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Abstract. A naive Bayesian classifier is a probabilistic classifier based
on Bayesian decision theory with naive independence assumptions, which
is often used for ranking or constructing a binary classifier. The theory
of rough sets provides a ternary classification method by approximating
a set into positive, negative and boundary regions based on an equiva-
lence relation on the universe. In this paper, we propose a naive Bayesian
decision-theoretic rough set model, or simply a naive Bayesian rough set
(NBRS) model, to integrate these two classification techniques. The con-
ditional probability is estimated based on the Bayes’ theorem and the
naive probabilistic independence assumption. A discriminant function is
defined as a monotonically increasing function of the conditional proba-
bility, which leads to analytical and computational simplifications.
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1 Introduction

Naive Bayesian classifier and rough set classification are two useful techniques
for classification problems. A naive Bayesian classifier is a probabilistic classifier
based on Bayesian decision theory with naive independence assumptions [1, 2].
As a fundamental statistical approach, Bayesian decision theory is often used
for binary classification problems, i.e., each class is associated with a yes/no
decision. The Pawlak rough set theory provides a ternary classification method
by approximating a set by positive, negative and boundary regions based on an
equivalence relation of the universe [7, 16].

The qualitative categorization of Pawlak three regions may be too restrictive
to be practically useful. This has led to the extension of rough sets by allowing
some tolerance of uncertainty. Probabilistic rough set models were proposed [3, 5,
8, 10–12, 14, 17–19], in which the degrees of overlap between equivalence classes
and a set to be approximated are considered. A conditional probability is used to
state the degree of overlapping and a pair of threshold values α and β are used to
defined three probabilistic regions. Elements whose probability is above the first
threshold α are put into the positive region, between α and the second threshold
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β in the boundary region, and below β is the negative region. The three regions
correspond to a three-way decision of acceptance, deferment, and rejection [16].
The decision-theoretic rough set (DTRS) model provides a systematic way to
calculate the two threshold values based on the well established Bayesian decision
theory, with the aid of more practically operable notions such as cost, risk, benefit
etc. [14, 17, 18].

On the other hand, the estimation of the conditional probability has not
received much attention. The rough membership function is perhaps the only
commonly discussed way [9]. It is necessary to consider other methods for esti-
mating the probability more accurately. For this purpose, we introduce a naive
Bayesian decision-theoretic rough set model, or simply a naive Bayesian rough
set (NBRS) model. The conditional probability is estimated based on the Bayes’
theorem and the naive probabilistic independence assumption. A discriminant
function is defined as a monotonically increasing function of the conditional
probability, which leads to analytical and computational simplifications.

2 Contributions of the Naive Bayesian Rough Set Model

The proposed naive Bayesian rough set model is related to several existing stud-
ies, but contributes in its unique way. In the Bayesian decision theory, one may
identify three important components, namely, the interpretation and computa-
tion of the required threshold value when constructing a classifier, the use of
Bayes’ theorem that connects, based on the likelihood, the a priori probability
of a class to the a posteriori probability of the class after observing a piece of
evidence, and the estimation of required probabilities. These three components
enable us to show clearly the current status of various probabilistic models of
rough sets and the contributions of the naive Bayesian rough set model.

The decision-theoretic rough set model [14, 15, 17, 18] focuses on the first
issue, namely, the interpretation and computation of a pair of threshold values
on the a posteriori probability of class for building a ternary classifier. The later
proposed variable precision rough set (VPRS) model [19] uses a pair of threshold
values on a measure of set-inclusion to define rough set approximations, which
is indeed equivalent to the result of a special case of the DTRS model [14, 20].
The more recent parameterized rough set model [3] uses a pair of thresholds on a
Bayesian confirmation measure, in addition to a pair thresholds on probability. In
contrast to the DTRS model, the last two models suffers from a lack of guidelines
and systematic methods on how to determining the required threshold values.

The Bayesian rough set (BRM) model [11, 12] is an attempt to resolve the
above problem by using the a priori probability of the class as a threshold
for defining probabilistic regions, i.e., one compares the a posteriori probability
and the a priori probability of the class. Based on the Bayes’ theorem, one
can show that this is equivalent to comparing two likelihoods [12]. The rough
Bayesian (RM) model [10] further explores the second issue of the Bayesian
decision theory. A pair of threshold values on a Bayes factor, namely, a likelihood
ratio, is used to define probabilistic regions. The Bayesian rough set model, in
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fact, uses a threshold of 0 on the difference between the a posteriori and the
a priori probabilities, or a threshold of 1 on the likelihood ration; the rough
Bayesian model uses a pair of arbitrary threshold values. However, the latter
model does not address the problem of how to setting the threshold values.
Recently, the Bayes’ theorem is introduced into the decision-theoretic rough set
model to address this problem [16].

All these probabilistic models do not address the third issue of the Bayesian
decision theory, namely, the estimation of the required probabilities. The full im-
plications of Bayesian decision theory and Bayesian inference have not been fully
explored, even though the phrases, rough Bayesian model and Bayesian rough
sets, have been used. In this paper, we propose a Bayesian decision-theoretic
rough set model, or simply a Bayesian rough set model, to cover all three issues
of the Bayesian decision theory, and a naive Bayesian rough set model, in par-
ticular, to adopt the naive independence assumption in probability estimation.
Since the first issue, namely, interpretation and computation of the thresholds,
has been extensively discussed in other papers [14–17], we will concentrate on
the contributions of the naive Bayesian rough sets with respect to the other two
issues, namely, application of Bayes’ theorem and probability estimation.

3 Basic Formulation of Bayesian Rough Sets

We review the basic formulations of probabilistic rough set and Bayesian rough
set models in the following subsections.

3.1 Decision-theoretic rough sets

Let E ⊆ U × U be an equivalence relation on U , i.e., E is reflexive, symmetric,
and transitive. Two objects in U satisfy E if and only if they have the same
values on all attributes. The pair apr = (U,E) is called an approximation space.
The equivalence relation E induces a partition of U , denoted by U/E. The basic
building blocks of rough set theory are the equivalence classes of E. For an object
x ∈ U , the equivalence class containing x is given by [x] = {y ∈ U | xEy}. For
a subset C ⊆ U , one can divide the universe U into three disjoint regions, the
positive region POS(C), the boundary region BND(C), and the negative region
NEG(C) [6]:

POS(C) = {x ∈ U | [x] ⊆ C},
BND(C) = {x ∈ U | [x] ∩ C 6= ∅ ∧ [x] 6⊆ C},
NEG(C) = {x ∈ U | [x] ∩ C = ∅}. (1)

One can say with certainty that any object x ∈ POS(C) belongs to C, and that
any object x ∈ NEG(C) does not belong to C. One cannot decide with certainty
whether or not an object x ∈ BND(C) belongs to C.

The qualitative categorization in the Pawlak rough set model may be too
restrictive to be practically useful. Probabilistic rough set model is proposed to
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enable some tolerance of uncertainty, in which the Pawlak rough set model is
generalized by considering degrees of overlap between equivalence classes and a
set to be approximated, i.e., [x] and C in equation (1),

Pr(C|[x]) =
|C ∩ [x]|
|[x]|

, (2)

where | · | denotes the cardinality of a set, and Pr(C|[x]) is the conditional
probability of an object belongs to C given that the object is in [x], estimated
by using the cardinalities of sets. Pawlak and Skowron [9] suggested to call the
conditional probability a rough membership function. According to the above
definitions, the three regions can be equivalently defined by:

POS(C) = {x ∈ U | Pr(C|[x]) = 1},
BND(C) = {x ∈ U | 0 < Pr(C|[x]) < 1},
NEG(C) = {x ∈ U | Pr(C|[x]) = 0}. (3)

They are defined by using the two extreme values, 0 and 1, of probabilities. They
are of a qualitative nature; the magnitude of the value Pr(C|[x]) is not taken
into account.

A main result of decision-theoretic rough set model is parameterized prob-
abilistic approximations. This can be done by replacing the values 1 and 0 in
equation (3) by a pair of threshold values α and β with α > β. The (α, β)-
probabilistic positive, boundary and negative regions are defined by:

POS(α,β)(C) = {x ∈ U | Pr(C|[x]) ≥ α},
BND(α,β)(C) = {x ∈ U | β < Pr(C|[x]) < α},
NEG(α,β)(C) = {x ∈ U | Pr(C|[x]) ≤ β}. (4)

The three probabilistic regions lead to three-way decisions [16]. We accept an
object x to be a member of C if the probability is greater than α. We reject x to
be a member of C if the probability is less than β. We neither accept or reject
x to be a member of C if the probability is in between of α and β, instead, we
make a decision of deferment.

The threshold values α and β can be interpreted in terms of cost or risk
of the three-way classification. They can be systematically computed based on
minimizing the overall risk of classification. The details can be found in papers
on decision-theoretic rough sets [14, 15, 17, 18].

3.2 Classification based on Bayes’ theorem

The conditional probabilities are not always directly derivable from data. In such
cases, we need to consider alternative ways to calculate their values. A commonly
used method is to apply the Bayes’ theorem,

Pr(C|[x]) =
Pr(C)Pr([x]|C)

Pr([x])
, (5)
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where
Pr([x]) = Pr([x]|C)Pr(C) + Pr([x]|Cc)Pr(Cc),

P r(C|[x]) is the a posteriori probability of class C given [x], Pr(C) is the a
priori probability of class C, and Pr([x]|C) the likelihood of [x] with respect to
C. The Bayes’ theorem enable us to infer the a posteriori probability Pr(C|[x]),
which is difficulty to estimate, from the a priori probability Pr(C) through the
likelihood Pr([x]|C), which is easy to estimate.

One may define monotonically increasing functions of the conditional prob-
ability to construct an equivalent classifier. This observation can lead to sig-
nificant analytical and computational simplifications.The probability Pr([x]) in
equation (5) can be eliminated by taking the odds form of Bayes’ theorem, that
is,

O(Pr(C|[x])) =
Pr(C|[x])
Pr(Cc|[x])

=
Pr([x]|C)
Pr([x]|Cc)

· Pr(C)
Pr(Cc)

=
Pr([x]|C)
Pr([x]|Cc)

O(Pr(C)).

(6)
A threshold value on the probability can indeed be interpreted as another thresh-
old value on the odds. For the positive region, we have:

Pr(C|[x]) ≥ α⇐⇒ Pr(C|[x])
Pr(Cc|[x])

≥ α

1− α

⇐⇒ Pr([x]|C)
Pr([x]|Cc)

· Pr(C)
Pr(Cc)

≥ α

1− α
. (7)

By applying logarithms to both sides of the equation, we get

log
Pr([x]|C)
Pr([x]|Cc)

+ log
Pr(C)
Pr(Cc)

≥ log
α

1− α
. (8)

Similar expressions can be obtained for the negative and boundary regions. Thus,
the three regions can now be written as:

POSB(α′,β′)(C) = {x ∈ U | log
Pr([x]|C)
Pr([x]|Cc)

≥ α′},

BNDB
(α′,β′)(C) = {x ∈ U | β′ < log

Pr([x]|C)
Pr([x]|Cc)

< α′},

NEGB
(α′,β′)(C) = {x ∈ U | log

Pr([x]|C)
Pr([x]|Cc)

≤ β′}, (9)

where

α′ = log
Pr(Cc)
Pr(C)

+ log
α

1− α
,

β′ = log
Pr(Cc)
Pr(C)

+ log
β

1− β
. (10)

This interpretation simplifies the calculation by eliminating Pr([x]). The detailed
estimations of related probabilities need to be further addressed.
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3.3 Naive Bayesian model for estimating probabilities

The naive Bayesian rough set model provides a practical way to estimate the
conditional probability based on the naive Bayesian classification [1, 2]. In the
Pawlak rough set model [7], information about a set of objects are represented in
an information table with a finite set of attributes [6]. Formally, an information
table can be expressed as:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),

where

U is a finite nonempty set of objects called universe,
At is a finite nonempty set of attributes,
Va is a nonempty set of values for a ∈ At,
Ia : U → Va is an information function.

The information function Ia maps an object in U to a value of Va for an attribute
a ∈ At, that is, Ia(x) ∈ Va. Each object x is described by a logic formula∧
a∈At a = Ia(x), where va ∈ Va, and the atomic formula a = Ia(x) indicates

that the value of an object on attribute a is Ia(x). For simplicity, we express
the description of [x] as a feature vector, namely, Des([x]) = (v1, v2, ..., vn) with
respect to the set of attributes {a1, a2, ..., an} where Iai(x) = vi. For simplicity,
we write Des([x]) as [x].

Recall that the conditional probability Pr(C|[x]) can be reexpressed by the
prior probability Pr(C), the likelihood Pr([x]|C), and the probability Pr([x]),
where Pr([x]|C) is a joint probabilities of Pr(v1, v2, ..., vn|C), and Pr([x]) is a
joint probability of Pr(v1, v2, ..., vn) . In practice, it is difficult to analyze the
interactions between the components of [x], especially when the number n is
large. A common solution to this problem is to calculate the likelihood based
on the naive conditional independence assumption [2]. That is, we assume each
component vi of [x] to be conditionally independent of every other component
vj for j 6= i.

For the Bayesian interpretation of three regions based on equation (8), we
can add the following naive conditional independence assumptions:

Pr([x]|C) = Pr(v1, v2, ..., vn|C) =
n∏
i=1

Pr(vi|C),

P r([x]|Cc) = Pr(v1, v2, ..., vn|Cc) =
n∏
i=1

Pr(vi|Cc). (11)

Thus, equation (7) can be re-expressed as:

log
Pr([x]|C)
Pr([x]|Cc)

≥ log
Pr(Cc)
Pr(C)

+ log
α

1− α

⇐⇒
n∑
i=1

log
Pr(vi|C)
Pr(vi|Cc)

≥ log
Pr(Cc)
Pr(C)

+ log
α

1− α
. (12)
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where Pr(C) and Pr(vi|C) can be easily estimated from the frequencies of the
training data by putting:

Pr(C) =
|C|
|U |

,

P r(vi|C) =
|m(ai, vi) ∩ C|

|C|
,

where m(ai, vi) is called the meaning set. It is defined as m(ai, vi) = {x ∈
U |Iai(x) = vi}, that is, the set of objects whose attribute value equal to vi with
regard to attribute ai. Similarly, we can estimate Pr(Cc) and Pr(vi|Cc). We can
then rewrite equation (8) as:

POSB(α′,β′)(C) = {x ∈ U |
n∑
i=1

log
Pr(vi|C)
Pr(vi|Cc)

≥ α′},

BNDB
(α′,β′)(C) = {x ∈ U | β′ <

n∑
i=1

log
Pr(vi|C)
Pr(vi|Cc)

< α′},

NEGB
(α′,β′)(C) = {x ∈ U |

n∑
i=1

log
Pr(vi|C)
Pr(vi|Cc)

≤ β′}. (13)

All the related factors in the above equations are easily derivable from data for
real applications.

4 Conclusion

This paper proposes a naive Bayesian rough set model to intergrade two clas-
sification techniques, namely, naive Bayesian classifier and the theory of rough
sets. The conditional probability in the definition three regions in rough sets is
interpreted by using the probability terms in naive Bayesian classification. A
discriminant function is defined as a monotonically increasing function of the
conditional probability, which leads to analytical and computational simplifica-
tions. The integration provides a practical solution for applying naive Bayesian
classifier to ternary classification problems. Two threshold values instead of one
are used, which can be systematically calculated based on loss functions stating
how costly each action is.
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