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Abstract. There are two objectives of this chapter. One objective is
to examine the basic principles and issues of granular computing. We
focus on the tasks of granulation and computing with granules. From
semantic and algorithmic perspectives, we study the construction, in-
terpretation, and representation of granules, as well as principles and
operations of computing and reasoning with granules. The other objec-
tive is to study a partition model of granular computing in a set-theoretic
setting. The model is based on the assumption that a finite set of uni-
verse is granulated through a family of pairwise disjoint subsets. A hier-
archy of granulations is modeled by the notion of the partition lattice.
The model is developed by combining, reformulating, and reinterpret-
ing notions and results from several related fields, including theories of
granularity, abstraction and generalization (artificial intelligence), parti-
tion models of databases, coarsening and refining operations (evidential
theory), set approximations (rough set theory), and the quotient space
theory for problem solving.

1 Introduction

The basic ideas of granular computing, i.e., problem solving with different granu-
larities, have been explored in many fields, such as artificial intelligence, interval
analysis, quantization, rough set theory, Dempster-Shafer theory of belief func-
tions, divide and conquer, cluster analysis, machine learning, databases, and
many others [73]. There is a renewed and fast growing interest in granular com-
puting [21, 30, 32, 33, 41, 43, 48, 50, 51, 58, 60, 70, 77].

The term “granular computing (GrC)” was first suggested by T.Y. Lin [74].
Although it may be difficult to have a precise and uncontroversial definition, we
can describe granular computing from several perspectives.

We may define granular computing by examining its major components and
topics. Granular computing is a label of theories, methodologies, techniques, and
tools that make use of granules, i.e., groups, classes, or clusters of a universe, in
the process of problem solving [60]. That is, granular computing is used as an
umbrella term to cover these topics that have been studied in various fields in
isolation. By examining existing studies in a unified framework of granular com-
puting and extracting their commonalities, one may be able to develop a general
theory for problem solving. Alternatively, we may define granular computing by



identifying its unique way of problem solving. Granular computing is a way of
thinking that relies on our ability to perceive the real world under various grain
sizes, to abstract and consider only those things that serve our present inter-
est, and to switch among different granularities. By focusing on different levels
of granularities, one can obtain various levels of knowledge, as well as inherent
knowledge structure. Granular computing is essential to human problem solv-
ing, and hence has a very significant impact on the design and implementation
of intelligent systems.

The ideas of granular computing have been investigated in artificial intel-
ligence through the notions of granularity and abstraction. Hobbs proposed a
theory of granularity based on the observation that “[w]e look at the world un-
der various grain seizes and abstract from it only those things that serve our
present interests” [18]. Furthermore, “[o]ur ability to conceptualize the world
at different granularities and to switch among these granularities is fundamen-
tal to our intelligence and flexibility. It enables us to map the complexities of
the world around us into simpler theories that are computationally tractable to
reason in” [18]. Giunchigalia and Walsh proposed a theory of abstraction [14].
Abstraction can be thought of as “the process which allows people to consider
what is relevant and to forget a lot of irrelevant details which would get in the
way of what they are trying to do”. They showed that the theory of abstraction
captures and generalizes most previous work in the area.

The notions of granularity and abstraction are used in many subfields of arti-
ficial intelligence. The granulation of time and space leads naturally to temporal
and spatial granularities. They play an important role in temporal and spatial
reasoning [3, 4, 12, 19, 54]. Based on granularity and abstraction, many authors
studied some fundamental topics of artificial intelligence, such as, for example,
knowledge representation [14, 75], theorem proving [14], search [75, 76], plan-
ning [24], natural language understanding [35], intelligent tutoring systems [36],
machine learning [44], and data mining [16].

Granular computing recently received much attention from computational
intelligence community. The topic of fuzzy information granulation was first
proposed and discussed by Zadeh in 1979 and further developed in the paper
published in 1997 [71, 73]. In particular, Zadeh proposed a general framework of
granular computing based on fuzzy set theory [73]. Granules are constructed and
defined based on the concept of generalized constraints. Relationships between
granules are represented in terms of fuzzy graphs or fuzzy if-then rules. The
associated computation method is known as computing with words (CW) [72].
Although the formulation is different from the studies in artificial intelligence, the
motivations and basic ideas are the same. Zadeh identified three basic concepts
that underlie human cognition, namely, granulation, organization, and causa-
tion [73]. “Granulation involves decomposition of whole into parts, organization
involves integration of parts into whole, and causation involves association of
causes and effects.” [73] Yager and Filev argued that “human beings have been
developed a granular view of the world” and “. . . objects with which mankind
perceives, measures, conceptualizes and reasons are granular” [58]. Therefore, as



pointed out by Zadeh, “[t]he theory of fuzzy information granulation (TFIG) is
inspired by the ways in which humans granulate information and reason with
it.”[73]

The necessity of information granulation and simplicity derived from infor-
mation granulation in problem solving are perhaps some of the practical reasons
for the popularity of granular computing. In many situations, when a problem
involves incomplete, uncertain, or vague information, it may be difficult to differ-
entiate distinct elements and one is forced to consider granules [38–40]. In some
situations, although detailed information may be available, it may be sufficient
to use granules in order to have an efficient and practical solution. In fact, very
precise solutions may not be required at all for many practical problems. It may
also happen that the acquisition of precise information is too costly, and coarse-
grained information reduces cost [73]. They suggest a basic guiding principle of
fuzzy logic: “Exploit the tolerance for imprecision, uncertainty and partial truth

to achieve tractability, robustness, low solution cost and better rapport with real-

ity” [73]. This principle offers a more practical philosophy for real world problem
solving. Instead of searching for the optimal solution, one may search for good
approximate solutions. One only needs to examine the problem at a finer gran-
ulation level with more detailed information when there is a need or benefit for
doing so [60].

The popularity of granular computing is also due to the theory of rough
sets [38, 39]. As a concrete theory of granular computing, rough set model enables
us to precisely define and analyze many notions of granular computing. The
results provide an in-depth understanding of granular computing.

The objectives of this chapter are two-fold based on investigations at two
levels. Sections 2 and 3 focus on a high and abstract level development of granular
computing, and Section 3 deals with a low and concrete level development by
concentrating on a partition model of granular computing. The main results are
summarized as follows.

In Section 2, we discuss in general terms the basic principles and issues of
granular computing based on related studies, such as the theory of granularity,
the theory of abstraction, and their applications. The tasks of granulation and
computing with granules are examined and related to existing studies. We study
the construction, interpretation, and representation of granules, as well as prin-
ciples and operations of computing and reasoning with granules. In Section 3,
we argue that granular computing is a way of thinking. This way of thinking is
demonstrated based on three problem solving domains, i.e., concept formation,
top-down programming, and top-down theorem proving.

In Section 4, we study a partition model of granular computing in a set-
theoretic setting. The model is based on the assumption that a finite set of
universe is granulated through a family of pairwise disjoint subsets. A hierarchy
of granulations is modeled by the notion of the partition lattice. Results from
rough sets [38], quotient space theory [75, 76], belief functions [46], databases[27],
data mining [31, 34], and power algebra [6] are reformulated, re-interpreted, re-
fined, extended and combined for granular computing. We introduce two basic



operations called zooming-in and zooming-out operators. Zooming-in allows us
to expand an element of the quotient universe into a subset of the universe, and
hence reveals more detailed information. Zooming-out allows us to move to the
quotient universe by ignoring some details. Computations in both universes can
be connected through zooming operations.

2 Basic Issues of Granular Computing

Granular computing may be studied based on two related issues, namely gran-
ulation and computation [60]. The former deals with the construction, interpre-
tation, and representation of granules, and the latter deals with the computing
and reasoning with granules. They can be further divided with respect to al-
gorithmic and semantic aspects [60]. The algorithmic study concerns the proce-
dures for constructing granules and related computation, and the semantic study
concerns the interpretation and physical meaningfulness of various algorithms.
Studies from both aspects are necessary and important. The results from seman-
tic study may provide not only interpretations and justifications for a particular
granular computing model, but also guidelines that prevent possible misuses of
the model. The results from algorithmic study may lead to efficient and effective
granular computing methods and tools.

2.1 Granulations

Granulation of a universe involves dividing the universe into subsets or grouping
individual objects into clusters. A granule may be viewed as a subset of the
universe, which may be either fuzzy or crisp. A family of granules containing
every object in the universe is called a granulation of the universe, which provides
a coarse-grained view of the universe. A granulation may consist of a family of
either disjoint or overlapping granules. There are many granulations of the same
universe. Different views of the universe can be linked together, and a hierarchy
of granulations can be established.

The notion of granulation can be studied in many different contexts. The
granulation of the universe, particularly the semantics of granulation, is domain
and application dependent. Nevertheless, one can still identify some domain
independent issues [75]. Some of such issues are described in more detail below.

Granulation criteria. A granulation criterion deals with the semantic inter-
pretation of granules and addresses the question of why two objects are
put into the same granule. It is domain specific and relies on the available
knowledge. In many situations, objects are usually grouped together based
on their relationships, such as indistinguishability, similarity, proximity, or
functionality [73]. One needs to build models to provide both semantical and
operational interpretations of these notions. A model enables us to define for-
mally and precisely various notions involved, and to study systematically the
meanings and rationalities of granulation criteria.



Granulation structures. It is necessary to study granulation structures deriv-
able from various granulations of the universe. Two structures can be ob-
served, the structure of individual granules and structure of a granulation.
Consider the case of crisp granulation. One can immediately define an or-
der relation between granules based on the set inclusion. In general, a large
granule may contain small granules, and small granules may be combined
to form a large granule. The order relation can be extended to different
granulations. This leads to multi-level granulations in a natural hierarchical
structure. Various hierarchical granulation structures have been studied by
many authors [22, 36, 54, 75, 76].

Granulation methods. From the algorithmic aspect, a granulation method
addresses the problem of how to put two objects into the same granule. It
is necessary to develop algorithms for constructing granules and granula-
tions efficiently based on a granulation criterion. The construction process
can be modeled as either top-down or bottom-up. In a top-down process,
the universe is decomposed into a family of subsets, each subset can be fur-
ther decomposed into smaller subsets. In a bottom-up process, a subset of
objects can be grouped into a granule, and smaller granules can be further
grouped into larger granules. Both processes lead naturally to a hierarchical
organization of granules and granulations [22, 61].

Representation/description of granules. Another semantics related issue
is the interpretation of the results of a granulation method. Once constructed,
it is necessary to describe, to name and to label granules using certain lan-
guages. This can be done in several ways. One may assign a name to a granule
such that an element in the granule is an instance of the named category,
as being done in classification [22]. One may also construct a certain type
of center as the representative of a granule, as being done in information
retrieval [45, 56]. Alternatively, one may select some typical objects from a
granule as its representative. For example, in many search engines, the search
results are clustered into granules and a few titles and some terms can be
used as the description of a granule [8, 17].

Quantitative characteristics of granules and granulations. One can as-
sociate quantitative measures to granules and granulations to capture their
features. Consider again the case of crisp granulation. The cardinality of a
granule, or Hartley information measure, can be used as a measure of the
size or uncertainty of a granule [64]. The Shannon entropy measure can be
used as a measure of the granularity of a partition [64].

These issues can be understood by examining a concrete example of granula-
tion known as the cluster analysis [2]. This can be done by simply change gran-
ulation into clustering and granules into clusters. Clustering structures may be
hierarchical or non-hierarchical, exclusive or overlapping. Typically, a similarity
or distance function is used to define the relationships between objects. Clus-

tering criteria may be defined based on the similarity or distance function, and
the required cluster structures. For example, one would expect strong similari-
ties between objects in the same cluster, and weak similarities between objects



in different clusters. Many clustering methods have been proposed and studied,
including the families of hierarchical agglomerative, hierarchical divisive, itera-
tive partitioning, density search, factor analytic, clumping, and graph theoretic
methods [1]. Cluster analysis can be used as an exploratory tool to interpret
data and find regularities from data [2]. This requires the active participation
of experts to interpret the results of clustering methods and judge their signifi-
cance. A good representation of clusters and their quantitative characterizations

may make the task of exploration much easier.

2.2 Computing and reasoning with granules

Computing and reasoning with granules depend on the previously discussed
notion of granulations. They can be similarly studied from both the semantic
and algorithmic perspectives. One needs to design and interpret various methods
based on the interpretation of granules and relationships between granules, as
well as to define and interpret operations of granular computing.

The two level structures, the granule level and the granulation level, provide
the inherent relationships that can be explored in problem solving. The granu-
lated view summarizes available information and knowledge about the universe.
As a basic task of granular computing, one can examine and explore further
relationships between granules at a lower level, and relationships between gran-
ulations at a higher level. The relationships include closeness, dependency, and
association of granules and granulations [43]. Such relationships may not hold
fully and certain measures can be employed to quantify the degree to which the
relationships hold [64]. This allows the possibility to extract, analyze and or-
ganize information and knowledge through relationships between granules and
between granulations [62, 63].

The problem of computing and reasoning with granules is domain and ap-
plication dependent. Some general domain independent principles and issues are
listed below.

Mappings between different level of granulations. In the granulation hi-
erarchy, the connections between different levels of granulations can be de-
scribed by mappings. Giunchglia and Walsh view an abstraction as a map-
ping between a pair of formal systems in the development of a theory of
abstraction [14]. One system is referred to as the ground space, and the
other system is referred to as the abstract space. At each level of granula-
tion, a problem is represented with respect to the granularity of the level.
The mapping links different representations of the same problem at differ-
ent levels of details. In general, one can classify and study different types of
granulations by focusing on the properties of the mappings [14].

Granularity conversion. A basic task of granular computing is to change
views with respect to different levels of granularity. As we move from one
level of details to another, we need to convert the representation of a problem
accordingly [12, 14]. A move to a more detailed view may reveal information
that otherwise cannot be seen, and a move to a simpler view can improve the



high level understanding by omitting irrelevant details of the problem [12, 14,
18, 19, 73, 75, 76]. The change between grain-sized views may be metaphori-
cally stated as the change between the forest and trees.

Property preservation. Granulation allows the different representations of
the same problem in different levels of details. It is naturally expected that
the same problem must be consistently represented [12]. A granulation and
its related computing methods are meaningful only they preserve certain
desired properties [14, 30, 75]. For example, Zhang and Zhang studied the
“false-preserving” property, which states that if a coarse-grained space has
no solution for a problem then the original fine-grained space has no solu-
tion [75, 76]. Such a property can be explored to improve the efficiency of
problem solving by eliminating a more detailed study in a coarse-grained
space. One may require that the structure of a solution in a coarse-grained
space is similar to the solution in a fine-grained space. Such a property is
used in top-down problem solving techniques. More specifically, one starts
with a sketched solution and successively refines it into a full solution. In the
context of hierarchical planning, one may impose similar properties, such as
upward solution property, downward solution property, monotonicity prop-
erty, etc. [24].

Operators. The relationship between granules at different levels and conver-
sion of granularity can be precisely defined by operators [12, 36]. They serve
as the basic build blocks of granular computing. There are at least two
types of operators that can be defined. One type deals with the shift from
a fine granularity to a coarse granularity. A characteristics of such an oper-
ator is that it will discard certain details, which makes distinct objects no
longer differentiable. Depending on the context, many interpretations and
definitions are available, such as abstraction, simplification, generalization,
coarsening, zooming-out, etc. [14, 18, 19, 36, 46, 66, 75]. The other type deals
with the change from a coarse granularity to a fine granularity. A character-
istics of such an operator is that it will provide more details, so that a group
of objects can be further classified. They can be defined and interpreted dif-
ferently, such as articulation, specification, expanding, refining, zooming-in,
etc. [14, 18, 19, 36, 46, 66, 75]. Other types of operators may also be defined.
For example, with the granulation, one may not be able to exactly char-
acterize an arbitrary subset of a fine-grained universe in a coarse-grained
universe. This leads to the introduction of approximation operators in rough
set theory [39, 59].

The notion of granulation describes our ability to perceive the real world un-
der various grain sizes, and to abstract and consider only those things that serve
our present interest. Granular computing methods describe our ability to switch
among different granularities in problem solving. Detailed and domain specific
methods can be developed by elaborating these issues with explicit reference to
an application. For example, concrete domain specific conversion methods and
operators can be defined. In spite of the differences between various methods,
they are all governed by the same underlying principles of granular computing.



3 Granular Computing as a Way of Thinking

The underlying ideas of granular computing have been used either explicitly or
implicitly for solving a wide diversity of problems. Their effectiveness and merits
may be difficult to study and analyze based on some kind of formal proofs. They
may be judged based on the powerful and yet imprecise and subjective tools
of our experience, intuition, reflections and observations [28]. As pointed out by
Leron [28], a good way of activating these tools is to carry out some case studies.
For such a purpose, the general ideas, principles, and methodologies of granular
computing are further examined with respect to several different fields in the
rest of this section. It should be noted that analytical and experimental results
on the effectiveness of granular computing in specific domains, though will not
be discussed in this chapter, are available [20, 24, 75].

3.1 Concept formation

From philosophical point of view, granular computing can be understood as a
way of thinking in terms of the notion of concepts that underlie the human
knowledge.

Every concept is understood as a unit of thoughts consisting of two parts,
the intension and the extension of the concept [9, 52, 53, 55, 57]. The intension
(comprehension) of a concept consists of all properties or attributes that are valid
for all those objects to which the concept applies. The extension of a concept is
the set of objects or entities which are instances of the concept. All objects in
the extension have the same properties that characterize the concept. In other
words, the intension of a concept is an abstract description of common features
or properties shared by elements in the extension, and the extension consists
of concrete examples of the concept. A concept is thus described jointly by its
intension and extension. This formulation enables us to study concepts in a
logic setting in terms of intensions and also in a set-theoretic setting in terms of
extensions. The description of granules characterize concepts from the intension
point of view, while granules themselves characterize concepts from the extension
point of view. Through the connections between extensions of concepts, one may
establish relationships between concepts [62, 63].

In characterizing human knowledge, one needs to consider two topics, namely,
context and hierarchy [42, 47]. Knowledge is contextual and hierarchical. A con-
text in which concepts are formed provides meaningful interpretation of the
concepts. Knowledge is organized in a tower or a partial ordering. The base-
level, or first-level, concepts are the most fundamental concepts, and higher-level
concepts depend on lower-level concepts. To some extent, granulation and in-
herent hierarchical granulation structures reflect naturally the way in which hu-
man knowledge is organized. The construction, interpretation, and description of
granules and granulations are of fundamental importance in the understanding,
representation, organization and synthesis of data, information, and knowledge.



3.2 Top-down programming

The top-down programming is an effective technique to deal with the complex
problem of programming, which is based on the notions of structured program-
ming and stepwise refinement [26]. The principles and characteristics of the top-
down design and stepwise refinement, as discussed by Ledgard, Gueras and Na-
gin [26], provide a convincing demonstration that granular computing is a way
of thinking.

According to Ledgard, Gueras and Nagin [26], the top-down programming
approach has the following characteristics:

Design in levels. A level consists of a set of modules. At higher levels, only a
brief description of a module is provided. The details of the module are to
be refined, divided into smaller modules, and developed in lower levels.

Initial language independence. The high-level representations at initial lev-
els focus on expressions that are relevant to the problem solution, without
explicit reference to machine and language dependent features.

Postponement of details to lower levels. The initial levels concern critical
broad issues and the structure of the problem solution. The details such as
the choice of specific algorithms and data structures are postponed to lower,
implementation levels.

Formalization of each level. Before proceeding to a lower level, one needs to
obtain a formal and precise description of the current level. This will ensure
a full understanding of the structure of the current sketched solution.

Verification of each level. The sketched solution at each level must be veri-
fied, so that errors pertinent to the current level will be detected.

Successive refinements. Top-down programming is a successive refinement
process. Starting from the top level, each level is redefined, formalized, and
verified until one obtains a full program.

In terms of granular computing, program modules correspond to granules, and
levels of the top-down programming correspond to different granularities. One
can immediately see that those characteristics also hold for granular computing
in general.

3.3 Top-down theorem proving

Another demonstration of granular computing as a way of thinking is the ap-
proach of top-down theorem proving, which is used by computer systems and
human experts. The PROLOG interpreter basically employs a top-down, depth-
first search strategy to solve problem through theorem proving [5]. It has also
been suggested that the top-down approach is effective for developing, commu-
nicating and writing mathematical proofs [13, 14, 25, 28].

PROLOG is a logic programming language widely used in artificial intelli-
gence. It is based on the first-order predicate logic and models problem solving
as theorem proving [5]. A PROLOG program consists of a set of facts and rules



in the form of Horn clauses that describe the objects and relations in a prob-
lem domain. The PROLOG interpreter answers a query, referred to as goals, by
finding out whether the query is a logical consequence of the facts and rules of
a PROLOG program. The inference is performed in a top-down, left to right,
depth-first manner. A query is a sequence of one or more goals. At the top
level, the leftmost goal is reduced to a sequence of subgoals to be tried by using
a clause whose head unifies with the leftmost goal. The PROLOG interpreter
then continues by trying to reduce the leftmost goal of the new sequence of goals.
Eventually the lestmost goal is satisfied by a fact, and the second leftmost goal
is tried in the same manner. Backtracking is used when the interpreter fails to
find a unification that solves a goal, so that other clauses can be tried.

A proof found by the PROLOG interpreter can be expressed naturally in
a hierarchical structure, with the proofs of subgoals as the children of a goal.
In the process of reducing a goal to a sequence of subgoals, one obtains more
details of the proof. The strategy can be applied to general theorem proving.
This may be carried out by abstracting the goal, proving its abstracted version
and then using the structure of the resulting proof to help construct the proof
of the original goal [14].

By observing the systematic way of top-down programming, some authors
suggest that the similar approach can be used in developing, teaching and com-
municating mathematical proofs [13, 28]. Leron proposed a structured method
for presenting mathematical proofs [28]. The main objective is to increase the
comprehensibility of mathematical presentations, and at the same time, retain
their rigor. The traditional linear fashion presents a proof step-by-step from hy-
potheses to conclusion. In contrast, the structured method arranges the proof
in levels and proceeds in a top-down manner. Like the top-down, step-wise re-
finement programming approach, a level consists of short autonomous modules,
each embodying one major idea of the proof to be further developed in the sub-
sequent levels. The top level is a very general description of the main line of
the proof. The second level elaborates on the generalities of the top level by
supplying proofs of unsubstantiated statements, details of general descriptions,
and so on. For some more complicated tasks, the second level only gives brief
descriptions and the details are postponed to the lower levels. The process con-
tinues by supplying more details of the higher levels until a complete proof is
reached. Such a development of proofs procedure is similar to the strategy used
by the PROLOG interpreter. A complicated proof task is successively divided
into smaller and easier subtasks. The inherent structures of those tasks not only
improve the comprehensibility of the proof, but also increase our understanding
of the problem.

Lamport proposed a proof style, a refinement of natural deduction, for devel-
oping and writing structured proofs [25]. It is also based on hierarchical structur-
ing, and divides proofs into levels. By using a numbering scheme to label various
parts of a proof, one can explicitly show the structures of the proof. Further-
more, such a structure can be conveniently expressed using a computer-based
hypertext system. One can concentrate on a particular level in the structure



and suppress lower level details. In principle, the top-down design and step-
wise refinement strategy of programming can be applied in developing proofs to
eliminate possible errors.

3.4 Granular computing approach of problem solving

In their book on research methods, Granziano and Raulin make a clear sepa-
ration of research process and content [11]. They state, “... the basic processes
and the systematic way of studying problems are common elements of science,
regardless of each discipline’s particular subject matter. It is the process and
not the content that distinguishes science from other ways of knowing, and it is
the content – the particular phenomena and fact of interest – that distinguishes
one scientific discipline from another.” [11] From the discussion of the previous
examples, we can make a similar separation of the granular computing process
and content (i.e., domains of applications). The systematic way of granular com-
puting is generally applicable to different domains, and can be studied based on
the basic issues and principles discussed in the last section.

In general, granular computing approach can be divided into top-down and
bottom-up modes. They present two directions of switch between levels of gran-
ularities. The concept formation can be viewed as a combination of top-down
and bottom-up. One can combine specific concepts to produce a general concept
in a bottom-up manner, and divide a concept into more specific subconcepts in
top-down manner. Top-down programming and top-down theorem proving are
typical examples of top-down approaches. Independent of the modes, step-wise
(successive) refinement plays an important role. One needs to fully understand
all notions of a particular level before moving up or down to another level.

From the case studies, we can abstract some common features by ignoring
irrelevant formulation details. It is easy to arrive at a conclusion that granular
computing is a way of thinking and a philosophy for problem solving. At an
abstract level, it captures and reflects our ability to solve a problem by focusing
on different levels of details, and move easily from different levels at various
stages. The principles of granular computing are the same and applicable to
many domains.

4 A Partition Model

A partition model is developed by focusing on the basic issues of granular com-
puting. The partition model has been studied extensively in rough set theory [39].

4.1 Granulation by partition and partition lattice

A simple granulation of the universe can be defined based on an equivalence
relation or a partition. Let U denote a finite and non-empty set called the uni-
verse. Suppose E ⊆ U×U denote an equivalence relation on U , where × denotes
the Cartesian product of sets. That is, E is reflective, symmetric, and transitive.



The equivalence relation E divides the set U into a family of disjoint subsets
called the partition of the universe induced by E and denoted by πE = U/E.
The subsets in a partition are also called blocks. Conversely, given a partition π
of the universe, one can uniquely define an equivalence relation Eπ :

xEπy ⇐⇒ x and y are in the same block of the partition π. (1)

Due to the one to one relationship between equivalence relations and partitions,
one may use them interchangeably.

One can define an order relation on the set of all partitions of U , or equiv-
alently the set of all equivalence relations on U . A partition π1 is a refinement
of another partition π2, or equivalently, π2 is a coarsening of π1, denoted by
π1 � π2, if every block of π1 is contained in some block of π2. In terms of equiva-
lence relations, we have Eπ1

⊆ Eπ2
. The refinement relation � is a partial order,

namely, it is reflexive, antisymmetric, and transitive. It defines a partition lattice
Π(U). Given two partitions π1 and π2, their meet, π1 ∧ π2, is the largest parti-
tion that is a refinement of both π1 and π2, their join, π1 ∨ π2, is the smallest
partition that is a coarsening of both π1 and π2. The blocks of the meet are all
nonempty intersections of a block from π1 and a block from π2. The blocks of
the join are the smallest subsets which are exactly a union of blocks from π1 and
π2. In terms of equivalence relations, for two equivalence relations R1 and R2,
their meet is defined by R1 ∩ R2, and their join is defined by (R1 ∪ R2)

∗, the
transitive closure of the relation R1 ∪R2.

The lattice Π(U) contains all possible partition based granulations of the
universe. The refinement partial order on partitions provides a natural hierarchy
of granulations. The partition model of granular computing is based on the
partition lattice or subsystems of the partition lattice.

4.2 Partition lattice in an information table

Information tables provide a simple and convenient way to represent a set of
objects by a finite set of attributes [39, 70]. Formally, an information table is
defined as the following tuple:

(U,At, {Va | a ∈ At}, {Ia | a ∈ At}), (2)

where U is a finite set of objects called the universe, At is a finite set of attributes
or features, Va is a set of values for each attribute a ∈ At, and Ia : U −→ Va is
an information function for each attribute a ∈ At. A database is an example of
information tables. Information tables give a specific and concrete interpretation
of equivalence relations used in granulation.

With respect to an attribute a ∈ At, an object x ∈ U takes only one value
from the domain Va of a. Let a(x) = Ia(x) denote the value of x on a. By
extending to a subset of attributes A ⊆ At, A(x) denotes the value of x on
attributes A, which can be viewed as a vector with each a(x), a ∈ A, as one of
its components. For an attribute a ∈ At, an equivalence relation Ea is given by:
for x, y ∈ U ,

xEay ⇐⇒ a(x) = a(y). (3)



Two objects are considered to be indiscernible, in the view of a single attribute
a, if and only if they have exactly the same value. For a subset of attributes
A ⊆ At, an equivalence relation EA is defined by:

xEAy ⇐⇒ A(x) = A(y)

⇐⇒ (∀a ∈ A)a(x) = a(y)

⇐⇒
⋂

a∈A

Ea. (4)

With respect to all attributes in A, x and y are indiscernible, if and only if they
have the same value for every attribute in A.

The empty set ∅ produces the coarsest relation, i.e., E∅ = U × U . If the
entire attribute set is used, one obtains the finest relation EAt. Moreover, if no
two objects have the same description, EAt becomes the identity relation. The
algebra ({EA}A⊆At,∩) is a lower semilattice with the zero element EAt [37].
The family of partitions Π(At(U)) = {πEA

| A ⊆ At} has been studied in
databases [27]. In fact, Π(At(U)) is a lattice on its own right. While the meet
of Π(At(U)) is the same as the meet of Π(U), their joins are different [27]. The
lattice Π(At(U)) can be used to develop a partition model of databases.

A useful result from the constructive definition of the equivalence relation is
that one can associate a precise description with each equivalence class. This is
done through the introduction of a decision logic language DL in an information
table [39, 43, 65]. In the language DL, an atomic formula is given by a = v,
where a ∈ At and v ∈ Va. If φ and ψ are formulas, then so are ¬φ, φ∧ψ, φ∨ψ,
φ → ψ, and φ ≡ ψ. The semantics of the language DL can be defined in the
Tarski’s style through the notions of a model and satisfiability. The model is
an information table, which provides interpretation for symbols and formulas of
DL. The satisfiability of a formula φ by an object x, written x |= φ, is given by
the following conditions:

(1) x |= a = v iff a(x) = v,

(2) x |= ¬φ iff not x |= φ,

(3) x |= φ ∧ ψ iff x |= φ and x |= ψ,

(4) x |= φ ∨ ψ iff x |= φ or x |= ψ,

(5) x |= φ→ ψ iff x |= ¬φ ∨ ψ,

(6) x |= φ ≡ ψ iff x |= φ→ ψ and x |= ψ → φ.

If φ is a formula, the set m(φ) defined by:

m(φ) = {x ∈ U | x |= φ}, (5)

is called the meaning of the formula φ. For an equivalence class of EA, it can be
described by a formula of the form,

∧
a∈A a = va, where va ∈ Va. Furthermore,

[x]EA
= m(

∧
a∈A a = a(x)), where a(x) is the value of x on attribute a.



4.3 Mappings between two universes

Given an equivalence relation E on U , we obtain a coarse-grained universe U/E
called the quotient set of U . The relation E can be conveniently represented
by a mapping from U to 2U , where 2U is the power set of U . The mapping
[·]E : U −→ 2U is given by:

[x]E = {y ∈ U | xEy}. (6)

The equivalence class [x]E containing x plays dual roles. It is a subset of U
and an element of U/E. That is, in U , [x]E is subset of objects, and in U/E,
[x]E is considered to be a whole instead of many individuals [61]. In cluster
analysis, one typically associates a name with a cluster such that elements of the
cluster are instances of the named category or concept [22]. Lin [29], following
Dubois and Prade [10], explicitly used [x]E for representing a subset of U and
Name([x]E) for representing an element of U/E. In subsequent discussion, we
use this convention.

With a partition or an equivalence relation, we have two views of the same
universe, a coarse-grained view U/E and a detailed view U . Their relationship
can be defined by a pair of mappings, r : U/E −→ U and c : U −→ U/E. More
specifically, we have:

r(Name([x]E)) = [x]E ,

c(x) = Name([x]E). (7)

A concept, represented as a subset of a universe, is described differently under
different views. As we move from one view to the other, we change our percep-
tions and representations of the same concept. In order to achieve this, we define
zooming-in and zooming-out operators based on the pair of mappings [66].

4.4 Zooming-in operator for refinement

Formally, zooming-in can be defined by an operator ω : 2U/E −→ 2U . Shafer
referred to the zooming-in operation as refining [46]. For a singleton subset
{Xi} ∈ 2U/E, we define [10]:

ω({Xi}) = [x]E , Xi = Name([x]E). (8)

For an arbitrary subset X ⊆ U/E, we have:

ω(X) =
⋃

Xi∈X

ω({Xi}). (9)

By zooming-in on a subset X ⊆ U/E, we obtain a unique subset ω(X) ⊆ U .
The set ω(X) ⊆ U is called the refinement of X .



The zooming-in operation has the following properties [46]:

(zi1) ω(∅) = ∅,

(zi2) ω(U/E) = U,

(zi3) ω(Xc) = (ω(X))c,

(zi4) ω(X ∩ Y ) = ω(X) ∩ ω(Y ),

(zi5) ω(X ∪ Y ) = ω(X) ∪ ω(Y ),

(zi6) X ⊆ Y ⇐⇒ ω(X) ⊆ ω(Y ),

where c denotes the set complement operator, the set-theoretic operators on the
left hand side apply to the elements of 2U/E, and the same operators on the
right hand side apply to the elements of 2U . From these properties, it can be
seen that any relationships of subsets observed under coarse-grained view would
hold under the detailed view, and vice versa. For example, in addition to (zi6),
we have X∩Y = ∅ if and only if ω(X)∩ω(Y ) = ∅, and X∪Y = U/E if and only
if ω(X) ∪ ω(Y ) = U . Therefore, conclusions drawn based on the coarse-grained
elements in U/E can be carried over to the universe U .

4.5 Zooming-out operators for approximation

The change of views from U to U/E is called a zooming-out operation. By
zooming-out, a subset of the universe is considered as a whole rather than many
individuals. This leads to a loss of information. Zooming-out on a subset A ⊆ U
may induce an inexact representation in the coarse-grained universe U/E.

The theory of rough sets focuses on the zooming-out operation. For a subset
A ⊆ U , we have a pair of lower and upper approximations in the coarse-grained
universe [7, 10, 59]:

apr(A) = {Name([x]E) | x ∈ U, [x]E ⊆ A},

apr(A) = {Name([x]E) | x ∈ U, [x]E ∩A 6= ∅}. (10)

The expression of lower and upper approximations as subsets of U/E, rather
than subsets of U , has only been considered by a few researchers in rough set
community [7, 10, 30, 59, 69]. On the other hand, such notions have been consid-
ered in other contexts. Shafer [46] introduced those notions in the study of belief
functions and called them the inner and outer reductions of A ⊆ U in U/E.
The connections between notions introduced by Pawlak in rough set theory and
these introduced by Shafer in belief function theory have been pointed out by
Dubois and Prade [10].

The expression of approximations in terms of elements of U/E clearly shows
that representation of A in the coarse-grained universe U/E. By zooming-out, we
only obtain an approximate representation. The lower and upper approximations
satisfy the following properties [46, 69]:

(zo1) apr(∅) = apr(∅) = ∅,



(zo2) apr(U) = apr(U) = U/E,

(zo3) apr(A) = (apr(Ac))c,

apr(A) = (apr(Ac))c;

(zo4) apr(A ∩B) = apr(A) ∩ apr(B),

apr(A ∩B) ⊆ apr(A) ∩ apr(B),

(zo5) apr(A) ∪ apr(B) ⊆ apr(A ∪B),

apr(A ∪B) = apr(A) ∪ apr(B),

(zo6) A ⊆ B =⇒ [apr(A) ⊆ apr(B), apr(A) ⊆ apr(B)],

(zo7) apr(A) ⊆ apr(A).

According to properties (zo4)-(zo6), relationships between subsets of U may not
be carried over to U/E through the zooming-out operation. It may happen that
A∩B 6= ∅, but apr(A∩B) = ∅, or A∪B 6= U , but apr(A∪B) = U/E. Similarly,
we may have A 6= B, but apr(A) = apr(B) and apr(A) = apr(B). Nevertheless,
we can draw the following inferences:

(i1) apr(A) ∩ apr(B) 6= ∅ =⇒ A ∩B 6= ∅,

(i2) apr(A) ∩ apr(B) = ∅ =⇒ A ∩B = ∅,

(i3) apr(A) ∪ apr(B) = U/E =⇒ A ∪B = U,

(i4) apr(A) ∪ apr(B) 6= U/E =⇒ A ∪B 6= U.

If apr(A)∩apr(B) 6= ∅, by property (zo4) we know that apr(A∩B) 6= ∅. We say
that A and B have a non-empty overlap, and hence are related, in U/E. By (i1),
A and B must have a non-empty overlap, and hence are related, in U . Similar
explanations can be associated with other inference rules.

The approximation of a set can be easily extended to the approximation of
a partition, also called a classification [39]. Let π = {X1, . . . , Xn} be a partition
of the universe U . Its approximations are a pair of families of sets, the family of
lower approximations apr(π) = {apr(X1), . . . , apr(Xn)} and the family of upper
approximations apr(π) = {apr(X1), . . . , apr(Xn)}.

4.6 Classical rough set approximations by a combination of
zooming-out and zooming-in

Traditionally, lower and upper approximations of a set are also subsets of the
same universe. One can easily obtain the classical definition by performing a
combination of zooming-out and zooming-in operators as follows [66]:

ω(apr(A)) =
⋃

Xi∈apr(A)

ω({Xi})

=
⋃

{[x]E | x ∈ U, [x]E ⊆ A},

ω(apr(A)) =
⋃

Xi∈apr(A)

ω({Xi})

=
⋃

{[x]E | x ∈ U, [x]E ∩A 6= ∅}. (11)



For a subset X ⊆ U/E we can zoom-in and obtain a subset ω(X) ⊆ U , and
then zoom-out to obtain a pair of subsets apr(ω(X)) and apr(ω(X)). The com-
positions of zooming-in and zooming-out operations have the properties [46]: for
X ⊆ U/E and A ⊆ U ,

(zio1) ω(apr(A)) ⊆ A ⊆ ω(apr(A)),

(zio2) apr(ω(X)) = apr(ω(X)) = X.

The composition of zooming-out and zooming-in cannot recover the original set
A ⊆ U . The composition zooming-in and zooming-out produces the original set
X ⊆ U/E. A connection between the zooming-in and zooming-out operations
can be established. For a pair of subsets X ⊆ U/E and A ⊆ U , we have [46]:

(1) w(X) ⊆ A⇐⇒ X ⊆ apr(A),

(2) A ⊆ ω(X) ⇐⇒ apr(A) ⊆ X.

Property (1) can be understood as follows. Any subset X ⊆ U/E, whose refine-
ment is a subset of A, is a subset of the lower approximation of A. Only a subset
of the lower approximation of A has a refinement that is a subset of A. It follows
that apr(A) is the largest subset of U/E whose refinement is contained in A,
and apr(A) is the smallest subset of U/E whose refinement containing A.

4.7 Consistent computations in the two universes

Computation in the original universe is normally based on elements of U . When
zooming-out to the coarse-grained universe U/E, we need to find the consistent
computational methods. The zooming-in operator can be used for achieving this
purpose.

Suppose f : U −→ < is a real-valued function on U . One can lift the function
f to U/E by performing set-based computations [67]. The lifted function f+ is
a set-valued function that maps an element of U/E to a subset of real numbers.
More specifically, for an element Xi ∈ U/E, the value of function is given by:

f+(Xi) = {f(x) | x ∈ ω({Xi})}. (12)

The function f+ can be changed into a single-valued function f+
0 in a number

of ways. For example, Zhang and Zhang [75] suggested the following methods:

f+
0 (Xi) = min f+(Xi) = min{f(x) | x ∈ ω({Xi})},

f+
0 (Xi) = max f+(Xi) = max{f(x) | x ∈ ω({Xi})},

f+
0 (Xi) = averagef+(Xi) = average{f(x) | x ∈ ω({Xi})}. (13)

The minimum, maximum, and average definitions may be regarded as the most
permissive, the most optimistic, and the balanced view in moving functions from
U to U/E. More methods can be found in the book by Zhang and Zhang [75].

For a binary operation ◦ on U , a binary operation ◦+ on U/E is defined
by [6, 67]:

Xi ◦
+ Xj = {xi ◦ xj | xi ∈ ω({Xi}), xj ∈ ω({Xj})}, (14)



In general, one may lift any operation p on U to an operation p+ on U/E, called
the power operation of p. Suppose p : Un −→ U (n ≥ 1) is an n-ary operation
on U . Its power operation p+ : (U/E)n −→ 2U is defined by [6]:

p+(X0, . . . , Xn−1) = {p(x0, . . . , xn−1) | xi ∈ ω({Xi}) for i = 0, . . . , n−1}, (15)

for any X0, . . . , Xn−1 ∈ U/E. This provides a universal-algebraic construc-
tion approach. For any algebra (U, p1, . . . , pk) with base set U and operations
p1, . . . , pk, its quotient algebra is given by (U/E, p+

1 , . . . , p
+
k ).

The power operation p+ may carry some properties of p. For example, for
a binary operation p : U2 −→ U , if p is commutative and associative, p+ is
commutative and associative, respectively. If e is an identity for some operation
p, the set {e} is an identity for p+. Many properties of p are not carried over by
p+. For instance, if a binary operation p is idempotent, i.e., p(x, x) = x, p+ may
not be idempotent. If a binary operation g is distributive over p, g+ may not be
distributive over p+.

In some situations, we need to carry information from the quotient set U/E
to U . This can be done through the zooming-out operators. A simple example
is used to illustrate the basic idea.

Suppose µ : 2U/E −→ [0, 1] is a set function on U/E. If µ satisfies the
conditions:

(i) µ(∅) = 0,

(ii) µ(U/E) = 1,

(iii) X ⊆ Y =⇒ µ(X) ≤ µ(Y ),

µ is called a fuzzy measure [23]. Examples of fuzzy measures are probability
functions, possibility and necessity functions, and belief and plausibility func-
tions. Information about subsets in U can be obtained from µ on U/E and the
zooming-out operation. For a subset A ⊆ U , we can define a pair of inner and
outer fuzzy measures [68]:

µ(A) = µ(apr(A)),

µ(A) = µ(apr(A)). (16)

They are fuzzy measures. If µ is a probability function, µ and µ are a pair of
belief and plausibility functions [15, 49, 46, 68]. If µ is a belief function, µ is a
belief function, and if µ is a plausibility function, µ is a plausibility [68].

5 Conclusion

Granular computing, as a way of thinking, has been explored in many fields. It
captures and reflects our ability to perceive the world at different granularity and
to change granularities in problem solving. In this chapter, the same approach
is used to study the granular computing itself in two levels. In the first part of
the chapter, we consider the fundamental issues of granular computing in general



terms. The objective is to present a domain-independent way of thinking without
details of any specific formulation. The second part of the chapter concretizes the
high level investigations by considering a partition model of granular computing.
To a large extent, the model is based on the theory of rough sets. However,
results from other theories, such as the quotient space theory, belief functions,
databases, and power algebras, are incorporated.

In the development of different research fields, each field may develop its
theories and methodologies in isolation. However, one may find that these theo-
ries and methodologies share the same or similar underlying principles and only
differ in their formulation. It is evident that granular computing may be a basic
principle that guides many problem solving methods.

The results of rough set theory have drawn our attention to granular com-
puting. On the other hand, the study of rough set theory in the wide context of
granular computing may result in an in-depth understanding of rough set theory.
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