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a Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada

b Department of Computer Science, University of Regina
Regina, Saskatchewan, Canada

Abstract

We investigate the problem of learning the transition dynamics of deterministic,
discrete-state environments. We assume that an agent exploring such an environ-
ment is able to perform actions (from a finite set of actions) in the environment and
to sense the state changes. The question investigated is whether the agent can learn
the dynamics without visiting all states. Such a goal is unrealistic in general, hence
we assume that the environment has structural properties an agent might exploit.
In particular, we assume that the set of all action sequences forms an algebraic
group.

We introduce a learning model in different variants and study under which cir-
cumstances the corresponding “group structured environments” can be learned ef-
ficiently by experimenting with group generators (actions). It turns out that for
some classes of such environments the choice of actions given to the agent deter-
mines if efficient learning is possible. Negative results are presented, even without
efficiency constraints, for rather general classes of groups, showing that even with
group structure, learning an environment from partial information is far from triv-
ial. However, positive results for special subclasses of Abelian groups turn out to
be a good starting point for the design of efficient learning algorithms based on
structured representations.

Key words: learning theory, active learning, groups, algebraic structures

? This paper is an extended version of [3].
∗ Corresponding author.

Email addresses: bartok@cs.ualberta.ca (Gábor Bartók),
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1 Introduction

Consider an agent that takes actions in its environment and receives sensations
about the state of the environment in response. The goal of the agent is to
learn to predict the effect of the actions on the environment. In particular,
we are interested in scenarios in which the agent is able to learn this without
visiting all states. This is an important problem since most environments have
a very large (if not infinite) number of states and thus it would be unrealistic
to assume that the agent can visit all of them.

It is known that when the sensations (i.e., the representations of states) are
vectors, predictive models can be learned efficiently even for stochastic envi-
ronments provided that the environments’ dynamics can be represented as a
Bayes net in the form of a bounded depth decision tree, see Strehl, Diuk and
Littman [17]. However, it is not always evident how to construct such a vector-
based factored state representation given the “raw” sensory inputs. Factored
representations often involve high-level concepts, such as objects, while the
sensory inputs are low-level, such as pixels of an image.

Hence, a natural question to ask is how to deal with the case in which such
a high-level representation is not given. For example, the agent might receive
the state information in a completely unstructured form, such as in terms of
names (IDs) of states that allow the agent only to distinguish two different
states from each other, but not to distinguish any of their features from each
other. Do there exist learning algorithms that can learn the dynamics of the
environment efficiently, i.e., by exploring only a small fraction of the state
space? If efficient learning despite such a flat representation is possible then
one does not need to worry about providing the learning agents with the
“right” state representation, while in the opposite case one must be careful
not to choose a representation that cannot be readily constructed given the
“raw” sensations of the agent.

At first sight, efficient learning given an arbitrary state representation seems
impossible. In fact, this is impossible in the conventional model when an
agent is considered to have learned its environment if it is able to predict
its future sensations given any (hypothetical) action sequence, cf. Rivest and
Schapire [14] and Littman, Sutton and Singh [11]. Indeed, if the sensations
of the agent are state names then the agent has no way of telling what state
number will be sensed next when taking an action in a state that has not been
visited beforehand.

Luckily, the agent being successful at predicting the “names” of states is just
one way to characterize if an agent has learnt the dynamics of the environ-
ment. Another success criterion is that the agent is able to tell, for any two
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action sequences, whether they lead to the same state given that they have been
applied in the same, arbitrary initial state. If this is the case then the agent
can relate the effect of any action sequence to that of other action sequences
and thus can create a conceptual map of its environment. Indeed, disregarding
computational issues, an agent successful according to this criterion can per-
form planning tasks such as navigating on the shortest path to a previously
visited state or even to an unvisited state if this state is “named” by specifying
a sequence of actions that lead to it.

In this paper we will use this new success criterion and assume that the sen-
sations are unique identifiers assigned to the states. This assumption is equiv-
alent to restricting the information an agent gets about to states in a way
that no other relation between them than equality can be decided. Since effi-
cient learning in the general case is still impossible, even with the new success
criterion, we will make some additional strong assumptions about the envi-
ronments.

In particular, we will assume that the possible environments obey a group
structure. Such environments are characterized by two properties: (i) actions
are reversible and (ii) if two action sequences lead to the same state from some
initial state then they always do so, no matter what the initial state is (i.e.,
we can think of these action sequences as being equivalent). This leads to a
group-based description of the environments, where the elements of the group
are the equivalence classes of the action sequences. Note that Assumption (ii)
allows the agent to reason about the effect of actions in states that it has never
visited and thus to learn the environment without visiting all the states.

Although limiting our attention to group-structured environments seems like
a strong restriction, we argue that such classes of environments are of high
relevance for the study of learning the transition behaviour of action/state
spaces in interesting cases:

First, a large body of the literature on system identification and control theory,
cf. [12], is devoted to the problem of learning the dynamics underlying a linear
control system. Here one assumes that the state transitions of the linear control
system are controlled via control ut at time t, obeying linear relations of the
form xt+1 = Axt + But + Wt (for the state transitions between state xt and
state xt+1) and yt = Cxt +Dut +Vt (for the observation yt emitted at time t).
Here xt, ut, Wt, yt, Vt are vectors of some suitable dimensions, and A, B, C,
D are unknown matrices. Even finite space systems, like certain MDPs have a
representation of similar form. Here xt+1 = A(ut)xt + Wt, and yt = xt, where
A(u) is a matrix that depends on the control u. Such linear control relations
allow for expressing a very general class of systems; for instance, any stochastic
finite state automaton can be expressed this way. The group environments we
consider are special cases of linear control systems and as such of interest for
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control theory. In fact, every finite group G can be thought of as a permutation
group of |G| many elements. 2 Interpreted as coordinate permutations acting
on vector spaces, the group elements thus are linear transformations.

Second, some important specific environments can be well approximated by
group-structured environments. For example, if some physical constraints are
disregarded, multi-link robot manipulators can be thought of as working in
a state space obeying a specific group structure: A multi-link robot’s state
could be represented as a vector of the (discretized) angles of the joints. The
dynamics for each joint i can be expressed by θi(t+1) = θi(t)+ui(t) mod 2π,
where θi(t) is the angle at joint i at time t, and ui(t) is the control at time t
applied to joint i, taken from a finite set of control actions. Since the actions
commute in this case, the corresponding set of action sequences obeys a spe-
cific Abelian group structure. Other examples are permutation games, such as
Rubik’s cube (Korf [10]), the Topspin Puzzle or the Pancake Puzzle (Holte,
Grajkowski and Tanner [8]), to name just a few.

Third, we will see below that learning is still non-trivial, even when such
specialized structures of environments are considered. Hence our framework
allows us to study the inherent difficulties in learning the transition behaviour
of action/state spaces if no factored representations are given. Our results
below show that, if we focused on more general models, we would face too
many non-learnability results to be able to gain insights about the structural
requirements for learnability.

Working in the framework of group-structured environemnts, we introduce a
notion of learning and two restrictive variants thereof, namely efficient learn-
ing, and finite learning. For efficient learning we require the agent to identify
the environment by experimenting with a polynomial number of actions as
a function of the logarithm of the size of the environment and the orders of
the given “basic” actions. 3 We then prove the following results: If the class
of environments is not restricted any further, then even learning in our most
general model is impossible (Theorem 16). Excluding infinite groups, finite

2 More precisely, every finite group is isomorphic to a certain subgroup of the
symmetric group over |G| many elements, see [15].
3 The order of an action is the minimal number of times it has to be applied in any
state s in order to get back to the state s. In our learning model, since the agent
needs to learn at least the effect of the basic actions, the order of actions can be
considered as a measure of “complexity” of actions. In general, actions of higher
order will require more steps of exploration for the agent to determine the effect of
the action. (This may not hold in very special cases, for instance if the class of all
target environments consists only of environments of two actions a and b, where the
order of a is relatively low and the order of b is always equal to 2a. In such a case
exploration of a will give the agent enough information to determine the order of b,
even though it is exponential in the order of a.)
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learning becomes possible, though efficient learning is still impossible (The-
orem 17). We show an example when efficient learning is possible in some
class of environments, while for essentially the same class, just generated by
a different set of basic actions, efficient learning is not possible (Corollary 18,
Proposition 19). Here the change between the two classes of environments lies
in the “complexity” (order) of the basic actions given to the agent.

Furthermore, we consider environments where the actions commute (such as
in the case of an idealized multi-link robot in 2D when the actions actuate
different joints) and the actions are the generators of the cyclic groups in the
primary decomposition of the underlying group. We show that finite learning
is impossible unless the environments are restricted to be finite in which case
efficient learning becomes possible (cf. Theorems 21 and 22).

We also consider the problem of incremental learning of a semi-direct product
construction (Section 5)—a way of modeling the case that an agent already
knows its group environment, but then a new action is introduced, the effect of
which needs to be learned by the agent. Finally, in Section 6 we show positive
results for 3 specific one-player game environments, two of which are known
as the Hungarian rings puzzle and the Topspin puzzle.

The closest to our results is the work of Rivest and Schapire [14], who inves-
tigate the problem of learning the dynamics of an environment represented
by a finite automaton. (For extensions of their results to stochastic environ-
ments see Jaeger [9] and Littman et al. [11].) Rivest and Schapire assume that
the agent’s sensations have the form of a binary vector. They assume that
the environments can be represented by a permutation automaton (i.e., all
actions are reversible and the number of states is finite). According to their
definition an environment is learned when the agent can predict future sensa-
tions for an arbitrary sequence of actions given its current state. They give a
randomized algorithm that learns every strongly connected, reduced permu-
tation automaton (with high probability) in time that is polynomial in the
“diversity” associated with the environment. The diversity is the number of
equivalence classes of tests in the environment. A test consists of an action-
sequence, a, and an index, i, of a bit in the sensation vector. The outcome of
test (a, i) in a given state s equals the value of the ith bit of the sensation vec-
tor observed after executing the sequence a from s. Two tests are equivalent
if they have the same outcomes independent of the start state. An automaton
is called reduced if any two states can be distinguished by some tests and
it is strongly connected if any two states are accessible from each other by
executing some sequence of actions.

The diversity d of a reduced environment is (tightly) bounded between log2(n)
and 2n, where n is the number of states of the environment, see Rivest and
Schapire [14]. The diversity depends to a large extent on how the sensations
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are chosen.

Our framework corresponds to the case when the sensations have a one-to-one
correspondence with the states. Thus the diversity of the resulting environ-
ment is n (strictly speaking, in order to define the diversity with state-valued
sensations one needs to extend the definition of diversity to the case when the
components of the sensation vector can take values in arbitrary sets). Hence,
our targets can be viewed as being largely complementary: While Rivest and
Schapire target learning efficiently when the representation is well-chosen in
the sense that the diversity of the environment is small, our goal is to analyze
when learning in logarithmic time is possible without this assumption.

The reader should note that our model of efficient learning of environments
requires the agent to be active, i.e., to carefully select which action to take
in every step, depending on the outcome of previous actions. In case the ac-
tions were chosen arbitrarily, there would in general be no chance to learn
the environment with a “small” number of experiments. There is a broad lit-
erature on active machine learning in general; here we would like to direct
the reader to the specific literature on active learning of finite state machines.
Equivalence queries and membership queries were used by Angluin [1] in her
L∗ algorithm for learning finite state automata. Equivalence queries allow a
learner to propose an automaton A to an oracle, which in turn provides a
counterexample for the target automaton AT , i.e., a word either accepted by
A and not by AT or accepted by AT and not by A. Such queries have nothing
in common with the experiments the agents in our model can perform. Mem-
bership queries though are similar to experiments in our model. In Angluin’s
model the learner can select a word and receives information about whether
or not the word is accepted by the target automaton. This is similar to per-
forming a sequence of actions in our model and experiencing whether or not
this action sequence brings the agent back to the state it started in.

Note that in Angluin’s model the learner can “reset” the automaton, i.e., every
membership query concerns a word processed from the start state, whereas
in our model the agent is moving in the state space while taking actions and
thus a “reset” is not allowed.

We are not aware of any research on our setting of group learning. Related
work concerning groups and learning has a focus completely different from
that of the framework we introduce here, see, e.g., models of learning alge-
braic structures from positive data as studied by Stephan and Ventsov [16].
Vinodchandran [18] and Babai and Szemerédi [2] analyze black-box groups—
objects different from those in our group environment setting.

The rest of the paper is organized as follows: In Section 2 we present the
basic notations and terms needed in the paper. In Section 3 our new model of
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learning is introduced. In Sections 4 and 5 we present negative and positive
results in this model. In Section 6 we illustrate our results with simple one-
player games.

2 Preliminaries

In this section we introduce the basic notions used throughout the paper. We
assume the reader to be familiar with a few basic group theoretic notions; those
used without any further explanation are taken from Rothman’s textbook [15].

N denotes the set of all natural numbers (including 0), Z the set of all integers,
and C the set of all complex numbers.

Let G = (SG, ◦G) be a group, where SG is the domain of G and ◦G the group
operation. We always use λG to denote the neutral element in G, but drop the
subscript G in λG, in SG, and in ◦G if the underlying group is clear from the
context. We also identify SG with G in case it is unambiguous. If A ⊆ SG is
any subset of SG then by A∗ we denote the set {(a1, . . . , am) : m ∈ N} of all
finite sequences of elements in A, including the empty sequence. The elements
of A∗ are also referred to as words. With every sequence w = (a1, . . . , am) we
associate a group element G(w) ∈ SG, namely

G(w) =

λG , if m = 0 ,

a1 ◦G (a2 ◦G (. . . ◦G (am−1 ◦G am) . . .)) , if m > 0 .

From now on we will omit the symbol for group operations, wherever it is
clear from the context, e.g., for two elements a, b ∈ S we write ab rather than
a ◦G b.

For a set A ⊆ SG, let 〈A〉G = {G(w) : w ∈ (A∪{a−1 : a ∈ A})∗} be the subset
of SG whose elements are obtained as a product of elements of A and their
inverses.

(When it is clear over which group G we are taking the products we will drop G
from 〈A〉G.) A set A ⊆ SG is called a generator system of G if 〈A〉 = SG. Since
it will be always clear from the context, which generator system an element
a ∈ SG is considered to belong to, we simply call the elements of a generator
system generators and the system itself we simply call a set of generators.

For any subset H we write H ≤ G if H is a subgroup of G, and H � G if H
is a normal subgroup of G, i.e., if H ≤ G and gSH = SHg for all g ∈ G. If
H1 = (SH1 , ◦G) and H2 = (SH2 , ◦G) are two subgroups of G then we define
SH1SH2 = {h1 ◦G h2 : h1 ∈ SH1 and h2 ∈ SH2}.
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A relation in G is a sequence w ∈ S∗G such that G(w) = λG. A pair 〈A | R〉
is called a presentation of G, written 〈A | R〉 ∼= G, iff A is a set of generators
for G and R is a set of relations in G such that G = FA/(R), i.e., G is the
factor group of the free group FA on A and FA’s smallest normal subgroup
that contains R. 4 For ease of presentation, we usually omit set brackets when
writing 〈A | R〉 explicitly. For instance, a presentation for the Klein group
is 〈a, b | a2, b2, (ab)2〉 (rather than 〈{a, b} | {a2, b2, (ab)2}〉). A presentation
〈A | R〉 is finite if both A and R are finite.

G is called (i) finitely generated if G has a finite set of generators; (ii) finitely
presented if G has a finite presentation; (iii) finite if SG is finite. A finitely
presented group is always finitely generated, but the converse does not hold,
see Rothman [15].

A representation of G over a vector space V is a homomorphism Φ : SG 7→
GL (V ), where GL (V ) is the general linear group of V (i.e., the automorphism
group of V , consisting of all automorphisms of V ). 5 A representation is faithful
if it is injective.

The order of an element g ∈ SG is the lowest positive integer k such that
gk = λG. We denote the order of g by σ(g).

3 A model of learning group-structured environments

In this section we introduce our basic model of learning group-structured en-
vironments, the underlying scenario of which is as follows:

An agent is exploring a (finite or infinite) state environment. There is a finite
set of actions that the agent can take in every state of the environment; taking
an action usually changes the state of the environment. Now assume that the
agent can always observe the name of the state the environment is currently
in (i.e., the states could be numbered and the agent observes these numbers).
Thus, the agent will be able to recognize when it gets back to some previ-
ously visited state, but since the names of the states do not have any further
structure this is all the information that the agent can gain by observing these

4 The free group FA on A is defined as the largest group in which each element can
be uniquely expressed as a product of elements in A and their inverses. The factor
group (also called quotient group) G/N of a group G modulo a normal subgroup
N � G is defined by SG/N = {gSN : g ∈ SG} where the inverse of gSN is g−1SN
and the product of gSN and hSN is ghSN , for all g, h ∈ SG .
5 A homomorphism between groups G1 and G2 is a mapping Φ : SG1 7→ SG2 with
Φ(g ◦G1 h) = Φ(g) ◦G2 Φ(h) for all g, h ∈ SG1 . An automorphism of a group G is a
bijective homomorphism mapping SG to itself.
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state names. However, this information already allows the agent to find out
relations between actions. In the model defined in this paper, the goal of the
agent is to be able to predict the effects of action sequences; we will specify
this later.

3.1 Group environments

We assume the environment to be static and deterministic, i.e., there is a
function that determines for every state s and every action a the successor
state after taking action a in state s. Formally, an environment is defined as
follows:

Definition 1 (Environment) An environment is a triple E = (S,A, T ),
where S is a countable set, A is a finite set, and T : S×A 7→ S is a mapping.
The elements of S are called states; the elements of A are called actions. For
every s ∈ S and every a ∈ A we denote by a(s) the state T (s, a).

We call E ′ = (S ′, A, T ′) isomorphic to E = (S,A, T ) (and vice versa) if the
states in S can be mapped to states in S ′ via a bijective mapping φ : S → S ′

such that φ(T (s, a)) = T ′(φ(s), a) for any state s ∈ S and action a ∈ A. A
reasonable success criterion for our learning model is that the agent should
come up with an environment E ′ that is isomorphic to E .

Fix an environment (S,A, T ). We now extend T to action sequences. For
this we identify the set of action sequences with the (free) monoid 6 (A∗, ◦)
(where ◦ is the concatenation over A∗). The empty action sequence, denoted
by λ, is the identity element of this monoid. We extend the definition of
T by T (s, a1 . . . am) = am(. . . (a2(a1(s)) . . .) for all (a1 . . . am) ∈ A∗. We use
s a1 . . . am as a shorthand for T (s, a1 . . . am) when T is clear from the context.

Definition 2 (Equivalence of action sequences) Let E = (S,A, T ) be an
environment and w1, w2 ∈ A∗ be action sequences. Then w1 and w2 are equiv-
alent in E (denoted by w1 ≡E w2) iff sw1 = sw2 for all s ∈ S. Let SE denote
the corresponding set of equivalence classes over A∗.

The concatenation on A∗ induces an operator ◦ on SE , which we will call
concatenation, too. The subscript E in ≡E and/or SE may be omitted when
unambiguous. Note that (SE , ◦) is a monoid, where the identity element is the
equivalence class of λ, the empty string.

6 A monoid is an algebraic structure corresponding to a semi-group with an identity
element.
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We focus on settings in which the environment obeys a group structure. This
means that every action should be reversible in every state. Obviously, this
assumption does not hold in all types of real world environments, but it is a
realistic assumption for a large subclass of potential learning problems, in the
sense that there are many examples of action/state spaces in which robots can
undo their actions. Intuitively, learning is aggravated if the effect of actions
during the exploration phase can not be undone.

However, for the agent to be able to extrapolate from well-explored parts of
the environment to not yet explored parts, it is essential that the agent can
make additional assumptions about the uniformity of the effects of the actions.
Here we deploy a very strong assumption, namely that the equivalence of two
action sequences is already implied by them having the same effect in a single
state. We call this the uniform effects assumption. Though this assumption is
very restrictive, we deploy it for two reasons:

• As we will see below (Corollary 7), for every environment in which all ac-
tions are reversible in all states, there exists a unique environment which in
addition to this property fulfills the uniform effects assumption and reflects
the same group structure.
• The general problem of learning environments without having access to

parts of an underlying factored representation is so hard that strong as-
sumptions need to be made in order to analyze which group structures
(rather than which of the many possible environments reflecting the same
structure) allow for learnability.

This yields the following formal definition of group environments our agents
will face.

Definition 3 (Group environment) Let E = (S,A, T ) be an environment.
E is called a group environment if the following two properties are satisfied:

Reversibility of actions: For any s ∈ S, a ∈ A there exists w ∈ A∗ such
that s aw = s;

Uniform effects: If for some action sequences w,w′ ∈ A∗ and some state
s ∈ S, sw = sw′ then w ≡ w′.

In particular, as motivated above, the uniform effects assumption means that
in a group environment “all states look the same” from the point of view of
looking at the effects of action sequences: For any w1, w2, s1, s2, if s1w1 = s1w2

then also s2w1 = s2w2.

A group environment canonically induces a group, as the following proposition
states.

Proposition 4 If E is a group environment then (SE , ◦) is a group.
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In fact, every environment satisfying satisfying the reversibility of actions
property already induces a group this way. The statement follows easily from
the definitions and thus its proof is omitted. Note that the reverse of this
statement does not hold.

Proposition 5 There is an environment with

(1) (SE , ◦) is a group.
(2) E is not a group environment.

Proof Let E = (S,A, T ), where S = {1, 2, 3}, A = {a}, 1 a = 1, 2 a = 3,
3 a = 2. Then 1 a = 1 a2 but 2 a 6= 2 a2, hence this environment is not a group
environment, although (SE , ◦) is a group consisting of the two elements λ and
a. Here the inverse of a is itself. 2

1 acc 2 oo a // 3

Fig. 1. Graph representation of an environment E that is not a group environment
despite (SE , ◦) being a group.

However, in what follows we will show that if (SE , ◦) is a group, then there is
a group environment E ′ such that the group (SE ′ , ◦) is isomorphic to (SE , ◦).

This is essentially a consequence of the following proposition, which states
that there is a normal form for group environments over a given set A of
generators.

Proposition 6 Let E = (S,A, T ) be a group environment. For an action
sequence w ∈ A∗ let w denote the equivalence class of w in E. Let S ′ =
{w : w ∈ A∗} and let T ′ : S ′ × A → S ′ be defined by T ′(w, a) = wa. Then
E ′ = (S ′, A, T ′) is isomorphic to E.

Proof For simplicity assume that there exists a state s such that every state
of S can be reached from s by following at least one action sequence. (Note
that in this case every state is reachable from every other state. If this was
not the case then the construction below could be repeated for all sets in the
partition of S induced by the reachability relation of states.)

We need to show that there exists a bijective mapping φ : S → S ′ such that
φ(T (s′, a)) = T ′(φ(s′), a) for every s′ ∈ S and every a ∈ A (cf. our notion of
isomorphic environments below Definition 1).

For this purpose, define φ : S → S ′ by φ(sw) = w. If sw1 = sw2 then w1 = w2

by the uniform effects property of group environments, hence φ is well-defined.
Notice that φ is surjective by its construction. We claim that it is also injective.
Indeed, pick s1, s2 ∈ S such that φ(s1) = φ(s2). Assume that w1, w2 are action
sequences such that s1 = sw1 and s2 = sw2. Then w1 = w2, i.e., w1 and
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w2 are equivalent. The definition of equivalence of action sequences implies
sw1 = sw2, i.e., s1 = s2.

Finally let s1 ∈ S, a ∈ A. Suppose s1 = sw1. Then φ(T (s1, a)) = φ(sw1a) =
w1a = T ′(φ(s1), a).

Hence, φ is an isomorphism between E and E ′. 2

The desired property, namely that group environments and groups of action
sequences (as in Definition 2) are basically interchangeable, is an immedi-
ate corollary of Proposition 6. This property will be exploited when defining
concepts of learnability and allows us to talk about the group environment
associated with a finitely generated group.

Note that, if E = (S,A, T ) is a group environment, then A is a set of generators
for the group (SE , ◦). In particular, we consider finitely generated groups only.

Corollary 7 Up to isomorphism, there is a one-to-one correspondence be-
tween group environments and finitely generated groups.

Proof Let φ map group environments to finitely generated groups and ψ map
finitely generated groups to environments as follows. For any group environ-
ment E = (S,A, T ), let φ(E) = ((SE , ◦), A). For any finitely generated group
G and any finite set of generators A with 〈A〉 = SG, let ψ(G, A) = (SG, A, TG),
where TG(s, a) = s ◦ a for every s ∈ SG and every a ∈ A. We claim that for
any given group environment E , E is isomorphic to ψ(φ(E)). This follows from
Proposition 6, since ψ(φ(E)) = (S ′, T ′, A) for the environment E ′ = (S ′, A, T ′)
as defined in Proposition 6. 2

In particular, if, for a group environment E , GE denotes the associated group
over the equivalence class of the action sequences of E , then for every two
environments E1, E2,

GE1 ∼= GE2 if and only if E1 is isomorphic to E2 .

3.2 Agents

An agent is thought of as a computable device moving within a group-structured
environment, starting in an arbitrary state. It is given A (the set of actions)
and the name of the start state initially. At each time step the agent chooses
an action, observes the name of the successor state, and returns a hypothesis
“describing” an environment E ′. We consider such a hypothesis to be correct
if E ′ is isomorphic to the actual environment E .

What does “describing” an environment mean? Since the environment has
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a group structure it suffices for the agent to learn the equivalence of action
sequences (cf. Proposition 6). If the agent has a way to decide which ac-
tion sequences are equivalent then it can “construct” an environment that is
isomorphic to E . Thus, the agent can (in theory) solve specific tasks in the
isomorphic true environment, like navigating back to some previously visited
state with the smallest possible number of actions or navigating to the first
unvisited state.

In order to know which action sequences are equivalent the agent must be able
to solve the word problem for (SE , ◦), cf. Rothman [15].

Definition 8 (Word problem) Let G be a group and A a set of generators
for G. The word problem for G over A is the problem, given any w ∈ A∗, to
decide whether or not w ≡ λG. The word problem for G over A is solvable,
if there is a recursive decision procedure d : A∗ → {0, 1} such that for all
w ∈ A∗,

d(w) =

1 , if w ≡ λG ,

0 , if w 6≡ λG .

The actual definition of the word problem over groups concerns not only w ∈
A∗ but w ∈ (A ∪ {a−1 : a ∈ A})∗. However, as long as one is only concerned
with the question of whether or not the word problem is solvable, the two
definitions are equivalent.

In fact, being able to decide the word problem is equivalent to being able
to decide the equivalence of action sequences, the latter being our goal in
learning.

Proposition 9 Let E = (S,A, T ) be a group environment. For any w,w′ ∈
A∗, let d and d′ be defined as follows.

d(w) =

1 , if w ≡ λE ,

0 , if w 6≡ λE ,
d′(w,w′) =

1 , if w ≡ w′ ,

0 , if w 6≡ w′ .

Then d is a recursive function if and only if d′ is a recursive function.

Proof If d′ is recursive, then d is recursive via d(w) = d′(w, λE) for all w ∈ A∗.

If d is recursive then d′(w,w′), for two action sequences w,w′, can be computed
as follows. Let (wi)i∈N be a recursive enumeration of A∗. Then d′(w,w′) =
d(wwi∗), where i∗ is the minimal i such that d(w′wi) = 1. (Note that such an
index i∗ of an action sequence inverse to w′ must exist and can thus be found
effectively.) 2

However, efficient solvability of the word problem does not necessarily mean
that deciding the equivalence of action sequences can be done efficiently (since
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finding the index i∗ in the proof of Proposition 9 can be “slow”). Clearly, if
the agent knows the inverses of all actions in A then being able to solve the
word problem efficiently is equivalent to being able to decide efficiently for
any two action sequences if they are equivalent.

However, efficiently solving the equivalence question is irrelevant for the pur-
pose of our study, namely the goal to analyze sample efficiency of learning
group environments. In particular, we are looking for algorithms that can
construct some correct (not necessarily efficient) decision procedure for solv-
ing the equivalence problem by taking only few actions in the state space.
For that purpose, the functions d and d′ are of equal value for us—note that
according to the proof of Proposition 9 the agent does not need to take any
additional actions to transform a program for d into a program for d′. Since
procedures solving the membership problem are typically easier to describe,
we use these as the outputs of our agents.

Consequently, we model the agent as a learning algorithm as follows:

Definition 10 (Learning algorithm) A learning algorithm is an algorithm
L that fulfills the following properties.

(1) L takes as its input a finite set A of actions and the name of a state
s0 ∈ S, where E = (S,A, T ) is an unknown group environment.

(2) L operates in steps, starting in Step 0, where in Step n for n ∈ N, L
sends some an ∈ A to the environment E and receives sn+1 = sn an as a
reply. Then L either returns a “?” symbol or returns a recursive decision
procedure Dn : A∗ → {0, 1} as a hypothesis about the underlying group
environment. After that L proceeds with Step n+ 1. 7

In other words, a learning algorithm may return a sequence of “?” symbols
and arbitrary conjectures about the target environment in arbitrary fashion.
Below we will define further what it means for the algorithm to learn a target
group successfully.

Since by Corollary 7, finitely generated groups and group environments, up
to isomorphism, uniquely determine each other, when defining learning mod-
els and making formal statements about learning group environments, we can
specify the learning problem in terms of the underlying groups and their gener-
ators. This has the advantage that we can talk about learning familiar classes
of groups – as long as we specify the generators. We thus define our learning
criterion as follows.

7 A “?” will be interpreted as L still waiting to make some (new) hypothesis about
the underlying group environment. When L returns a decision procedure then in
fact, more precisely, L returns a program (in some suitable language) that represents
the recursive decision procedure.
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Definition 11 (Learning group environments) Let L be a learning algo-
rithm, G a finitely generated group, and A a finite set of generators of G. Let
E = (S,A, T ) be the group environment corresponding to G and A.

L learns G from A, if there is some n0 ∈ N such that for all s ∈ S and for all
n ≥ n0 the following holds.

If L is given A and s as its input then the output of L in Step n is some
decision procedure that solves the word problem for G over A.

n0 is then called the sample-complexity of L on (G, A). 8

To consider learning a class of groups, each possibly from different sets of
generators, we take a group learning problem to be a set C of finitely generated
groups specified as pairs (G, A), where A ⊂ G is a finite generator set for G.
For each such group learning problem, let

• GC = {G | there is some A with (G, A) ∈ C}.
• AC = {A | there is some G with (G, A) ∈ C}.

Definition 12 (Learning classes of group environments) Let C be a group
learning problem.

The class GC of groups is learnable with respect to the class AC of generator
sets, if there is a learning algorithm L such that L learns G from A for every
(G, A) ∈ C.

If in addition there is a polynomial q such that, for every (G, A) ∈ C the
sample-complexity n0 of L on (G, A) fulfills n0 ≤ q(log |SG|+

∑
a∈A σ(a)), then

GC is said to be learnable efficiently with respect to AC.

Our general definition of learning is based on Gold’s [7] model of learning
languages in the limit and its variant of behaviourally correct learning, see
Barzdin [4]. A learning algorithm can make conjectures and revise them as
often as desired, however, eventually all conjectures have to correctly describe
the target. Note that, in particular, neither the algorithm nor the user know
when the point from which on correct conjectures are returned is reached.

In the definition of efficient learning,
∑
a∈A σ(a) appears in the upper bound

because the learning algorithms should be allowed to determine the orders
of the actions. This is motivated by the fact that otherwise even classes of
the simplest conceivable finite groups, namely any infinite class of finite cyclic
groups, would not be learnable efficiently and hence such a model of efficient
learning would be too restrictive. Obviously, an agent would in general not

8 Since E is a group environment, we can without loss of generality assume that
there is one n0 for all initial states s rather than making n0 dependent on s.
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be able to identify cyclic groups generated by a given element (action) unless
it was allowed to explore this action often enough to run through the whole
cycle. Note that in the case of a cyclic group G with SG = {λ, a, a2, . . . , an−1},
the order n of the generator a equals the size |SG| of the group. In the case of
non-Abelian groups however, |SG| can be arbitrarily large, while

∑
a∈A σ(a) is

fixed. 9

That instead of |SG| the bound includes log |SG| is motivated by the desire to
learn well before seeing all the states (which, of course, is only possible if more
structure exists than in cyclic groups). In particular, interpreting group learn-
ing problems as problems of learning a linear representation of a structured
state space, one would like the agent to learn with a number of actions that
is polynomial in the dimension of the linear representation rather than in the
number of states. This dimension, i.e., the length of the vector representation
of the state, is typically logarithmic in the number of states.

Allowing the algorithm to make arbitrarily many mind changes, as long as the
output is eventually correct, causes several problems.

• The fact that the learning algorithm is never required to be confident about
its guess means that, even when the point from which on all conjectures
are correct is reached, it is impossible to distinguish that point from earlier
points in the learning process. So, from an application point of view, the
model is not very useful. (We will argue though that it is very useful from
a theoretical point of view.)
• Even the model of efficient learning does in general not help to decide when

that point is reached, since the size of the target group, which is an argument
of the polynomial q bounding the sample complexity, is in general not known
to the learner.
• When learning infinite groups, the model of efficient learning even allows

the algorithm to make an arbitrary number of mind changes. The reason is
that then the bound on the number of steps is infinite (and would, in case
some generators in A have infinite order, even remain so when removing
log |SG| from the bound).

Hence, from an application point of view, it would be more natural to study
a model in which one can rely on the correctness of the hypotheses output
by the learning algorithm. We simply model this in a way that the learning
algorithm returns “?” as long as it is not sure about the target group, and
then its first actual conjecture is required to be a correct one (and can then

9 For instance, this holds for the class of dihedral groups. They can be of any even
cardinality or even infinite, but all of them can be generated by a set of two elements,
both of which have order 2, such that the sum of the orders of the generators is
fixed to 4. For more details, the reader is referred to Section 4.2 or to the proof of
Theorem 17.
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be repeated all over again). This model is called finite learning, by analogy
with Gold’s model of finite learning of languages [7].

Definition 13 (Finite learning) Let C be a group learning problem.

The class GC of groups is finitely learnable with respect to the class AC of
generator sets, if there is a learning algorithm L such that for every (G, A) ∈ C
the following properties are fulfilled.

(1) L learns G from A.
(2) If L is given A and some state in the group environment corresponding

to (G, A), then every output different from “?” that L ever produces is
some decision procedure that solves the word problem for G over A.

If in addition there is a polynomial q such that, for every (G, A) ∈ C the
sample-complexity n0 of L on (G, A) fulfills n0 ≤ q(log |SG|+

∑
a∈A σ(a)), then

GC is said to be learnable finitely efficiently with respect to AC.

The reason we still consider the model in Definition 12 is that in general group
learning problems can be very hard to solve. Requesting a learning algorithm
to be confident about its guess (as in finite learning) has the effect that many
interesting group learning problems will not be solvable (as will be shown
below). The purpose of the more general learning model from Definition 12 is
to serve for analyzing whether the impossibility results for finite learning are
due to the learner being forced to learn with only “one shot” or due to some
deeper structural difficulty in the studied class of group environments.

Note that none of our definitions of learning is concerned with computational
complexity issues in terms of run-time; only sample-complexity is addressed.

We simplify our terminology for the case when a class of groups is learnable
with respect to the class of all possible generator sets.

Notation 14 Let C be a group learning problem such that

∀G ∈ GC ∀A [A finite and 〈A〉 = SG ⇒ (G, A) ∈ C].

If GC is learnable (efficiently, finitely, finitely efficiently) with respect to AC
then we say that GC is learnable (efficiently, finitely, finitely efficiently) with
respect to arbitrary generators.

We close this section with our first result, namely that in certain cases learning
algorithms can be normalized to operate with a restricted form of queries. For
this purpose we introduce the notion of 0/1-learning algorithms.

A 0/1-learning algorithm is defined very similarly to a learning algorithm in
Definition 10, the only difference is that upon a query a sent to the oracle in
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Step n and state sn, instead of sn a it receives the reply 1 if sn a = s0 and 0 if
sn a 6= s0. The notion of 0/1-learnability (efficient 0/1-learnability, finite 0/1-
learnability, finite efficient 0/1-learnability) can then immediately be derived
from the above definitions by replacing “learning algorithm” by “0/1-learning
algorithm”. We call this model learning with binary observations.

This restriction of the observations the learner makes does not restrict its
learning capabilities when learning with respect to generators of finite order,
not even when efficiency issues are considered.

Lemma 15 Let C be a group learning problem such that σ(a) is finite for all
A ∈ AC and all a ∈ A. GC is learnable (learnable efficiently, finitely learnable,
finitely efficiently learnable) with respect to AC iff GC is 0/1-learnable (effi-
ciently 0/1-learnable, finitely 0/1-learnable, finitely efficiently 0/1-learnable)
with respect to AC.

Proof We only show that a 0/1-learning algorithm can be constructed from a
learning algorithm according to Definition 10; the other direction is trivial.

The idea is that all the information gathered by the original learner up to some
stage is wether a subsequence of the action sequence posed leaves a state (and,
thus, all states) unchanged. This information can be recovered with the binary
observations by testing all subsequences from the initial state. This way the
number of queries is blown up polynomially only.

Formally, the 0/1-learner works as follows. Initially, starting from s0, the
learner experiments with all the actions:

• For each a ∈ A repeatedly query a until the answer 1 is received and then
set σ(a) equal to the number of times a was queried. 10

Now, assume a learning algorithm L as in the original definition poses the
query an in Step n. As a response the 0/1-learner does the following:

• Let w = (x0, . . . , xt) be the action sequence

◦ni=0[(ai, ai+1, . . . , an, a
−1
n , . . . , a−1

i+1, a
−1
i )] .

Query the actions in this sequence one by one.
• Let M be the set of all subsequences xj, . . . , xj+z of w such that
· j = 0 or the observation after querying xj−1 was 1; and
· the observation after querying xj+z was 1.

10 This straightforward method for obtaining the order of a group element is fre-
quently used throughout the paper. From now on we will refer to it as “determining
the order”.
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• If there exists an i ≤ n such that (ai, . . . , an) ∈M then feed the state name
returned in Step i− 1 to L for the minimal such i (or return s0 if i = 0). If
there is no such i then return a new state name and feed it to L.
• Return the hypothesis that L returns.

Obviously this 0/1-learner solves all the learning problems that L solves at
the price of a polynomial increase of the execution time. 2

4 An analysis of the group learning model

In this section we analyze our learning models first for the classes of all finitely
generated and all finite groups. The results and proofs will motivate the anal-
ysis of some special subgroups like the dihedral groups and Abelian groups.

4.1 General results on learning group environments

Starting with a quite general case, when C is the class of all finitely generated
groups, one easily obtains a negative result, independent of how the generators
are chosen. The class of finitely presented groups (and thus also the class of
finitely generated groups) is not learnable, independent of the generators given
to the learning algorithm. Formally, this can be stated as follows.

Theorem 16 The following statements hold:

(1) Let C be a group learning problem for which GC equals the set of all finitely
generated groups. Then GC is not learnable with respect to AC.

(2) Let C be a group learning problem for which GC equals the set of all finitely
presented groups. Then GC is not learnable with respect to AC.

Proof It is known (cf. Boone [5] and Novikov [13]) that there exists a finitely
presented (and thus a finitely generated) group G such that, for every presen-
tation 〈A | R〉 of G, the word problem for G over A is unsolvable. Hence, for
any finite generator set A for G, no learning algorithm can output a decision
procedure solving the word problem for G over A. 2

Restricting our focus to classes of finite groups (for which the word problem
is always solvable) we at least get finite learnability, yet efficient learning is
still out of reach. Informally speaking, the class of all finite groups is learnable
finitely independent of the set of generators given, yet not learnable efficiently
without restrictions on the given generators.

19



Theorem 17 (1) The class of all finite groups is not learnable efficiently
with respect to arbitrary generators.

(2) The class of all finite groups is learnable finitely with respect to arbitrary
generators.

Proof

Proof of 2. First, we need to introduce the concept of transformations of words
with respect to a set of relations:

Given a set R of relations and a word w, a transformation of w with respect
to R is a finite sequence of word manipulations of the following kinds:

• Insert a relation r ∈ R at some position i ≥ 0; i.e., replace w = w1w2 by
w1rw2 where |w1| = i.

• Delete a relation r ∈ R at some position i ≥ 0; i.e., replace w = w1rw2 by
w1w2 where |w1| = i.

The idea for a learning algorithm on input A is the following:

Step 1: Obtain a finite presentation 〈A | R〉 of the target group.

Step 2: Construct a decision procedure that solves the word problem for the
target group G over A.

Step 2 is trivial because the word problem for finite groups is uniformly solv-
able, i.e., there is one recursive function that, given any finite presentation
〈A | R〉 of a finite group G and any word w ∈ A∗, decides whether or not
w ≡ λG. It remains to give a procedure for step 1.

Our procedure uses a dovetailing technique. On input A the procedure in-
terleaves two threads of computation, while maintaining a set R of currently
known relations of the target group. Initially, R = ∅.

• Thread α experiments with all possible action sequences in an arbitrary
systematic order to find sequences that are equivalent to λ. Whenever such
a sequence is found, it is added to R.
• Thread β searches for a positive integer k such that every word of length
k is equivalent to a shorter word. For every k ≥ 1, thread β starts a new
sub-thread βk at time step k. The sub-thread βk lists all words of length
k and all their transformations with respect to the current set of relations
R. It stops if it found a transformation for every listed word for which the
resulting word is shorter than the original.

As soon as some thread βk stops, the procedure suspends thread β and notifies
thread α to stop after experimenting with all action sequences up to length
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k − 1.

Since the target group is finite, there is a k such that every word of length k
is equivalent to a shorter word. On the other hand, the number of relations
sufficient for describing the group is finite, hence thread α will find them in
finite time. These facts imply that thread β will find a k with the desired
property. The final set of relations will be all the words of length less than k
which are equivalent to λ. It is easy to see that with this set R, 〈A | R〉 is a
presentation of the target group, which concludes the proof. 2 Theorem 17.2.

Proof of 1. Assume the class of all finite groups is efficiently learnable with
respect to arbitrary generators. Then there is a learning algorithm L and a
polynomial q such that L learns every finite group G with domain SG effi-
ciently from any set A of generators of G, with a sample complexity of at
most q(log(|SG|) +

∑
a∈A σ(a)). By Lemma 15 we can assume without loss of

generality that L is a 0/1-learning algorithm.

We define two groups and show that they cannot be distinguished by L:

• G1
∼= 〈a, b | a2, b2, (ab)q(m∗)〉;

• G2
∼= 〈a, b | a2, b2, (ab)q(m∗)+1〉,

where m∗ ∈ N is such that 2q(m) > q(log(2q(m) + 2) + 4) for all m ≥ m∗.

We will show below that (i) the size of the domain of G1 is 2q(m∗), (ii) the size
of the domain of G2 is 2q(m∗) + 2, (iii) for all w ∈ {a, b}∗ with |w| < 2q(m∗):

w ≡G1 λG1 ⇐⇒ w ≡G2 λG2

This implies that G1 and G2 are distinct finite groups but L cannot distinguish
G1 from G2 by taking at most q(log(|SG2|) + σ(a) + σ(b)) = q(log(2q(m∗) +
2) + 4) < 2q(m∗) steps. 11 This is a contradiction, so the class GC of all finite
groups is not learnable efficiently with respect to the class AC of all possible
corresponding generator sets.

Claim 1. Let w ∈ {a, b}∗ with |w| < 2q(m∗). Then w ≡G1 λG1 ⇐⇒ w ≡G2 λG2.

Proof of Claim 1. We show one direction only, the other one is similar.

Let w be as given and assume that w ≡G2 λG2 . We know that w can be
reduced to a G1-equivalent sequence w′ with 0 ≤ |w′| ≤ |w|, such that w′ does

11 Note here that σ(a) = σ(b) = 2 holds in both groups; technically we should in
fact use subscripts with σ to relate it to the specific group where it is defined.
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not contain the substrings aa or bb. If |w′| = 0 then w ≡G1 λG1 . We show that
if 0 < |w′| < 2q(m∗) then w 6≡G2 λG2 . This is a contradiction and we are done.

So assume 0 < |w′| < 2q(m∗). Now, w′ is obtained from w by iteratively
applying the following rules:

(I) insert or delete aa
(II) insert or delete bb

(III) insert or delete (ab)2q(m∗)

We introduce a function µ : {a, b}∗ 7→ Z. For any w = (a1, . . . , an) ∈ {a, b}∗
let wodd = (a1, a3, . . . , an1) and weven = (a2, a4, . . . , an2), where n1 = n2+1 = n
for odd n and n1 + 1 = n2 = n for even n. Let µ (w) = (# of ‘a’s in wodd) −
(# of ‘a’s in weven)+(# of ‘b’s in weven)− (# of ‘b’s in wodd). For example, if
w = aaababbabab, then wodd = aaabbb and weven = abbaa, so µ (w) = −1.

When modifying w to w′, the parities of the old/remaining letter positions do
not change. Therefore, only the new/disappearing letters will affect the value
of µ. Using rules (I) or (II), the value of µ will not change at all. The use of
rule (III), depending on its type (insert or remove) and the position (odd or
even) chosen, will either increase or decrease the value of µ by 2q(m∗).

This implies that if w1 ≡G1 w2 then µ (w1) ≡ µ (w2) mod (2q (m∗)).

Since w′ does not contain the substrings aa or bb, we have µ(w′) = ±|w′|. Ob-
viously, µ (λ) = 0. Since 0 < |w′| < 2q (m∗), µ (w′) 6≡ µ (λ) mod (2q (m∗)).
Therefore w′ 6≡G2 λG2 . 2 Claim 1.

Claim 2. The size of the domain of G1 is 2q(m∗); the size of the domain of G2

is 2q(m∗) + 2.

Proof of Claim 2. Clearly, it suffices to prove the statement only for G1. Note
that two action sequences w and β are equivalent in G1, if β results from w
by iteratively eliminating all substrings aa, bb, (ab)q(m∗). Hence every element
in the domain of G1 can be written as a product in which none of these
subsequences occur. These are

a(ba)k, b(ab)k, (ab)k, (ba)k

for 0 ≤ k < q(m∗) (note that (ab)0 = (ba)0 = λ).

Now, observe that (ba)k =G1 (ab)2q(m∗)−k for 0 ≤ k ≤ 2q(m∗) (both forms
obviously have the inverse (ab)k). Hence also a(ba)k =G1 a(ab)2q(m∗)−k =G1
(ba)2q(m∗)−k−1b =G1 b(ab)

2q(m∗)−k−1 for 0 ≤ k < q(m∗).

Hence the domain of G1 has exactly 2q(m∗) elements. 2 Claim 2.
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This completes the proof. 2 Theorem 17.1.

2

The groups G1 and G2 used in the proof of the first assertion of Theorem 17
belong to the well-known class of finite dihedral groups (recall that a finite
dihedral group is the group of symmetries of a regular polygon, including both
reflections and rotations). Since the dihedral groups illustrate a few principled
properties of our learning model, we study them in more detail.

4.2 Learning dihedral groups

For every k ∈ N\{0}, let Dk denote the finite dihedral group with 2k elements.
Note that there is only one infinite dihedral group, namely D∞ ∼= 〈a, b | a2, b2〉.

Theorem 17 and its proof immediately yield the following corollary, which
states that the class of all finite dihedral groups cannot be learned efficiently if
the generators given are not restricted in advance. The proof of Theorem 17.(1)
actually shows this already for the case that the generators given are two
reflections a and a′ such that Dk

∼= 〈a, a′ | aa, a′a′, (aa′)k〉.

Corollary 18 (1) The class of all finite dihedral groups is not learnable ef-
ficiently with respect to arbitrary generators.

(2) The class of finite dihedral groups is learnable finitely with respect to
arbitrary generators.

In fact, it is not very surprising that the finite dihedral groups cannot be
learned efficiently with respect to unrestricted generators. The reason is that
when two consecutive reflections are given as the input generators then those
have order 2, while the size of the group can be arbitrarily high. In order to
build a decision procedure that solves the word problem the size of the group
must be known. This size can only be determined by taking as many reflection
actions as there are elements in the group. Hence no algorithm can learn the
group in time polynomial in the logarithm of the size of the group and the
orders of the generators. This shows how much the choice of generator systems
influences learnability: in fact the finite dihedral groups can be learned finitely
efficiently if the learner is always given a set of generators the order of one
of which is proportional to the size of the group, thus allowing for enough
experiments to identify the target group.

In particular, the class of finite dihedral groups is learnable finitely efficiently
if the given generators are a reflection a and a rotation b such that Dk

∼= 〈a, b |
aa, bk, abab〉.
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Proposition 19 Let C = {(Dk, {a, b}) : k ∈ N\{0}, Dk
∼= 〈a, b | a2, bk, abab〉}.

Then GC is learnable finitely efficiently with respect to AC.

Proof The learning algorithm L works as follows. Given the two generators
a and b, L determines the order of a and b, which requires σ(a) + σ(b) many
steps. Knowing the order allows the learner to conclude which of the given
generators is a rotation. This in turn allows the learner to construct a group
G ′ that is isomorphic to the unknown group G. The knowledge of the orders
allows L to find out the inverses of a and b over {a, b}. Knowing the inverses,
one can construct an algorithm that decides, for any word w ∈ {a, b}∗, whether
w ≡ λG′ and thus whether w ≡ λG. Thus, after taking σ(c)+σ(d) many actions,
L can stop and return this algorithm as its output. 2

Note that with a′ = ab we have the equivalence of the group presentations
〈a, a′ | aa, a′a′, (aa′)k〉 and 〈a, b | aa, bk, abab〉. The corresponding environ-
ments differ only in the choice of the “primitive actions”. In fact, the primitive
actions in one environment can be simulated by taking at most two actions
of the other environment and vice versa. Yet, we see that one type of envi-
ronment can be learned finitely efficiently, while the other can not be learned
efficiently at all—at least in the current model of learning. 12

The second phenomenon that can be easily illustrated using dihedral groups
is how unstable learnability results can be with respect to slight changes to
the target class. The class of all finite dihedral groups can be learned finitely
with respect to arbitrary generator systems, but this is no longer true if we
add just a single group to this class, namely the infinite dihedral group. 13

Theorem 20 Let G = {Dk : k ∈ (N \ {0}) ∪ {+∞}} denote the class of all
dihedral groups.

(1) G is not learnable finitely with respect to arbitrary generators.
(2) G is learnable with respect to arbitrary generators.

Proof

Proof of 1. Assume G is learnable finitely with respect to arbitrary generators.
Then there is a 0/1-learner L that learns every dihedral group finitely with

12 This raises the question whether the definition of efficient learning should be
changed. One idea is to allow the time of learning to depend on the length of the
words in a “short” presentation of the group. See Section 7 for a brief discussion of
this issue.
13 This very much resembles results in Inductive Inference, where Gold [7] showed
that no class of languages that contains all finite languages and at least one infinite
language can be learned in the limit. The difference here is though that learnability
in the limit is not affected.
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respect to any set of two generators. Consider the following scenario of an
oracle interacting with L on input {a, b}.

The oracle always replies 0 for the first action L takes. If the sequence of actions
asked by L can be turned into the empty sequence by recursively removing all
appearances of aa and bb, then the oracle replies 1 after the second action. In
any other case, for growing action sequences, the oracle replies 0.

This scenario is valid if D∞ is the target group. Thus eventually L will return
a decision procedure solving the word problem for D∞ over {a, b} and stop
the process. At this point of the learning process there are infinitely many
finite dihedral groups consistent with the scenario. These are not identified by
L although they are in G—a contradiction.

Proof of 2. A learning algorithm on input {a, b} initially tries to determine
the order of both of the generators. In case one of these orders is k 6= 2, the
algorithm will return a decision procedure for Dk forever. As long as one of
the orders is not yet determined, the algorithm returns a decision procedure
for D∞.

In case both generators turn out to be of order 2, the algorithm tries to
determine the minimal k such that λ ≡ (ab)k, if such a k exists. As long as no
such k is found, the algorithm returns a decision procedure for D∞. As soon
as such a k is found, the algorithm will start returning a decision procedure
for Dk forever.

It is not hard to see that this algorithm witnesses Assertion 2. 2

4.3 Learning Abelian groups

For finitely generated Abelian groups, a reasoning similar to the proof of
Theorem 20 shows similar differences between the general model of learning
and finite learning.

Note that every finitely generated Abelian group is isomorphic to the direct
product of finitely many cyclic subgroups (see the Fundamental Theorem of
Finitely Generated Abelian Groups). For the remainder of this article, for any
group G and any a ∈ SG, 〈a〉 denotes the cyclic subgroup of G that is generated
by a.

The following theorem states that the class of all finitely generated Abelian
groups is learnable, but not learnable finitely, if the generators given generate
cyclic subgroups of the target group.
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Theorem 21 Let C = {(G, A) : G ∼= 〈a1〉 × . . . × 〈am〉, A = {a1, . . . , am}}.
Then the following holds:

(1) GC is learnable with respect to AC.
(2) GC is not learnable finitely with respect to AC.

Proof Throughout this proof, for any positive integer k, the symbol Ck denotes
the cyclic group of order k.

Proof of 1. For a group G, define Gk recursively by G1 = G and Gk = Gk−1×G
(k ≥ 2).

Every group G in GC is isomorphic to Zk×Ck1
n1
×· · ·×Ckz

nz
for some k, z, ki, ni ∈

N, where the values k, n1, k1, . . . , nz, kz are (up to rearranging indices) uniquely
determined by C. The number of generators here is k + k1 + . . .+ kz.

A learning algorithm L witnessing Theorem 21 works as follows, given a set
A = {a1, . . . , am} of m generators.

(1) L initially always hypothesizes the target group to be Zm. This means
that the decision procedure initially returned by L, given a word w ∈ A∗,
decides as follows.
• If w is empty then return 1.
• If w is not empty then return 0.

(2) Given a canonical enumeration of all pairs (al, t) for t ≥ 1 and l ∈
{1, . . . ,m}, L then memorizes the state names observed while taking ac-
tion sequences (al)

t for all (l, t) in canonical order. Whenever a sequence
(al)

t takes L back to the state it was in before this sequence, L changes its

hypothesis from Zk′×Ck′1
n1×· · ·×Ck′z

nz
to Zk′−1×Ck′1

n1×· · ·×C
k′j+1
nj ×· · ·×Ck′z

nz
,

where nj = t. This means that the decision procedure returned by L,
given a word w ∈ A∗, decides as follows.
• For every generator al ∈ A occurring in w, test whether the minimal t

with (al)
t ≡ λ has already been found and whether al occurs exactly

γt times in w for some γ ∈ N.
• If all these tests are positive then return 1.
• If at least one of these tests is negative then return 0.
Moreover, from then on all pairs (al, t

′) in the enumeration will be skipped.

It is easy to see that L identifies every group in GC with respect to any corre-
sponding set A with (G, A) ∈ C.

Proof of 2. Assume to the contrary that GC is finitely learnable with respect
to AC, witnessed by a learning algorithm L.

Consider the behaviour of L for the target group Z, generated by a single
element. After finitely many experiments using this generator element, each
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of which leads L to a new state, L returns a decision procedure for Z and
terminates.

At this point there are still infinitely many finite cyclic groups Cn ∈ GC con-
sistent with the scenario experienced by L; L fails to identify them. 2

For the class considered in the previous result, finite learning was not possible
because the target group could be infinite and indistinguishable from infinitely
many finite potential target groups. The situation obviously changes when we
consider only finite Abelian groups, due to Theorem 17. But in this case we
even get a positive result for efficient learning. The following theorem states
that every finite Abelian group is finitely efficiently learnable if the generators
given generate the finite cyclic subgroups of the target group. Note that every
finite Abelian group is isomorphic to the direct product of finitely many finite
cyclic subgroups.

Theorem 22 Let C = {(G, A) : G ∼= 〈a1〉×. . .×〈am〉, A = {a1, . . . , am},∀i [σ(ai) <
+∞]}. Then GC is finitely efficiently learnable with respect to AC.

Proof Let the algorithm work on group G with generators A from C. Since the
generators given to the learning algorithm commute, it suffices to find out the
order of the generators in A. Since all actions have finite order, this can be
done in

∑
a∈A σ(a) steps. Knowing the orders allows the learning algorithm to

identify the inverses of the generators. Then, as before, it suffices to specify a
decision procedure that decides if a word w ∈ A∗ satisfies G(w) = 1. A suitable
procedure is the one that checks if the number of occurrences of all generators
a ∈ A in w is an integer multiple of the order σ(a). Thus, the learner can
output this procedure and stop. 2

Note that, in general, the sample-complexity of our learning algorithm on a
finite Abelian group is “much smaller” than the size of the group.

It remains open whether efficient learning of finite Abelian groups is possible
when the given generators do not generate the cyclic subgroups of the target
group.

5 Learning group extensions: a special case

Let us now discuss a result motivated by our original scenario of an agent ex-
ploring an unknown environment. Assume the agent has successfully learned
a group environment but after that a new action is introduced to the envi-
ronment. We model this as a problem of finding a faithful representation of a
single extension of a group G (here only for the special case that the extension
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of G has the form of a semi-direct product) if a representation of G is known.

Let us first define semi-direct products formally. Here note again that for ease
of presentation we identify groups with their domains.

Definition 23 (Semi-direct product) Let G = (SG, ◦G) be a group and
N � G,H ≤ G such that SNSH = SG, SN ∩ SH = {λG}. Let Aut (N ) de-
note the set (group) of automorphisms on N . Let φ : SH 7→ Aut (N ) be a
group homomorphism such that

∀n ∈ SN ∀h ∈ SH [φ(h)(n) = hnh−1] .

Then we call G the semi-direct product of N and H with respect to φ and write
G = N oφ H.

The following example illustrates semi-direct products.

Example 24 Consider the dihedral group Dk, the group of all symmetries of
a regular k-sided polygon. This group has 2k elements:

(i) k elements generated from the identity element by rotations (including the
identity)—we call those the rotations for simplicity—and

(ii) k elements generated from the former k by reflections—we call those the
refelctions for simplicity.

Let r be a rotation and f be a reflection. Then the set of rotations can be
expressed as R = 〈r〉 = {λ, r, r2, . . . , rk−1} and the set of reflections can be
written as {f, rf, r2f, . . . , rk−1f}. Furthermore, the following facts hold:

(1) The set of rotations is a normal subgroup: R�Dk.
(2) The subgroup generated by a reflection is {λ, f} = H ≤ Dk.
(3) The subgroups R and H generate Dk: SRSH = SDk

.
(4) R and H are disjoint: SR ∩ SH = λ.
(5) Rotating an element and then reflecting the result has the same effect as

reflecting the result and then rotating in the opposite direction: fr = r−1f .

The facts (1)-(4) yield that Dk = Roφ H. From (5) we know that φ(f)(r) =
frf−1 = r−1.

Suppose we have a group G with a generator system A and a d-dimensional
faithful linear representation Φ. Our aim is to extend G by a new generator
element a, i.e., we want to construct a representation for a single extension
G ′ = G oφ 〈a〉. Let us assume in addition that σ(a) = σ(φ(a)) = σ. The new
representation Φ′ can then be defined as follows, where we abbreviate φ(a) by
φa:
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Φ′ (g) =



Φ (g) 0 · · · 0

0 Φ (φa (g))
...

...
. . . 0

0 · · · 0 Φ (φσ−1
a (g))


if g ∈ SG, Φ′ (a) =



0 Id 0 0
...

...
. . . 0

0 0 · · · Id
Id 0 · · · 0


Here both Φ′ (g) and Φ′ (a) are block matrices consisting of σ×σ many blocks,
each of which has size d× d.

That this indeed yields the desired representation is implied by the following
easy to verify properties.

(1) σ (Φ′ (a)) = σ.
(This holds because Φ′(a) is a permutation matrix of order σ.)

(2) The group resulting from restricting Φ′ to G is isomorphic to G.
(We have to show that Φ′ : G 7→ Cσd×σd is injective, maps the iden-
tity element in G to the σd-dimensional identity matrix Iσd, and satisfies
Φ′(g1)Φ

′(g2) = Φ′(g1g2) for all g1, g2 ∈ SG. All these properties follow
from the corresponding properties of Φ and φa and simple matrix multi-
plication.)

(3) Φ′−1 (a) Φ′ (g) Φ′ (a) = Φ′ (φa (g)) for all g ∈ SG.
(This follows from the fact that Φ′−1(a)Φ′(g)Φ′(a) = Φ′(a−1)Φ′(g)Φ′(a) =
Φ′(a−1ga) = Φ′(φa(g)). Here we use that Φ′(g1)Φ

′(g2) = Φ′(g1g2) for all
g1, g2 ∈ SG, see (2).)

(4) Φ′ (a) is not contained in the image of G under Φ′.
(All the elements in the image of G are diagonal while Φ′(a) is not.)

Properties (2) and (3) imply that Φ′ is a linear representation of G ′; Properties
(1) and (4) imply its faithfulness.

The dimension of the constructed representation is dσ. This construction is in
general not trivial because of the problem of calculating Φ(φa(g)), in particular
of representing φa(g) using only the given generator elements.

However, a special case of this construction can be used to prove the following
result. (Recall here that, for any group G and any a ∈ SG, 〈a〉 denotes the
cyclic subgroup generated by a.)

Theorem 25 Let C = {(G, {a1, a2}) : G = 〈a1〉oφ〈a2〉, σ(φ(a2)) = σ(a2), σ(a1) <
∞, σ(a2) <∞}. Then GC is finitely efficiently learnable with respect to AC.

Proof (Sketch.) A learning algorithm L on input {a1, a2} works as follows:

First, L determines σ(a1) and σ(a2) in the usual way. Second, L experiments
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with

a1a2a
−1
1 a2a2 . . . a2︸ ︷︷ ︸

z

a1a
−1
2 a−1

1 ,

where z fulfills az2 = (a1a2a
−1
1 )−1; similarly with a1 and a2 swapped.

(For example, if a1a2a
−1
1 a6

2 ≡ λ, then G = 〈a2〉 oφ 〈a1〉 with φ (a2) = a−6
2 .)

Third, L constructs the linear representation as described above Theorem 25,
knowing that Φ (a2) = cos(2π/σ(a2)) + i · sin(2π/σ(a2)) ∈ C1×1 is a primitive
complex unit root. 2

The reader should note that the preliminary version [3] of this paper contained
a further claim (Theorem 6) on learning Abelian groups using linear represen-
tations. Unfortunately, the proof sketch given there is wrong and cannot be
fixed. The corresponding theorem is excluded here.

6 Efficiently learnable group-structured games

In this section we introduce some classes of groups which are related to known
puzzle games.

Note that the underlying puzzles may not be realistic examples of actual ac-
tion/state spaces robots are confronted with. However, typical environments
(action/state spaces) robots face may have properties that are somewhat sim-
ilar to those occurring here. For instance, the Hungarian Rings puzzle studied
in Section 6.2 actually is of general interest; it consists of two cyclic actions
that intersect and thus models a very general case of two-action environments.

Throughout this section, Sα is used to denote the group of all permutations
of a finite set of cardinality α.

6.1 Topspin

A first class of puzzle-related groups we consider is based on the single-player
permutation game Topspin. This game consists of a ring of α numbered tiles in
α possible positions. The section of the first x positions of this ring, containing
x tiles, can be flipped.

To be more specific, the player has two actions. The first action is to rotate
all α tiles in the ring by one position. The second action is to change the
positions of the tiles a1, . . . , ax that are currently in positions 1, . . . , x. If ai
is in position i for 1 ≤ i ≤ x, then, after taking the second action, ai is in
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position x+ 1− i. 14

A schematic illustration of this game is shown in Figure 2.

1 2 3 4
5

6

7891 01 1

1 2

1 3

a

b

1 3

4

Fig. 2. The Topspin puzzle with α = 13 and x = 4.

The Topspin game can be represented as an algebraic group. In Definition 26,
we use α and x as parameters for defining a class of groups.

Definition 26 Let α, x ∈ N and 2 ≤ x < α. The group TS(α, x) = 〈aα, bx〉 is
defined as the subgroup of Sα that is generated by the following two elements
aα and bx.

• aα = (1 2 . . . α), and

• bx =

 (1 x)(2 x− 1) . . . (x/2 x/2 + 1), if x is even;

(1 x)(2 x− 1) . . . ((x− 1)/2 (x+ 3)/2), if x is odd.

It is not hard to prove that an agent exploring the Topspin game for unknown
parameters α and x can learn the game finitely efficiently, according to the
model introduced in Definition 12.

Theorem 27 The class {TS(α, x) : 2 ≤ x ≤ α/2} is finitely efficiently learn-
able with respect to {{aα, bx} : 2 ≤ x ≤ α/2}.

Proof On input of a set of two generators, an algorithm learning the target
group TS(α, x) efficiently can be defined by the following instructions.

(1) Determine the orders of the generators.
(2) Let the generator whose order is 2 be named b, the other one be named

a. Let α = σ(a).
(3) Issue the queries

baiba−ibaiba−i

14 In the original version of the puzzle, the goal state has tile i in position i for all
i ∈ {1, . . . , α}.
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for all values i ≥ 2 in order of ascending i until a (minimal) value î is
found such that

baîba−îbaîba−î ≡ λ .

(4) Return a decision procedure solving the word problem for the group
TS(α, î) where a = aα and b = bî.

It is not hard to see that the decision procedure returned by this algorithm is
consistent with the target group. 2

6.2 Hungarian Rings

The following definition formalizes a class of groups based on a variant of the
“Hungarian rings” puzzle. Imagine a single-player tile game consisting of a set
of numbered tiles arranged in two circles—one containing α1 many tiles and
one containing α2 many tiles, see Figure 3.

1

2

3

4

5
67

8

9

1 0

1 1
1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9
2 0

a a1
2

Fig. 3. The Hungarian Rings puzzle with α1 = 12, α2 = 10, x1 = 4, x2 = 3.

The two rings overlap, i.e., they share exactly two tiles. There are x1−1 many
tiles in the first circle in between the two overlapping tiles and x2 − 1 many
tiles in the second circle in between the overlapping tiles.

There are exactly two actions the player can take: rotating all tiles in circle
1 by one position and rotating all tiles in circle 2 by one position. Since the
circles overlap, these two actions do not commute. 15

It is not hard to see that the structure underlying this puzzle can be described
as an algebraic group. With the four parameters α1, α2, x1, and x2, we obtain

15 In the original version of the puzzle each tile has one of four possible colours.
A goal state would have all tiles of the same colour lined up with each other, for
all four colours. Our version here is different in that tiles have unique names (they
are numbered) and thus they are pairwise distinguishable. Hence colours become
irrelevant.
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a class of groups defined as follows.

Definition 28 Let α1, α2, x1, x2 ∈ N \ {0} where xi ≤ αi/2 for i = 1, 2.
The group HR(α1, α2, x1, x2) is defined as the subgroup of Sα1+α2−2 that is
generated by the following two elements a∗1 and a∗2.

• a∗1 = (1 2 . . . α1),
• a∗2 = (1 α1 + 1 α1 + 2 . . . α1 + x2 − 1 x1 + 1 α1 + x2 . . . α1 + α2 −

3 α1 + α2 − 2).

A(α1, α2, x1, x2) then denotes the set {a∗1, a∗2} of generators. 16

The following theorem states that an agent exploring the Hungarian Rings
game for unknown parameters α1, α2, x1, x2, can learn the game finitely
efficiently, according to the model introduced in Definition 13.

Theorem 29 The class {HR(α1, α2, x1, x2) : α1, α2, x1, x2 ∈ N \ {0}, x1 ≤
α1/2, x2 ≤ α2/2} is efficicently learnable with respect to {A(α1, α2, x1, x2) :
α1, α2, x1, x2 ∈ N \ {0}, x1 ≤ α1/2, x2 ≤ α2/2}.

Proof The learning algorithm will operate as follows, given the generators a1

and a2 as input.

(1) Determine the orders of the generators. Let α1 = σ(a1), α2 = σ(a2).
(2) For each i ∈ {1, . . . , bα1/2c}, j ∈ {1, . . . , bα2/2c}, determine the order of

the element (ai1a
j
2a
−i
1 a
−j
2 ) and let Ti,j = σ(ai1a

j
2a
−i
1 a
−j
2 ).

(3) Define

(x1, x2) =


(bα1/2c, bα2/2c) , if Tbα1/2c,bα2/2c = 1 ,

(bα1/2c, j) , if Tbα1/2c,j = 3 and Tbα1/2c,z = 2 for z 6= j ,

(i, bα2/2c) , if Ti,bα2/2c = 3 and Tz,bα2/2c = 2 for z 6= i ,

(i, j) , if Ti,j = 2 and Tz,z′ 6= 2 for all (z, z′) 6= (i, j) .

(4) Return a decision procedure solving the word problem forHR(α1, α2, x1, x2)
over the given set of generators.

To prove that this algorithm learns every possible target group in C finitely
efficiently, the following assertions need to be shown.

• The values Ti,j are upper bounded by a constant (in fact, by 5). 17

• The cases distinguished in the definition of (x1, x2) are complete and pair-
wise disjoint.

16 Note that the definition of a∗1 and a∗2 depends on the parameters α1, α2, x1, x2.
17 This property guarantees that when the algorithm executes step 2, it takes a
polynomially bounded number of actions.
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• The cases distinguished in the definition of (x1, x2) uniquely determine the
parameters x1 and x2 of the target group exactly in the way they are set in
this definition.

All three assertions can be proven with the help of Figure 4, distinguishing
the cases (a), (b), (b’), and (c).

Ti,j 1 2 . . . α2/2

1 3 3 3 2

2 3 3 3 2
... 3 3 3 2

α1/2 2 2 2 1

(a) α1/2 = x1 and α2/2 = x2 (here α1 and α2 are even).

Ti,j 1 2 . . . x2 . . . bα2/2c

1 3 3 3 5 3 3

2 3 3 3 5 3 3
... 3 3 3 5 3 3

α1/2 2 2 2 3 2 2

(b) α1/2 = x1 (here α1 is even) and α2/2 6= x2.

Ti,j 1 2 . . . x2 . . . bα2/2c

1 3 3 3 5 3 3

2 3 3 3 5 3 3
... 3 3 3 5 3 3

x1 5 5 5 2 5 5
... 3 3 3 5 3 3

bα1/2c 3 3 3 5 3 3

(c) α1/2 6= x1 and α2/2 6= x2.

Fig. 4. The matrix T for the three different cases (a), (b), and (c). Note that the
case “α2/2 = x2 (α2 is even) and α1/2 6= x1” is symmetric to the one illustrated in
(b).

Case (a). α1/2 = x1 and α2/2 = x2 (here both α1 and α2 are even).

In this case, Tx1,x2 = 1 and Ti,x2 = Tx1,j = 2 for all i < x1 and all j < x2.
Moreover, Ti,j = 3 for i < x1 and j < x2.
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Case (b). α1/2 = x1 (here α1 is even) and α2/2 6= x2.

In this case, Tx1,x2 = 3 and Tx1,j = 2 for j 6= x2. Furthermore, Ti,x2 = 5 for
i < x1 and Ti,j = 3 for i < x1 and j 6= x2.

Case (b’). α2/2 = x2 (α2 is even) and α1/2 6= x1.

This case is symmetric to Case (b).

Case (c). α1/2 6= x1 and α2/2 6= x2.

In this case, Tx1,x2 = 2 and Ti,x2 = Tx1,j = 5 for i 6= x1 and j 6= x2. Moreover,
Ti,j = 3 for i 6= x1 and j 6= x2.

It is easy to see that the verification of the cases (a), (b), (b’), and (c) proves
the assertions claimed above. To verify the cases, consider the effect of the
action sequences ai1a

j
2a
−i
1 a
−j
2 .

When executing an action sequence of the form ai1a
j
2a
−i
1 a
−j
2 , most of the tiles in

the game remain unaffected. The affected tiles are shown in Figure 5. Let those
elements be named b, c, d, e, f and g. If i 6= x1 and j 6= x2, then ai1a

j
2a
−i
1 a
−j
2 =

(bcd)(efg), thus the order of this action sequence is 3.

j

j
i

i

b

g

e

f

d

c

a a
1 2

Fig. 5. The tiles affected by the action sequence ai1a
j
2a
−i
1 a−j2 . In certain cases, some

of these tiles might coincide.

With certain values of the parameters, the following coincidences are possible:

(1) i = x1 → d = e
(2) j = x2 → c = e
(3) i = (a1 − x1)→ g = b
(4) j = (a2 − x2)→ f = b

Note that the third case is possible only if x1 = a1/2 and it implies that the
first case holds as well. (The same is true with the fourth and second case.)
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• If i = x1 and none of the other coincidences hold then σ(ai1a
j
2a
−i
1 a
−j
2 ) =

σ((bcfge)) = 5.
• If i = x1 and j = x2 (c = d = e) then σ(ai1a

j
2a
−i
1 a
−j
2 ) = σ((be)(fg)) = 2.

• If i = x1 = a1 − x1 = a1/2 then σ(ai1a
j
2a
−i
1 a
−j
2 ) = σ((be)) = 2.

• If i = x1 = a1 − x1 = a1/2 and j = x2 6= a2/2 (d = c = e, g = b) then
σ(ai1a

j
2a
−i
1 a
−j
2 ) = σ((ebf)) = 3.

• If i = x1 = a1−x1 = a1/2 and j = x2 = a2−x2 = a2/2 (c = d = e, f = g =
b) then σ(ai1a

j
2a
−i
1 a
−j
2 ) = σ((id)) = 1.

The above cases explain all the entries in table T .

This completes the proof. 2

Remark 30 Note that the group HR(α1, α2, x1, x2) equals the alternating
group Aα1+α2−2 if both α1 and α2 are odd, and equals Sα1+α2−2 itself, if at
least one of the parameters α1 and α2 is even. Moreover, the group TS(α, x)
in some cases (x ≡ 2 mod 4) equals Sα, cf. Chen and Skiena [6].

This shows that if the generators are well chosen then such complex groups as
the symmetric groups are finitely efficiently learnable.

6.3 A tile game

The tile game presented in this section can be seen as loosely related to sliding-
tile puzzles. However, the version designed here is not close to any actual game,
we defined it for illustration purposes.

The game consists of an n × n table of n2 numbered tiles in which the sin-
gle player can move tiles according to 3n − 1 actions. These actions can be
described as follows:

• (âni) for 1 ≤ i ≤ n. The action âni horizontally rotates all tiles in the ith

row of the table by one position.
• (b̂ni) for 1 ≤ i ≤ n. The action b̂ni vertically rotates all tiles in the ith

column of the table by one position.
• (ĉni) for 2 ≤ i ≤ n. The action ĉni diagonally rotates all tiles in the diagonal

corresponding to the positions (n, i) . . . (i, n) by one position.

Figure 6 shows the table and the actions. Note that while the first two groups
of actions are of order n, the order of ĉi is n− i+ 1.

This game can be represented as a group in the parameter n, formally defined
as follows.

36



↓ b̂n1 ↓ b̂n2 . . . ↓ b̂nn
ân1 → (1,1) (1,2) . . . (1,n)

ân2 → (2,1) (2,2) . . . (2,n)
...

...
...

. . .
...

ânn → (n,1) (n,2) . . . (n,n)

↗ ĉn2 . . . ↗ ĉnn

Fig. 6. The “tile game”.

Definition 31 Let n ∈ N \ {0}. The group TG(n) is the subgroup of Sn2

generated by the union of the following three sets of generators.

• {âni : 1 ≤ i ≤ n and âni = ((i, 1) . . . (i, n))}
• {b̂ni : 1 ≤ i ≤ n and b̂ni = ((1, i) . . . (n, i))}
• {ĉni : 1 ≤ i ≤ n and ĉni = ((n, i) (n− 1, i+ 1) . . . (i, n))}

The main difference between this class of groups and the ones presented in the
two previous subsections is that here the number of actions is not constant
but depends on the parameter n.

From the point of view of learning, it is therefore not enough to determine the
value of the parameter n. It is additionally required to determine the concrete
role of each action given as an input to the learning algorithm. Nevertheless,
as the following theorem states, the class {TG(n) : n ∈ N \ {0}} is finitely
efficiently learnable with respect to the natural choice of its generators.

Theorem 32 The class {TG(n) : n ∈ N \ {0}} is finitely efficiently learnable
with respect to {{ân1, . . . ânn, b̂n1, . . . , b̂nn, ĉn2, . . . , ĉnn} : n ∈ N \ {0}}.

Proof On input of a set {d1, . . . , dk} of k different generators, an algorithm
learning the target group TG(n) finitely efficiently can be defined by the fol-
lowing instructions.

(1) Let n = k + 1/3.
(2) Obtain the orders of the generators.
(3) For all i ∈ {2, . . . , n}, let ci be the unique given generator dj with σ(dj) =

n− i+ 1.
(4) Pick an arbitrary given generator d ∈ {d1, . . . , dk} \ {c2, . . . , cn}. Let B̂

be the set of all given generators in {d1, . . . , dk} \ {d, c2, . . . , cn} that do
not commute with d. Let Â = {d1, . . . , dk} \ ({c2, . . . , cn} ∪ B̂).
(* Note that Â contains d and both Â and B̂ are of cardinality n. Due
to the symmetry of the tile game, the roles of Â and B̂ can be swapped
without changing the underlying group. *)

(5) Iteratively, for i ∈ {1, . . . , n − 1} in order of ascending i, let ai be the
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unique generator in Â \ {a1, . . . , ai−1} that commutes with ci+1 and let bi
be the unique generator in B̂ \ {b1, . . . , bi−1} that commutes with ci+1.

(6) Let an be the unique element in Â \ {a1, . . . , an−1}. Let bn be the unique
element in B̂ \ {b1, . . . , bn−1}.

(7) Return a decision procedure solving the word problem for TG(n) where
• for each i ∈ {1, . . . , n}, ai takes the role of âni and bi takes the role of
b̂ni, and
• for each i ∈ {2, . . . , n}, ci takes the role of ĉni.

It is easy to see that the algorithm outputs a decision procedure consistent with
the target group. It is also obvious that the number of queries the algorithm
issues is not higher than the efficiency constraints allow. 2

7 Conclusions

We introduced and analyzed models for (efficient) learning of group-structured
environments by exploration. In order to capture the idea that an agent should
learn its environment without visiting all the states, we imposed a bound on
the number of actions the agent can take up to convergence to a correct
conjecture about the target group environment.

Learnability results strongly depend on the set of generators given as input to
the learner, not only under efficiency constraints, but even when no require-
ments in terms of efficiency are imposed on the learner. Our negative results
suggest that it is in general too strong a requirement to learn with respect to
all possible generators of a group—which is in fact not surprising and gives
answers to some of the questions that motivated our research.

A direction for future work clearly is to characterize cases in which the size
of a minimal representation of a group (in a general coding scheme for finite
or finitely generated groups) is logarithmic instead of linear in the size of the
group. This is for instance motivated by the contrasting results we obtained
concerning dihedral groups. The positive results on efficient learning of finite
dihedral groups assume that the learner is given generators the order of which
is proportional to the size of the target group. Since our model of efficient
learning allows the learner to take a number of actions that is polynomial in
the order of the generators, the learner can here take a number of actions
polynomial in the size of the group. Thus every state can be visited and
learning becomes trivial. The negative results on efficient learning of finite
dihedral groups show that generators of lower order, which disallow the learner
to take as many actions as there are states in the environment, are not suitable
for learning environments with the structure of finite dihedral groups. This
example motivates the design and anlaysis of models that capture the case
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of learning when the “size of the representation” given to the learner is not
linear but only logarithmic in the size of the group.

However, it is worth noting that our positive result on learning finite Abelian
groups (Theorem 22) illustrates cases in which efficient learning under our
current model is possible even if the sum of the orders of the generators given
may be logarithmic in the size of the target group. Note though that we have
positive results on efficient learning of finite Abelian groups only in case the
given generators generate the cyclic subgroups of the target group. Whether
or not other types of generators are in general suitable for efficient learning of
finite Abelian groups remains an open question.
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