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Abstract

We review and compare two definitions of rough set approximations.
One is defined by a pair of sets in the universe and the other by a pair of
sets in the quotient universe. The latter definition, although less studied,
is semantically superior for interpreting rule induction and is closely re-
lated to granularity switching in granular computing. Numerical measures
about the accuracy and quality of approximations are examined. Several
semantics difficulties are commented.

1 Introduction

We examine two fundamental issues of the rough set theory, namely, two dif-
ferent definitions of approximations and various measures associated with ap-
proximations. Although those issues have been well studied, there still remain
a number of semantics difficulties. The main purpose of the notes is to shed
some light on semantics issues of approximations and associated measures.

The definition that explicitly represents the composition of equivalence classes
is semantically more appropriate for rule induction and is closely related to gran-
ularity transformation in granular computing. In measuring rough set approxi-
mations, it is essential to separate measures of the accuracy of approximations
and measures of the granularity of partitions. Their combination may be useful
in the search of optimal partitions for approximations.
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2 Two Definitions of Rough Set Approximations

The rough set theory can be formulated based on equivalence relations defined
by subsets of attributes in a data table [18]. Formally, a data table is the tuple:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}), (1)

where U is a finite nonempty set of objects, At is a finite nonempty set of
attributes, Va is a nonempty set of values of a ∈ At, and Ia : U → Va is an
information function that maps an object of U to exactly one value in Va. Thus,
a finite set of objects called a universe is described by a finite set of attributes.

Given a subset of attributes A ⊆ At, an indiscernibility relation is defined
as:

IND(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y)}. (2)

That is, x and y are indiscernible with respect to A, if and only if they have
exactly the same values on all attributes in A. The relation IND(A) is reflexive,
symmetric and transitive, and hence an equivalence relation. The equivalence
class containing x is denoted by [x]IND(A) = {y ∈ U | xIND(A)y}, or simply
[x]A or [x] if A is understood. The equivalence relation induces a partition
U/IND(A) = {[x]IND(A) | x ∈ U} of the universe U , namely, a family of pairwise
disjoint subsets of U whose union is U . There is a one-to-one correspondence
between equivalence relations on U and partitions of U . One can therefore use
the terms “equivalence relation” and “partition” interchangeably.

Definition 1 Let E denote an equivalence relation with the induced partition
U/E. For a subset of objects X ⊆ U , Pawlak [18] introduces a pair of lower
and upper approximations as follows:

apr
E

(X) =
⋃
{[x]E ∈ U/E | [x]E ⊆ X},

aprE(X) =
⋃
{[x]E ∈ U/E | [x]E ∩X 6= ∅}. (3)

The pair (apr
E

(X), aprE(X)) is referred to as the rough set approximation of
X.

The rough set approximation (apr
E

(X), aprE(X)) induces a partition of the
universe U , namely, {POSE(X),BNDE(X),NEGE(X)}:

POSE(X) = apr
E

(X),
BNDE(X) = aprE(X)− apr

E
(X),

NEGE(X) = (aprE(X))c, (4)

where (aprE(X))c = U − aprE(X) denotes the complement of the upper ap-
proximation. The three blocks of the partition are referred to as the positive,
boundary and negative regions of X, respectively. They can be interpreted as
follows. Based solely on the description of an object in a data table, an object in
the positive region is certainly in X, an object in the negative region is certainly
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not in X, an object in the boundary region is both possibly in X and not in X.
In other words, the positive region and negative region consist of objects whose
descriptions allow deterministic decisions regarding their membership in X. The
boundary region consists of objects whose descriptions allow non-deterministic
decisions regarding their membership in X. Objects with the same description
may be either in X and not in X.

By taking the union of equivalence classes, each approximation is a subset
of U and the information about the composition of equivalence classes in the
approximation becomes hidden and implicit. In order to explicitly express such
information, an alternative definition can be given.

Definition 2 For a subset of object X ⊆ U , Bryniarski [2] and Dubois and
Prade [3] introduce the following pair,

Apr
E

(X) = {[x]E ∈ U/E | [x]E ⊆ X},

AprE(X) = {[x]E ∈ U/E | [x]E ∩X 6= ∅}. (5)

as the lower and upper approximations of X in the quotient set U/E.

While apr
E

(X) and aprE(X) are subsets of U , Apr
E

(X) and AprE(X) are
subsets of U/E. The two definitions can be transformed into each other by:

apr
E

(X) =
⋃
Apr

E
(X),

aprE(X) =
⋃
AprE(X);

Apr
E

(X) = {[x]E ∈ U/E | [x]E ⊆ aprE(X)},

AprE(X) = {[x]E ∈ U/E | [x]E ⊆ aprE(X)}. (6)

Thus, they may be considered to be equivalent [2]. On the other hand, their
semantics differences have not received due attention. Although the first defini-
tion has been used in the mainstream of rough set research, the second definition
is more appropriate for rule induction and is semantically superior.

In rough set based rule induction approaches [7, 10, 20, 25, 31, 33], an
equivalence class in the lower/upper approximation is typically used to induce
a rule whose left-hand-side is the description of the equivalence class and whose
right-hand-side is the concept represented by X. Definition 2 explicitly pro-
vides the composition information about equivalence classes in the lower/upper
approximation, and hence is semantically easier to interpret a rule induction
process. Moreover, such composition information is useful in evaluating the in-
duced rules. Based on Definition 2, one can similarly derive a partition of the
quotient universe U/E, consisting of the positive region, the boundary region
and the negative region, respectively. The physical meaning of the partition is
much clearer. An equivalence class in the positive region is a subset of X, an
equivalence class in the negative region is a subset of Xc, and an equivalence
class in the boundary region is neither a subset of X nor a subset of Xc.

The quotient universe U/E may be viewed as a granulation or coarsening
of U with each equivalence class being a coarse-grained granule. Conversely,
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U may be viewed as a refinement of U/E. The equivalence relation E bridges
the two universes. Definition 2 clearly shows the switching from a fine-grained
ground universe U to a coarse-grained granulated universe U/E. Specifically, a
subset of objects in a fine-granied universe can only be approximately defined
in a coarse-grained universe [3]. On the other hand, a subset of coarse-grained
universe, Y ⊆ U/E, can be precisely defined by a subset ω(Y ) ⊆ U of the
fine-grained universe as follows [3]:

ω(Y ) =
⋃
Yi∈Y

Yi. (7)

An equivalence class Yi plays dual roles. It is a subset of U , as used in the term
for union, and an element of U/E, as used in the subscript of the union. By
Definition 2, one can explicitly study the switching between two universes with
differing granularity. This important notion makes a close connection between
rough set theory and the new emerging field of granular computing [30].

Example 1 Table 1 is an example of a data table, taken from an example from
Quinlan [23]. Each object is described by three attributes. The column labeled
by Class denotes an expert’s classification of the objects. We use this simple
example to illustrate the basic ideas discussed.

For two subsets of attributes, {Eyes} and {Height, Eyes}, they induce the
following two partitions:

π1 = U/IND({Eyes}) = {{o1, o3, o4, o5, o6}, {o2, o7, o8}};
π2 = U/IND({Height, Eyes}) = {{o1}, {o2, o8}, {o3, o4, o5, o6}, {o7}}.

Consider the class − = {o2, o4, o5, o7, o8}, we have:

apr
π1

(−) = {o2, o7, o8},
aprπ1

(−) = U ;
Apr

π1
(−) = {{o2, o7, o8}},

Aprπ1
(−) = {U};

and

apr
π2

(−) = {o2, o7, o8},
aprπ2

(−) = {o2, o3, o4, o5, o6, o7, o8};
Apr

π2
(−) = {{o2}, {o7, o8}},

Aprπ2
(−) = {{o2, o8}, {o3, o4, o5, o6}, {o7}}.

For the two partitions, we have the same lower approximations according to
Definition 1, but different lower approximations according to Definition 2. Ap-
proximation Apr

π1
can be used to induce one rule for −,

(Eyes = brown) −→ Class = −,
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Object Height Hair Eyes Class
o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

Table 1: A data table

and Apr
π2

can be used to induce two rules,

(Height = short,Eyes = brown) −→ Class = −,
(Height = tall,Eyes = brown) −→ Class = −.

The composition of equivalence classes provides useful structural information
about rough set approximations for rule induction. In fact, the last two rules
can be generalized into the first rule.

3 Measures Associated with Rough Set Approx-
imations

Two classes of measures are investigated. One class concerns the completeness
of knowledge provided by an equivalence relation for approximating a set X
based on Definition 1. The other class concerns the granularity of knowledge
provided by an equivalence relation.

3.1 Accuracy and roughness measures

Pawlak [18, 19] suggests two numerical measures for characterizing the impre-
cision of rough set approximations. The accuracy measure is defined by:

αE(X) =
|apr

E
(X)|

|aprE(X)|
, (8)

where X 6= ∅ and | · | denotes the cardinality of a set. For the empty set ∅, we
define αE(∅) = 1. The It follows that 0 ≤ αE(X) ≤ 1. Based on the accuracy
measure, the roughness measure is defined by:

ρE(X) = 1− αE(X). (9)
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The measure of roughness is related to the notion of boundary region as follows:

ρE(X) =
|aprE(X)− apr

E
(X)|

|aprE(X)|
=
|BNDE(X)|
|aprE(X)|

. (10)

Yao [28] shows that the roughness measure is in fact the well-known Marczewski-
Steinhaus distance between the lower and upper approximations.

Regarding the meaningfulness and usefulness of the two measures, several
crucial questions need to be answered. What are the physical interpretations of
the two measures? Do the measures semantically quantify the properties to be
measured? If they do not, what are new measures? Before attempting answer
these questions, we first comment on the following properties satisfied by the
measure αE(·):

(i). αE(X) = 1⇐⇒ apr
E

(X) = aprE(X),
(ii). αE(X) = 0⇐⇒ apr

E
(X) = ∅,

(iii). for a fixed aprE(X),
αE(X) strictly monotonically increases with |apr

E
(X)|,

(iv). for a fixed apr
E

(X) 6= ∅,
αE(X) strictly monotonically decreases with |aprE(X)|,

(v). E1 ⊆ E2 =⇒ αE1(X) ≥ αE2(X).

Some of these properties have been studied by many authors, for example,
Gediga and Düntsch [6], Yao [29], Huynh and Nakamori [8], and Zhu [36]. Sim-
ilarly properties can be given for the roughness measure ρE(·).

According to Pawlak, the accuracy measure is “intended to capture the de-
gree of completeness of our knowledge about the set X” [19] or to “express
the ‘quality’ of an approximation” [18]; as opposed to accuracy, the roughness
measures “represents the degree of incompleteness” [19]. Unfortunately, Pawlak
does not explicitly provide a definition or an interpretation for the concepts of
“accuracy”, “completeness”, “quality” and “roughness.” Consequently, they
have been interpreted and used differently by many authors. If we were to
interpret the accuracy and quality of approximation as a measure of the “com-
pleteness” of knowledge about X based on E and roughness as a measure of
“incompleteness,” some of the properties (i)-(vi) may not be entirely meaning-
ful.

With respect to an equivalence relation E, our knowledge about X is char-
acterized by two sets, i.e., apr

E
(X) and aprE(X), or equivalently the partition

{POSE(X),BNDE(X),NEGE(X)}. The use of both apr
E

(X) and aprE(X) in
the measure αE(·) provides a good starting point. Consider first property (i),
which states that the measure reaches the maximum value 1 when the lower
and upper approximations are the same as X. This property is meaningful, as
the state is in fact associated with the complete knowledge about X provided
by the equivalence relation E. Property (ii) states that the accuracy measure
reaches the minimum value 0 when the lower approximation of X is the empty
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set ∅, independent of the upper approximation of X. In some sense, this is not
reasonable, as we know for certain that elements in (aprE(X))c are definitely
not in X. In other words, we still have some information about X based on its
upper approximation. For a state associated with no knowledge about X, it is
necessary to also require that aprE(X) = U . A more reasonable property can
be stated as:

(ii′). αE(X) = 0⇐⇒ (apr
E

(X) = ∅, aprE(X) = U).

The monotonicity properties (iii) and (iv) are reasonable, as our knowledge
about X becomes more accurate or complete with the increase of the size of
apr

E
(X) or a the decrease of the size of aprE(X). However, property (iv) suffers

from the same difficulty as that of property (ii). The monotonicity should hold
when apr

E
(X) = ∅. The revised property is therefore given as:

(iv′). for a fixed apr
E

(X),
αE(X) strictly monotonically decreases with |aprE(X)|.

This new property seems to be more reasonable, as apr
E

(X) = ∅ is not treated
differently.

Property (v) explicitly considers approximations derived from different equiv-
alence relations. Given two equivalence relations E1 and E2 with E1 ⊆ E2, E1

would produce a finer partition U/E1 than E2. It follows that

E1 ⊆ E2 =⇒ apr
E2

(X) ⊆ apr
E1

(X) ⊆ X ⊆ aprE1
(X) ⊆ aprE2

(X). (11)

That is, E1 produces a pair of tighter approximations than E2. A pair of tighter
approximations should provide more knowledge about the set X, and hence a
large value of the measure αE(·). Property (v) reflects exactly this point. The
accuracy measure αE(·) may be used to evaluate the “goodness” or “fitness” of
equivalence relations in approximating X.

Properties (i), (ii′), (iii), (iv′), and (v) may be viewed as a set of axioms for a
measure of the “completeness” of knowledge, or the accuracy of approximations.
Another set of axioms is given by Zhu [36]. The original Pawlak accuracy
measure does not satisfy properties (ii′) and (iv′). It is necessary to modify the
Pawlak accuracy measure or to design new measures based on such properties.

Intuitively speaking, our knowledge about the setX depends on the set of ob-
jects that we can make deterministic decisions about their membership. Recall
that we can make such decisions for objects in both POSE(X) and NEGE(X)
and in a state of complete knowledge we can make deterministic decisions for
all objects in U . The ratio of the sizes of these two may serve as a good measure
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of the accuracy of X. This suggests the following measure,

γE(X) =
|POSE(X)|+ |NEGE(X)|

|U |

=
|apr

E
(X)|+ |(aprE(X))c|

|U |

=
|apr

E
(X)|+ |apr

E
(Xc)|

|U |
. (12)

The measure is in fact the measure of quality of approximation of the X-
generated partition {X,Xc} by E, which is proposed by Pawlak [19]. The
new measure γE(·) satisfies the required properties (i), (ii′), (iii), (iv′), and (v),
which is a desired measure of knowledge completeness about X provided by E.
The corresponding measure of roughness is given by

βE(X) = 1− γE(X) =
|BNDE(X)|
|U |

=
|aprE(X)− apr

E
(X)|

|U |
. (13)

Compared with the Pawlak roughness measure ρE(·), the denominator in βE(·)
is independent of the upper approximation of X.

3.2 Measures of granularity

The measures of completeness of knowledge or the accuracy of approximations
are based on rough set approximations as subsets of the universe. The informa-
tion regarding the composition of equivalence classes in the approximations is
not considered. In other words, a measure of accuracy only reflects one aspect
of the quality or feature of the approximation. This has led to many criticisms
and modifications of accuracy measures [1, 15, 26, 36].

Example 2 Beaubouef et al. [1] give an example to illustrate the needs for
considering the composition of equivalence classes in rough set approximations.
Let U = {1, 2, 3, 4, 5, 6, 8, 9}. Suppose we have three equivalence relations E1,
E2 and E3 with the associated partitions:

U/E1 = {{1, 2, 3, 4}, {5, 6, 7}, {8, 9}},
U/E2 = {{1, 2}, {3, 4}, {5, 6, 7}, {8, 9}},
U/E3 = {{1}, {2}, {3}, {4}, {5, 6, 7}, {8, 9}}.

Equivalence relation E1 produces the coarsest partition and E3 the finest parti-
tion. Consider a set X = {1, 2, 3, 4, 5, 8}. According to Definition 1, they give
the same approximations for X:

apr
E1

(X) = apr
E2

(X) = apr
E3

(X) = {1, 2, 3, 4},
aprE1

(X) = aprE2
(X) = aprE3

(X) = U.
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The information about the composition of equivalence classes is not explicitly
shown. Under the Pawlak accuracy measure αE(·) and the new accuracy mea-
sure γE(·), we would have the same values for the three pairs of approximations.
The granularity of partition is not reflected.

According to Definition 2, we have three different pairs of approximations:

Apr
E1

(X) = {{1, 2, 3, 4}},

AprE1
(X) = {{1, 2, 3, 4}, {5, 6, 7}, {8, 9}};

Apr
E2

(X) = {{1, 2}, {3, 4}},

AprE2
(X) = {{1, 2}, {3, 4}, {5, 6, 7}, {8, 9}};

Apr
E3

(X) = {{1}, {2}, {3}, {4}},

AprE3
(X) = {{1}, {2}, {3}, {4}, {5, 6, 7}, {8, 9}}.

The granularity information of different partitions becomes explicit in the ap-
proximations.

The example shows that Definition 2 enables us to express the granularity in-
formation about rough set approximations. A question reminds is how to design
a measure to quantify granularity. Measures of granularity of a partition have
been investigate by many authors, for example, Beaubouef et al. [1], Düntsch
and Gediga [4], Wierman [24], Miao and Fan [17], Liang et al. [11, 14, 15],
Yao [29], Liang and Shi [13], Liang and Qian [12], Mi et al. [16], Qian and
Liang [21], Qian et al. [22], Xu et al. [27], Zhu [35], Feng et al. [5] and many
others. A survey of measures of granularity of partitions and a general form
of measures, in terms of the expected values of the granularity of blocks in a
partition, are provided by Yao and Zhao [32]. As an example, we consider only
an information-theoretic measure of granularity [1, 4, 24, 29].

With respect to a partition π = {X1, X2, . . . , Xm}, we have a probability
distribution:

Pπ =
(
|X1|
|U |

,
|X2|
|U |

, . . . ,
|Xm|
|U |

)
. (14)

The Shannon entropy function of the probability distribution is defined by:

H(π) = H(Pπ) = −
m∑
i=1

|Xi|
|U |

log
|Xi|
|U |

. (15)

The entropy reaches the maximum value log |U | for the finest partition consisting
of singleton subsets of U , and it reaches the minimum value 0 for the coarsest
partition {U}. For two partitions with π1 � π2, namely, π1 is finer than or the
same as π2, we have H(π1) ≥ H(π2). That is, the value of the entropy correctly
reflects the order of partitions with respect to their granularity.

We can re-express equation (15) as,

H(π) = log |U | −
m∑
i=1

|Xi|
|U |

log |Xi|. (16)
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The first term is a constant independent of any partition. The quantity log |Xi|
is commonly known as the Hartley measure of information of the set Xi. It
has been used to measure the amount of uncertainty associated with a finite
set of possible alternatives, namely, the nonspecificity inherent in the set [9].
The function log |Xi| is a monotonic increasing transformation of the size of a
set. It may be used to measure the granularity of the set. Large sets result in
higher degrees of granularity than small sets. The second term of the equation is
basically an expectation of granularity with respect to all subsets in a partition.
It follows that we can use the following function as a measure of granularity for
a partition:

G(π) =
m∑
i=1

|Xi|
|U |

log |Xi|. (17)

In contrast to the entropy function, for two partitions π1 and π2 with π1 � π2,
we have G(π1) ≤ G(π2). The coarsest partition {U} has the maximum gran-
ularity value log |U |, and the finest partition {{x} | x ∈ U} has the minimum
granularity value 0.

With respect to the two definitions of approximation, if an approximation
is a non-empty set, say apr(X) 6= ∅, then Apr(X) is a partition of apr(X).
For example, in Example 2, we have apr

E2
(X) = {1, 2, 3, 4} and Apr

E2
(X) =

{{1, 2}, {3, 4}}. The latter is a partition of the former. This observation imme-
diately suggests that one can apply the measure of granularity to an approxi-
mation defined by Definition 2, namely, G(Apr

E
(X)) and G(AprE(X)). The

new measure reflects the granularity of an approximation.

3.3 Composite measures of quality of approximations

In the last two subsections, we have shown that an accuracy measure can be
defined based on apr and apr to reflect the completeness of knowledge and
a granularity measure can be defined based on Apr and Apr to reflect the
knowledge granularity. They capture entirely different aspects of the “quality”
of approximations. Several authors attempt to combine them together, but
still name a combined measure as a measure of roughness. It is perhaps better
to keep the interpretation that a roughness measure is an inverse measure of
an accuracy measure, in the sense that the summation of the two is 1. As to
the composite measures, new names may be introduced. In this paper, we call
a combined measure as a measure of “fitness” of an approximation, with the
intended meaning that it reflects how good an approximation is.

A fitness measure is a composite measure of accuracy and granularity. There
are several ways to do this. One simple method to take their product, namely,

F (·) = γ(·) ∗G(·), (18)

where F denotes a measure of fitness, γ denotes a measure of accuracy, and G
denotes a measure of granularity. The use of a composite measure implies a
kind of trade-off between accuracy and granularity. It should be realized that
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a composite measure is not always meaningful, although it has an advantage
of a single number. In practice, we may be better off with a pair of numbers
provided by two measures.

4 Conclusion

By examining two fundamental issues of the rough set theory, one is the rough
set approximations and the other is the associated measures of approximations,
we are able to report several new findings. Approximations, as subsets of the
universe, are a standard definition, but fail to reflect important features of rough
set theory. In contrast, approximations, as subsets of the quotient universe, are
semantically superior. They connect naturally to rule induction with rough sets
and granularity switching in granular computing. “Quality” of approximations
can be studied and quantified in several ways, with each representing a certain
aspect of approximations. An accuracy measure quantifies the completeness of
knowledge about a set; a measure of granularity quantifies the grain-sizes in the
knowledge. We must carefully study different types of measures, in order to
ensure that we actually measure what we intended to measure.
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