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Abstract

In this paper, a unified framework for rep-
resenting uncertain information based on the
notion of an interval structure is proposed.
It is shown that the lower and upper approx-
imations of the rough-set model, the lower
and upper bounds of incidence calculus, and
the belief and plausibility functions all obey
the axioms of an interval structure. An inter-
val structure can be used to synthesize the
decision rules provided by the experts. An
efficient algorithm to find the desirable set of
rules is developed from a set of sound and
complete inference axioms.

1 INTRODUCTION

In decision making, we often find ourselves in a state
of uncertainty. This might stem from either a lack of
knowledge, or from the incompleteness or unreliability
of the information at our disposal. To make decisions
under such circumstances, it is crucial to choose an
appropriate structure to represent uncertain informa-
tion.

Although probability theory is the standard method
for dealing with uncertainty, other constructs such as
rough sets, fuzzy sets, and belief functions play an im-
portant role in the design of expert systems. In these
non-standard methods, uncertainty is represented by
an interval within which the truth lies. Pawlak (1982,
1984) introduced the concept of rough sets, which
characterizes an ordinary set by a lower and an up-

per approximation. The lower approximation contains
the objects definitely belonging to the set, whereas the
upper approximation contains the objects possibly be-
longing to the set. In the study of incidence calculus,
Bundy (1985, 1986) examined the lower and upper

bounds of incidences of a set of propositions. Lower
bounds represent situations in which the propositions
are definitely true, and upper bounds represent sit-
uations in which the propositions could be true. In
the theory of fuzzy sets, the core (a lower approx-
imation) of a fuzzy set is defined by collecting all
elements with complete membership, while the sup-

port (an upper approximation) is defined by collect-
ing all elements with non-zero membership (Zadeh,
1965; Dubois and Prade, 1990). Recently, Yao and
Wong (1991) studied the rough-set and fuzzy-set mod-
els within the Bayesian decision theoretic framework.
In this approach, a set may be approximated by differ-
ent levels of lower and upper bounds depending on the
application. It should be noted that all the bounds
considered in these models are non-numeric bounds
(crisp sets); bounds expressed in terms of non-crisp
sets were studied by Dubois and Prade (1990).

The numeric belief and plausibility functions proposed
by Shafer (1976) can be interpreted as the lower
and upper bounds of probability functions (Dempster,
1967; Dubois and Prade, 1985; Halpern and Fagin,
1990). These numeric bounds are in fact closely re-
lated to non-numeric bounds. The basic idea of rough
sets was implicitly used by Shafer (1976) in defining
the notions of coarsening and refinement of a frame.
More recently, Grzymala-Busse (1987), Wong and Lin-
gras (1989) investigated the relationships between be-
lief/plausibility functions and lower/upper approxima-
tions in the rough-set model in an attempt to establish
a linkage between numeric and non-numeric represen-
tations of uncertain information.

The results of the studies mentioned above seem to
suggest that there exists a common framework for
modeling uncertainty. This paper introduces the no-
tion of interval structure to represent uncertain infor-
mation. Both non-numeric and numeric bounds will
be analyzed in this framework. We will show that
the lower and upper approximations of the rough-set



model, the lower and upper bounds in incidence calcu-
lus, and the belief and plausibility functions all obey
the axioms of an interval structure. To demonstrate
the usefulness of such a structure, we apply the tech-
niques developed here to synthesize the knowledge pro-
vided by the experts. The process of such synthesis
not only provides a desirable set of decision rules, but
also clearly demonstrates the explicit structure of these
rules.

2 INTERVAL STRUCTURE

INDUCED BY A

COMPATIBILITY RELATION

Let W = {w1, w2, . . . , wm} and Θ = {θ1, θ2, . . . , θn}
represent two finite universes of interest. The relation-
ships between the elements of W and Θ can be char-
acterized by a compatibility relation (Shafer, 1986). A
compatibility relation is defined as a subset of pairs
(w, θ) in the Cartesian product W × Θ. An element
w ∈ W is compatible with an element θ ∈ Θ, writ-
ten w C θ, if the w is related to θ. In reality, the
formulation and interpretation of W and Θ and the
compatibility relation between these two sets depend
very much on the available knowledge and the domain
of applications. For example, in a medical diagnosis
system, W can be a set of symptoms and Θ a set of
diseases. A symptom w is said to be compatible with
a disease θ if any patient with symptom w may have
contracted the disease θ. Without loss of generality,
we may assume that for any w ∈ W there exists a
θ ∈ Θ with w C θ, and vice versa.

A compatibility relation C between W and Θ can be
equivalently defined by a multi-valued mapping, γ :
W −→ 2Θ, as (Dempster, 1967; Shafer, 1986):

γ(w) = {θ ∈ Θ | w C θ}. (1)

Such a mapping γ induces a function, Γ : 2W −→ 2Θ,
namely, for X ∈ 2W ,

Γ(X) =
⋃

w∈X

γ(w). (2)

Note that function Γ : 2W −→ 2Θ is not necessarily an
onto mapping, i.e., not every subset of Θ has a preim-

age in 2W . Therefore, it may not be possible to define
the inverse of Γ for every subset of Θ. Nevertheless, we
can define a lower inverse mapping Γ−1 : 2Θ −→ 2W ,
and an upper inverse mapping Γ−1 : 2Θ −→ 2W as:

Γ−1(A) = {w ∈ W | γ(w) ⊆ A} , (3)

and
Γ−1(A) = {w ∈ W | γ(w) ∩ A 6= ∅} . (4)

For an arbitrary subset A ∈ 2Θ, the set Γ−1(A) con-
sists of the elements in W compatible with only those
elements in A, while the set Γ−1(A) consists of the
elements in W compatible with at least one element
in A. In general, the lower and upper preimages are
not necessarily the same. If information is transferred
from subsets in W to subsets in Θ, or if subsets in Θ
are characterized by subsets in W , the lower preimages
Γ−1(A) can be interpreted as the pessimistic estima-
tion and the upper preimages Γ−1(A) as the optimistic
estimation of A. That is, the true preimage of A lies
in the interval [Γ−1(A), Γ−1(A)].

We can extend this particular example to define the
notion of an interval structure. Given two mappings
F : 2Θ −→ 2W and F : 2Θ −→ 2W , if F satisfies the
axioms: for any subsets A, B ∈ 2Θ,

(L1) F (A ∪ B) ⊇ F (A) ∪ F (B),

(L2) F (A ∩ B) = F (A) ∩ F (B),

(L3) F (∅) = ∅,

(L4) F (Θ) = W,

F satisfies the axioms: for any subsets A, B ∈ 2Θ,

(U1) F (A ∪ B) = F (A) ∪ F (B),

(U2) F (A ∩ B) ⊆ F (A) ∩ F (B),

(U3) F (∅) = ∅,

(U4) F (Θ) = W,

and moreover, F (A) = W−F (¬A), where ¬A = Θ−A
denotes the complement of A, the pair F = (F , F ) is
called an interval structure. For any subset A ∈ 2Θ,
F (A) is called the lower bound and F (A) the upper
bound of A in W .

Given a lower bound mapping F satisfying axioms
(L1)-(L4), the upper bound mapping can be easily ob-
tained by the relationships, F (A) = W −F (A), which
automatically satisfies axioms (U1)-(U2). Likewise,
given an upper bound mapping, one can obtain the
corresponding lower bound mapping. Note that (L1)-
(L4) are a set of independent axioms; (U1)-(U4) are
also a set of independent axioms.

It can be easily seen that the interval [Γ−1(A), Γ−1(A)]
derived from a compatibility relation is an interval
structure, i.e., Γ−1 satisfies axioms (L1)-(L4), Γ−1 sat-
isfies axioms (U1)-(U4), and

Γ−1(A) = W − Γ−1(¬A) = ¬Γ−1(¬A). (5)

It should be emphasized here that a compatibility re-
lation provides only one of the possible ways to obtain
an interval structure. In general, one can directly de-
fine an interval structure by demanding that axioms
(L1)-(L4) and (U1)-(U4) are satisfied.



An interval structure also satisfies the following prop-
erties: for any A, B ∈ 2Θ,

(P1) F (A) ⊆ F (A),

(P2) F (¬A) = ¬F (A), F (¬A) = ¬F (A),

(P3) A ⊇ B =⇒ (F (A) ⊇ F (B), F (A) ⊇ F (B)).

We can equivalently define an interval structure F by
a basic set assignment, jF : 2Θ → 2W , which satisfies
the following axioms: for any A, B ∈ 2Θ,

(A1) jF (∅) = ∅,

(A2)
⋃

A⊆Θ

jF (A) = W,

(A3) A 6= B =⇒ (jF (A) ∩ jF (B) = ∅).

Based on jF , the lower and upper bounds of A can be
expressed as:

F (A) =
⋃

B⊆A

jF (B), F (A) =
⋃

A∩B 6=∅

jF (B), (6)

Conversely, from an interval structure F , one can con-
struct the basic set assignment jF by:

jF (A) = F (A) − (
⋃

B⊂A

F (B)). (7)

A subset A ∈ 2Θ with jF (A) 6= ∅ is called a focal

set. In the special case where the interval structure
is induced by a compatibility relation, the basic set
assignment can be expressed as:

jF (A) = {w | γ(w) = A}. (8)

That is, jF (A) consists of all those w’s which are com-
patible with every element in A and not compatible
with any element outside A.

Theorem 1. (Wong, Wang and Yao, 1991) Let
F (A) and F (A) be two mappings from 2Θ to 2W .
There exists a basic set assignment, jF : 2Θ −→ 2W ,
if and only if F = (F , F ) is an interval structure.

At this point, one can clearly see the similarity be-
tween interval structures and belief/plausibility func-
tions (Shafer, 1976), and the similarity between ba-
sic set assignments and basic probability assignments.
Interval structures can be viewed as the non-numeric
counterparts of belief/plausibility functions.

3 REPRESENTATIONS OF

UNCERTAINTY BY INTERVAL

STRUCTURES

The relationships between an interval structure and
other representations of uncertainty will be explored

in this section. We argue that the proposed interval
structure provides a unified framework for these meth-
ods.

3.1 ROUGH SETS

In many applications, a concept may not be conve-
niently described by an ordinary (crisp) set. Pawlak
(1982, 1984) introduced the notion of rough sets. With
such a construct, a concept can be represented by a
pair of ordinary sets referred to as the lower and upper

approximations.

Let Θ denote the universe (a finite ordinary set), and
let R ⊆ Θ × Θ be an equivalence (indiscernability)
relation on Θ, i.e., R is reflexive, symmetric and tran-
sitive. The pair Apr = (Θ, R) is called an ap-
proximation space. The equivalence relation R par-
titions the set Θ into disjoint subsets, denoted by
Θ/R = {w1, w2 , ..., wm}, where wi is an equivalence
class of R. If two elements θ1, θ2 in Θ belong to the
same equivalence class w ∈ Θ/R, we say that θ1 and
θ2 are indistinguishable. The equivalence classes of R
and the empty set ∅ are the elementary or atomic sets
in the approximation space Apr = (Θ, R). The union
of one or more elementary sets is called a composed
set in Apr.

For an arbitrary concept A ∈ 2Θ, the lower and upper
approximations are defined as:

Apr(A) =
⋃

wi⊆A

wi, Apr(A) =
⋃

wi∩A 6=∅

wi. (9)

That is, the lower approximation Apr(A) is the union
of all the elementary sets which are subsets of A, and
the upper approximation Apr(A) is the union of all the
elementary sets which have a non-empty intersection
with A. The interval [Apr(A), Apr(A)] is the repre-
sentation of an ordinary set A in the approximation
space Apr = (Θ, R), or simply called the rough set of
A. By definition, Apr(A) is the greatest composed set

contained in A, and Apr(A) is the least composed set
containing A.

The notion of rough sets was also discussed in (Shafer,
1976; Wong and Lingras, 1989; Dubois and Prade,
1990). The quotient set W = Θ/R is a coarsening

of Θ, while Θ is a refinement of W = Θ/R. In this
special case, a multi-valued mapping, γ : W −→ 2Θ,
can be defined as:

γ(w) = {θ | w = [θ]R} = w, (10)

where [θ]R denotes the equivalence class to which θ be-
longs. Based on equations (3), (4) and (10), an interval



can be defined as:

F (A) = {w|w ⊆ A}, F (A) = {w|w ∩ A 6= ∅}. (11)

The sets F (A) and F (A) are called the inner and outer
reductions, respectively, by Shafer (1976). Clearly,
the lower and upper approximations of the rough-set
model can be expressed in terms of the inner and outer
reductions as follows:

Apr(A) =
⋃

w∈F (A)

w, Apr(A) =
⋃

w∈F (A)

w. (12)

Therefore, these constructs of rough sets can be inter-
preted as an interval structure. The properties of lower
and upper approximations given by Pawlak (1982) im-
mediately follow from the properties satisfied by an
interval structure.

The rough-set model has been used successfully in pat-
tern classification and for generating decision rules
(Pawlak, 1984; Pawlak, Wong and Ziarko, 1988).
For example, consider a medical diagnosis problem
(Pawlak, Slowinski and Slowinski, 1986). Suppose W
is a set of symptoms, and Θ is a set of diseases. By the
symptoms, one can divide the patients into subgroups.
An element w ∈ W is the description or label of a sub-
group of patients with the same symptoms. Let A, a
subset of Θ, denote a set of diseases. In order to de-
cide if a patient has contracted any of the diseases in
A, the rough-set model suggests two kinds of decision
rules:

F (A) → A, F (A) ; A, (13)

where F = (F , F ) is the interval structure defined by
equation (11). The deterministic rule F (A) → A in-
dicates that if the patient has the symptoms in F (A),
then he/she has definitely contracted the diseases in A.
On the other hand, the non-deterministic decision rule
F (A) ; A indicates that a patient with symptoms in
F (A) could suffer from the diseases in A. These deter-
ministic and non-deterministic rules are governed by
the properties of the interval structure.

The rough-set model outlined above considers a special
kind of relationship between two sets, i.e., one set is a
coarsening of the other. There are a number of exten-
sions of the rough-set model. For example, instead of
using an equivalence relation the rough-set model may
be formulated by using a compatibility relation (i.e., re-
flexive and symmetric but not necessarily transitive)
on Θ. Dubois and Prade (1990) considered fuzzy sim-
ilarity relations and fuzzy partitions for the approxi-
mation of sets, which lead to the notion of fuzzy rough
sets.

3.2 INCIDENCE CALCULUS

In order to overcome the problems associated with
using numeric methods for probabilistic reasoning,
Bundy (1985, 1986) introduced incidence calculus, a
technique for assigning uncertainty values to propo-
sitions. These uncertainty values are in fact sets of
points called incidences which can be interpreted as
classes of situations or possible worlds. The uncer-
tainty of a proposition is its incidence.

Following Shafer (1976, 1986), for any question we can
define a set Θ of all possible answers based on our
knowledge, and we know that exactly one of these an-
swers is correct. This set Θ is called a frame of dis-
cernment, or simply a frame. Any subset A ⊆ Θ is
regarded as a proposition that the true answer lies in
A. The power set 2Θ represents all possible proposi-
tions discerned by the frame Θ. Such correspondence
between propositions and subsets is useful because it
translates the logical notions of conjunction, disjunc-
tion, implication, and negation into the more familiar
set theoretic notions of intersection, union, inclusion,
and complementation. We will use this representation
of propositions in the discussion of incidence calculus.

Given a frame Θ and a set of incidences W , one can
define a mapping i : 2Θ −→ 2W . For any proposition
A ∈ 2Θ, i(A) is referred to as the incidence of A. The
mapping i : 2Θ −→ 2W obeys the following axioms:

(I1) i(A ∪ B) = i(A) ∪ i(B),

(I2) i(¬A) = W − i(A).

A mapping i : 2Θ −→ 2W satisfying axioms (I1) and
(I2) is called an incidence structure. In practice, one
may find it is difficult to specify precisely the inci-
dence for each proposition. Instead, one may be able
to provide the lower and upper assignments for the in-
dividual propositions. In other words, one can define
two mappings inf : 2Θ −→ 2W and sup : 2Θ −→ 2W to
indicate the interval within which the true incidence
lies. The lower and upper assignments of incidences
are consistent if there exists an incidence structure i
such that for every A ∈ 2Θ,

inf(A) ⊆ i(A) ⊆ sup(A); (14)

i is said to be bounded by the pair (inf , sup). A pair
of assignments inf0 : 2Θ −→ 2W and sup0 : 2Θ −→ 2W

represent the tightest bounds if (a) the pair (inf0, sup0)
is bounded by (inf, sup), (b) every incidence structure
bounded by (inf, sup) is also bounded by (inf0, sup0),
namely, for all A:

inf(A) ⊆ inf 0(A) ⊆ i(A) ⊆ sup 0(A) ⊆ sup(A), (15)



and (c) no other assignments within (inf0, sup0) would
satisfy conditions (a) and (b).

Since inf and sup are defined separately, these map-
pings are not necessarily consistent with each other.
Bundy (1985, 1986) proposed a set of inference rules
to test the consistency of the lower and upper assign-
ments. If the assignments are consistent, the appli-
cation of the inference rules will produce the tight-
est bounds for the individual propositions. We will
demonstrate in Section 4 that these tightest bounds
indeed satisfy the axioms of an interval structure.

3.3 BELIEF FUNCTIONS

We have shown that both the rough-set model and in-
cidence calculus use an interval structure to represent
non-numeric uncertain information. Now we want to
show that the belief and plausibility functions, origi-
nating from the concepts of lower and upper probabil-
ities induced by a multi-valued mapping (Dempster,
1967), can also be considered as an interval structure
representing numeric uncertain information.

A belief function Bel is a mapping from 2Θ to the in-
terval [0, 1], Bel : 2Θ → [0, 1], satisfying the following
axioms (Shafer, 1976; Dubois and Prade, 1986; Smets,
1988, 1990):

(B1) Bel(∅) = 0,

(B2) Bel(Θ) = 1,

(B3) For every positive integer n and

every collection A1, A2, . . . , An ∈ 2Θ,

Bel(A1 ∪ A2 . . . ∪ An) ≥
∑

i

Bel(Ai) −
∑

i<j

Bel(Ai ∩ Aj) ± . . .

(−1)n+1Bel(A1 ∩ A2 . . . ∩ An).

A belief function can be equivalently defined by an-
other mapping, m : 2Θ → [0, 1], which is called a basic
probability assignment satisfying:

(M1) m(∅) = 0 ,

(M2)
∑

A∈2Θ

m(A) = 1 .

In terms of the basic probability assignment, the belief
in a subset A ⊆ Θ can be expressed as:

(M3) Bel(A) =
∑

B⊆A

m(B).

A subset A ∈ 2Θ with m(A) > 0 is called a focal

element. By the Möbius inversion one can construct

the basic probability assignment from a belief function
(Shafer, 1976):

m(A) =
∑

B⊆A

(−1)|A−B|Bel(B), (16)

where | · | denotes the cardinality of a set. Therefore,
a belief function can be defined by axioms (B1)-(B3)
or (M1)-(M3).

For a given belief function, one can define another
function called plausibility as follows:

Pl(A) = 1 − Bel(¬A).

A plausibility function can be independently defined
by the dual axiom of (B3). The belief in a subset
A ⊆ Θ is interpreted as the belief one actually commits
to A, whereas the plausibility of A is interpreted as the
maximum possible belief one may commit to A. It can
be easily verified that Pl(A) ≥ Bel(A). The interval
[Bel(A), P l(A)] represents the quantitative judgments
on a proposition A based on a given evidence.

The following theorems demonstrate the close relation-
ships between belief functions and interval structures.

Theorem 2. (Wong, Wang and Yao, 1991) Let W
and Θ be two finite sets. Let F = (F , F ) be an inter-

val structure with F : 2Θ −→ 2W and F : 2Θ −→ 2W .
Suppose P is a probability function on W . Then
P (F (A)) is a belief function and P (F (A)) is the cor-
responding plausibility function.

Theorem 3. The mappings Bel and Pl from 2Θ to
[0, 1] are belief and plausibility functions, if and only
if there exists an interval structure F on a finite set
W , and a probability P on W such that:

Bel(A) = P (F (A)), P l(A) = P (F (A)). (17)

The if part of this theorem is essentially given by The-
orem 2. The only if part of the theorem can be proved
as follows. Suppose Bel : 2Θ → [0, 1] is a belief
function. There exists a basic probability assignment
m : 2Θ → [0, 1] such that Bel(A) =

∑

B⊆A m(A).
Each element A with m(A) 6= ∅ is called a focal ele-

ment. Based on the focal elements, one can construct
a finite set W as:

W = {wA | m(A) 6= 0}.

The probability P on W may be defined as:

P ({wA}) = m(A).



Based on the basic probability assignment m, one may
define a basic mapping jF : 2Θ → 2W as:

jF (A) =







{wA} if m(A) 6= 0

∅ if m(A) = 0.

Let F (A) =
⋃

B⊆A jF (B) and F (A) = W − F (¬A).

By Theorem 1, F = (F , F ) is an interval structure.
Moreover,

P (F (A)) =
∑

B⊆A

P (jF (B))

=
∑

B⊆A

P ({wB})

=
∑

B⊆A

m(B) = Bel(A),

and

P (F (A)) = P (W − F (¬A))

= 1 − P (F (¬A))

= 1 − Bel(¬A) = Pl(A).

From the results of Theorems 2 and 3, it can be seen
that belief/plausibility functions can be understood in
terms of an interval structure. Clearly, the numeric
axioms (B1)-(B3) correspond to the non-numeric ax-
ioms (L1)-(L4). The non-numeric and numeric bounds
are connected by a probability function. Similar ob-
servations were also noted by Bundy (1985), Corred
de Silva and Bundy (1990) in the study of incidence
calculus.

In the above discussion, we have demonstrated that
the rough-set model, incidence calculus, and be-
lief/plausibility functions are all linked to an interval
structure. Our analysis suggests that interval struc-
tures provide a common framework for representing
uncertain information. Similarly, the different lev-
els of approximations considered by Yao and Wong
(1991) and the notion of fuzzy rough sets introduced
by Dubois and Prade (1990) can also be interpreted as
an interval structure.

4 KNOWLEDGE SYNTHESIS

USING INTERVAL STRUCTURE

In the design of expert systems, decision rules can be
directly given by the experts. There are two potential
problems associated with such input knowledge. First,
since these rules are specified separately for the indi-
vidual propositions, inconsistency may occur. That is,

there may exist contradictions among the given rules.
Consider again the medical diagnosis problem. Sup-
pose we have two rules, r1 : {w1, w2} → {θ1} and
r2 : {w1, w2} ; {θ2}. The first rule r1 says that
if symptom is w2, disease is θ1, and the second rule
r2 implies that if symptom is w2, disease is not θ1.
Clearly, there exists a contradiction between the two
rules r1 and r2. It is therefore necessary to test the
consistency of the input rules. Secondly, new decision
rules can be logically inferred from the given rules. For
instance, from {w1} → {θ1, θ2}, we know that if symp-
tom is w1, disease is θ1 or θ2. Also, from another rule
{w1} → {θ1, θ3}, we can conclude that if symptom is
w1, disease is θ1 or θ3. These two rules together im-
ply a new decision rule, namely, {w1} → {θ1}. Thus,
a method for synthesizing or consolidating such input
knowledge is required.

For any A ∈ 2Θ, the experts can specify a sub-
set G(A) ⊆ W as the lower assignment and a sub-
set G(A) ⊆ W as the upper assignment of A. The
lower and upper assignments define the right hand
side of the deterministic and non-deterministic rules
G(A) → A and G(A) ; A, respectively. To be con-
sistent with such interpretations, we may assume that
G(A) ⊆ G(A). Furthermore, if G(A) or G(A) is not
given, we assume G(A) = ∅ or G(A) = W . The lower
and upper assignments can be viewed as a pair of map-
pings G and G from 2Θ to 2W .

An interval structure F = (F , F ) is inside a pair of
lower and upper assignments G and G if for every A ∈
2Θ,

G(A) ⊆ F (A) ⊆ F (A) ⊆ G(A). (18)

Let DG be the set of decision rules associated with G =
(G, G). We say that the rules in DG logically imply a
deterministic rule X → A, written DG |= X → A,
if for every interval structure F inside G, X ⊆ F (A)
holds. Similarly, the rules in DG logically imply a non-
deterministic rule Y ; A, written DG |= Y ; A,
if for every interval structure F inside G, F (A) ⊆ Y
holds. We use D∗

G to denote the set of all rules that
are logically implied by DG.

Wong, Wang and Yao (1991) introduced the following
set of inference axioms to derive D∗

G:

(I1) X ; A and Y → ¬A =⇒ X − Y ; A.

(I2) X ; ¬A and Y → A =⇒ Y ∪ (W − X) → A.

(I3) X ; A, Y ; B and Z ; A ∩ B =⇒

X ∩ Y ∩ Z ; A ∩ B.

(I4) X → A, Y → B and Z → A ∩ B =⇒

(X ∩ Y ) ∪ Z → A ∩ B.



(I5) X → A ∩ B and Y → A =⇒ X ∪ Y → A.

(I6) X → A =⇒ Y → A for any Y ⊆ X .

(I7) X ; A =⇒ Y ; A for any Y ⊇ X .

Let I denote a set of inference axioms. With respect
to I, the closure of DG, written D+

G, is the smallest set
containing DG such that the inference axioms cannot
be applied to the set to yield a decision rule not in the
set. The set of inference axioms is sound and com-
plete if DG |= D+

G, i.e., any rule in D+
G is in D∗

G, and
D∗

G ⊆ D+
G. It has been shown by Wong, Wang and

Yao (1991) that the above inference axioms (I1)-(I7)
are indeed both sound and complete.

For any A in 2Θ, F (A) is called the max lower bound
of A, if for any X → A in D+

G, X ⊆ F (A); F (A) is
called the min upper bound of A, if for any Y ; A in
D+

G, F (A) ⊆ Y . The max-min bounds are in fact the
tightest bounds in the incidence calculus. As shown by
the following theorem, these bounds satisfy the axioms
of an interval structure.

Theorem 4. (Wong, Wang and Yao, 1991) The
max-min bounds derived from a consistent assignment
G form an interval structure.

Recall that an interval structure can be equivalently
defined by a basic set assignment. The results of Theo-
rem 4 thus provide an alternative way to construct the
max-min bounds. That is, one can construct the basic
set assignment jF instead. The algorithm suggested
by Wong, Wang and Yao (1991) for constructing the
basic set assignment is outlined below.

Input: G = {G(A) → A, G(A) ; A |

A ∈ 2Θ, G(A) 6= ∅ and G(A) 6= W};

1. for each rule G(A) ; A in G do

G′(¬A) = G(¬A) ∪ (W − G(A));

2. for each wk ∈ W do

Find all the A’s where G′(A) 6= ∅ such that

wk ∈ G′(A), say, A1, A2, ...,Al;

if A1 ∩ A2 ∩ . . . ∩ Al = ∅ then

exits to no interval structure;

else

j(A1∩A2∩...∩Al) = j(A1∩A2∩...∩Al)∪{wk};

(Initially, j(A1 ∩ A2 ∩ ... ∩ Al) = ∅.)

3. Output: j.

In step 1 of the above procedure, if G(¬A) is not as-
signed a value in the input, we assume the value is ∅.
Moreover, if the input value G(A) is not changed, we
also denote it by G′(A). It is understood that all those
initial assignments with G(A) = ∅ and G(A) = W
have been eliminated from the input.

The following example illustrates the proposed proce-
dure for constructing the basic set assignment and the
max-min bounds.

Example. Let W = {w1, w2, w3, w4, w5} and
Θ = {θ1, θ2, θ3}. Suppose the initial lower and upper
assignments are given as:

G({θ1, θ2}) = {w1, w4},

G({θ1, θ3}) = {w1, w2},

G(Θ) = {w3},

G({θ3}) = {w3, w5},

G({θ1}) = {w1, w2, w3}.

In step 1, the given two upper assignments yield:

G′(¬{θ3}) = G′({θ1, θ2})

= G({θ1, θ2}) ∪ (W − G({θ3})

= {w1, w4} ∪ (W − {w3, w5})

= {w1, w2, w4},

G′(¬{θ1}) = G′({θ2, θ3})

= G({θ2, θ3}) ∪ (W − G({θ1})

= ∅ ∪ (W − {w1, w2, w3})

= {w4, w5}.

Thus, together with the given lower assignments, we
obtain:

G′({θ1, θ2}) = {w1, w2, w4},

G′({θ1, θ3}) = {w1, w2},

G′({θ2, θ3}) = {w4, w5},

G′(Θ) = {w3}.

In step 2, since

w1 ∈ G′({θ1, θ2}), w1 ∈ G′({θ1, θ3}),

it follows:

w1 ∈ j({θ1, θ2} ∩ {θ1, θ3}) = j({θ1}).

Similarly,

w2 ∈ j({θ1}),

w3 ∈ j(Θ),



w4 ∈ j({θ2}),

w5 ∈ j({θ2, θ3}).

Therefore, the basic set assignment jF is given by:

jF ({θ1}) = {w1, w2},

jF ({θ2}) = {w4},

jF ({θ2, θ3}) = {w5},

jF (Θ) = {w3}.

By using the formulas:

F (A) =
⋃

B⊆A

jF (B)

and

F (A) =
⋃

A∩B 6=∅

jF (B),

one can easily construct the max lower bounds and the
min upper bounds for every A ∈ 2Θ:

F (∅) = ∅,

F ({θ1}) = {w1, w2},

F ({θ2}) = {w4},

F ({θ3}) = ∅,

F ({θ1, θ2}) = {w1, w2, w4},

F ({θ1, θ3}) = {w1, w2},

F ({θ2, θ3}) = {w4, w5},

F (Θ) = W ,

and

F (∅) = ∅,

F ({θ1}) = {w1, w2, w3},

F ({θ2}) = {w3, w4, w5},

F ({θ3}) = {w3, w5},

F ({θ1, θ2}) = W ,

F ({θ1, θ3}) = {w1, w2, w3, w5},

F ({θ2, θ3}) = {w3, w4, w5},

F (Θ) = W .

This example clearly demonstrates that the proposed
algorithm for finding the basic set assignment is more
efficient than that of finding the tightest bounds di-
rectly (Bundy, 1985, 1986; Wong, Wang and Yao,
1991).

5 CONCLUSION

To make decisions under uncertainty, it is crucial to
choose an appropriate structure to represent the un-
certain information. In this paper, we have introduced
a unified framework for representing uncertainty based
on the notion of an interval structure. In this ap-
proach, lower and upper bounds are used to character-
ize a concept or an incidence. It is also shown that an
interval structure can be equivalently defined by a ba-
sic set assignment. An interval structure may be con-
sidered as the non-numeric counterpart of belief and
plausibility functions, while the basic set assignment
as the non-numeric counterpart of the basic probabil-
ity assignment.

With the proposed framework, we have demonstrated
that the lower and upper approximations of the rough-
set model, the lower and upper bounds in incidence
calculus, and the belief and plausibility functions all
obey the axioms of an interval structure. We believe
that the notion of an interval structure greatly facil-
itates the study of the various representations of un-
certainty.

An interval structure can be used to synthesize the de-
cision rules provided by experts. We have introduced
a set of both sound and complete inference axioms to
perform such a task, and developed an efficient algo-
rithm for finding the desirable set of decision rules.
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