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Abstract. A granular computing model is used for learning classifica-
tion rules by considering the two basic issues: concept formation and con-
cept relationships identification. A classification rule induction method
is proposed. Instead of focusing on the selection of a suitable partition,
i.e., a family of granules defined by values of an attribute, in each step,
we concentrate on the selection of a single granule. This leads to finding
a covering of the universe, which is more general than partition based
methods. For the design of granule selection heuristics, several measures
on granules are suggested.

1 Introduction

Classification deals with grouping or clustering of objects based on certain crite-
ria. It is one of the basic learning tasks and is related to concept formation and
concept relationship identification. While concept formation involves the con-
struction of classes and description of classes, concept relationship identification
involves the connections between classes. These two related issues can be stud-
ied formally in a framework that combines formal concept analysis and granular
computing (GrC) [9].

There are two aspects of a concept, the intension and extension of the con-
cept [3, 8]. In the granular computing model for knowledge discovery, data min-
ing, and classification, a set of objects are represented using an information
table [5, 9]. The intension of a concept is expressed by a formula of the language,
while the extension of a concept is represented as the set of objects satisfying the
formula. This formulation enables us to study formal concepts in a logic setting
in terms of intensions and also in a set-theoretic setting in terms of extensions.

Classification rules obtained from a supervized classification problem capture
the relationships between classes defined by a set of attributes and the expert
class. In many classical top-down induction methods such as ID3 [6], one at-
tribute is selected in each step [4]. The selected attribute induces a partition
that is more informative about the expert classes than other attributes. There
are several problems with such attribute centered strategies. Although the se-
lected partition as a whole may be more informative, each equivalence class may
not be more informative than equivalence classes produced by another attribute.



Attribute centered strategy may introduce unnecessary attributes in classifica-
tion rules [2]. In order to resolve such problems, granule centered strategies can
be used, in which one granule is defined by an attribute-value pair. An example
of granule centered strategies is the PRISM learning algorithm [1, 2].

There has been very little attention paid to granule centered strategies. Based
on the granular computing model, we provide a formal and more systematic
study of granule centered strategies for the induction of classification rules.

2 A Granular Computing Model

This section presents an overview of the granular computing model [9, 11].

2.1 Information tables

An information table can be formulated as a tuple:

S = (U,At,L, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects, At is a finite nonempty set of
attributes, L is a language defined using attributes in At, Va is a nonempty set
of values for a ∈ At, and Ia : U → Va is an information function. An information
table represents all available information and knowledge [5]. In the language L,
an atomic formula is given by a = v, where a ∈ At and v ∈ Va. Formulas can
be formed by logical negation, conjunction and disjunction. If a formula φ is
satisfied by an object x, we write x |=S φ or in short x |= φ if S is understood[9].
If φ is a formula, the set mS(φ) defined by: mS(φ) = {x ∈ U | x |= φ}, is
called the meaning of φ in S. If S is understood, we simply write m(φ). The
meaning of a formula φ is the set of all objects having the property expressed
by the formula φ. A connection between formulas of L and subsets of U is thus
established. With the introduction of language L, we have a formal description of
concepts. A concept definable in an information table is a pair (φ,m(φ)), where
φ ∈ L. More specifically, φ is a description of m(φ) in S, the intension of concept
(φ,m(φ)), and m(φ) is the set of objects satisfying φ, the extension of concept
(φ,m(φ)). An example information table is given by Table 1, which is adopted
from Quinlan [6].

Granulation of a universe involves dividing the universe into subsets or group-
ing individual objects into clusters. A granule is a subset of the universe. A family
of granules that contains every object in the universe is called a granulation of
the universe. Partitions and coverings are two simple and commonly used gran-
ulations of universe. A partition consists of disjoint subsets of the universe, and
a covering consists of possibly overlap subsets. Partitions are a special type of
coverings.

Definition 1. A partition of a finite universe U is a collection of non-empty,
and pairwise disjoint subsets of U whose union is U . Each subset in a partition
is also called a block or an equivalence granule.



Object height hair eyes class

o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

Table 1. An information table

Definition 2. A covering of a finite universe U is a collection of non-empty
subsets of U whose union is U . A covering τ of U is said to be a non-redundant
covering if any collection of subsets of U derived by deleting one or more granules
from τ is not covering.

By using the language L, we can construct various granules. For an atomic
formula a = v, we obtain a granule m(a = v). If m(φ) and m(ψ) are granules
corresponding to formulas φ and ψ, we obtain granules m(φ)∩m(ψ) = m(φ∧ψ)
and m(φ)∪m(ψ) = m(φ∨ψ). In an information table, we are only interested in
granules, partitions and coverings that can be described by the language L.

Definition 3. A subset X ⊆ U is called a definable granule in an information
table S if there exists a formula φ such that m(φ) = X. A subset X ⊆ U is a
conjunctively definable granule in an information table S if there exists a formula
φ such that φ is a conjunction of atomic formulas and m(φ) = X.

Definition 4. A partition π is called a conjunctively definable partition if every
equivalence class of π is a conjunctively definable granule. A covering τ is called a
conjunctively definable covering if every granule of τ is a conjunctively definable
granule.

One can obtain a finer partition by further dividing equivalence classes of a
partition. Similarly, one can obtain a finer covering by further decomposing a
granule of a covering. This naturally defines a refinement order on the set of all
partitions Π(U) and the set of all covering T (U).

Definition 5. A partition π1 is refinement of another partition π2, or equiv-
alently, π2 is a coarsening of π1, denoted by π1 ¹ π2, if every block of π1 is
contained in some block of π2. A covering τ1 is refinement of another covering
τ2, or equivalently, τ2 is a coarsening of τ1, denoted by τ1 ¹ τ2, if every granule
of τ1 is contained in some granule of τ2.

Since a partition is also a covering, we use the same symbol to denote the
refinement relation on partitions and refinement relation on covering. For a cov-
ering τ and a partition π, if τ ¹ π, we say that τ is a refinement of π. Based on
the refinement relation, we can construct multi-level granulations of the universe.



2.2 Measures associated with granules

We introduce and review three types of quantitative measures associated with
granules, measures of a single granule, measures of relationships between a pair
of granules [9, 10], and measures of relationships between a granule and a family
of granules, as well as a pair of family of granules.

The measure of a single granule m(φ) of a formula φ is the generality G(φ) =
|m(φ)|/|U | which indicates the relative size of the granule m(φ). Given two
formulas φ and ψ, we introduce a symbol ⇒ to connect φ and ψ in the form of
φ ⇒ ψ. The strength of φ ⇒ ψ can be quantified by two related measures [7,
9]. The confidence or absolute support of ψ provided by φ is AS(φ ⇒ ψ) =
|m(φ ∧ ψ)|/|m(φ)| = |m(φ) ∩m(ψ)|/|m(φ)|. The coverage ψ provided by φ is
the quantity CV (φ ⇒ ψ) = |m(φ ∧ ψ)|/|m(ψ)| = |m(φ) ∩m(ψ)|/|m(ψ)|.

Consider now a family of formulas Ψ = {ψ1, . . . , ψn} which induces a parti-
tion π(Ψ) = {m(ψ1), . . . , m(ψn)} of the universe. Let φ ⇒ Ψ denote the inference
relation between φ and Ψ . In this case, we obtain the following probability dis-
tribution in terms of φ ⇒ ψi’s:

P (Ψ | φ) =
(

P (ψ1 | φ) =
|m(φ) ∩m(ψ1)|

|m(φ)| , . . . , P (ψn | φ) =
|m(φ) ∩m(ψn)|

|m(φ)|
)

.

The conditional entropy H(Ψ | φ) defined by:

H(Ψ | φ) = −
n∑

i=1

P (ψi | φ) log P (ψi | φ), (1)

provides a measure that is inversely related to the strength of the inference
φ ⇒ Ψ . Suppose another family of formulas Φ = {φ1, . . . , φm} define a partition
π(Φ) = {m(φ1), . . . ,m(φm)}. The same symbol ⇒ is also used to connect two
families of formulas that define two partitions of the universe, namely, Φ ⇒ Ψ .
The strength of this connection can be measured by the conditional entropy:

H(Ψ | Φ) =
m∑

j=1

P (φj)H(Ψ | φj) = −
m∑

j=1

n∑

i=1

P (ψi ∧ φj) log P (ψi | φj), (2)

where P (φj) = G(φj). In fact, this is a most commonly used measure for selecting
attribute in the construction of decision tree for classification [6].

The measures discussed so far quantified two levels of relationships, i.e., gran-
ule level and granulation level. As we will show in the following section, by fo-
cusing on different levels, one may obtain different methods for the induction of
classification rules.

3 Induction of Classification Rules by Searching Granules

This section first clearly defines the consistent classification problem and then
suggests a granule based rule induction method based on the measures discussed
in the last section.



3.1 Consistent classification problems

In supervised classification, each object is associated with a unique and prede-
fined class label. Objects are divided into disjoint classes which form a partition
of the universe. Suppose an information table is used to describe a set of objects.
Without loss of generality, we assume that there is a unique attribute class tak-
ing class labels as its value. The set of attributes is expressed as At = F∪{class},
where F is the set of attributes used to describe the objects. The goal is to find
classification rules of the form, φ =⇒ class = ci, where φ is a formula over F
and ci is a class label.

Let πclass ∈ Π(U) denote the partition induced by the attribute class. An
information table with a set of attributes At = F ∪ {class} is said to provide a
consistent classification if all objects with the same description over F have the
same class label, namely, if IF (x) = IF (y), then Iclass(x) = Iclass(y).

For a subset A ⊆ At, it defines a partition πA of the universe [5]. The
consistent classification problem can be formally defined [11].

Definition 6. An information table with a set of attributes At = F ∪ {class}
is a consistent classification problem if and only if πF ¹ πclass.

For the induction of classification rules, the partition πF is not very inter-
esting. In fact, one is interested in finding a subset of attributes from F that
also produces the correct classification. It can be easily verified that a problem
is a consistent classification problem if and only if there exists a conjunctively
definable partition π such that π ¹ πclass. Likewise, the problem is a consistent
classification problem if and only if there exists a non-redundant conjunctively
definable covering τ such that τ ¹ πclass. This leads to different kinds of solu-
tions to the classification problem.

Definition 7. A partition solution to a consistent classification problem is a
conjunctively definable partition π such that π ¹ πclass. A covering solution to
a consistent classification problem is a conjunctively definable covering τ such
that τ ¹ πclass.

Let X denote a granule in a partition or a covering of the universe, and let
des(X) denote its description using language L. If X ⊆ m(class = ci), we can
construct a classification rule: des(X) ⇒ class = ci. For a partition or a covering,
we can construct a family of classification rules. The main difference between a
partition solution and a covering solution is that an object is only classified by
one rule in a partition based solution, while an object may be classified by more
than one rule in a covering based solution.

Consider the consistent classification problem of Table 1. We have the par-
tition by class, a conjunctively defined partition π, and a conjunctively non-
redundant covering τ :

πclass : {{o1, o3, o6}, {o2, o4, o5, o7, o8}},
π : {{o1, o6}, {o2, o8}, {o3}, {o4, o5, o7}},
τ : {{o1, o6}, {o2, o7, o8}, {o3}, {o4, o5, o7}}.



Clearly, π ¹ πclass and τ ¹ πclass. A set of classification rules of π may include
rules such as “hair = blond ∧ eyes = blue =⇒ class = +”.

3.2 Construction of a granule network

The top-down construction of a decision tree for classification searches for a par-
tition solution to a classification problem. The induction process can be briefly
described as follows. Based on a measure of connection between two partitions
such as H(Ψ | Φ), one selects an attribute to divide the universe into a par-
tition [6]. If an equivalence class is not a subset of a user defined class, it is
further divided by using another attribute. The process continues until one finds
a decision tree that correctly classifies all objects. Each node of the decision tree
is labelled by an attribute, and each branch is labelled by a value of the parent
attribute.

When we search a covering solution, we can not immediately use a decision
tree to represent the results. We modify the decision tree method and introduce
the concept of granule network. In a granule network, each node is labelled by
a subset of objects. The arc leading from a larger granule to a smaller granule
is labelled by an atomic formula. In addition, the smaller granule is obtained by
selecting those objects of the larger granule that satisfy the atomic formula. The
family of the smallest granules thus forms a conjunctively definable covering of
the universe.

Atomic formulas define basic granules, which serve as the basis for the gran-
ule network. The pair (a = v,m(a = v)) is called a basic concept. Each node in
the granule network is a conjunction of some basic granules, and thus a conjunc-
tively definable granule. The granule network for a classification problem can
constructed by a top-down search of granules. Figure 1 outline an algorithm for
the construction of a granule network.

The two importance issues of the algorithm is the evaluation of the fitness
of each basic concept and the modification of existing partial granule network.
The algorithm is basically a heuristic search algorithm. The measures discussed
in the last section can be used to define different fitness functions. This will be
topics of our future research. In the rest of this section, we will use an example
to illustrate the basic ideas.

Table 2 summarizes the measures of basic concepts with respect to the parti-
tion πclass. There are three granules which are subset of one of class values, i.e.,
{o3} ⊆ (class = +), {o4, o5, o7} ⊆ (class = −) and {o2, o7, o8} ⊆ (class = −).
The values of entropy of these granules are the minimum, i.e., 0. The gener-
ality of last two granules are among the highest, so they are chosen first. One
of possible orders of selection of these granules is m(hair = dark), m(eyes =
brown) and then m(hair = red). These three granules cannot cover the uni-
verse, i.e., they are not a covering solution to the classification problem. We
will further analyze on other granules in order to find a set of granules that
cover the whole universe. With the consideration of non-redundant covering, if
adding candidate covering granule cannot form a non-redundant covering, we



(1) Construct the family of basic concept with respect to atomic formulas:

BC(U) = {(a = v, m(a = v)) | a ∈ F, v ∈ Va}.

(2) Set the unused basic concepts to the set of basic concepts:

UBC(U) = BC(U).

(3) Set the granule network to GN = ({U}, ∅), which is a graph consists of
only one node and no arc.

(4) While the set of smallest granules in GN is not a covering solution of
the classification problem do the following:
(4.1) Compute the fitness of each unused basic concept.
(4.2) Select the basic concept C = (a = v, m(a = v)) with maximum

value of fitness.
(4.3) Set UBC(U) = UBC(U)− {C}.
(4.4) Modify the granule network GN by adding new nodes which are

the intersection of m(a = v) and the original nodes of GN ; connect
the new nodes by arcs labelled by a = v.

Fig. 1. An Algorithm for constructing a granule network

Confidence Coverage
Formula Granule Generality + - + - Entropy

height = short {o1, o2, o8} 3/8 1/3 2/3 1/3 2/5 0.92
height = tall {o3, o4, o5, o6, o7} 5/8 2/5 3/5 2/3 3/5 0.97
hair = blond {o1, o2, o6, o8} 4/8 2/4 2/4 2/3 2/5 1.00
hair = red {o3} 1/8 1/1 0/1 1/3 0/5 0.00
hair = dark {o4, o5, o7} 3/8 0/3 3/3 0/3 3/5 0.00
eyes = blue {o1, o3, o4, o5, o6} 5/8 3/5 2/5 3/3 2/5 0.97
eyes = brown {o2, o7, o8} 3/8 0/3 3/3 0/3 3/5 0.00

Table 2. Basic granules and their measures

will not choose this granule even if other measure are in favor of this gran-
ule. If many objets in a candidate granule are already in granule network, this
granule will not be chosen. Granule m(hair = blond) is considered the most
suitable granule in this example and thus will be chosen. Now we have a cover-
ing τ = {{o4, o5, o7}, {o2, o7, o8}, {o3}, {o1, o2, o6, o8}} which covers the universe.
Obliviously, the objects in m(hair = blond) are not belong to the same class,
therefore a further granulation to this granule will be conducted in order to find
smaller definable granules. Considering the generality and non-redundant cover-
ing, granule m(hair = blond∧eyes = blue) = {o1, o6} became the most suitable
granule of a covering solution.



4 Conclusion

A consistent classification problem can be modelled as a search for a partition
or a covering defined by a set of attribute values. In this paper, we apply a gran-
ular computing model for solving classification problems. The notion of granule
network is used to represent the classification knowledge. The set of the smallest
granules in the granule network forms a covering of the universe. Although the
classification rules may have overlaps with each other, they may be shorter than
the rules obtained from classical decision tree methods. This stem from the fact
that at each step, only the most suitable granule defined by an attribute-value
pair is selected, instead of a partition.

The main contribution of the paper is the formal development of the granule
centered strategy for classification. As future research, we will study various
heuristics defined using the measures suggested in this paper, the evaluation of
the proposed algorithm using real world data sets.
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