough Sets, Theoretical Aspects of Reasoning about Data, Kluwer
Academic Publishers, Dordrecht, 1991.

32. D. Reith, “Evaluation, a function of practice”, in: J. Lishman, (Ed.), Evaluation,
2nd Edition, Kingsley Publishers, London, 23-39, 1988.

33. F. Roberts, Measurement Theory, Addison Wesley, Massachusetts, 1979.
34. L.J. Savage, The Foundations of Statistics, Dover, New York, 1972.
35. A. Silberschatz and A. Tuzhilin, “On subjective measures of interestingness

in knowledge discovery”, Proceedings of the 1st International Conference on
Knowledge Discovery and Data Mining (KDD-95), 275-281, 1995.

36. A. Silberschatz and A. Tuzhilin, “What makes patterns interesting in knowledge
discovery systems”, IEEE Transactions on Knowledge and Data Engineering, 8,
970-974, 1996.

37. E. Simoudis, “Reality check for data mining”, IEEE Expert, 11, 26-33, 1996.
38. E.A. Suchman, Evaluation Research, Russell Sage Foundation, USA, 1967.
39. K. Wang and Y. He, “User-defined association mining”, Knowledge Discovery

and Data Mining, Proceedings of 5th Pacific-Asia Conference (PAKDD 2001),
387-399, 2001.

40. K. Wang, S. Zhou, and J. Han, “Profit mining: from patterns to actions”, Ad-
vances in Database Technology, Proceedings of 8th International Conference on
Extending Database Technology (EDBT 2002), 70-87, 2002.

41. Wille, R. Concept lattices and concept knowledge systems, Computers Mathe-
matics with Applications, 23, 493-515, 1992.

42. Wille, R. Restructuring lattice theory: an approach based on hierarchies of con-
cepts, in: Ivan Rival (ed.), Ordered sets, Reidel, Dordecht-Boston, 445-470, 1982.

43. S.K.M. Wong, Y.Y. Yao, P. Bollmann, and H.C. Bürger, “Axiomatization of
qualitative belief structure”, IEEE Transaction on Systems, Man, and Cyber-
netics, 21, 726-734, 1991.

44. S.K.M. Wong, P. Bollmann, and Y.Y. Yao, “A measurement-theoretic axioma-
tization of fuzzy sets”, Fuzzy Sets and Systems, 60, 295-308, 1993.

45. Y.Y. Yao, “Measuring retrieval performance based on user preference of docu-
ments”, Journal of the American Society for Information Science, 46, 133-145,
1995.

46. Y.Y. Yao, “Modeling data mining with granular computing”, Proceedings of
the 25th Annual International Computer Software and Applications Conference,
638-643, 2001.



A Measurement-Theoretic Foundation of Rule Interestingness Evaluation 19

47. Y.Y. Yao, “A step towards the foundations of data mining”, Data Mining and
Knowledge Discovery: Theory, Tools, and Technology V, The International So-
ciety for Optical Engineering, 254-263, 2003.

48. Y.Y. Yao, “Information-theoretic measures for knowledge discovery and data
mining”, in: Karmeshu (Ed.), Entropy Measures, Maximum Entropy and Emerg-
ing Applications, Springer, Berlin, 115-136, 2003.

49. Y.Y. Yao and N. Zhong, “An analysis of quantitative measures associated with
rules”, Methodologies for Knowledge Discovery and Data Mining, Proceedings
of the 3rd Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD-99), 479-488, 1999.

50. Y.Y. Yao. and N. Zhong, “Potential applications of granular computing in
knowledge discovery and data mining”, Proceedings of World Multiconference
on Systemics, Cybernetics and Informatics, 573-580, 1999.

51. Y.Y. Yao and C.J. Liau, “A generalized decision logic language for granular
computing”, FUZZ-IEEE on Computational Intelligence, 1092-1097, 2002.

52. Y.Y. Yao, N. Zhong, and M. Ohshima, “An analysis of Peculiarity oriented
multi-database mining”, IEEE Transactions on Knowledge and Data Engineer-
ing, 15, 952-960, 2003.

53. Y.Y. Yao, Y. Zhao, and R.B. Maguire, “Explanation-oriented association min-
ing using a combination of unsupervised and supervised learning algorithms”,
Advances in Artificial Intelligence, Proceedings of the 16th Conference of the
Canadian Society for Computational Studies of Intelligence (AI 2003), 527-532,
2003.

54. N. Zhong, C. Liu, and S. Ohsuga, “Dynamically organizing KDD processes”,
Journal of Pattern Recognition and Artificial Intelligence 15, 451-473, 2001.


