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Abstract. This paper studies several typical learning criteria in the
model of partial learning of r.e. sets in the recursion-theoretic frame-
work of inductive inference. Its main contribution is a complete picture
of how the criteria of confidence, consistency and conservativeness in
partial learning of r.e. sets separate, also in relation to basic criteria of
learning in the limit. Thus this paper constitutes a substantial extension
to prior work on partial learning. Further highlights of this work are
very fruitful characterisations of some of the inference criteria studied,
leading to interesting consequences about the structural properties of the
collection of classes learnable under these criteria. In particular a class is
consistently partially learnable iff it is a subclass of a uniformly recursive
family.

1 Introduction

Identification in the limit from positive examples, as introduced by Gold [10],
models learning as a process in which a learner is presented an infinite sequence of
data items belonging to a target, say an r.e. language L or a graph of a recursive
function. The learner processes the data one by one, making a conjecture about
the target L in every step. Successful learning of the target L requires the learner,
on any infinite input sequence containing all and only the data items contained
in L (called a text for L), to return a sequence of hypotheses that stabilises on
a single correct hypothesis describing L. In most variations of the model, Gödel
numbers are used as hypotheses.

This model is rather restrictive: for example, there is no learner that identifies
every regular language in the limit; more generally, no class of languages con-
taining an infinite set S and all its finite subsets is identifiable in the limit [10].

? F. Stephan was partially supported by NUS grant R252-000-420-112; S. Zilles was
partially supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC).



Intuitively, for every potential learner M there is a valid data sequence for S
that forces M to conjecture finite subsets of S infinitely often, thus changing its
mind infinitely often and failing to stabilise on one conjecture.

To overcome this difficulty, Osherson, Stob and Weinstein introduced the
model of partial learning [14], in which the sequence of hypotheses is no longer re-
quired to converge in the limit (syntactically or semantically). Instead, a learner
M is considered successful for a target L, if, on any text for L, M returns a
sequence of conjectures that contains only one hypothesis infinitely often; this
hypothesis must describe L. Osherson, Stob and Weinstein proved that this
relaxation of Gold’s model allows for the identification of the class of all r.e.
languages.

Recently, the model of partial learning has been studied in depth, namely in
combination with typical learning criteria that restrict the behaviour of learners.
An intuitive such criterion is consistency as introduced by Bārzdiņs̆ [3], which
requires the learner to always return conjectures for sets that contain all the
examples presented in the text. The consistency requirement imposes a strong
restriction on learners both in the context of learning in the limit [3] and in
the context of partial learning [12]. Gao and Stephan [9] therefore introduced
the notion of essential consistency, which allows the learner to be inconsistent
finitely many times. For learning recursive functions, they proved this model to
be less restrictive than consistent partial learning, and even more powerful than
behaviourally correct learning, a version of learning in the limit in which only a
semantic, not a syntactic convergence of the hypothesis sequence is required.

A criterion often considered together with or in contrast to consistency is
that of conservativeness: a conservative learner identifying a class of languages
in the limit is allowed to change a hypothesis on a valid text segment for a tar-
get language L only if that hypothesis is inconsistent with the text segment [1].
This definition does not transfer to the case of partial learning, where a cor-
rect hypothesis can be “suspended” infinitely often. Gao, Jain and Stephan [7]
adapted the model of conservativeness to partial learning, by requiring that a
conservative partial learner

(i) outputs only one correct hypothesis (namely the one that is output infinitely
often) and

(ii) does not overgeneralise the target (when outputting incorrect hypotheses).

Another criterion that was previously adapted from the limit-learning case to
the partial learning case is that of confidence. In the classical setting, a confident
learner will produce a sequence of hypotheses that stabilises, even if the input
text is not for a set in the target class. In the context of partial learning, the
natural adaptation studied by Gao, Stephan, Wu and Yamamoto [8] was to
require that the learner output only one hypothesis infinitely often, even on
texts for languages outside the target class.

The main contribution of this paper is a complete study of how the criteria of
confidence, consistency and conservativeness in partial learning of r.e. sets sep-
arate, also in relation to basic criteria of learning in the limit. In particular, it
is determined for any pair of criteria of interest whether or not there are classes
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Fig. 1. Learning hierarchy

learnable under one but not under the other criterion. This goes far beyond the
results from previous work on partial learning, which focussed either on learning
recursive functions or on only one of the special criteria addressed here.

Many of our results are similar to those in the case of learning recursive func-
tions, but there are also some differences.

Interestingly, most of the separations proved in this paper are already wit-
nessed by uniformly recursive families of sets, which means that the overall
hierarchy of inference criteria obtained would be very similar when restricting
the study to such families.

Further highlights of the present paper are characterisations of the collection
of all classes of r.e. sets that are confidently partially learnable and of the collec-
tion of all classes of r.e. sets that are consistently partially learnable. The former
has the interesting consequence that the union of two confidently partially learn-
able classes is again confidently partially learnable. The latter demonstrates that
a class of r.e. sets is consistently partially learnable if and only if it is contained
in a uniformly recursive family; furthermore the conservative partial learner can
always be made prudent [14] that is, can be constrained to outputting only
hypotheses describing sets it can identify, on any input.



The hierarchy diagram in Figure 1 summarises most of the results of this
paper. The inference criteria are abbreviated; BC is for behaviourally correct
learning [5], Ex for learning in the limit, Part for partial learning, Conf for
confidence, Consv for conservativeness, ClsCons for class-consistency (where
the learner is required to be consistent only on valid texts for potential targets),
Cons for global consistency (where the learner is required to be consistent on all
input texts), EssClsCons and EssCons for the “essential” versions of the two
consistency models, Prud for prudence, and ClsPresv for the class-preserving
versions of a model, requiring the learner to return only hypotheses that repre-
sent sets from the target class, on any input. A directed arc from criterion A
to criterion B means that the collection of classes learnable under model A is
contained in that learnable under model B. If there is no path from A to B,
then the collection of classes learnable under model A is not contained in that
learnable under model B. Due to space limitations, some proofs are missing in
this version of the paper.

2 Preliminaries

Notation 1. The notation and terminology from recursion theory adopted in
this paper follows in general the book of Rogers [16]. Background on inductive
inference can be found in [11]. The symbol N denotes the set of natural numbers,
{0, 1, 2, . . .}. Let ϕ0, ϕ1, ϕ2, . . . denote a fixed acceptable numbering [16] of all
partial-recursive functions over N. Given a set S, S∗ denotes the set of all finite
sequences in S. One defines the e-th r.e. set We as dom(ϕe). This paper fixes
a one-one padding function pad with Wpad(e,d) = We for all e, d. Furthermore,

〈x, y〉 denotes Cantor’s pairing function, given by 〈x, y〉 = 1
2 (x+y)(x+y+1)+y. A

triple 〈x, y, z〉 denotes 〈〈x, y〉, z〉. The notation η(x)↓ means that η(x) is defined,
and η(x)↑ means that η(x) is undefined.

Turing reducibility is denoted by ≤T ; A ≤T B holds if A can be computed via
a machine which uses B as an oracle; that is, it can give information on whether
or not x belongs to B. A ≡T B means that A ≤T B and B ≤T A both hold,
and {A : A ≡T B} is called the Turing degree of B. For any partial-recursive
function g, graph(g) = {〈x, y〉 : g(x)↓= y}. The symbol K denotes the diagonal
halting problem {e : ϕe(e)↓}.

For any two sets A and B, A ⊕ B = {2x : x ∈ A} ∪ {2y + 1 : y ∈ B}.
Analogously, A⊕B ⊕ C = {3x : x ∈ A} ∪ {3y + 1 : y ∈ B} ∪ {3z + 2 : z ∈ C}.

For any σ, τ ∈ (N ∪ {#})∗, σ � τ if and only if σ = τ or τ is an extension of
σ, σ ≺ τ if and only if σ is a proper prefix of τ , and σ(n) denotes the element
in the nth position of σ, starting from n = 0. The concatenation of two strings
σ and τ shall be denoted by σ ◦ τ ; for convenience, and whenever there is no
possibility of confusion, this is occasionally denoted by στ . Let σ[n] denote the
sequence σ(0) ◦ σ(1) ◦ . . . ◦ σ(n− 1). The length of σ is denoted by |σ|.

The learnability notions investigated in the present paper are built on the main
learning paradigms from positive data – explanatory learning, behaviourally cor-
rect learning, and partial learning. Explanatory learning, or “learning in the



limit”, was introduced by Gold [10] to model the process of language acquisi-
tion. This model was later generalised by Bārzdiņs̆ [3] and Case [5]; in their
proposed model, known as behaviourally correct learning, the learner is required
to almost always output a correct hypothesis of the input language, although
it is permitted to output syntactically different hypotheses. Osherson, Stob and
Weinstein [14] then extended the criterion of behaviourally correct learnability to
partial learnability, according to which the learner must output exactly one cor-
rect index of the language infinitely often and output any other conjecture only
finitely often. In addition, one can specify various constraints on the learner; the
following definition imposes a restriction on the hypothesis space of the learner.

Definition 2. M is said to class-preservingly (ClsPresv) learn C if it learns C
from text with respect to a hypothesis space {H0, H1, H2, . . .} such that C =
{H0, H1, H2, . . .}.

Let C be a class of r.e. languages. Throughout this paper, the mode of data
presentation is that of a text, by which is meant an infinite sequence of natural
numbers and the # symbol. Formally, a text TL for some L in C is a map
TL : N→ N ∪ {#} such that L = content(TL); here TL[n] denotes the sequence
TL(0) ◦ TL(1) ◦ . . . ◦ TL(n− 1) and the content of a text T , denoted content(T ),
is the set of numbers in the range of T . Analogously, for a finite sequence σ,
content(σ) is the set of numbers in the range of σ. In the following definitions,
M is a recursive function mapping (N∪{#})∗ into N∪{?}; the ? symbol permits
M to abstain from conjecturing at any stage.

Definition 3. (i) [14] M partially (Part) learns C if, for every L in C and
each text TL for L, there is exactly one index e such that M(TL[k]) = e
for infinitely many k; furthermore, if M outputs e infinitely often on TL,
then L = We.

(ii) [10] M explanatorily (Ex) learns C if, for every L in C and each text TL
for L, there is a number n for which L = WM(TL[n]) and, for any j ≥ n,
M(TL[j]) = M(TL[n]).

(iii) [5] M behaviourally correctly (BC) learns C if, for every L in C and each
text TL for L, there is a number n for which L = WM(TL[j]) whenever
j ≥ n.

(iv) [14] M is prudent if it learns the class {WM(σ) : σ ∈ (N∪{#})∗,M(σ) 6=?}.
In other words, M learns every set it conjectures.

As a point of departure, the following theorem establishes that the learning
criterion of partial learning is quite powerful.

Theorem 4 (Osherson, Stob and Weinstein [14]). The class of all r.e. sets
is partially learnable.

3 Confident Partial Learning

Gao, Stephan, Wu and Yamamoto [8] introduced the notion of confident partial
learning, by naturally generalising the constraint that the learner must, with



respect to the convergence criterion considered, single out a hypothesis on every
possible text for every possible, even non-r.e., language.

Definition 5 (Gao, Stephan, Wu and Yamamoto [8]). M is said to confi-
dently partially (ConfPart) learn C if it partially learns C from text and outputs
on every infinite sequence exactly one index infinitely often.

Confidence is a proper restriction on a partial learner in the sense that the class
of all r.e. sets is no longer partially learnable if the learner is required to be
confident. This is witnessed even by a class that can be learned behaviourally
correctly, the corresponding result for recursive functions can be carried over by
considering the graphs.

Theorem 6 (Gao and Stephan [9]). There is a class of recursive sets that
is behaviourally correctly learnable, but not confidently partially learnable.

Furthermore, one can show that Gold’s class containing one infinite set and
all its finite subsets [10] is confidently partially learnable but not behaviourally
correctly learnable.

Theorem 7 (Gao, Stephan, Wu and Yamamoto [8]). There is a uni-
formly recursive family of sets that is confidently partially learnable, but not
behaviourally correctly learnable.

By contrast, every class that is explanatorily learnable is also confidently par-
tially learnable. This holds true, even when the Ex-learner is allowed to converge
to an index of a set that disagrees with the target set on at most one number,
which is Case and Smith’s criterion Ex1 of learning with at most one anomaly [6].

Theorem 8. If a class of r.e. sets is explanatorily learnable with at most one
anomaly, then it is also confidently partially learnable.

The following characterisation can be brought over from function learning to
language learning.

Theorem 9 (Gao and Stephan [9]). A class C of r.e. sets is confidently
partially learnable if and only if there is a recursive learner M such that

– M outputs on each text exactly one index infinitely often;

– if T is a text for a language L in C and d is the index output infinitely often
by M on T , then there is some e ≤ d with We = L.

Corollary 10. If C1 and C2 are two classes of r.e. sets, both of which are con-
fidently partially learnable, then their union C1 ∪ C2 is also confidently partially
learnable.



4 Essentially Consistent Partial Learning

Consistency [3, 4, 17] is a quite natural condition which postulates that every
conjecture should at least enumerate all the data seen so far. Consistency is
known to be restrictive, for both explanatory and partial learning. In the present
section, consistency is weakened to essentially global consistent and essentially
class consistent learning which generalise the learnability without making the
criterion so strong that it permits to learn the class RE of all r.e. languages.
Note that essentially class consistent learning is a restriction only for partial
learning, while it would be automatically implied by the criteria of explanatory
and behaviourally correct learning.

Definition 11. Let C be a class of r.e. languages and M be a recursive learner.

(i) M is said to essentially globally consistently partially (EssConsPart) learn
C if it partially learns C from text, and for each language L and every text
T for L, content(T [n]) ⊆WM(T [n]) holds for cofinitely many n.

(ii) M is said to essentially class consistently partially (EssClsConsPart)
learn C if it partially learns C from text, and for each language L in C and
every text T for L, content(T [n]) ⊆WM(T [n]) holds for cofinitely many n.

(iii) M is consistent (Cons) if for all σ ∈ (N ∪ {#})∗, content(σ) ⊆WM(σ).
(iv) For any text T , M is consistent on T if ∀n > 0 [content(T [n]) ⊆WM(T [n])].
(v) M is said to be class consistent (ClsCons) if it is consistent on each text

for every L in C.
(vi) M is said to consistently partially (ConsPart) learn C if it partially learns

C from text and is consistent.
(vii) M is said to class consistently partially (ClsConsPart) learn C if it par-

tially learns C from text and is class consistent.

One can generalise these notions correspondingly for learners recursive relative
to an oracle.

Example 12. The class of r.e. languages C = {K ∪ D : D is finite} ∪ {N} is
essentially class consistently partially learnable relative to an oracle A only if
K ≤T A.

Proof. Let A be any oracle such that there is an A-recursive essentially class
consistent partial learner M of the class C. Then, as N ∈ C and M is essentially
class consistent, there is a σ ∈ N∗ such that for all τ ∈ N∗, range(σ ◦ τ) ⊆
WM(σ◦τ). Fixing any such σ, one can build a text T for K∪ range(σ) as follows.

1. For all x < |σ|, T (x) = σ(x).
2. At stage s, let as be the last position on which T has been defined up

to the present stage. Let bs = min((K ∪ range(σ)) − range(T [as + 1])) and
Fs = {M(T [k]) : k ≤ as+1∧WM(T [k]) = K∪range(σ)}. Search noneffectively
for an xs such that xs ∈ K ∪ range(σ) and the condition {M(T [as + 1] ◦
xs),M(T [as + 1] ◦ xs ◦ bs)} ∩ Fs = ∅ holds. If such an xs is found, set
T (as + 1) = xs and T (as + 2) = bs.



There must be a stage s at which the search for an xs fails to terminate
successfully. For, by the construction of T , if the stages proceed through in-
finitely often, then M on every text segment of T outputs an index different
from all of its prior correct conjectures, contradicting the fact that it partially
learns C. Thus there is a stage s such that whenever x ∈ K ∪ range(σ), then
M(T [as + 1] ◦ x) ∈ Fs ∨M(T [as + 1] ◦ x ◦ bs) ∈ Fs holds. The global consistency
of M on any text extension of σ gives the condition that x /∈ K ∪ range(σ) ⇒
M(T [as + 1] ◦ x) /∈ Fs ∧M(T [as + 1] ◦ x ◦ bs) /∈ Fs. Noting that as+1 and bs are
fixed numbers, Fs is a fixed finite set and σ is a fixed string, one therefore has the
reduction x ∈ K∪ range(σ)⇔ {M(T [as + 1] ◦x),M(T [as + 1] ◦x ◦ bs)}∩Fs 6= ∅,
which shows that K ≤T A, as required.

Corollary 13. The class RE of all r.e. sets is essentially class consistently
partially learnable relative to an oracle A iff K ≤T A.

Example 14. The class C in Example 12 is not essentially class consistently
partially learnable with finitely many queries to any oracle.

Theorem 15. Every behaviourally correctly learnable class of r.e. languages is
essentially class consistently partially learnable.

Proof. Let C be a class of r.e. languages that is behaviourally correctly learnable
via a recursive learner M . On text T = a0 ◦ a1 ◦ a2 ◦ . . ., let e0, e1, e2, . . . be a
one-one enumeration of all the distinct conjectures of M . Define a new learner
N as follows: on text a0 ◦ a1 ◦ a2 ◦ . . ., N outputs for each i the conjecture ei at
least n times iff there is a stage s > n such that ∀x < n [x ∈ {a0, a1, . . . , as} ⇔
x ∈ Wei,s] holds. Since M is a BC-learner of C, it outputs on a text for any
L ∈ C only finitely many incorrect conjectures; so there is a stage s after which
N only outputs indices of L. Furthermore, N infinitely often conjectures every
correct index output by M . Let d0, d1, d2, . . . be the sequence of conjectures of
N on some text T . One can define a learner N ′ which outputs on T the index
pad(di,mi) for each conjecture di of N on T , where mi = |{k < i : dk < di}|. By
construction, if dm is the minimum correct index among all of N ’s conjectures,
there is a unique number k such that N ′ outputs pad(dm, k) infinitely often,
while every other index is output only finitely often; thus N ′ essentially class
consistently partially learns C.

Corollary 16. Essentially class consistent partial learning is not closed under
finite unions; that is, there are classes of r.e. languages L1 and L2, each of which
is essentially class consistently partially learnable, such that L = L1 ∪ L2 is not
essentially class consistently partially learnable.

In prior work [9], it was shown that essentially globally consistent partial learning
of recursive functions is closed under finite unions. Theorem 17 establishes the
analogue of this result for the case of learning r.e. languages.

Theorem 17. Essentially globally consistent partial learning is closed under fi-
nite unions; that is, if L1 and L2 are both essentially globally consistently par-
tially learnable, then L1∪L2 is essentially globally consistently partially learnable.



Proof. Assume that M1 and M2 are two EssConsPart-learners. Now make M3

from M1 as follows: If M1 on input σ conjectures e then count the number of
times which M3 has conjectured e on prefixes τ ≺ σ; let m be this number. If
now for all x < m it holds that range(σ)(x) = We,|σ|(x) then let M3(σ) = e else
let M3(σ) be an index d of range(σ) which in addition satisfies d ≥ |σ|, such an
index can be found by the padding lemma.

It is easy to see that M3 is recursive. Furthermore, if M3 outputs an index
e infinitely often then We is equal to the language to be learnt. On the other
hand, if M1 outputs an index e infinitely often and We is equal to the language
to be learnt then one can show by induction that e is output infinitely often;
if M3 outputs e at least m times and σ is a sufficiently long prefix of the text
with M1(σ) = e then range(σ)(x) = We,|σ|(x) for all x < m and therefore M3

will also output e for the m+ 1-st time. Furthermore, whenever M3(σ) 6= M1(σ)
then M3(σ) is consistent. Hence it follows that M3 is an EssConsPart-learner
for the class of sets learnt by M1. One can make a similar learner M4 out of M2.

Now M5(σ) = min{M3(σ),M4(σ)} is a further learner; as M3 and M4 are
consistent for almost all prefixes of a given text, so is M5. Furthermore, the least
index e output on a given text infinitely often by either M3 or M4 is also output
infinitely often by M5. Hence M5 outputs on every language learnt by either
learner at least one index infinitely often and every infinitely often output index
is correct. Following the usual padding construction [9], one can modify M5 to
a further learner M6 which is also essentially partially consistent and whenever
M5 outputs at least one index infinitely often, then M6 outputs a padded version
of the least such index infinitely often. Hence M6 is an EssConsPart-learner
which learns every language learnt either by M1 or by M2.

As shown in [7, Theorem 24], every consistently partially learnable class of r.e.
languages is contained in a uniformly recursive family of languages. The following
theorem establishes a strong converse of this result, showing that every subclass
of a uniformly recursive family may even be prudently consistently partially
learnt. This provides a complete characterisation of all consistently partially
learnable classes of languages.

Theorem 18. The following statements are equivalent for a class C of r.e. sets.

(i) C is a subclass of a uniformly recursive family;
(ii) C is ConsPart-learnable;
(iii) C is PrudConsPart-learnable;
(iv) C is PrudConsPart-learnable using a uniformly recursive hypothesis space.

Proof. First the implication from the first statement to the last is shown. Let
the class be contained in the class-comprising hypothesis space L0, L1, . . . which
is also uniformly recursive and in addition one-one. Furthermore, assume that
the hypothesis space contains all cofinite sets (in order to always have sufficiently
many hypotheses to choose from).

Given any text T , on input T (0)T (1) . . . T (n), the learner determines the
least pair 〈i, j〉 such that

Li ∩ {0, 1, . . . , j} ⊆ {T (0), T (1), . . . , T (n)} ⊆ Li ∪ {#}.



and j ≤ n and the learner has conjectured Li exactly j times before on inputs
T (0)T (1) . . . T (m) with m < n. Having 〈i, j〉, the learner conjectures Li.

Note that no wrong set is conjectured infinitely often: if j ∈ Li − range(T )
or T (j) /∈ Li ∪ {#} then the pair 〈i, j〉 will never qualify and therefore Li will
be conjectured at most j times. Furthermore, if Li is the language to be learnt
then each pair 〈i, j〉 will qualify from that point onwards where Li has been
conjectured j times and where all the members of Li ∩ {0, 1, . . . , j} have been
observed in the input; as there are only finitely many smaller pairs which will
be dealt with in only finitely many steps, the learner will eventually address the
pair 〈i, j〉 and conjecture Li again. It is easy to see that the learner is consistent.
Furthermore, for every n there is a cofinite set such that its members below n
are exactly those which appear in {T (0), T (1), . . . , T (n)} and therefore, for every
input T (0)T (1) . . . T (n) there is a pair 〈i, j〉 which qualifies so that the learner
is total.

The implication from the fourth to the third and from the third to the second
statements are obvious; the implication from the second to the first statement has
been established in prior work [7, Theorem 24] and this completes the proof.

Example 19. Let a class C contain the set of all pairs of natural numbers plus,
for each x, the following set: Lx = {〈x, y〉 : ∀z < y [〈x, z〉 ∈ Lx] and the x-th
machine Mx outputs on the sequence 〈x, 0〉 〈x, 1〉 . . . 〈x, y〉 either ? or an index
e such that We contains some pair 〈x′, y′〉 with x′ 6= x}. Then the class C is
PrudConsPart-learnable but not ClsPresvClsConsPart-learnable.

One implication of Theorem 18 is that every consistently partially learnable
class contains only recursive languages. This characterisation, however, does not
extend to the notion of essentially consistent partial learnability, as the following
example demonstrates.

Theorem 20. The class C = {K} ∪ {D : D is finite} is PrudEssConsPart-
learnable.

It was shown in earlier work [8] that the class of all cofinite sets is not confidently
partially learnable. As this class is uniformly recursive, it follows from Theorem
18 that it is PrudConsPart learnable. Thus the criterion of PrudConsPart
learnability does not imply confident partial learnability in general.

Corollary 21. The class of all cofinite sets is ConsPart-learnable but not con-
fidently partially learnable.

Theorem 22. There is a confidently partially learnable class of recursive lan-
guages which is not essentially class consistently partially learnable.

Proof. Let M0,M1,M2, . . . be an enumeration of all partial-recursive learners.
For each σ ∈ N∗ and i ∈ N, let A〈σ,i〉 denote the set {〈σ, i, k〉 : k ∈ N} and define
an r.e. language L〈σ,i〉 in stages as follows. The construction proceeds by trying to
build a text for L〈σ,i〉 on which Mi either never outputs any index infinitely often,
or is inconsistent at infinitely many stages. τ0 = σ is an initial approximation



to this text; at stage s + 1, one defines a further approximation τs+1 based on
the outputs of Mi on some potential extensions of τs. For bookkeeping, define
approximations B0, B1, B2, . . . to an auxiliary r.e. set B; B records the numbers
that must not be added into L〈σ,i〉 in order to maintain the inconsistency of Mi

on some earlier constructed text segment.

1. Let L〈σ,i〉,0 = range(σ), τ0 = σ and B0 = ∅.
2. At stage s+ 1, search for either (i) the first w ∈ A〈σ,i〉 ∩{w : w > max(Bs ∪
L〈σ,i〉,s)} such that Mi(τs ◦ w) ↓/∈ {Mi(γ) : γ � τs}, or (ii) the first pair
x, y with x 6= y, {x, y} ⊆ A〈σ,i〉 ∩ {w : w > max(Bs ∪ L〈σ,i〉,s)}, so that for
some e,
– Mi(τs ◦ x)↓= Mi(τs ◦ y)↓= e;
– x ∈We ∨ y ∈We holds.

In case (i), let L〈σ,i〉,s+1 = L〈σ,i〉,s ∪ {w}, τs+1 = τs ◦ w and Bs+1 = Bs. In
case (ii), let z be the first element in {x, y} that We enumerates and let z′ be
the other element of {x, y}. Then set L〈σ,i〉,s+1 = L〈σ,i〉,s∪{z′}, τs+1 = τs ◦z′
and Bs+1 = Bs ∪ {z}.

Let L〈σ,i〉 =
⋃
s∈N L〈σ,i〉,s and define C1 = {L〈σ,i〉 : σ ∈ N∗∧i ∈ N}, C = C1∪{N}.

Then C is confidently partially learnable. The class C1 is confidently partially
learnable: the subclass of all L〈σ,i〉 which are infinite may be explanatorily learnt
via a learner which, on a text T , converges to an index for L〈σ,i〉 in the case that
almost all members of range(T ) are contained in A〈σ,i〉 and outputs a default
index infinitely often otherwise; the subclass of all L〈σ,i〉 which are finite may
also be explanatorily learnt by a learner which, on a given text segment T [n],
outputs a canonical index for range(T [n]). Therefore each of these two subclasses
of C1 is confidently partially learnable, and so the union C1 ∪ {N} is confidently
partially learnable as well.

Next, assume for a contradiction that Mn essentially class consistently par-
tially learns the class C. SinceMn must also essentially class consistently partially
learn N, there must exist some σ ∈ N∗ such that for all τ ∈ N∗, range(σ ◦ τ) ⊆
WMn(σ◦τ). Fix such a σ. By the construction of L〈σ,n〉, there is a text T for L〈σ,n〉
such that on every text segment of T , Mn either outputs a conjecture different
from all of its previous ones, or it outputs an index e such that for some y,
y ∈We − L〈σ,n〉, that is, the index is incorrect. Consequently, Mn cannot be an
essentially class consistent partial learner of C.
Corollary 23. There is an explanatorily learnable class of recursive languages
which is not essentially globally consistently partially learnable.

Proof. Let C′1 = {L〈σ,i〉 : σ ∈ N∗ ∧ i ∈ N ∧ |L〈σ,i〉| = ∞}, where L〈σ,i〉 is as
defined in Theorem 22. As was argued in the proof of Theorem 22, C′1 is explana-
torily learnable. Suppose, however, that it were essentially globally consistently
partially learnt by some recursive learner Mn. Then there is some σ ∈ N∗ such
that for all τ ∈ N∗, range(σ ◦τ) ⊆WMn(σ◦τ). Thus the language L〈σ,n〉 is infinite
and contained in C′1, but Theorem 22 shows that there is a text for L〈σ,n〉 on
which Mn almost always either outputs an incorrect hypothesis, or outputs a
hypothesis different from all its prior ones. Hence C′1 is not essentially globally
consistently partially learnable.



5 Conservative Partial Learning

Angluin [1] introduced the notion of conservativeness in the model of explanatory
learning and she gave sufficient conditions for an indexed family of nonempty
recursive languages to be inferable by a conservative learner [1, Theorem 5].
Subsequent studies on conservative learning in the case of uniformly r.e. classes
as well as indexed families [13, 18] yielded fairly succinct characterisations of this
learning criterion. In prior work [7], the notion of conservativeness was adapted
to the model of partial learning; in this modified version of conservative learning,
the learner is required to output exactly one correct index of the input language
L infinitely often and it cannot conjecture any proper superset of L.

In particular when considered together with consistency, conservativeness
turned out to rule out many irregularities although not all which can arise from
Pitt’s delaying trick [4, 15]. When it comes to partial learning, the combination
of consistency and conservativeness also reduces the learning power and brings
the criterion down to conservative explanatory learning, as shown below. The
present section aims to shed further light on the nature of conservative partial
learning alone as well as on its combination with consistency.

Definition 24 (Gao, Jain and Stephan [7]). A recursive learner M is said
to conservatively partially (ConsvPart) learn C if it partially learns C from text
and outputs on each text for every L in C exactly one index e with L ⊆We.

The first example notes that confident partial learnability does not imply con-
servative partial learnability in general.

Example 25. {D : D finite} ∪ {N} is confidently partially learnable, but not
conservatively partially learnable.

One can in fact construct an explanatorily learnable class of languages that is
not conservatively partially learnable, as the following theorem demonstrates. By
Theorem 8, the class given in Example 26 is also confidently partially learnable.

Theorem 26. There is a uniformly recursive family of sets that is explanatorily
learnable, but not conservatively partially learnable.

Proof. Define an indexed family which contains for every e

– the set {e, e+ 1, e+ 2, . . .} and
– the first set of the form {e, e+ 1, . . . , e+ t} found such that the e-th learner

conjectures on the input e e+1 e+2 . . . e+t a set containing e, e+1, . . . , e+t,
e+ t+ 1; if no such t exists then no finite set with minimum e is in the class.

It is easy to see that the resulting family can be made uniformly recursive and
that none of the learners ConsvPart-learn this family. Furthermore, an explana-
tory learner would find in the limit the least element e in the text. In the case
that a set of the form {e, e + 1, . . . , e + t} is added in the family and the text
does not contain any element larger than t then the learner converges to an



index of this set else the learner converges to the index of {e, e + 1, . . .} which,
without loss of generality, comes first in the indexed family while the index of
{e, e+ 1, . . . , e+ t} is the second index with least element e (if any).

For completeness, the next theorem states that conservative partial learnability
does not imply confident partial learnability or behaviourally correct learnability
in general. Gao, Jain and Stephan [7, Example 9] have proven that the class of
graphs of all recursive functions witnesses this separation.

Theorem 27 (Gao, Jain and Stephan [7]). There is a class of infinite recur-
sive sets that is conservatively partially learnable, but neither confidently partially
learnable nor behaviourally correctly learnable.

Consistent partial learning has been studied previously mainly in the context
of learning recursive functions [12] and it turned out that for the case of learn-
ing recursive functions from arbitrary texts, consistent partial learnability is
equivalent to explanatory learnability. The next theorem provides an analogue
of this result for the case of learning r.e. languages, showing that consistency,
when enforced together with partial conservativeness, is no less stringent than
explanatory learnability.

Theorem 28. If a class C of r.e. languages is ConsConsvPart-learnable, then
C is Ex-learnable by a learner which does not output any index for a proper
superset of a given target language L ∈ C on every text for L.

Theorem 29. If a class C of r.e. languages is Ex-learnable by a learner which
does not output any index for a proper superset of a given target language L ∈ C
on every text for L, then C is ConsvEx-learnable.

The next corollary is a consequence of Theorems 28 and 29.

Corollary 30. If a class C of r.e. languages is ConsConsvPart-learnable, then
C is ConsvEx-learnable.

Example 31. The class {K} is finitely learnable but not ConsConsvPart-
learnable. The class F of all finite languages is ConsConsvPart-learnable but
not finitely learnable.

Theorem 32. There exists a uniformly recursive class of languages which is
PrudConsvBC-learnable as well as EssConsPrudConsvPart-learnable but nei-
ther ConsvPart-learnable with respect to a class-preserving hypothesis space nor
explanatorily learnable.

This section concludes with some results on partially conservative learning with
respect to uniformly recursive families. In particular, these observations illustrate
the connection between partial learning and learning in the limit (in both the
syntactic as well as semantic sense).

Theorem 33. If a uniformly recursive family C is ConsvPart-learnable, then
C is behaviourally correctly learnable.



Proof. Let M be a recursive ConsvPart-learner of C, and T be a text for any
language Le in C. As M ConsvPart-learns Le, there is a number n sufficiently
large so that WM(T [n]) = Le. Let He = range(T [n]). Since M is partially conser-
vative, Ld = Le holds for every Ld in C with He ⊆ Ld ⊆ Le, for otherwise one
may build a text for Ld extending T [n] on which M outputs a proper superset
of Ld. Hence there is a family of finite tell-tale sets for C. As shown in [2, Section
3.2, Corollary 3], a uniformly recursive class non-effectively satisfying Angluin’s
tell-tale condition is BC-learnable, and therefore C is BC-learnable.

Theorem 34. If a uniformly recursive family C is ConsvPart-learnable with
respect to a class-preserving hypothesis space, as well as Ex-learnable with respect
to a class-preserving hypothesis space, then it is ClsPresvEx-learnable by a
learner which does not output any index for a proper superset of a given target
language L ∈ C on every text for L.

Proof. Let M be a recursive ConsvPart-learner of the given class C which uses
a class-preserving hypothesis space. One may assume that M uses any general
class-preserving hypothesis space. As C is also explanatorily learnable, there is
a uniformly r.e. family of finite tell-tale sets for C. Suppose L0, L1, L2, . . . is a
uniformly recursive numbering of C, and that H0, H1, H2, . . . is the corresponding
family of tell-tale sets, that is, for all e, He ⊆ Le and there is no d such that
He ⊆ Ld ⊂ Le. One can define a learner N as follows. On input σ, N searches
for the least e ≤ |σ|, if such an e exists, with He,|σ| ⊆ content(σ) ⊆ Le; if no
such e is found, N outputs ?. If e′ is the least such number, N then searches for
the shortest τ � σ such that He′,|σ| ⊆ WM(τ),|σ| ⊆ Le′ ; if no such τ exists, N
outputs ?. If τ ′ is the shortest such prefix found, then N outputs M(τ ′).

Suppose N is fed with a text T for the language L in C. Since N only outputs
indices conjectured by M on T , and M is a ConsvPart-learner of C, N never
conjectures a proper superset of L. It remains to show that N explanatorily
learns L. Suppose that in the numbering L0, L1, L2, . . . , e is the least index for
L. There is an n sufficiently large so that for all k > n, He,k = He and e is the
least index not exceeding k with He,k ⊆ content(T [k]) ⊆ Le. Furthermore, as
M outputs at least one correct index for L, there is a least number l such that
He ⊆WM(T [l]) ⊆ Le. Thus N will converge to M(T [l]) in the limit, and since M
only outputs indices of languages in C, it follows that WM(T [l]) = Le. Thus N
is a class-preserving explanatory learner of C which never conjectures a proper
superset of any target language L ∈ C on every text for L.

Theorems 29 and 34 imply the following corollary.

Corollary 35. If a uniformly recursive family C is ConsvPart-learnable with
respect to a class-preserving hypothesis space, as well as Ex-learnable, then it is
ConsvEx-learnable.
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