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Abstract: Many real world problems deal with ordering of objects instead of classifying objects,

although majority of research in machine learning and data mining has been focused on the latter.

Examples of such problems are ordering of consumer products produced by different manufactures,

ranking of universities, and so on. Typically, an overall ordering of objects is given. In this paper, we

formulate the problem of mining ordering rules as finding association between orderings of attribute

values and the overall ordering of objects. An example of ordering rules may state that “if the value of

an object x on an attribute a is ordered ahead of the value of another object y on the same attribute,

then x is ordered ahead of y”. For mining ordering rules, the notion of information tables is generalized

to ordered information tables by adding order relations on attribute values, and rough set theory based

algorithms are then used.
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1 Introduction

One of the basic tasks of inductive learning and data
mining is to learn the knowledge for classification. It
is not surprising that the majority research has been
concentrated on such a task. This is particularly true
for rough set theory based approaches, as the theory
was originally developed in the context of classifica-
tion [16, 13, 14]. In real world situations, we may be
faced with many problems that are not simply clas-
sification [3, 15]. One such type of problems is the
ordering of objects. In this paper, we study the less
addressed problem of ordering.

Two familiar examples of ordering problems are the
ranking of universities and the ranking of the con-
sumer products produced by different manufactures.
In both examples, we have a set of attributes that
are used to describe the objects under consideration.
Consider the example of ranking consumer products.
Attributes may be the price of the products, warranty
of the products, and other information. The values
of a particular attribute, say the price, naturally in-
duce an ordering of objects. The overall ranking of
products may be produced by their market shares of
different manufactures. The ordering of objects by at-
tribute values may not necessarily be the same as the
overall ordering of objects. In this setting, a num-
ber of important issues arise. It would be interest-
ing to know which attributes play more important
roles in determining the overall ordering, and which

attributes do not contribute at all to the overall order-
ing. It would also be useful to know which subset of
attributes would be sufficient to determine the overall
ordering. The dependency information of attributes
may also be valuable.

From the previous example, we can identify the
problem of mining ordering rules. There is a set of
objects described by a set of attributes. There is an
ordering on values of each attribute, and there is also
an overall ordering of objects. The overall ordering
may be given by experts or obtained from other in-
formation, either dependent or independent of the or-
derings of objects according to their attribute values.
We are interested in mining the association between
the overall ordering and the individual orderings in-
duced by different attributes. More specifically, we
want to derive ordering rules exemplified by the state-
ment that “if the value of an object x on an attribute
a is ordered ahead of the value of another object y on
the same attribute, then x is ordered ahead of y”.

Typically, an ordering rule may not be exact. In
order to capture the uncertainty associated ordering
rules, two quantitative measures are used. They the
accuracy and the coverage of the rules [19, 20, 27].
The former deals with the correctness of the rules,
and the latter represents the extent to which the rule
covers the positive instances. For mining such or-
dering rules, we first introduce the notion of ordered
information tables as a generalization of information
tables. With an ordered information table, an or-



dered decision logic language is given to define order-
ing rules. We transform an ordered information table
into a standard information table, on which rough set
theory based mining algorithms are applied.

Ordered information tables are related to ordinal
information systems proposed and studied by Iwin-
ski [7, 8]. Ordering induced by attribute values in
information tables were also considered by Greco,
Matarazzo and Slowinski [4, 5]. Their work on ap-
proximating preference relations by dominance rela-
tions is related to, but different from, our approach
for mining ordering rules.

The major difference between the proposed method
and the conventional rough set methods is the require-
ment of ordering relations on attribute values. Tradi-
tionally, rough set theory relied on the trivial equality
relation = on attribute values. It is suitable for mining
classification rules, but inadequate for mining order-
ing rules. Once ordering relations are introduced on
attribute values, traditional rough set methods can be
applied immediately. In fact, we can simply use the
traditional data mining software packages by trans-
forming an ordered information table to a binary in-
formation table.

2 Ordered Information Tables

In many information processing systems, a set of ob-
jects are typically represented by their values on a
finite set of attributes. Such information may be con-
veniently described in a tabular form [12, 14]. For-
mally, an information table is defined as a quadruple:

IT = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),

where

U is a finite nonempty set of objects,

At is a finite nonempty set of attributes,

Va is a nonempty set of values for a ∈ At,

Ia : U → Va is an information function.

For simplicity, in this definition we have considered
only information tables characterized by a finite set
of objects and a finite set of attributes. Each infor-
mation function Ia is a total function that maps an
object of U to exactly one value in Va. The rows
of the table correspond to objects of the universe,
the columns correspond to a set of attributes, and
each cell is the value of an object with respect to an
attribute. An information table represents all avail-
able information and knowledge. Objects are only
perceived, observed, or measured by using a finite
number of properties. Similar representation schemes
can be found in many fields, such as decision theory,
pattern recognition, machine learning, data analysis,
data mining, and cluster analysis [14].

With respect to the notion of information tables,
there are extensive studies on the relationships be-
tween values of different attributes and relationships
between values of the same attribute, i.e., the horizon-
tal analysis and the vertical analysis of an information
table.

Analysis of the horizontal relationships reveals the
similarity, association, and dependency of different at-
tributes [28]. Such relationships are normally charac-
terized by the problem of determining the values of
one set of attributes based on the values of another set
of attributes. Two levels of dependencies, referred to
as the local and global dependencies, may be observed.
The local dependencies show how one specific combi-
nation of values on one set of attributes determines
one specific combination of values on another set of
attributes. The global dependencies show all com-
binations of values on one set of attributes determine
all combinations of values on another set of attributes.
Finding local dependencies is one of the main tasks of
machine learning and data mining [10, 14]. For in-
stance, the well-known association rules, which state
the presence of one set of items implies the presence of
another set of items, may be considered as a special
kind of local dependencies. Functional dependency
in relational databases is a typical example of global
dependency [1, 2]. Attribute (data) dependency stud-
ied in the theory of rough sets is another example of
global dependency [14].

Analysis of vertical relationships deals with se-
mantic closeness of values of an attribute. Exam-
ples of vertical analysis include the discretization of
real-valued attributes, and the use of order relations,
concept hierarchies, fuzzy binary relations, similar-
ity measures or distance functions on attribute val-
ues [6, 7, 9, 21, 26, 29].

An information table does not consider any seman-
tic relationships between different attribute values of
a particular attribute [24]. Different values of the
same attribute are treated as distinct symbols without
any connections, and hence horizontal analyses rely,
to a large extent, on simple pattern matching. More
specifically, one uses the trivial equality relation = on
values of an attribute. The standard rough set theory
was therefore developed based on the trivial equality
relation on attribute values [14]. Although the use
of equality relation is sufficient for a number of tasks,
such as classification, cluster analysis, and simple hor-
izontal analysis of the data, it may be inadequate for
other tasks such as approximate retrieval and ordering
of objects. By incorporating semantics information,
we may obtain different generalization of information
tables [24].

Generalized information tables may be viewed as
information tables with added semantics. For the
problem of mining ordering rules, we introduce order
relations on attribute values. An ordered information



a b c d o
p1 middle 3 years $200 heavy 1
p2 large 3 years $300 very heavy 3
p3 small 3 years $300 light 3
p4 small 3 years $250 very light 2
p5 small 2 years $200 very light 3

≻a: small ≻ middle ≻ large,
≻b: 3 years ≻ 2 years,
≻c: $200 ≻ $250 ≻ $300,
≻d: very light ≻ light ≻ heavy ≻ very heavy,
≻o: 1 ≻ 2 ≻ 3.

Table 1: An ordered information table

table is define by:

OIT = (IT, {≻a| a ∈At}),

where IT is the standard information table and ≻a

is an order relation on attribute a. An ordering of
values of a particular attribute a naturally induces an
ordering of objects:

x ≻{a} y ⇐⇒ Ia(x) ≻a Ia(y), (1)

where ≻{a} denotes an order relation on U induced
by the attribute a. An object x is ranked ahead of
another object y if and only if the value of x on the
attribute a is ranked ahead of the value of y on a. The
relation ≻{a} has exactly the same properties as that
of ≻a. For a subset of attributes A ⊆ At, we define:

x ≻A y ⇐⇒ ∀a ∈ A[Ia(x) ≻a Ia(y)]

⇐⇒
∧

a∈A

Ia(x) ≻a Ia(y)

⇐⇒
⋂

a∈A

≻{a} . (2)

That is, x is ranked ahead of y if and only if x is
ranked ahead of y according to all attributes in A.
The above definition is a straightforward generaliza-
tion of the standard definition of equivalence relations
in rough set theory, where the equality relation = is
used [14]. Mining ordering rules based on order re-
lations is a concrete example of applications of our
earlier studies on generalizations of rough set model
with non-equivalence relations [23, 25].

For simplicity, we also assume that there is a special
attribute, called decision attribute. The ordering of
objects by the decision attribute is denoted by ≻o and
is called the overall ordering of objects.

An order relation should satisfy certain conditions.
We consider the following two properties [22]:

Asymmetry :

x ≻ y =⇒ ¬(y ≻ x),

Negative transitivity :

(¬(x ≻ y),¬(y ≻ z)) =⇒ ¬(x ≻ z).

An order relation satisfying these properties is called
a weak order. An important implication of weak order
is that the following relation,

x ∼ y ⇐⇒ (¬(x ≻ y),¬(y ≻ x)), (3)

is an equivalence relation. For two elements, if x ∼ y
we say x and y are indiscernible by ≻. The equiva-
lence relation ∼ induces a partition U/ ∼ on U , and
an order relation on U/ ∼ can be defined by:

[x]∼ ≻∗ [y]∼ ⇐⇒ x ≻ y, (4)

where [x]∼ is the equivalence class containing x.
Moreover, ≻∗ is a linear order [22]. Any two dis-
tinct equivalence classes of U/ ∼ can be compared. It
is therefore possible to arrange the objects into levels,
with each level consisting of indiscernible elements de-
fined by ≻. In this study, we assume that all order
relations are weak order. For a weak order, ¬(x ≻ y)
can be written as y � x or x � y, which means y ≻ x
or y ∼ x. For any two elements x and y, we have
either x ≻ y or y � x, but not both.

Example 1 Suppose we have an ordered information
table of a group of products produced by five manufac-
tures as shown in Table 1. In this table, a, b, c, d, and
o stand for size, warranty, price, weight, and overall
ordering on a set of products, respectively. Based on
orderings of attribute values, we obtain the following
orderings of products:

≻{a} : [p3, p4, p5] ≻
∗
{a} [p1] ≻

∗
{a} [p2],

≻{b} : [p1, p2, p3, p4] ≻
∗
{b} [p5],

≻{c} : [p1, p5] ≻
∗
{c} [p4] ≻

∗
{c} [p2, p3],

≻{d} : [p4, p5] ≻
∗
{d} [p3] ≻

∗
{d} [p1] ≻

∗
{d} [p2],

≻{o} : [p1] ≻
∗
{o} [p4] ≻

∗
{o} [p2, p3, p5].



For subsets {a, b} and {c, d}, we have:

≻{a,b} : ∅,

≻{c,d} : p1 ≻{c,d} p2, p4 ≻{c,d} p2,

p5 ≻{c,d} p2, p4 ≻{c,d} p3,

p5 ≻{c,d} p3.

By combining attributes a and b, all objects are put
into the same class. On the other hand, it is interest-
ing to note that ≻{c,d} is not a weak order. That is,
the intersection of two weak orders may not produce a
weak order. This suggests that rules using simple con-
dition

∧

a∈A Ia(x) ≻a Ia(y), as in the standard rough
set based methods, might not be very useful.

3 An Ordered Decision Logic

For the purpose of mining ordering rules, we need
to define the form (logic expressions) and interpre-
tations of various expressions. This can be done by
introducing an ordered decision logic language (ODL-
language) for ordered information tables, a generaliza-
tion of the Pawlak decision logic for standard infor-
mation tables [14].

With an ordered information table, an ODL-
language is given as follows, similar to Pawlak decision
logic language [14]. In the ODL-language, an atomic
expression is given by (a,≻) or (a,�), where a ∈ At
and ≻ is an order relation on attribute a. If φ and
ψ are expressions in the ODL-language, then so are
¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, and φ ≡ ψ. The semantics
of the ODL-language can be defined in Tarski’s style
through the notions of a model and satisfiability. The
model is an ordered information table OIT , which
provides interpretation for symbols and expressions
of the ODL-language. The satisfiability of an expres-
sion φ by an object pair (x, y), written (x, y) |=OIT φ
or in short (x, y) |= φ if OIT is understood, is given
by:

(a1). (x, y) |= (a,≻) iff x ≻{a} y,

(a2). (x, y) |= (a,�) iff x �{a} y,

(a3). (x, y) |= ¬φ iff not (x, y) |= φ,

(a4). (x, y) |= φ ∧ ψ iff (x, y) |= φ and (x, y) |= ψ,

(a5). (x, y) |= φ ∨ ψ iff (x, y) |= φ or (x, y) |= ψ,

(a6). (x, y) |= φ→ ψ iff (x, y) |= ¬φ ∨ ψ,

(a7). (x, y) |= φ ≡ ψ iff (x, y) |= φ→ ψ and

(x, y) |= ψ → φ.

For an expression φ, the set mOIT (φ) defined by:

mOIT (φ) = {(x, y) ∈ U × U | (x, y) |= φ}, (5)

is called the meaning of the expression φ in OIT . If
OIT is understood, we simply write m(φ). Obviously,

the following properties hold [11, 14]:

(b1). m((a,≻)) = {(x, y) ∈ U × U | x ≻{a} y},

(b2). m((a,�)) = {(x, y) ∈ U × U | x �{a} y},

(b3). m(¬φ) = −m(φ),

(b4). m(φ ∧ ψ) = m(φ) ∩m(ψ),

(b5). m(φ ∨ ψ) = m(φ) ∪m(ψ),

(b6). m(φ→ ψ) = −m(φ) ∪m(ψ),

(b7). m(φ ≡ ψ) = (m(φ) ∩m(ψ)) ∪

(−m(φ) ∩ −m(ψ)),

where −m(φ) and −m(ψ) are the corresponding com-
plements of sets m(φ) and m(ψ) in the universal set
of U × U . The meaning of an expression φ is there-
fore the set of all object pairs having the property
expressed by the expression φ. In other words, φ can
be viewed as the description of the set of object pairs
m(φ). Thus, a connection between expressions of the
ODL-language and subsets of U × U is established.

An expression φ is said to be true in an ordered
information table OIT , written |=OIT φ or |= φ for
short when OIT is clear from the context, if and only
if m(φ) = U × U . That is, φ is satisfied by all ob-
ject pairs in the universal set U × U . Two expres-
sions φ and ψ are equivalent in OIT if and only if
m(φ) = m(ψ). By definition, the following properties
hold [14]:

(c1). |= φ iff m(φ) = U × U,

(c2). |= ¬φ iff m(φ) = ∅,

(c3). |= φ→ ψ iff m(φ) ⊆ m(ψ),

(c4). |= φ ≡ ψ iff m(φ) = m(ψ).

Thus, we can study the relationships between con-
cepts described by expressions of the ODL-language
based on the relationships between their correspond-
ing sets of object pairs.

Example 2 Consider the ordered information table
given by Table 1. We have the following results:

m((a,≻)) = {(p3, p1), (p4, p1), (p5, p1),

(p3, p2), (p4, p2), (p5, p2),

(p1, p2)},

m((o,≻)) = {(p1, p4), (p1, p2), (p1, p3),

(p1, p5), (p4, p2), (p4, p3),

(p4, p5)},

m((a,≻) → (o,≻)) = U × U −

{(p3, p2), (p3, p1), (p4, p1),

(p5, p1), (p5, p2)},

and

|= (b,�) ∧ (b,�) → (o,�).

In the OIT -language, we interpret → as logic impli-
cation (material implication). With such a definition,
one may not be able to find useful rules.



4 Interpretation of Ordering

Rules

In an ordered information table OIT , an atomic ex-
pression over a single attribute a is defined as either
(a,≻) or (a,�). For a set of attributes A ⊆ At, an
expression over A in OIT is defined by

∧

a∈A e(a),
where e(a) is an atomic expression over a. The set of
all expressions over A in an ordered information ta-
ble OIT is defined by E(A). Relationships between
attributes can be expressed as relationships between
logic expression in the ODL-language.

Consider two subsets of attributes A,B ⊆ At. For
two expressions φ ∈ E(A) and ψ ∈ E(B), an ordering
rule is read “if φ then ψ” and is denoted by φ ⇒ ψ.
The expression φ is called the rule’s antecedent, while
the expression ψ is called the rule’s consequent. Min-
ing ordering rules in an ordered information table may
be formulated as finding association between order-
ings induced by attributes. In the general case, one
is interested in finding associations between two ar-
bitrary subsets of attributes. As a special case, the
second subset may consist of a single attribute that
defines the overall ordering of objects.

The ODL-language immediately offers one inter-
pretation of the rule, φ ⇒ ψ, in which ⇒ is inter-
preted as the logical implication →. In most cases,
the expression φ → ψ may not be true in an ordered
information table. We thus have a quantitative mea-
sure associated with φ ⇒ ψ under logic implication
interpretation:

T (φ⇒ ψ) =
|m(φ→ ψ)|

|U × U |
, (6)

where | · | denotes the cardinality of a set. It measures
the degree of truth of the expression φ → ψ in an
ordered information table. A problem with the logic
implication interpretation can be seen as follows. For
a pair of objects, if it does not satisfy φ, by definition,
it satisfies φ → ψ. Thus, even if the degree of truth
of φ → ψ is very high, we may not use it to predict
ordering as expressed by ψ.

Instead of using logic implication, we adopt a con-
ditional probabilistic interpretation for ordering rules.
A systematic analysis of probabilistic quantities asso-
ciated with rules was given by Yao and Zhong [27].
In this paper, we choose to use two measures, called
accuracy and coverage, proposed and studied by
Tsumoto [19, 20].

An ordering rule φ ⇒ ψ may only reveal a part of
the overall picture of the ordered information table
from which it was derived [17]. It may happen that
the ordered information table contains object pairs
that match the rule’s antecedent φ, but not satisfy
the rule’s consequent ψ. Hence, we are interested in
the probability of the conclusion ψ being matched,
given condition φ.

The quantity accuracy(φ ⇒ ψ) gives a measure of
how trustworthy the rule is in drawing conclusion ψ
on the basis of evidence φ, and is a frequency-based
estimation of the conditional probability Pr(ψ|φ),

accuracy(φ⇒ ψ) =
|m(φ ∧ ψ)|

|m(φ)|
. (7)

Expressions can be considered as criteria. An order-
ing rule states the extent to which orderings of objects
by attributes in A determines orderings of objects by
attributes in B. An ordering rule,

(a,≻) ∧ (b,�) ⇒ (c,≻),

can be re-expressed as,

x ≻{a} y ∧ x �{b} y ⇒ x ≻{c} y.

That is, for two arbitrary objects x and y, if x is
ranked ahead of y by attribute a, and at the same
time, x is not ranked ahead of y by attribute b, then
x is ranked ahead of y by attribute c. If accuracy = 1,
the orderings by φ would determine the orderings by
ψ. We thus have a strong association between the
two orderings. A smaller value of accuracy indicates
a weaker association.

Usually we also want a rule to be strong in the
sense that it has a large support basis. However,
what we consider to be “large” typically varies with
how the decision values are distributed. The quan-
tity coverage(φ ⇒ ψ) gives a measure of how well
the antecedent φ describes the consequent ψ, and is a
frequency-based estimation of the conditional proba-
bility Pr(φ|ψ),

coverage(φ⇒ ψ) =
|m(φ ∧ ψ)|

|m(ψ)|
. (8)

An ordering rule with higher coverage suggests that
ordering of more pairs of objects can be derived from
the rule.

Example 3 From the data in Example 1, we can get,
for example, two ordering rules:

(b,�) ∧ (c,�) ⇒ (o,�), accuracy = 8/8 = 1.0,

(c,≻) ⇒ (o,≻), accuracy = 5/8 = 0.625.

For these two ordering rules, the corresponding mea-
sures of coverage are:

(b,�) ∧ (c,�) ⇒ (o,�), coverage = 8/13 = 0.615,

(c,≻) ⇒ (o,≻), coverage = 5/7 = 0.714.

The accuracy and coverage are not independent of
each other, as both are related to the quantity |m(φ∧
ψ)|. It is desirable for a rule to be accurate as well as
to have a high degree of coverage. In general, one may
observe a trade-off between accuracy and coverage. A
rule with higher coverage may have a lower accuracy,
while a rule with higher accuracy may have a lower
coverage.



5 Mining Ordering Rules

To mine ordering rules from an ordered information
table, we present a rough set based approach. From
an ordered information table, we can construct a bi-
nary information table. In the binary information, we
consider all pairs of objects which are the Cartesian
product U × U . The information function is defined
by:

Ia((x, y)) =







1, x ≻{a} y,

0, x �{a} y.
(9)

Statements in ordered information tables can be
translated into equivalent statements in the binary in-
formation table. For example, x ≻{a} y can be trans-
lated into Ia((x, y)) = 1. In the translation process,
we will not consider object pairs of the form (x, x), as
we are not interested in them.

In a binary information table, we define an equiva-
lence relation EA for a subset of attributes A ⊆ At:

(x, y)EA(x′, y′) ⇐⇒

(∀a ∈ A)Ia((x, y)) = Ia((x′, y′)). (10)

The overall ordering attribute o partitions all pairs
of objects into two disjoint classes denoted by Cl0 and
Cl1. The lower and upper approximations of Cli(i =
1, 2) based on attributes in A are given by:

apr(Cli) =
⋃

{[(x, y)]A | [(x, y)]A ⊆ Cli},

apr(Cli) =
⋃

{[(x, y)]A | [(x, y)]A ∩Cli 6= ∅},(11)

where [(x, y)]A is the equivalence class containing
(x, y) induced by equivalence relation EA. We can
also find the reduct and core of the ordering attributes
A to eliminate the redundant ones.

For each equivalence class [(x, y)]A ∈ apr(Cli), we
can draw a certain ordering rule:

Des([(x, y)]A) ⇒ Des(Cli)

where Des([(x, y)]A) and Des(Cli) denote the descrip-
tions of the corresponding equivalence classes. For ev-
ery ordering attribute a ∈ A, we can get an atomic
expression in Des([(x, y)]A): (a,≻) if Ia((x, y)) = 1,
and (a,�) if Ia((x, y)) = 0. The conjunction of these
atomic expressions is Des([(x, y)]A). Des(Cli) denotes
one of the two atomic expressions for the overall or-
dering: (o,≻) if i = 1, and (o,�) if i = 0. That is,
Des([(x, y)]A) and Des(Cli) are expressions in ODL-
language.

For each equivalence class [(x, y)]A ∈ apr(Cli), we
can draw a possible ordering rule with accuracy and
coverage measures:

Des([(x, y)]A) ⇒ Des(Cli),

accuracy =
|m(Des([(x, y)]A) ∧ Des(Cli))|

|m(Des([(x, y)]A))|
,

coverage =
|m(Des([(x, y)]A) ∧ Des(Cli))|

|m(Des(Cli))|
.(12)

The construction of possible rules is particularly use-
ful for the analysis of large data sets where inconsis-
tencies may considerably reduce the lower approxima-
tions and prevent discovery of strong rules.

Although the rules we get from reducts are some-
what simplified rules, there are many methods intro-
duced in the area of rough set which can induce a set
of minimal ordering rules from an information table.
For example, using Rosetta [18], a rough set toolkit
for analyzing data, we can get a set of minimal or-
dering rules based on reducts that discern on a per
object basis.

Example 4 The ordered information table in Exam-
ple 1 can be transformed into the binary information
table, given by Table 2. Using rough set theory, we can
get the reduct of the given set of ordering attributes:
{b, c}, which produces the following rough set approx-
imations:

apr(Cl1) = ∅,

apr(Cl0) = {[b = 0, c = 0]},

apr(Cl1) = {[b = 1, c = 0], [b = 0, c = 1]},

apr(Cl0) = {[b = 1, c = 0], [b = 0, c = 1],

[b = 0, c = 0]},

The lower approximations produce an ordering rule:

R1 : (b,�) ∧ (c,�) ⇒ (o,�), accuracy = 1,

coverage = 0.615.

That is, if x �{b} y and x �{c} y then x �{o} y.
Examples of possible ordering rules obtained from the
upper approximations are:

R2 : (c,≻) ⇒ (o,≻), accuracy = 0.625,

coverage = 0.714,

R3 : (b,≻) ⇒ (o,≻), accuracy = 0.5,

coverage = 0.286.

That is, if x ≻{c} y then x ≻{o} y with accuracy 0.625
and coverage 0.714. If x ≻{b} y then x ≻{o} y with
accuracy 0.5 and coverage 0.286.

In our approach, the interpretation of an ordered
information table and the translation to a binary in-
formation table are crucial. Once we obtain the bi-
nary information table, any existing rough set based
data mining algorithm can be used to mine ordering
rules.

One may also use other types of translation meth-
ods. For example, we may consider two strict order
relations ≻ and ≺, instead of ≻ and �. Alternatively,
one may translate an ordered information table into
a three-valued information table, corresponding to ≻,
≺, and ∼. It is important to realize that the frame-
work presented in this paper can be easily applied
with very simple modification.



Object a b c d o
(1, 2) 1 0 1 1 1
(1, 3) 0 0 1 0 1
(1, 4) 0 0 1 0 1
(1, 5) 0 1 0 0 1
(2, 1) 0 0 0 0 0
(2, 3) 0 0 0 0 0
(2, 4) 0 0 0 0 0
(2, 5) 0 1 0 0 0
(3, 1) 1 0 0 1 0
(3, 2) 1 0 0 1 0
(3, 4) 0 0 0 0 0
(3, 5) 0 1 0 0 0
(4, 1) 1 0 0 1 0
(4, 2) 1 0 1 1 1
(4, 3) 0 0 1 1 1
(4, 5) 0 1 0 0 1
(5, 1) 1 0 0 1 0
(5, 2) 1 0 1 1 0
(5, 3) 0 0 1 1 0
(5, 4) 0 0 1 0 0

Table 2: A binary information table derived from an
ordered information table

6 Conclusions

Ordering of objects is a fundamental issue in human
decision making and may play a significant role in the
design of intelligent information systems. This prob-
lem is considered from the perspective of data mining.
The commonly used attribute value approaches are
extended by introducing order relations on attribute
values. Mining ordering rules is formulated as the
process of finding associations between orderings on
attribute values and the overall ordering of objects.
These ordering rules tell us, or explain, how objects
should be ranked according to orderings on their at-
tribute values. A rough set based approach is used to
illustrate our basic ideas.

The proposed solution for mining ordering rules is
simple. Our main contribution is the formulation of
the problem, and the translation of the problem to
existing data mining problem. Consequently, one can
directly apply any existing data mining algorithms
for mining ordering rules. Depending on the specific
problem, one may use different translation methods.
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