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Abstract

When approximating a concept, probabilistic rough set
models use probabilistic positive, boundary and neg-
ative regions. Rules obtained from the three regions
are recently interpreted as making three-way decisions,
consisting of acceptance, deferment, and rejection. A
particular decision is made by minimizing the cost of
correct and incorrect classifications. This framework
is further extended into sequential three-way decision-
making, in which the cost of obtaining required evi-
dence or information is also considered.

1. Introduction

Three-way decisions, consisting of acceptance, re-
jection and deferment (or further investigation), are a
common problem solving strategy used in many disci-
plines. They have been used in editorial peer review
process [15], medical decision-making [8, 9], statisti-
cal inference, statistical decision-making and applica-
tions [2, 3, 16], sequential hypothesis testing [14], in-
formation retrieval and intelligent agents [4, 5], email
spam filtering [29, 30], investment management [7],
cluster analysis and data analysis [6, 13], and others.
One may broadly classify existing studies on three-way
decision-making into two classes, namely, a single one-
step three-way decision-making and a sequential, multi-
step three-way decision-making. The former may be
viewed as one step or a special case of the latter.

There are different motivations and justifications
for making three-way decisions with an added option
of indecision. Recently, an interpretation of three-way
decision making is proposed within the framework of
decision-theoretic rough set models [20, 21, 22]. It is
based on the Bayesian decision theory that minimizing

∗This work is partially supported by a discovery grant from
NSERC Canada.

the risk of various decisions. The result is similar to hy-
pothesis testing in statistics. A hypothesis is accepted
if there is a strong evidence supporting it, is rejected if
there is a strong evidence refuting it, and is neither ac-
cepted nor rejected, but needs to be further tested, if
there is no strong evidence supporting or refuting it.
The interpretation justifies three-way decision-making
based on the risk or cost of different decisions. It lacks
a consideration of the cost of obtaining and using evi-
dence.

Decision-making is normally based on available
evidence. For example, a piece of evidence may be the
result of a test or an observation. Obtaining different
pieces of evidence is associated with different costs. A
cost-effective decision-making method aims at achiev-
ing a required level of accuracy with a minimal cost
in obtaining evidence. This offers another interpreta-
tion of three-way decisions called sequential three-way
decision-making. A decision-making process consists
of a sequence of steps. In each step, one makes a deci-
sion of acceptance or rejection if the available evidence
is sufficiently strong, otherwise, we move to the next
step in which a rule of deferment in last step is refined
into a set of rules of acceptance, rejection or deferment
by adding new evidence. The process continues till a
certain condition is met, for example, all possible tests
are used or it is too costly to continue.

Sequential three-way decision-making implements
an idea of granular computing called progressive com-
puting [23]. Suppose that a problem is described with
multiple levels of granularity, abstraction or details,
i.e., a problem has multiple representations. Decision-
making at a higher level is typically associated with
lower costs than decision-making at a lower level. A
decision of acceptance and rejection can be made with
tolerable degrees of error at a higher level with less cost,
and a decision of deferment may be further investigated
at a lower level by observing more details.

The main idea of sequential three-way decision
may be further illustrated by an example. Considering



the problem of selecting a set of relevant papers from a
set of papers. At the very first step or level, by reading
only paper titles, we can accepting some papers as be-
ing relevant, reject some papers as being non-relevant,
or defer a definite decision. Quick decisions are made
based on the informativeness of the paper titles with
much less cost of reading time. When a paper title is
less informative, at the second step or level, we need to
read section and subsection headings to determine the
relevance of the paper, which requires more time. The
results are again three-way decisions. At the third step
or level, we need to read the introduction, conclusion
and some paragraphs to determine the relevance of the
paper. Even more time is required. As demonstrated
by this example, sequential three-way decision making
suggests that if a decision of acceptance or rejection
with certain tolerable levels of errors can be made at a
higher level, it is not necessary to move to a lower level.

The intuitive notion of sequential three-way deci-
sion has been explored and used in many areas. The
main objective of this paper is to provide a formal de-
scription of this method within the framework of prob-
abilistic rough sets.

2. Multiple Representations of Objects in
an Information Table

In rough set analysis [10], one uses an information
table to describe a finite universe of objects U by a finite
set of attributes At. Formally, an information table is the
following tuple:

S = (U,At,{Va | a ∈ At},{Ia | a ∈ At}), (1)

where

U is a finite nonempty set of objects,
At is a finite nonempty set of attributes,
Va is a nonempty set of values for

an attribute a ∈ At,

Ia : U −→Va is a complete information
function that maps an object
of U to exactly one value in Va.

That is, an object is determined only by its values on a
set of attributes.

In an information table, a subset of attributes A ⊆
At defines an equivalence relation EA ⊆U×U on U :

xEAy⇐⇒∀a ∈ A(Ia(x) = Ia(y)), (2)

where Ia(x) is the value of x on attribute a. That is, x
and y are equivalent if and only if they have the same

values on all attributes in A. The equivalence relation
EA induces a partition of U , U/EA = {[x]A | x ∈ U},
where [x]A = [x]EA = {y | xEAy} is the equivalence class
containing x.

The equivalence class [x]A may be interpreted as a
granule and the partition U/EA as a granulation of U .
One immediately obtains a partition based framework
of granular computing using an information table [18].

Let DesA(x) denote the description of x with re-
spect to a subset of attributes A⊆At, namely, DesA(x) =∧

a∈A(a = Ia(x)). A condition (attribute name = at-
tribute value) is called an atomic formula. An object
is therefore equivalently described by a conjunction of
atomic formulas with respect to the set of attributes A.
All objects in the equivalence class [x]A have the same
description as x and DesA(x) is in fact the description of
[x]A.

Let � denote the refinement-coarseing relation be-
tween partitions, namely, π2 � π1 holds between two
partitions if and only if every block of π1 is the union
of some blocks of π2. Consider two sets of attributes
A1 ⊂ A2 ⊆ At, we have [x]A2 ⊆ [x]A1 and U/A2 �U/A1.
That is, a larger set of attributes produces a finer par-
tition of the universe and a smaller set of attributes
produces a coarser partition. An object x is described
by two different representations, namely, DesA1(x) and
DesA2(x). For a sequence of sets of attributes

A1 ⊂ A2 ⊂ . . .⊂ Ak ⊆ At, (3)

we have
[x]Ak ⊆ . . .⊆ [x]A2 ⊆ [x]A1 , (4)

and
U/Ak � . . .U/A2 �U/A1. (5)

The sequence of partitions provides a multilevel granu-
lar structures of the universe. With respect to a sequence
of sets of attributes, we have a sequence of different de-
scriptions of an object,

DesA1(x), DesA2(x), . . . , DesAk(x), (6)

with increasing levels of details. Namely, more atomic
formulas are added in the sequence of descriptions.

In general, we can consider a meet semi-lattice
({U/A | A∈ 2At},u) defined by the power set 2At of the
set of attributes At, where the meet operator u is defined
by U/A uU/B = U/(A ∪ B) for A,B ∈ 2At , namely,
[x]A∩ [x]B = [x]A∪B. The meet semi-lattice gives a more
general multilevel granular structure of the universe.

Based on these concepts and notations, three-way
decisions can be formulated with respect to a set of at-
tributes and a sequence of nested sets of attributes, re-
spectively.



3. Three-way Decision Making with a Set
of Attributes

Decision-theoretic rough set models (DTRSM)
[17, 19, 24, 25] are quantitative probabilistic extensions
of the qualitative classical rough set model [10]. A pair
of thresholds on conditional probability is used to obtain
probabilistic positive, boundary and negative regions.

3.1. Three-way decision rules

Let C denote a concept, or be the name of the con-
cept, whose instances are the subset of objects C ⊆U .
Suppose that Pr(C|[x]A) denotes the conditional proba-
bility of an object in C given that the object is in [x]A.
It may be roughly estimated based on the cardinality of
set as follows:

Pr(C|[x]A) =
|C∩ [x]A|
|[x]A|

, (7)

where | · | denotes the cardinality of a set. With condi-
tional probability, decision-theoretic rough models in-
troduce probabilistic positive, boundary and negative
regions: for 0≤ β < α ≤ 1,

POS(α,β )(C) = {x ∈U | Pr(C|[x]A)≥ α},
BND(α,β )(C) = {x ∈U | β < Pr(C|[x]A) < α},
NEG(α,β )(C) = {x ∈U | Pr(C|[x]A)≤ β}. (8)

Pawlak model may be viewed as a special of probabilis-
tic models in which β = 0 and α = 1.

From the three probabilistic regions, we can obtain
three types of quantitative probabilistic rules, i.e., rules
of acceptance, rules of deferment and rules of rejection:

rule of acceptance : [x]A ⊆ POS(α,β )(C),
DesA(x)→ accept x ∈C;

rule of deferment : [x]A ⊆ BND(α,β )(C),
DesA(x)→ neither accept nor reject x ∈C;

rule of rejection : [x]A ⊆ NEG(α,β )(C),
DesA(x)→ reject x ∈C.

Probabilistic three-way decisions are of a quantitative
nature. By definition of probabilistic regions, decisions
of acceptance and rejection are associated with some
errors. Three-way decisions may be related to statis-
tical inferences and hypothesis testing. A hypothesis
is given as x ∈ C and a piece of evidence is given as
DesA(x), that is, based on the description of x we want
to infer its membership in C. If the evidence strongly
supports the hypothesis (i.e., Pr(C|[x]A) ≥ α), we ac-
cept x ∈C. If the evidence weakly supports the hypoth-
esis (i.e., Pr(C|[x]A) ≤ β ), or strongly refutes the hy-
pothesis (i.e., Pr(Cc|[x]A) ≥ 1−β ), we reject x ∈C. If

the evidence is not sufficiently strong, we defer such a
definite acceptance or rejection decision.

In the Pawlak model, x ∈C is true for the positive
region, false for the negative region, and neither true
nor false for the boundary region. The same interpreta-
tion is no longer valid for probabilistic regions. Thus,
the naming of three types of rule reflects the quantita-
tive characteristics of probabilistic regions and is more
meaningful.

3.2. Computation of thresholds

For practical applications of probabilistic rough
sets, it is necessary to interpret the meaning of the
pair of thresholds, (α,β ), and to provide a method
for estimating or computing them. The formulation of
decision-theoretic rough set models in fact solves these
problems based on the Bayesian decision theory [1];
a particular decision of choosing the positive region,
boundary region or negative region is made with min-
imum risk.

With respect to a concept C ⊆ U , we have a set
of two states Ω = {C,Cc} indicating that an object
is in C and not in C, respectively. Corresponding to
three-way decisions, we have a set of three actions
A = {aP,aB,aN}, where aP, aB, and aN represent the
three actions in classifying an object x, namely, decid-
ing x ∈ POS(C), deciding x ∈ BND(C), and deciding
x ∈ NEG(C), respectively. The loss function regarding
the risk or cost of actions in different states is given by
a 3×2 matrix:

C (P) Cc (N)
aP (P) λPP λPN
aB (B) λBP λBN
aN (N) λNP λNN

In the matrix, P, B and N inside the parentheses are used
as subscripts to label various loss. In particular, λPP, λBP
and λNP denote the losses incurred for taking actions
aP, aB and aN , respectively, when an object belongs to
C, and λPN , λBN and λNN denote the losses incurred for
taking the same actions when the object does not belong
to C.

Given the loss matrix, the expected losses associ-
ated with taking different actions for objects in [x]A can
be expressed as:

R(aP|[x]A) = λPPPr(C|[x]A)+λPNPr(Cc|[x]A),
R(aB|[x]A) = λBPPr(C|[x]A)+λBNPr(Cc|[x]A),
R(aN |[x]A) = λNPPr(C|[x]A)+λNNPr(Cc|[x]A). (9)

The Bayesian decision procedure suggests the follow-



ing minimum-risk decision rules:

(P) If R(aP|[x]A)≤ R(aN |[x]A) and
R(aP|[x]A)≤ R(aB|[x]A),

then decide x ∈ POS(C);
(B) If R(aB|[x]A)≤ R(aP|[x]A) and

R(aB|[x]A)≤ R(aN |[x]A),
then decide x ∈ BND(C);

(N) If R(aN |[x]A)≤ R(aP|[x]A) and
R(aN |[x]A)≤ R(aB|[x]A),

then decide x ∈ NEG(C).

Tie-breaking criteria are added so that each object is put
into only one region. Since Pr(C|[x]A)+ Pr(Cc|[x]A) =
1, we can simplify the rules based only on the probabil-
ities Pr(C|[x]A) and the loss function λ .

Consider a special kind of loss functions with:

(c0) λPP ≤ λBP < λNP,

λNN ≤ λBN < λPN . (10)

That is, the loss of classifying an object x belonging
to C into the positive region POS(C) is less than or
equal to the loss of classifying x into the boundary re-
gion BND(C), and both of these losses are strictly less
than the loss of classifying x into the negative region
NEG(C). The reverse order of losses is used for clas-
sifying an object not in C. Under condition (c0), the
decision rules can be re-expressed as:

(P) If Pr(C|[x]A)≥ α and Pr(C|[x]A)≥ γ,

then decide x ∈ POS(C);
(B) If Pr(C|[x]A)≤ α and Pr(C|[x]A)≥ β ,

then decide x ∈ BND(C);
(N) If Pr(C|[x]A)≤ β and Pr(C|[x]A)≤ γ,

then decide x ∈ NEG(C);

where the parameters α , β , and γ are are computed from
the loss function as:

α =
(λPN−λBN)

(λPN−λBN)+(λBP−λPP)
,

β =
(λBN−λNN)

(λBN−λNN)+(λNP−λBP)
,

γ =
(λPN−λNN)

(λPN−λNN)+(λNP−λPP)
. (11)

In other words, thresholds are practically interpret and
systematically determined by the loss function.

Consider now an additional condition on the loss
function:

(c1) (λPN−λBN)(λNP−λBP) >

(λBN−λNN)(λBP−λPP). (12)

Conditions (c0) and (c1) imply that 1 ≥ α > γ > β ≥
0. After tie-breaking, the following simplified rules are
obtained:

(P) If Pr(C|[x]A)≥ α,

then decide x ∈ POS(C);
(B) If β < Pr(C|[x]A) < α,

then decide x ∈ BND(C);
(N) If Pr(C|[x]A)≤ β ,

then decide x ∈ NEG(C).

The parameter γ is no longer needed. Thus, (α,β )-
probabilistic positive, negative and boundary regions
are given, respectively, by:

POS(α,β )(C) = {x ∈U | Pr(C|[x]A)≥ α},
BND(α,β )(C) = {x ∈U | β < Pr(C|[x]A) < α},
NEG(α,β )(C) = {x ∈U | Pr(C|[x]A)≤ β}. (13)

The derivation shows that decision-theoretic rough set
models have a solid theoretical basis and a systematical
practical way of computing the required thresholds.

4. Sequential Three-Way Decision-making
with a Sequence of Sets of Attributes

For simplicity and clarity, we assume that a se-
quence of nested sets of attributes, A1⊂A2⊂ . . .⊂Ak ⊆
At, is given so that we can concentrate on a sequential
three-way decision-making process. It suffices to say
that such a sequence may be obtained by adding one
or more attributes each time. Attributes may be added
based on their importance given by a user [27, 28] or the
cost of obtaining their values. Furthermore, the first set
A1 may be the set of core attributes [10] and sequence
can be obtained by an addition strategy used in reduct
construction [26].

4.1. Non-monotonicity of sequential decision-
making

Consider two sets of attributes A1 ⊂ A2 ⊆ At. Val-
ues on additional attributes in A2−A1 may be viewed
as new evidence. In other words, by using additional
attributes we change a coarser description

∧
a∈A1

(a =
Ia(x)) of an object x into a finer description (

∧
a∈A1

(a =
Ia(x)))∧ (

∧
b∈A2−A1

(b = Ib(x))). In terms of equiva-
lence classes, we have [x]A2 ⊆ [x]A1 . On the other hand,
such a monotonicity does not hold for conditional prob-
ability. One of the following three scenarios may hap-



pen:

Pr(C|[x]A2) > Pr(C|[x]A1),
Pr(C|[x]A2) = Pr(C|[x]A1),
Pr(C|[x]A2) < Pr(C|[x]A1). (14)

They suggest that the new evidence supports, is neutral,
and refutes C, respectively. A decision of acceptance,
deferment, and rejection made at a higher level may in-
correct and need to be revised at a lower level.

The non-monotonicity brings a difficulty to se-
quential decision-making. It requires a reconsideration
of decisions at different levels. On the other hand, we
want to make a decision at a higher level without mov-
ing into a lower levels. Recall that three-way decision
with probabilistic rough sets is based on an acceptance
of some tolerable levels of classification errors. In a
similar way, we need to accept incorrect decisions made
in sequential three-way decision-making. At the same
time, we need to keep chance of revision of decisions at
different levels as small as possible.

In order to avoid decision revision, a user may be
more conservative in expressing loss functions at higher
levels, where a major probability revision is more likely.
In term of the thresholds, they satisfy the following con-
ditions:

0≤ βi < αi ≤ 1, 1≤ i≤ k,

β1 ≤ β2 ≤ . . .≤ βk < αk ≤ . . .α2 ≤ α1. (15)

It suggests that at higher levels a user is more biased
towards a deferment decision so that an acceptance or
a rejection decision can be made when more evidence
and details is available at lower levels.

4.2. Sequential three-way decisions

In forming sequential three-way decision rules, we
start with the first set of attribute A1 in a sequence
A1 ⊂ A2 ⊂ . . . ⊂ Ak ⊆ At. The formulation of three-
way decisions is basically discussed in Section 3. In the
next step, we will keep rules of acceptance and rules of
rejection, and only need to revise deferment rules in the
previous step. In this step, only objects in the boundary
region BND(α1,β1)(C) are considered. The same method
is used in all subsequent steps.

The main ideas of sequential three-way decision
rules construction can be described as follows:

Step 1: Let U1 = U and C1 = C. Compute three prob-
abilistic regions POS(α1,β1)(C1), BND(α1,β1)(C1),
and NEG(α1,β1)(C1), respectively. Construct rules
of acceptance, rules of rejection, and rules of defer-
ment based on the positive, negative and boundary
regions, respectively.

Step i (1 < i≤ k): Let

Ui = BND(αi−1,βi−1)(Ci−1),
Ci = C∩BND(αi−1,βi−1)(Ci−1). (16)

Compute, respectively, three probabilistic regions
POS(αi,βi)(Ci), BND(αi,βi)(Ci), and NEG(αi,βi)(Ci).
Construct rules of acceptance, rules of rejection,
and rules of deferment based on the positive, neg-
ative and boundary regions, respectively.

Step i (i > 1) refines rules of deferment constructed
from the boundary region of step i− 1, in which Ui
is considered as the new universe and Ci as the new
concept. For the construction of probabilistic regions,
we can simply use U and C, due to the use of a se-
quence of nested sets of attributes. However, we explic-
itly construct them to show and emphasize that in each
step only a fraction of the original universe of objects is
used.

In step i (i > 1), a rule of deferment of step i− 1
is replaced by a set of rules of acceptance, rejection or
deferment, based on additional attributes in Ai−Ai−1.
In sequential decision-making, it is typically the case
that at step i the values of attributes in Ai−Ai−1 are not
known. One must perform some test or observation to
obtain these values. Thus, sequential decision-making
has an advantage that one only needs to collect new ev-
idence or perform new test whenever an acceptance or
a rejection decision cannot be made based on available
evidence or information. It is crucial that the sequence
of subsets of attributes should be constructed such that
attributes in Ai−Ai−1 are most informative.

The proposed method of constructing sequential
three-way decision rules draws ideas from decision tree
construction in machine learning [12] and a fast al-
gorithm for computing rough set approximations [11].
Like a decision tree, a multilevel organization of rules
immediately leads to a sequential three-way decision-
making process.

Additional comments on the proposed method are
given for its possible generalizations. We assume that a
sequence of sets of attributes is given. In fact, one can
build the sequence inside the k steps for constructing
three-way decision rules. Recall that in general we may
form a meet semi-lattice by using a family of sets of
attributes. The argument based on a sequence of sets
of attributes may be easily generalized to a meet semi-
lattice of sets of attributes. In this way, we have a lattice
based three-way decision-making process.

5. Conclusion

We generalize three-way decisions with probabilis-
tic rough sets into a sequential three-way framework.



This enables us to consider both the cost of various
mis-classifications and the cost of obtaining the neces-
sary evidence for making a classification decision. Al-
though the latter is very important in decision-making,
it has not received sufficient attention. This paper re-
ports some preliminary results on the topic.

The exploration of multiple representations of ob-
jects for decision-making is a useful direction in gran-
ular computing. Typically, decisions made at a higher
level of granularity or abstraction may be less accurate
or reliable but with a lower cost of resources (i.e., time
for obtaining evidence or performing a test). As future
work, a formal analysis of such cost-accuracy trade-
off is needed to further justifying sequential three-way
decision-making.
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