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Abstract

This paper presents a non-numeric approach to uncertain reasoning by extending

the incidence calculus. In parallel to the well known fuzzy, belief/plausibility, prob-

ability, and necessity/possibility measures, the corresponding classes of non-numeric

functions are examined. A method of constructing non-numeric functions is discussed

using the notion of compatibility relations. Non-numeric functions are used to inter-

pret uncertain reasoning by providing possible-worlds semantics for both qualitative

and quantitative methods.

INDEX TERMS: Belief/plausibility, fuzzy measure, incidence calculus, interval struc-

ture, necessity/possibility, probability, non-numeric functions, rough sets, uncertain

reasoning.
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1 INTRODUCTION

The study of uncertainty management has produced a variety of mechanisms for au-

tomated reasoning. These mechanisms can be broadly divided into two categories:

the numeric and non-numeric (or the qualitative and quantitative) approaches, which

capture different but complementary aspects of uncertain knowledge [Bhatnagar and

Kanal, 1986]. Typical examples of the numeric approach are probabilistic logic [Nils-

son, 1986; Rescher, 1969], fuzzy logic [Dubois and Prade, 1988], belief measures

[Nguyen, 1978; Shafer, 1976, 1987; Smets, 1988] and the calculus of certainty factors

[Shortliffe, 1976]. The non-numeric approach includes, for instance, propositional

logic, incidence calculus [Bundy, 1985, 1986] and rough sets [Pawlak, 1982, 1984].

The non-numeric approach may be used to provide interpretations of the nu-

meric approach as in a possible-worlds semantics analysis. This analysis consists

of a propositional language, a set of possible worlds, and a valuation function that

maps each proposition to a truth value with respect to a particular possible world

[Ruspini, 1991a]. A proposition is characterized by a subset of possible worlds in

which the proposition is true. The logical operations are interpreted in terms of set-

theoretic operations. Within this framework, Bundy [1985, 1986] used an incidence

mapping, a non-numeric function, to provide possible-worlds semantics for proposi-

tional and probabilistic logics. Similar methods were also studied by many authors

[Fagin and Halpern, 1991; Nilsson, 1986; Ruspini, 1991a]. Recently, Wong, Wang and

Yao [1992a, 1992b] examined a class of non-numeric functions called interval structure

or non-numeric belief. Interval structure provides a common framework that unifies

the notions of lower/upper incidence sets [Bundy, 1985] and rough sets [Pawlak, 1982,

1984]. The non-numeric approach is also useful in symbolic computation, machine

learning, classification and clustering [Bhatnagar and Kanal, 1986; Jean-Louis, 1991;

Luzeaux, 1991; Orlowska, 1985; Pawlak, 1984].

In each of the above studies, only a subclass of non-numeric functions is consid-

ered. It is perhaps useful to have a more complete analysis on different classes of non-

numeric functions and their applications in uncertain reasoning. The main objective

of this paper is to carry out such an investigation, with emphasis on the characteriza-
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tion, classification, construction and interpretation of various non-numeric functions.

In particular, with respect to the well known fuzzy, belief/plausibility, probability,

and necessity/possibility measures, we will identify and examine the properties of

their corresponding classes of non-numeric functions. We will also discuss a method

for constructing non-numeric functions using the notion of compatibility relations

[Shafer, 1987]. In our approach, non-numeric functions can be used to provide the

possible-worlds semantics for uncertain reasoning. Our analysis extends the existing

methods by using a partial, rather than a total, valuation function.

Based on modal logic, Resconi, Klir and Clair [1992], Resconi et. al. [1993], and

Harmanec, Klir and Resconi [1993] established a unifying framework within which

various uncertainty theories can be formalized, compared and organized hierarchically.

The present study may be considered as another and complementary investigation

along the same line. The method used by us to relate non-numeric functions and

numeric measures is essentially similar to their definition of numeric measures using

modal operators.

2 NON-NUMERIC REPRESENTATION OF UN-

CERTAINTY

Suppose Θ = {θ1, . . . , θn} is a finite set of all possible answers to a given question based

on one’s knowledge, and only one of these answers is correct. This set Θ is referred

to as the frame of discernment or simply the frame defined by the question [Shafer,

1976]. Any subset A ⊆ Θ is regarded as a proposition representing the fact that the

correct answer to the question lies in A. The power set 2Θ of Θ denotes the set of

all propositions discerned by the frame Θ. In a situation with incomplete or vague

information, it is not possible to say with certainty which subset of Θ contains the

correct answer. However, based on the available information, it is possible to express

one’s belief in different propositions. A mapping from 2Θ to [0, 1] is used to measure

such uncertainty. Many numeric measures have been widely used, such as the fuzzy,

belief/plausibility, probability, and necessity/possibility measures. These measures

differ in the axioms that define them.
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Alternatively, one may represent uncertainty by a non-numeric or symbolic func-

tion. Instead of using a numeric value, one may associate a set of points or possible

worlds to a proposition [Bundy, 1985, 1986]. Formally, a non-numeric function can be

defined as a mapping i from 2Θ to the power set 2W formed by a distinct but related

frame W . The elements in the set W may have different interpretations depending

on the context in which a non-numeric function is used. A non-numeric function is

defined by certain axioms. In this study, the following list of axioms is considered:

for A,B ⊆ Θ,

(A0) ∅ ⊆ i(A) ⊆W,

(A1) i(∅) = ∅,

(A2) i(Θ) = W,

(A3) A ⊇ B =⇒ i(A) ⊇ i(B),

(A4) i(A ∩B) = i(A) ∩ i(B),

(A5) i(A ∪B) = i(A) ∪ i(B),

(A6) i(A) ⊇ i(B) or i(B) ⊇ i(A),

(A7) i(A ∩B) ⊆ i(A) ∩ i(B),

(A8) i(A ∪B) ⊇ i(A) ∪ i(B),

(A9) i(Ac) = W − i(A).

Axiom (A1) and (A2) are assumed for the purpose of normalization. Axiom (A3)

requires that a non-numeric function is monotonic with respect to the set inclusion

⊇. Axioms (A4), (A5) and (A9) state the truth-functionality of the operations ∩, ∪

and c, such that the value of a composite formula can be computed from the values

of its subexpressions. Axiom (A6) states that the values of any two subsets of Θ

are comparable under the set-inclusion relation. Axioms (A7) and (A8) are weaker

versions of axioms (A4) and (A5).

Axioms (A1)-(A9) are not a set of independent axioms. Some of the important

relationships between these axioms are summarized below:

(I1) (A4) =⇒ (A8),

4



(I2) (A5) =⇒ (A7),

(I3) (A7) ⇐⇒ (A8) ⇐⇒ (A3),

(I4) [(A1), (A2), (A4), (A5)] =⇒ (A9),

(I5) [(A4), (A9)] ⇐⇒ [(A5), (A9)],

(I6) [(A4), (A9)] =⇒ [(A1), (A2)].

Additional relationships can be derived. For example, from (I5) and (I6) one can

infer that [(A5), (A9)] =⇒ [(A1), (A2)].

To examine the connection between numeric measures and non-numeric functions,

we draw a correspondence between axioms (A1)-(A9) and those axioms that charac-

terize numeric measures. Since the values of a non-numeric function are subsets of

a set W , it is natural to adopt cardinalities of sets to construct a numeric measure.

Corresponding to a non-numeric function i : 2Θ −→ 2W , we can define a numeric

measure f : 2Θ −→ [0, 1] by:

f(A) =
|i(A)|

|W |
, (1)

where | · | denotes the cardinality of a set. Using this normalized measure f , one

can analyzing the correspondence between non-numeric axioms (A1)-(A9) and their

numeric counterparts, and classify non-numeric functions in the same manner that

numeric measures are classified. It is interesting to note that Resconi, Klir and Clair

[1992], and Resconi et. al. [1993] used a similar numeric function in their study of

various types of numeric measures.

2.1 Fuzzy Measure

Consider a non-numeric function i : 2Θ −→ 2W characterized by three independent

axioms (A1), (A2) and (A3). According to property (I3), axiom (A3) can be replaced

by either (A7) or (A8). In this case, a numeric measure defined by equation (1) is a

fuzzy measure satisfying the following axioms [Sugeno, 1974]:

(F1) f(∅) = 0,

(F2) f(Θ) = 1,

(F3) A ⊇ B =⇒ f(A) ≥ f(B).
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Axioms (F1) and (F2) are normalization conditions. They are inferred from the non-

numeric axioms (A1) and (A2). Similar to axiom (A3), axiom (F3) states that a fuzzy

measure is monotonic with respect to set inclusion. Clearly, the non-numeric axioms

(A1)-(A3) correspond to the numeric axioms (F1)-(F3). We may therefore call a

non-numeric function satisfying axioms (A1)-(A3) a non-numeric fuzzy measure.

2.2 Belief and Plausibility

A non-numeric fuzzy measure is not truth-functional with respect to both operations

∩ and ∪. Suppose the truth-functionality of ∩ holds. This defines an important class

of non-numeric functions satisfying axioms (A1), (A2) and (A4). From property (I1),

we obtain i(A∪B) ⊇ i(A)∪ i(B). Such a function is therefore not necessarily truth-

functional with respect to ∪. On the other hand, its dual defined by:

i′(A) = W − i(Ac), (2)

is truth-functional with respect to ∪, but not necessarily with respect to ∩. Note

that i′ can be equivalently defined by axioms (A1), (A2) and (A5). Axioms (A1)

and (A4) imply that, for any proposition A, i(A) ∩ i(Ac) = i(∅) = ∅, and in turn,

i(A) ∩ i′(A) = i(A) ∩ (W − i(Ac)) = i(A). Thus, i(A) ⊆ i′(A). The two subsets i(A)

and i′(A) form an interval set [i(A), i′(A)], representing the qualitative uncertainty of

proposition A [Yao, 1993].

The numeric measure f corresponding to such a non-numeric function i is a belief

measure defined by axioms (F1), (F2) and the superadditivity axiom:

(F4) For every positive integer n and every collection A1, . . . , An ⊆ Θ,

f(A1 ∪A2 . . . ∪ An) ≥
∑

i

f(Ai) −
∑

i<j

f(Ai ∩Aj)

± . . .+ (−1)n+1f(A1 ∩ A2 . . . ∩ An).

The counterpart of the non-numeric function i′ is the dual of the belief measure f

defined by:

f ′(A) = 1 − f(Ac). (3)
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It is called a plausibility measure, and can be equivalently defined by axioms (F1),

(F2) and the subadditivity axiom:

(F5) For every positive integer n and every collection A1, . . . , An ⊆ Θ,

f ′(A1 ∩ A2 . . . ∩An) ≤
∑

i

f ′(Ai) −
∑

i<j

f ′(Ai ∪ Aj)

± . . .+ (−1)n+1f ′(A1 ∪ A2 . . . ∪An).

For any proposition, the belief f(A) is less than or equal to the plausibility f ′(A).

The interval [f(A), f ′(A)] represents the quantitative uncertainty of proposition A.

A belief function may be interpreted in terms of a mutli-valued mapping between two

frames or using the notion of random sets [Dempster, 1967; Nguyen, 1978].

The superadditivity axiom (F4) is implied by the non-numeric axiom (A4), and

the subadditivity axiom (F5) by axiom (A5). Axioms (A1), (A2) and (A4) define a

non-numeric belief function, while axioms (A1), (A2) and (A5) define a non-numeric

plausibility function. This notion of non-numeric belief and plausibility functions

was introduced by Wong, Wang and Yao [1992b]. It has also been studied within

the frameworks of incidence calculus [Bundy, 1985, 1986], rough sets [Pawlak, 1982,

1984], and common knowledge [Jean-Louis, 1991].

In the numeric framework, a belief measure can be equivalently defined by another

mapping, m : 2Θ −→ [0, 1], which is called a basic probability assignment satisfying:

(M1) m(∅) = 0,

(M2)
∑

A⊆Θ

m(A) = 1.

A subset A ⊆ Θ with m(A) > 0 is called a focal element. Using the basic probability

assignment, the belief f(A) and plausibility f ′(A) can be expressed as:

(M3) f(A) =
∑

B⊆A

m(B),

(M3′) f ′(A) =
∑

B∩A 6=∅

m(B).

By the Möbius inversion, from a belief measure one can construct the corresponding
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basic probability assignment [Shafer, 1976]:

m(A) =
∑

B⊆A

(−1)|A−B|f(B). (4)

In the non-numeric approach, a non-numeric belief function i can be equivalently

defined by a basic set assignment, j : 2Θ −→ 2W , satisfying the following axioms: for

any A,B ⊆ Θ,

(S1) j(∅) = ∅,

(S2)
⋃

A⊆Θ

j(A) = W,

(S3) A 6= B =⇒ [j(A) ∩ j(B) = ∅].

A subset A ⊆ Θ with j(A) 6= ∅ is called a focal set [Wong, Wang and Yao, 1992b].

Based on the basic set assignment j, the non-numeric belief and plausibility can be

expressed as:

(S4) i(A) =
⋃

B⊆A

j(B), (5)

(S4′) i′(A) =
⋃

A∩B 6=∅

j(B). (6)

Conversely, from a non-numeric belief function i, the basic set assignment j can be

constructed by:

j(A) = i(A) −
⋃

B⊂A

i(B). (7)

Furthermore, from the numeric measure f defined by equation (1), we obtain:

m(A) =
|j(A)|

|W |
. (8)

It is evident that the basic set assignment of a non-numeric belief function corresponds

to the basic probability assignment of a numeric belief measure.

2.3 Probability

If a non-numeric function is truth-functional with respect to both operations ∩ and

∪, we call such a mapping an incidence mapping [Bundy, 1985, 1986] which satis-

fies axioms (A1), (A2), (A4) and (A5). Its corresponding numeric measure f is a
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probability measure defined by (F1), (F2) and the additivity axiom:

(F6) A ∩ B = ∅ =⇒ [f(A ∪ B) = f(A) + f(B)].

This additivity axiom corresponds to the non-numeric axioms (A4) and (A5). An

incidence mapping can be viewed a non-numeric probability function.

A probability measure is self-dual and can be considered as a special belief mea-

sure. The focal elements of a probability measure are singleton sets. Conversely, a

pair of belief and plausibility measures can be regarded as the bounds of a set of

probability measures [Fagin and Halpern, 1991]. A probability measure f is said to

be bounded by a belief measure f and the corresponding plausibility measure f , if

f(A) ≤ f(A) ≤ f(A) for every A ⊆ Θ. Let P denote the set of all probability mea-

sures bounded by f and f . The following theorem given by Dempster [1967] states

the inherent relationship between belief and probability measures.

THEOREM 1 Let f be a belief measure on Θ and f be the corresponding plausibility

measure. Then for all A ⊆ Θ,

f(A) = inf
f∈P

f(A),

f(A) = sup
f∈P

f(A),

where inff∈P f(A) and supf∈P f(A) are the lower and the upper envelopes of P.

Similarly, a non-numeric probability function is self-dual, namely, i(A) = i′(A)

for all A ⊆ Θ. It can be viewed as a special kind of non-numeric belief function.

Any focal set of a non-numeric probability function is a singleton set. The basic set

assignment is in fact a non-numeric probability distribution. A pair of non-numeric

belief and plausibility functions i and i form the bounds of a set of non-numeric

probability functions. A non-numeric probability function i is said to be bounded by

i and i, if i(A) ⊆ i(A) ⊆ i(A) for every A ⊆ Θ. Let I denote the set of all non-

numeric probability functions bounded by a pair of non-numeric belief and plausibility

functions i and i. The lower envelope infi∈I i(A) of I is defined as the subset of W

such that infi∈I i(A) ⊆ i(A) for all i ∈ I, and that for any X ⊆ W , if X ⊆ i(A) for
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all i ∈ I, then X ⊆ infi∈I i(A). The upper envelope supi∈I i(A) of I is defined as the

subset of W such that i(A) ⊆ supi∈I i(A) for all i ∈ I, and that for any X ⊆ W , if

i(A) ⊆ X for all i ∈ I, then supi∈I i(A) ⊆ X. In fact, the lower and upper envelopes

infi∈I i(A) and supi∈I i(A) can be computed by the following formulas:

inf
i∈I

i(A) =
⋂

i∈I

i(A),

sup
i∈I

i(A) =
⋃

i∈I

i(A). (9)

The counterpart of Theorem 1 is given below.

THEOREM 2 Let i and i be a pair of non-numeric belief and plausibility functions.

Then for all A ⊆ Θ,

i(A) = inf
i∈I

i(A),

i(A) = sup
i∈I

i(A).

That is, the non-numeric belief function i and the plausibility function i are the lower

and the upper envelopes of I.

Proof. By definition, for all i ∈ I, i(A) ⊆ i(A) ⊆ i(A). Therefore, we only need

to prove that i(A) and i(A) are achievable by some non-numeric probability bounded

by i and i. This can be done by constructing, for each proposition A, a non-numeric

probability i ∈ I such that i(A) = i(A). For a non-numeric belief i, there is a basic set

assignment, j : 2Θ −→ 2W , satisfying axioms (S1)-(S3). With respect to A ⊆ Θ, for

each C ⊆ Θ with j(C) 6= ∅, one can construct a mapping jC : C −→ 2j(C) satisfying

the following conditions:

(D1)
⋃

θ∈C

jC(θ) = j(C),

(D2) jC(θi) ∩ jC(θj) = ∅, i 6= j,

(D3) jC(θ) = ∅ if θ ∈ A,C ∩A 6= ∅ and C 6⊆ A.

Let i({θ}) =
⋃

θ∈C,C⊆Θ jC(θ) and i(B) =
⋃

θ∈B i({θ}). Clearly, i satisfies (A5) and

(A9), and hence it is a non-numeric probability. Suppose w ∈ i(B), where B is any
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subset of Θ. There exists a subset C ⊆ B such that w ∈ j(C). By the construction

of jC , there exists a θ ∈ C such that w ∈ jC(θ). By the definition of i, it follows

w ∈ i({θ}) ⊆ i(B). Thus, i(B) ⊆ i(B). Similarly, we can show that for any B ⊆ Θ,

i(B) ⊆ i(B). That is, for all B ⊆ Θ, i(B) ⊆ i(B) ⊆ i(B), namly, i ∈ I. Now

suppose w ∈ i(A). There exists a θ ∈ A such that w ∈ i({θ}) =
⋃

θ∈C,C⊆Θ jC(θ). By

the construction of jC , this implies that there exists a set C ⊆ Θ such that θ ∈ C

and w ∈ jC(θ). Combining these facts with property (D3), we can conclude that

C ⊆ A. By definition, w ∈ j(C) and w ∈ i(A). Thus, i(A) = i(A). Therefore,

i(A) = infi∈I i(A). We can show that i is the upper envelope of I in a similar

manner. 2

The notion of non-numeric probability has been studied in various contexts be-

cause of its truth functionality with respect to both ∩ and ∪. The translation mapping

proposed by Luzeaux [1991] for symbolic reasoning is essentially a non-numeric prob-

ability function. Orlowska [1985] used the same idea to establish a basis for analyzing

vague concepts. Similar notions were also used in the studies of possible-worlds se-

mantics for probabilistic reasoning [Fagin and Halpern, 1991; Nilsson, 1986; Ruspini,

1991a].

2.4 Necessity and Possibility

Another class of non-numeric belief functions is characterized by axioms (A1), (A2),

(A4) and (A6). Its dual i′ is defined by axioms (A1), (A2), (A5) and (A6). According

to axioms (A4) and (A6), i(A ∩ B) is the smaller set of i(A) and i(B); according to

axioms (A5) and (A6), i′(A∪B) is the larger set of i′(A) and i′(B). The corresponding

numeric measure f is a necessity measure obeying axioms (F1), (F2) and

(F7) f(A ∩ B) = min{f(A), f(B)}.

The dual f ′, corresponding to i′, is a possibility measure defined by axioms (F1), (F2)

and

(F8) f ′(A ∪ B) = max{f ′(A), f ′(B)}.

We may therefore call a non-numeric function satisfying axioms (A1), (A2), (A4) and

(A6) a non-numeric necessity function and its dual a non-numeric possibility function.
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Necessity and possibility measures are also called consonant belief and plausibility

measures [Dubois and Prade, 1986, 1989; Klir and Folger, 1988; Shafer, 1976; Smets,

1988]. The focal elements of a consonant belief measure are nested. That is, one can

arrange the focal elements in such a way that A1 ⊂ A2 ⊂ . . . ⊂ Am. A possibility

measure can be defined by a possibility distribution µ : Θ −→ [0, 1] with µ(θ) =

f ′({θ}). The possibility of any proposition A ⊆ Θ is given by:

f ′(A) = max
θ∈A

µ(θ). (10)

Likewise, the focal sets of a non-numeric necessity function form a nested sequence

of subsets of Θ. A non-numeric possibility function can be defined by a non-numeric

possibility distribution h : Θ −→ 2W with h(θ) = i′({θ}). According to axioms (A3)

and (A5), the non-numeric possibility of a proposition A is the largest set of h(θ),

where θ ∈ A.

2.5 Summary

The relationships between different classes of non-numeric functions can be summa-

rized as follows. A non-numeric necessity/possibility function is a non-numeric be-

lief/plausibility function. A non-numeric probability function is both a non-numeric

belief and plausibility function. A non-numeric belief/plausibility function is a non-

numeric fuzzy measure. Similar relationships also hold for the corresponding classes

of numeric measures [Wong, Yao and Lingras, 1993].

In the above discussion, using the normalized cardinality function f defined by

equation (1), we have examined the correspondence between non-numeric functions

and commonly used numeric measures of uncertainty. For this purpose, one may in

fact use a probability measure instead. With a probability measure on W , we can

define a numeric measure by:

f(A) = P (i(A)). (11)

It is not difficult to see that the previous conclusions remain valid if equation (11) is

used instead of equation (1) in the above analysis. Thus, non-numeric functions can

be used to study the connection between a probability measure and other classes of
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measures of uncertainty. For example, one can infer, from a probability measure on a

frame W , a belief measure on another frame Θ through a non-numeric belief function

[Corrêa da Silva and Bundy, 1991; Wong, Wang and Yao, 1992b]. One can draw

similar conclusions by analyzing other classes of non-numeric functions, as indicated

by following theorem.

THEOREM 3 Suppose P is a probability measure on W . A function defined by

f(A) = P (i(A)) is a fuzzy, a belief/plausibility, a probability, or a necessity/possibility

measure if i is a non-numeric fuzzy, a non-numeric belief/plausibility, a non-numeric

probability, or a non-numeric necessity/possibility function.

This theorem can be easily proved by following the previous discussion. Since

the function |i(A)|/|W | is a probability measure, Theorem 3 thus summarizes the

main results of this section, and establishes an important linkage between numeric

measures and non-numeric functions. As will be shown in the next section, many

applications of non-numeric functions stem from this theorem.

The non-numeric axioms introduced in this study are primarily for drawing the

correspondence between numeric measures of uncertainty and non-numeric functions.

However, these axioms require further investigation. For instance, axiom (A6) seems

to be too stringent an axiom to be imposed on a non-numeric function, although it

models the corresponding axioms of necessity and possibility measures. Axioms (A4)

and (A6) are only sufficient conditions for f to be a necessity measure. It is not clear

if they are necessary conditions. If they are not, weaker axioms should perhaps be

used.

3 REASONING WITH NON-NUMERIC FUNC-

TIONS

Non-numeric functions can be defined over any two sets. The applications of these

functions depend of course on the meaning of the sets involved and the type of non-

numeric functions used in a particular situation. This section will address some of

these issues in the context of uncertain reasoning.
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3.1 Non-numeric Functions Induced by a Compatibility Relation

Given two sets W and Θ, the relationship between their elements can be modeled by

a compatibility relation [Shafer, 1987]. A compatibility relation is defined as a subset

of pairs (w, θ) in the Cartesian product W × Θ. An element w ∈ W is compatible

with an element θ ∈ Θ, written w C θ, if w is related to θ. The interpretation of W ,

Θ and the compatibility relation between these two sets depend on the knowledge at

hand and the application itself. For example, in a medical diagnosis system, W may

be a set of symptoms and Θ a set of diseases. A symptom w is said to be compatible

with a disease θ if the symptom w does not rule out the possibility that the patient

may have contracted the disease θ. Without loss of generality, we may assume for

any w ∈W there exists a θ ∈ Θ such that w C θ, and vice versa.

A compatibility relation C between W and Θ can be conveniently described by a

multi-valued mapping γ : W −→ 2Θ [Dempster, 1967; Shafer, 1987]:

γ(w) = {θ ∈ Θ | w C θ}. (12)

By using γ, let us define two non-numeric functions from 2Θ to 2W :

i(A) = {w ∈W | γ(w) ⊆ A}, (13)

and

i(A) = {w ∈W | γ(w) ∩ A 6= ∅}. (14)

For an arbitrary subset A ⊆ Θ, the set i(A) consists of all the elements in W com-

patible with only those elements in A, while the set i(A) consists of all the elements

in W compatible with at least one element in A.

Clearly, both mappings i and i satisfy axioms (A1) and (A2). It can be easily

verified that i satisfies axiom (A4), i satisfies (A5), and for any A ⊆ Θ, i(A) =

W − i(Ac) [Pawlak, 1982; Shafer, 1976]. Thus, a multi-valued mapping induces a

pair of non-numeric belief and plausibility functions. The corresponding basic set

assignment is defined by:

j(A) = {w | γ(w) = A}. (15)
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That is, j(A) consists of all those w’s which are compatible with every element in A

but not compatible with any element outside A.

Consider now a special type of compatibility relation in which an element of W

is compatible with exactly one element of Θ. In this case, the multi-valued mapping

becomes a single-valued mapping. The two non-numeric functions defined by equa-

tions (13) and (14) reduce to the same function, i.e., i(A) = i(A) for all A ⊆ Θ.

Moreover, this function satisfies both axioms (A4) and (A5). That is, a single-valued

mapping induces a non-numeric probability function. It can be seen from equa-

tions (12) and (15) that all the focal sets are singleton sets.

Another type of compatible relation can be characterized by the condition:

γ(wi) ⊆ γ(wj) or γ(wj) ⊆ γ(wi), for wi, wj ∈W. (16)

This means that for any two elements wi and wj, either wi is compatible with every

element of Θ that is compatible with wj , or the reverse relationship holds. The

elements of W can be ordered such that γ(w′
1) ⊆ γ(w′

2) ⊆ . . . ,⊆ γ(w′
m), where m

is the cardinality of W . By combining equations (15) and (16), we can see that

the focal sets are nested. The non-numeric function i satisfies axioms (A1), (A2),

(A4) and (A6), while i satisfies axioms (A1), (A2), (A5) and (A6). In short, under

condition (16), a compatibility relation induces a pair of non-numeric necessity and

possibility functions.

It is impossible, however, to construct a non-numeric fuzzy measure directly from

a compatibility relation between W and Θ. One plausible generalization is to consider

a compatibility relation between the subsets of W and the elements of Θ. In other

words, one may use a generalized multi-valued mapping Γ : 2W −→ 2Θ. This mapping

is more flexible in expressing the relationship between the elements of two sets. For

example, a physician may feel uncomfortable in expressing the compatibility between

the individual symptoms and diseases, but is able to specify the compatibility between

a group of symptoms and a particular disease. We may assume that Γ(X) = ∅ if X

is not compatible with any element of Θ, and
⋃

X⊆W Γ(X) = Θ.

Based on such a mapping Γ, a pair of dual non-numeric functions may be defined
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as follows:

i(A) =
⋃

∅6=X⊆W
Γ(X)⊆A

X, (17)

and

i(A) =
⋃

∅6=X⊆W
Γ(X)∩A6=∅

X. (18)

By assumption, i(∅) = i(∅) = ∅ and i(Θ) = i(Θ) = W . These two non-numeric

functions also satisfy axioms (A3), which are indeed a pair of dual non-numeric fuzzy

measures.

Example 1 This simple example illustrates the process of constructing various non-

numeric functions from compatibility relations. Let W = {w1, w2, w3, w4} and Θ =

{θ1, θ2, θ3}. Consider the following compatibility relations:

γ1(w1) = {θ1, θ2}, γ1(w2) = {θ2, θ3}, γ1(w3) = {θ3}, γ1(w4) = {θ1, θ3};
γ2(w1) = {θ1}, γ2(w2) = {θ2}, γ2(w3) = {θ3}, γ2(w4) = {θ3};
γ3(w1) = {θ1}, γ3(w2) = {θ1}, γ3(w3) = {θ1, θ2}, γ3(w4) = {θ1, θ2, θ3}.

The induced non-numeric functions for γ1 and γ2 are summarized in Table 1. Note

that i1 and i1 define a pair of non-numeric belief and plausibility functions, while

i2 = i2 = i2 defines a non-numeric probability function. The basic set assignment

j2 of i2 may be viewed as a non-numeric probability distribution over W . The non-

numeric probability function i2 is bounded by i1 and i1.

Table 1. Examples of non-numeric belief, plausibility and

probability functions induced by compatibility relations.

A j1 i1 i1 j2 i2 = i2 = i2
∅ ∅ ∅ ∅ ∅ ∅

{θ1} ∅ ∅ {w1, w4} {w1} {w1}
{θ2} ∅ ∅ {w1, w2} {w2} {w2}
{θ3} {w3} {w3} {w2, w3, w4} {w3, w4} {w3, w4}

{θ1, θ2} {w1} {w1} {w1, w2, w4} ∅ {w1, w2}
{θ1, θ3} {w4} {w3, w4} W ∅ {w1, w3, w4}
{θ2, θ3} {w2} {w2, w3} W ∅ {w2, w3, w4}

Θ ∅ W W ∅ W
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The multi-valued mapping γ3, with γ3(w1) ⊆ γ3(w2) ⊆ γ3(w3) ⊆ γ3(w4), induces a

pair of non-numeric necessity and possibility functions i3 and i3. The corresponding

non-numeric possibility distribution is denoted by h. These mappings are shown in

Table 2.

Table 2. An example of non-numeric necessity and

possibility functions induced by a compatibility relation.

A j3 h i3 i3
∅ ∅ – ∅ ∅

{θ1} {w1, w2} W {w1, w2} W
{θ2} ∅ {w3, w4} ∅ {w3, w4}
{θ3} ∅ {w4} ∅ {w4}

{θ1, θ2} {w3} – {w1, w2, w3} W
{θ1, θ3} ∅ – {w1, w2, } W
{θ2, θ3} ∅ – ∅ {w3, w4}

Θ {w4} – W W

Consider now a generalized multi-valued mapping:

Γ({w1, w2}) = {θ1, θ2}, Γ({w2, w3, w4}) = {θ2, θ3},

Γ(X) = ∅, for all other subsets of W.

The induced non-numeric functions are given in Table 3. The mappings i and i define

a pair of dual non-numeric fuzzy measures. 2

Table 3. An example of non-numeric fuzzy measures

induced by a compatibility relation.
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A i i
∅ ∅ ∅

{θ1} ∅ {w1, w2}
{θ2} ∅ W
{θ3} ∅ {w2, w3, w4}

{θ1, θ2} {w1, w2} W
{θ1, θ3} ∅ W
{θ2, θ3} {w2, w3, w4} W

Θ W W

3.2 Non-numeric Functions and Possible-worlds Semantics

This section provides another example to demonstrate the usefulness of non-numeric

functions for uncertain reasoning.

One salient feature of our approach is that the requirement of truth functionality

is not necessary for a possible world assignment. This distinguishes our analysis from

the studies of Corrêa da Silva and Bundy [1990], Fagin and Halpern [1991], Nilsson

[1986], and Ruspini [1991a, 1991b].

Let Φ denote a finite non-empty set of propositions. A propositional language

formed from Φ is denoted by L(Φ), which is the smallest set containing the truth

values and the members of Φ. This set is closed under negation (¬) and conjunction

(∧). Other connectives such as the disjunction (∨), implication (→) and equivalence

(↔) can be defined in terms of negation and conjunction. We assume that there is

a special formula T . Its negation ¬T is written as F . Given the set of finite basic

propositions Φ = {p1, . . . , pn}, we consider the set At of all the atoms of the form

p′1 ∧ . . . ∧ p′n, where p′i is either pi or ¬pi. Any formula φ ∈ L(Φ) can be expressed

as a disjunctive normal form, i.e., a disjunction of atoms. Consequently, any formula

φ is uniquely described by a subset {δ1, . . . , δk} ⊆ At such that φ = δ1 ∨ . . . ∨ δk.

The power set 2At represents all the formulas constructed from Φ, with ∅ for F and

At for T . In the following discussion, propositions and subsets of At will be used

interchangeably.

Let W be a non-empty set of possible worlds representing states or situations of

the system being modeled. Each possible world provides partial information about
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some logical formula in L(Φ). For a particular possible world w, a total valuation

function πw : Φ −→ {true, false} may be defined [Fagin and Halpern, 1991; Ruspini,

1991b]. If πw(φ) = true, the proposition φ is said to be true in the world w; otherwise

it is false. According to the semantics of two-valued logic, given two propositions

φ and ψ, φ ∧ ψ is true in a world w, if and only if both φ and ψ are true in w.

Similar rules can be used for other operations. Thus, the valuation function πw can

be extended to L(Φ), or more conveniently to 2At. Alternatively, one can define the

truth assignment for all atoms. The valuation of other propositions can be deduced

using the truth functionality of the propositional logic [Fagin and Halpern, 1991;

Nilsson, 1986].

From the valuation functions πw for all possible worlds, a mapping i : 2At −→ 2W

can be defined as follows:

i(φ) = {w ∈W | πw(φ) = true}. (19)

That is, the set i(φ) contains those possible worlds in which φ is true. It is interpreted

as the incidence set or value of the proposition [Bundy, 1985, 1986]. The proposition

∅ is false in every possible world, while the proposition At is true in every possible

world. In fact, the non-numeric function (19) satisfies axioms (A4) and (A5). Thus,

it defines a non-numeric probability. This provides the possible-worlds semantics for

probabilistic reasoning. If a numeric probability measure is defined on W , then the

probability of a proposition is defined by the probability of its incidence set [Fagin

and Halpern, 1991; Nilsson, 1986].

In many situations, it may be more suitable to use a partial valuation function,

rather than a total function [Ruspini, 1991a; Smets, 1988]. For a particular possible

world, three possible states are allowed: the proposition is known to be true, the

proposition is known to be false, or the available information may be insufficient to

determine the truth or falsity of the proposition. In this case, it is impossible to

apply the truth functionality of propositional logic. A valuation function must be

given for every proposition in 2At. Given a possible world w ∈ W , a partial valuation

function, πw : 2At −→ {true, false} can be defined. By πw(φ) = true, we mean that

the proposition φ is known or proved to be true in the world w, and πw(φ) = false
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otherwise. With this interpretation, the following condition should be obeyed:

[πw(φ) = true] ⇐⇒ [πw(¬φ) = false]. (20)

For clarity, it is assumed that πw(∅) = false and πw(At) = true for every possible

world w ∈W .

With partial valuation functions, two dual non-numeric functions, i : 2At −→ 2W

and i : 2At −→ 2W , can be defined as follows:

i(φ) = {w ∈W | πw(φ) = true},

i(φ) = W − i(¬φ). (21)

Clearly, when partial evaluations become total valuation functions, the non-numeric

functions i and i reduce to the same non-numeric probability. In general, we call i(φ)

the lower incidence set, and i(φ) the upper incidence set, of φ. Other types of non-

numeric functions can be defined depending on the properties obeyed by the partial

valuation functions.

Suppose the truth functionality of ∧ is provided by a partial mapping, while

the truth functionality of ∨ is not. Based on the interpretation of possible-worlds

semantics, the partial valuation should satisfy the following conditions:

[πw(φ) = true and πw(ψ) = true] ⇐⇒ [πw(φ ∧ ψ) = true], (22)

[πw(φ) = true or πw(ψ) = true] =⇒ [πw(φ ∨ ψ) = true]. (23)

In fact, condition (22) implies condition (23). In this case, one may say that πw(φ ∨

ψ) = true without stating πw(φ) = true or πw(ψ) = true. In other words, one may

commit to a composite proposition without making any commitment to its compo-

nents. This is similar to the construction of belief measures, in which one may assign

belief to a set without distributing such belief to its subsets [Shafer, 1976]. According

to definition (21), i satisfies axiom (A4), while i satisfies axiom (A5). They define a

pair of non-numeric belief and plausibility functions. The set i(φ)− i(ψ) denotes the

set of possible worlds in which the truth value of φ is undeterminable. This notion is

similar to the doubtful region in the rough-set theory [Pawlak, 1982].
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From Theorem 3, one can conclude that if a numeric probability measure is defined

on W , the belief of a proposition can be defined by the probability of its lower

incidence set, while the plausibility by the probability of its upper incidence set.

The notion of non-numeric belief functions therefore provides the possible-worlds

semantics for reasoning with numeric belief/plausibility measures.

In addition to condition (22), assume that possible worlds can be arranged into a

sequence w1, . . . , wm such that for any proposition φ,

(πwi
(φ) = true) =⇒ (πwj

(φ) = true), for any i, j with i < j. (24)

Under these conditions, the non-numeric function i satisfies axioms (A4) and (A6),

and i satisfies axioms (A5) and (A6). They form a pair of non-numeric necessity and

possibility functions. Based on Theorem 3, this provides possible-worlds semantics

for possibilistic logic.

Now suppose the truth functionality is not provided for both ∧ and ∨ in specifying

the partial valuation function. Using the following condition:

(φ→ ψ) =⇒ [(πw(φ) = true) =⇒ (πw(ψ) = true)], (25)

a pair of dual non-numeric fuzzy measures can be derived, which provides the possible-

worlds semantics for reasoning with fuzzy measures.

4 CONCLUSION

In this paper, we have presented an analysis on different classes of non-numeric func-

tions and their applications in uncertain reasoning. The fundamental issues being

examined include the characterization, classification, construction and interpretation

of a number of non-numeric functions. With respect to the well known fuzzy, be-

lief/plausibility, probability, and necessity/possibility measures, we have analyzed

the corresponding classes of non-numeric functions. For each class, we have studied

the relationships between the qualitative and quantitative axioms, and analyzed the

properties of the non-numeric and numeric measures. We have also discussed how to

construct a non-numeric function from a compatibility relation. In fact, non-numeric
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functions can be adopted to provide the possible-worlds semantics for uncertain rea-

soning. Thus, this preliminary investigation establishes a basis for using non-numeric

functions to represent uncertainty.

Resconi, Klir and Clair [1992], Resconi et. al. [1993], and Harmanec, Klir and

Resconi [1993] proposed a unifying framework for the study of various uncertainty

theories. The present investigation is closely related to their work. Both methods use

a similar technique to relate non-numeric functions and numeric measures. However,

we used non-numeric functions as the primitive concept, while they used modal logic

as the underlying notion. It will be useful to combine these two frameworks by relating

the axioms of non-numeric functions to the axioms of modal logic operators. Yao and

Li [1993] adopted Kleene’s three-valued logic in which an additional truth value is

used [Rescher, 1969]. Their work is intended to provide a possible-worlds semantics for

interval-based probabilistic reasoning. It would be interesting to extend our work to

investigate other interval-based methods. The relationship between distinct possible

worlds was used by Ruspini [1991b] to develop the possible-worlds semantics for fuzzy

logic. Such a relationship can be included into the present framework.
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