
Learning Relational Patterns?

Michael Geilke1 and Sandra Zilles2

1 Fachbereich Informatik, Technische Universität Kaiserslautern
D-67653 Kaiserslautern, Germany

geilke.michael@gmail.com
2 Department of Computer Science, University of Regina

Regina, SK, Canada S4S 0A2
zilles@cs.uregina.ca

Abstract. Patterns provide a simple, yet powerful means of describ-
ing formal languages. However, for many applications, neither patterns
nor their generalized versions of typed patterns are expressive enough.
This paper extends the model of (typed) patterns by allowing relations
between the variables in a pattern. The resulting formal languages are
called Relational Pattern Languages (RPLs). We study the problem of
learning RPLs from positive data (text) as well as the membership prob-
lem for RPLs. These problems are not solvable or not efficiently solvable
in general, but we prove positive results for interesting subproblems.
We further introduce a new model of learning from a restricted pool of
potential texts. Probabilistic assumptions on the process that generates
words from patterns make the appearance of some words in the text
more likely than that of other words. We prove that, in our new model,
a large subclass of RPLs can be learned with high confidence, by effec-
tively restricting the set of likely candidate patterns to a finite set after
processing a single positive example.

1 Introduction

After Angluin [1] introduced the pattern languages, they became a popular ob-
ject of study in algorithmic learning theory. Patterns are strings consisting of con-
stant and variable symbols; substituting variables by strings of constant symbols
generates words in the corresponding pattern languages. Thus patterns provide
a simple and intuitive, yet powerful means of describing formal languages.

One focus has been on learning pattern languages in the limit from positive
data: a learner is given access to a stream of all and only the words in the target
language L and is supposed to generate a sequence of patterns that eventually
stabilizes on a pattern generating L [3, 2, 9]. Two central concerns are here

(a) the apparent trade-off between the expressiveness of pattern languages
and the existence of algorithms for learning such languages from positive data [10],

(b) the lack of efficient algorithms for fundamental tasks involved in many
intuitive learning procedures, like solving the membership problem for pattern
? This work was supported by the Natural Sciences and Engineering Research Council

of Canada (NSERC).

languages [1]. Any learning algorithm that uses membership tests to construct
patterns consistent with the known data will suffer from the NP -hardness of the
membership problem.

The first concern is best illustrated when comparing non-erasing pattern lan-
guages [1] to erasing pattern languages [13], the latter ones differing from the
former ones only in the detail that they allow to replace variables in a pattern
with the empty string. This little additional detail makes patterns more expres-
sive, but at the same time, in general, non-learnable in the limit from positive
data [10]. Furthermore, even erasing pattern languages are often not expressive
enough to model interesting real-world applications. To this end, Wright [16] and
Koshiba [6] introduced an extension of pattern languages, called typed pattern
languages. Typed patterns restrict the set of allowed substitutions separately
for each variable, so as to model languages in which, e.g., the variable x3 in the
pattern “author: x1 title: x2 year: x3” should be replaced only by 4-digit
strings, whereas x1 and x2 can be replaced by strings containing letters. Un-
fortunately, little is known about general conditions under which typed pattern
languages are learnable. Moreover, for many applications, neither pattern lan-
guages nor typed pattern languages are sufficient to model the complex structure
in textual data. Below we give examples of bioinformatics applications in which
it is obvious that (typed) pattern languages lack the ability to express that the
substitutions for two or more distinct variables are dependent on each other.

This paper extends the model of (typed) pattern languages by allowing that
certain variables in a pattern are in a particular relation with each other. The
resulting formal languages are called Relational Pattern Languages; both classi-
cal pattern languages and typed pattern languages are special cases of relational
pattern languages. Moreover, relational pattern languages overcome the limita-
tions observed in terms of expressiveness of (typed) pattern languages.

We study relational pattern languages both with respect to their learnability
in the limit from positive data (text) and with respect to the complexity of the
membership problem. Our contributions along these lines are as follows:

(1) Considering Gold’s model of learning in the limit from arbitrary texts [3],
relational pattern languages can be learned as long as the set of allowed relations
between variables is finite and no variable can be replaced by the empty string.
The conditions are essential for learnability.

(2) The membership problem for relational pattern languages isNP -complete
in general, but we show a number of interesting sub-problems that can be solved
efficiently. Most notably, we prove that the membership problem for relational
patterns over finitely many polynomial-time decidable relations is solvable in
polynomial time if the words for which to test membership are bounded in length.
This is not only a very interesting sub-problem from an application point of view,
but also not trivial, since we deal with potential empty substitutions.3

Considering practical applications, Gold’s model of learning in the limit can
be criticized: often there is no step in the learning process after which the set

3 If only non-empty substitutions for variables are allowed, the membership problem
restricted to a finite set of words becomes trivial.

of candidate patterns can be reduced to a finite set, thus forcing the learner to
make a best guess within an infinite version space—this might make it difficult
for a user to decide when to interrupt the infinite learning process. Despite
allowing the learning algorithm this limit behaviour, there is no general positive
learnability result for the case that empty substitutions are allowed, cf. [10]. This
is partly due to the fact that a learning algorithm in Gold’s model is required to
be successful on any text for the target language. As a step towards a practical
model for learning a large class of (erasing) relational pattern languages, we
make the following contributions:

(3) We introduce a new model of learning from a restricted pool of potential
texts, since in practice not all texts (data streams) are equally likely. We assume
that there are probability distributions over the strings that can be substituted
for pattern variables, thus making the appearance of some words in the text
more likely than that of other words. As we will explain below, our model differs
from previous approaches that were based on a similar motivation [5, 12]. We
refer to the underlying patterns as Probabilistic Relational Patterns.

(4) We prove that in our new model, a large class of (erasing) probabilistic
relational pattern languages can be learned with high confidence, by effectively
restricting the set of likely candidate patterns to a finite set after processing only
a single positive example.

(5) Our model results in a simple but potentially practical method for test-
ing membership correctly with high confidence, for all probabilistic relational
patterns using a finite set of recursive relations.

2 Learning (typed) pattern languages

Languages are defined with respect to a non-empty alphabet Σ. A word w is a
finite, possibly empty, sequence of symbols from Σ the length of which is denoted
by |w|.4 ε refers to the empty word, i.e., the word of length 0. The set of all words
over Σ is denoted by Σ∗, and the set of all non-empty words over Σ by Σ+;
hence Σ+ = Σ∗ \ {ε}. A language L is a subset of Σ∗. By w1 ◦ w2 we denote
the concatenation of two words w1 and w2 (where, for ease of presentation, we
allow w1 and/or w2 to be written as σ ∈ Σ rather than a word (σ) of length 1).
In what follows, we always assume Σ to be a finite set of cardinality at least 2.
We denote the set of all non-zero natural numbers by N+.

In Gold’s model of learning in the limit from positive data [3], a class of
languages is learnable if there is a learner that “identifies” every language in the
class from any of its texts, where a text for a language L is an infinite sequence
τ(0), τ(1), τ(2), . . . of words such that {τ(i) | i ∈ N} = L.

Definition 1 (Gold [3]) Let L be a class of languages. L is learnable in the
limit from positive data if there is a hypothesis space {Li | i ∈ N} ⊇ L and a
partial recursive mapping S such that, for any L ∈ L and any text (τ(i))i∈N for
4 “Word” refers to a finite sequence of symbols exclusively from Σ, whereas “string”

refers to any other sequence of symbols.

L, S(τ(0), . . . , τ(n)) is defined for all n ∈ N and there is a j ∈ N with Lj = L
and S(τ(0), . . . , τ(n)) = j for all but finitely many n.

A class of languages that has been studied in the formal language theory
community as well as in the learning theory community is Angluin’s class of
non-erasing pattern languages [1], defined as follows. Let X = {x1, x2, . . .} be a
countable set of symbols called variables; we require that X be disjoint from Σ.
A pattern is a non-empty finite string over Σ ∪X. The set of all patterns over
Σ ∪ X will be denoted by PatΣ . A substitution is a string homomorphism θ :
PatΣ → Σ∗ that is the identity when restricted to Σ. The set of all substitutions
with respect to Σ is denoted by ΘΣ . The non-erasing language LNE(p) of a
pattern p ∈ (Σ ∪ X)+ is defined by LNE(p) = {w ∈ Σ∗ | ∃θ ∈ ΘΣ [θ(p) =
w∧∀x ∈ X [θ(x) 6= ε]]}, i.e., it consists of all words that result from substituting
all variables in p by non-empty words over Σ∗. The set LΣ,NE of non-erasing
pattern languages is given by LΣ,NE = {LNE(p) | p ∈ PatΣ}. Angluin showed
that LΣ,NE is learnable in the limit from positive data [1].

Shinohara extended pattern languages by permitting the substitution of vari-
ables by ε [13]. We denote the erasing pattern language of a pattern p by LE(p),
where LE(p) = {w ∈ Σ∗ | ∃θ ∈ ΘΣ [θ(p) = w]}, and refer to the class of
erasing pattern languages by LΣ,E . For |Σ| ∈ {2, 3, 4}, LΣ,E is not learnable in
the limit from positive data [10]. Wright [16] studied a subclass of erasing pat-
tern languages under restricted substitutions, leading to Koshiba’s typed pattern
languages [6]. In Koshiba’s model, each variable x in a pattern p is assigned a
particular type T (x) = t, where t ⊆ Σ∗ is recursive. (p, T) is then called a typed
pattern. The words generated by (p, T) are formed by substituting any variable
of type t in p only with words from t, resulting in the typed pattern language
L(p, T).5

Types make pattern languages more expressive and more suitable for appli-
cations. For example, a system for entering bibliographic data as described by
Shinohara [13] might use patterns like p = author: x1 title: x2 year: x3. One
would expect x3 to be substituted only by certain two or four digit integers—a
property that becomes expressible when using types.

CUU CCA
U A

U--A
C--G
C--G
G--C

A G
G A
GG UC

Fig. 1. RNA sequence
with bonds.

In fact, every recursive language L can trivially be
written as a typed pattern language, generated by the
pattern p = x1 where the type of x1 is L. Thus, a
typed pattern is not always a useful description of a
language, from an application point of view. Ideally,
one would like to keep the types themselves simple, to
make the pattern understandable by humans.

Consider for example patterns describing RNA
sequences formed out of bases A,C,G,U . The sec-
ondary structure of molecules contains information
about bonds between base pairs in the sequence; C

5 Actually, Koshiba did not allow substituting variables by the empty string, but we
relax this condition here. We also deviate slightly from his notation.

can bond with G, A with U . For example, Fig. 1 shows potential intramolecular
bonds for the sequence CUUU UCCG AGGG UCAG CGGA ACCA. Obviously,
the bonding partners towards one end of the sequence must appear in reverse
order of the corresponding bases towards the opposite end of the sequence. To
express this with a typed pattern would require the whole subsequence UCCG
AGGG UCAG CGGA to be the substitution for a single variable and thus an
element of a complex type.

A formally simpler example is the language L1 = {anbn | n ≥ 1}, which is
context-free but not regular. To express L1 as a typed pattern language requires
“complex” types; regular types are not sufficient.

Proposition 2 Let (p, T) be a typed pattern. If L(p, T) = L1 then there is some
x ∈ X occurring in p such that T (x) is not a regular language.

Proof. Let (p, T) be a typed pattern generating L1, and k be the number of
variables that occur more than once in p. Assume T (x) was regular for all x ∈ X
occurring in p. We deduce a contradiction by induction on k.

For k = 1, L(p, T) would be the concatenation of regular languages and as
such regular—a contradiction.

For k ≥ 2, let x be a variable that occurs l times in p with l ≥ 2. W.l.o.g., we
may assume that L(x, T) 6= {ε}. Since L(p, T) = L1 and x occurs multiple times,
one obtains L(x, T) ⊆ {ai | i ∈ N+} or L(x, T) ⊆ {bi | i ∈ N+}. For L(x, T) ⊆
{ai | i ∈ N+}, let y be a variable not occurring in p, T ′(y) = {ai·l | ai ∈ L(x, T)},
and T ′(z) = T (z) for all variables z occurring p. Then L(p′, T ′) = L(p, T) = L1,
where p′ is the pattern that results when removing all occurrences of x from p and
adding y as a prefix. The inductive hypothesis yields the required contradiction.
The case L(x, T) ⊆ {bi | i ∈ N+} is analogous. ut

3 Relational patterns

In order to model interdependencies between the substitutions of variables, we
introduce relations between variables into the definition of patterns.

Definition 3 Let R be a set of relations over Σ∗. Then, for any n ∈ N+, Rn
denotes the set of n-ary relations in R. A relational pattern with respect to Σ and
R is a pair (p, vR) where p is a pattern over Σ and vR ⊆ {(r, y1, . . . , yn) | n ∈
N+, r ∈ Rn, and y1, . . . , yn are variables in p}. The set of relational patterns
with respect to R will be denoted by PatΣ,R.

The set of all possible substitutions for (p, vR) is denoted by Θ(p,vR),Σ. It
contains all substitutions θ ∈ ΘΣ that fulfill, for all n ∈ N+:

∀r ∈ Rn ∀y1, . . . , yn ∈ X [(r, y1, . . . , yn) ∈ vR ⇒ (θ(y1), . . . , θ(yn)) ∈ r] .

The language of (p, vR), denoted by L(p, vR), is defined as {w ∈ Σ∗ | ∃θ ∈
Θ(p,vR),Σ : θ(p) = w}. The set of all languages of relational patterns with respect
to R will be denoted by LΣ,R.

For instance, r = {(w1, w2) | w1, w2 ∈ Σ∗ ∧ |w1| = |w2|} is a binary relation,
which, applied to two variables x1 and x2 in a relational pattern (p, vR), ensures
that the substitutions of x1 and x2 generating words from p always have the
same length. Formally, this is done by including (r, x1, x2) in vR.

We assume, without loss of generality, that for every variable x occurring in
a relational pattern (p, vR), there is exactly one r ∈ R1 such that (r, x) ∈ vR. In
fact, this unary relation r represents the type of variable x. If there is no r ∈ R1

with (r, x) ∈ vR, we can include (r∗, x) in (p, vR), where w ∈ r∗ ↔ w ∈ Σ∗. If R1

contains several ri (for i in some index set I) with (ri, x) ∈ vR, we can replace
them by the single relation (r∩I , x) where w ∈ r∩I ↔ ∀i ∈ I [w ∈ ri]. We will
use the terms “type” and “unary relation” interchangeably. Similarly, without
loss of generality, each set of n variables is included in vR with at most one n-ary
relation. We further assume that relational patterns do not contain any variable
twice. This is no restriction, since repetition of variables can be expressed by an
equality relation between two distinct variables.

We are only going to consider the case that R is finite, which seems sufficient
for many practical applications. It is easy to see that LΣ,NE and LΣ,E , as well
as the class of typed pattern languages over finitely many types, are subclasses
of LΣ,R, for respective suitably defined finite sets R.

The gain in expressiveness shows for example in L1, which, by Proposition 2,
cannot be expressed as a typed pattern language using only regular type lan-
guages. Using relational patterns, regular types are sufficient to describe L1.

Proposition 4 There is a finite set R of relations such that R1 contains only
regular languages and L1 ∈ LΣ,R.

Proof. If R = {r1, r2, r}, r1 = {ai | i ≥ 1}, r2 = {bi | i ≥ 1}, r = {(w1, w2) |
|w1| = |w2|}, and vR = {(r1, x1), (r2, x2), (r, x1, x2)} then L(x1x2, vR) = L1. ut

Since erasing pattern languages can be expressed as relational pattern lan-
guages, Reidenbach’s non-learnability results for erasing pattern languages [10]
immediately yield the following theorem.

Theorem 5 There is a finite alphabet Σ and finite set R of recursive relations
such that LΣ,R is not learnable in the limit from positive data.

However, if we disallow empty substitutions, we get positive learnability re-
sults for any set of recursive relations.

Theorem 6 Let R be a finite set of recursive relations with r ⊆ Σ+ for all
r ∈ R1. Then LΣ,R is learnable in the limit from positive data.

To prove this, we use a well-known result due to Angluin [2], according to
which every indexable class of languages that has finite thickness is learnable
in the limit from positive data. A class L of languages is indexable if there is
an enumeration (Li)i∈N with L = {Li | i ∈ N} and an effective procedure d
that decides, given any i ∈ N and w ∈ Σ∗, whether or not w ∈ Li [2]. (Li)i∈N

is then called an indexing for L. An indexable class L has finite thickness if,
for every w ∈ Σ∗, the set of languages in L that contain w is finite. One can
establish both indexability and finite thickness to prove Theorem 6. The proofs
of both these properties use standard techniques and are omitted because of
space constraints. It should be noted though that our results show in particular,
that Theorem 6 can be witnessed by a learner that returns relational patterns
as its hypotheses—a desirable feature from an application point of view, since
relational patterns provide an intuitive representation of a language.

Lemma 7 Let R be a finite set of recursive relations with r ⊆ Σ+ for all r ∈ R1.
There exists an effective enumeration f : N → PatΣ,R of all relational patterns
over R such that (L(f(i)))i∈N is an indexing for LΣ,R.

Lemma 8 Let R be a finite set of recursive relations with r ⊆ Σ+ for all r ∈ R1.
Then LΣ,R has finite thickness.

In fact, Lemma 8 can be strengthened. An indexable class L is said to have
recursive finite thickness [8] if there is an indexing (Li)i∈N for L and a recursive
procedure c such that, for any w ∈ Σ∗, c(w) is a finite subset of N fulfilling
[w ∈ Li ↔ ∃j ∈ c(w) [Lj = Li]], i.e., for every word w a finite list of indices for
all languages in L containing w can be effectively determined.

Theorem 9 Let R be a finite set of recursive relations with r ⊆ Σ+ for all
r ∈ R1. Then LΣ,R has recursive finite thickness.

The proof is omitted due to space constraints. Theorem 9 has some nice
consequences, which follow immediately from the literature on recursive finite
thickness [8, 7]. For the following corollary, note that an iterative learner [14]
is restricted to learn without access to prior data at any point in time. Its
hypothesis on a text segment (τ(0), . . . , τ(n)) is determined only by τ(n) and
its hypothesis generated on (τ(0), . . . , τ(n− 1)) (or a dummy hypothesis in case
n = 0).

Corollary 10 Let R be a finite set of recursive relations with r ⊆ Σ+ for all
r ∈ R1. Let k ∈ N. Then the class of all unions of up to k languages from LΣ,R
is learnable in the limit from positive data using an iterative learner.

4 The membership problem

Many algorithms for learning formal languages make a hypothesis only if the
corresponding language is proven to be consistent with the observed data. This
typically requires solving several instances of the membership problem. If P ⊆
PatΣ is a set of patterns and W ⊆ Σ∗ a set of words, then the erasing (non-
erasing) membership problem for (P,W) is decidable if there is an effective
procedure that, given any p ∈ P and any w ∈ W , decides whether or not w ∈
LNE(p) (w ∈ LE(p), resp.). Similarly, we can define the membership problem
for relational pattern languages.

The fact that both the non-erasing and the erasing membership problem for
(PatΣ , Σ∗) are NP -complete [1, 4] is an obstacle for the design of efficient learn-
ing algorithms for pattern languages. In this section, we study the complexity
of subproblems of the memberhip problem for relational pattern languages.

The following consequence of Angluin’s result is straightforward.

Theorem 11 Let R be a finite set of recursive relations. Then the membership
problem for (PatΣ,R, Σ∗) is NP -hard.

However, when the number of variables occurring in a relational pattern is
bounded a priori, we get a positive result, which generalizes Angluin’s result
that the non-erasing membership problem is polynomial-time decidable if the
patterns contain at most k variables, for some k [1].

Theorem 12 Let R be a set of finite relations, each of which is decidable in poly-
nomial time. Let k ∈ N. Then the membership problem for ({(p, vR) ∈ PatΣ,R | p
contains at most k distinct variables}, Σ∗) is decidable in polynomial time.

Proof. Given a relational pattern (p, vR) over R and a word w, the following
procedure decides whether w ∈ L(p, vR) in time polynomial in |p|, |vR|, and |w|.

1. Let z ≤ k be the number of distinct variables in p. List all tuples (w1, . . . , wz)
of up to z many substrings of w, for which w1 ◦ . . . ◦ wz is a subsequence of
w. (Note: as k is constant, the number of such tuples is polynomial in |w|.)

2. For each tuple (w1, . . . , wz) thus listed, define a substitution θ by substituting
the z variables in p in order with the words w1, . . . , wz; then test whether
(i) θ ∈ Θ(p,vR),Σ and (ii) θ(p) = w. (Note: these tests can be done in
polynomial time, since all relations in R can be decided in polynomial time.)

3. If there is one tuple (w1, . . . , wz) for which the test on both (i) and (ii) is
positive, return yes, otherwise return no.

The correctness and efficiency of the procedure follow immediately. ut

In contrast to this, in the context of relational patterns, it is impossible
to get an equivalent of Shinohara’s [13] result stating that the (non-)erasing
membership problem is polynomial-time decidable when restricted to the class
of all patterns in which no variable occurs twice, so called regular patterns.
Since relational patterns can always be expressed equivalently without using any
variable twice, Theorem 11 yields NP -hardness of the membership problem for
relational patterns with recursive relations and without repetition of variables.

For erasing regular pattern languages, Shinohara’s result can be extended:

Theorem 13 Let k ∈ N. Then the erasing membership problem for ({p ∈ PatΣ |
there are at most k variables that occur multiple times in p}, Σ∗) is decidable in
polynomial time.

Proof. For a given p ∈ PatΣ with at most k repeated variables and for w ∈ Σ∗,
the number of ways in which only the repeated variables in p can be replaced
by subwords of w is (loosely) upper-bounded by

(|w|
2k

)
(for each of the up to k

repeated variables, one fixes a start position and an end position of the first loca-
tion in w in which the variable could be substituted), which is polynomial in |w|.
Replacing only the repeated variables by words in this way maps p to a regular
pattern whose length is polynomial in |w| + |p|. Obviously, w ∈ LE(p) iff w is
generated by one of these regular patterns. Since, according to Shinohara [13],
the erasing membership problem for regular patterns is polynomial-time decid-
able, it follows that w ∈ LE(p) can be decided in polynomial time as well. ut

To our knowledge, the literature has so far not dealt with the question of the
complexity of the membership problem when the class of patterns is not severely
restricted, yet the set of words is. Since many real-world applications deal with
an a priori restricted set of words, it seems reasonable to focus our attention
on such problems. For example, in bioinformatics applications, one often has an
upper bound on the length of RNA sequences or amino acid sequences that will
occur in a database, due to restrictions on either molecular size or the length of
snippets collected in experiments. We hence focus on the membership problem
for (P, Σ≤m) for m ∈ N and for large classes P of (relational) patterns. Here
Σ≤m denotes the set of words of length at most m over Σ.

For classical patterns, the non-erasing membership problem for (PatΣ , Σ≤m)
clearly is polynomial-time decidable, since the length of a pattern generating a
word w is upper-bounded by |w|. However, for erasing pattern languages and
for the general case of relational pattern languages, a similar statement does
not follow that obviously. The following main result of this section states that,
for words of length at most m, the membership problem for a very general
class of relational patterns is polynomial-time decidable. Note that this does not
provide practical solutions in general, since the length bound m, which occurs
in the exponent in our complexity bound, might be rather large in practice.

Theorem 14 Let R be a set of polynomial-time decidable relations and m ∈ N.
Then the membership problem for (PatΣ,R, Σ≤m) is decidable in polynomial
time.

Proof. Let (p, vR) ∈ PatΣ,R and w ∈ Σ≤m. Let R′ be the set of relations
resulting from R when every unary relation t is replaced by t \ {ε}, i.e., R′ =
(R \R1) ∪ {(t \ {ε} | t ∈ R1}.

We say that ((p, vR), w) fulfills Property (∗) if there is a relational pattern
(q, vR′) ∈ Q(p,vR) with |q| ≤ |w|, and a substitution θq ∈ Θ(q,vR′),Σ

, such that
θq(q) = w and θ ∈ Θ(p,vR),Σ , where θ restricted to the variables in q equals
θq and θ(x) = ε for all other variables. Here Q(p,vR) is the set of all relational
patterns (q, vR′) ∈ PatΣ,R′ where

1. q results from p by removing arbitrarily many variables from p
2. vR′ = {(r, y1, . . . , yn) ∈ vR | yi occurs in q for all 1 ≤ i ≤ n, n ≥ 2}] ∪ {(t \
{ε}, x) | (t, x) ∈ vR and x occurs in q}.

First, we claim that w ∈ L(p, vR) iff ((p, vR), w) fulfills Property (∗): If w ∈
L(p, vR), then there is a substitution θp ∈ Θ(p,vR),Σ such that θp(p) = w. Let q
be the pattern resulting from p after deletion of all variables x with θ(x) = ε.
Obviously, |q| ≤ |w| and there is a θq ∈ Θ(q,vR′),Σ

with θq(q) = w, where vR′ is
defined as in Property (∗).2. Clearly, (q, vR′) ∈ Q(p,vR). It remains to show that
θ ∈ Θ(p,vR),Σ , where θ restricted to the variables in q equals θq and θ(x) = ε for
all other variables. This follows from θ = θp. Hence ((p, vR), w) fulfills Property
(∗). If ((p, vR), w) fulfills Property (∗), it follows just as easily that w ∈ L(p, vR).

Second, we show that Property (∗) can be tested in polynomial time in |p|
and |vR|: To construct a list of all (q, vR′) ∈ Q(p,vR) with |q| ≤ |w|, it suffices to
consider all sets S of at most |w| many distinct variables occurring in p and to
list, for each such S, the relational pattern (θ′(p), vR′) with vR′ as in Property
(∗).2, where

θ′(x) :=

{
x , if x ∈ S ∪Σ ,

ε , otherwise .

With |S| ≤ |w| ≤ m, it follows that at most

|w|∑
i=0

(
|p|
i

)
≤
|w|∑
i=0

|p|i ≤ (m+ 1) · |p|m = O(|p|m)

many relational patterns (q, vR′) are listed. Theorem 12 implies that, for these
listed relational patterns (q, vR′), membership of w in L(q, vR′) can be tested in
time polynomial in m. If all these membership tests are negative, then Property
(∗) is not fulfilled. Each positive membership test yields a substitution θq ∈
Θ(q,vR′)

with θq(q) = w. One then tests whether θ ∈ Θ(p,vR),Σ , where θ is defined
as in Property (∗); each of these tests can be done in O(|vR| · |p|). Property (∗)
is fulfilled if and only if one of these tests is positive. With m being fixed, the
total run-time is polynomial in |vR| and |p|. ut

5 Probabilistic relational patterns

We have identified two problems that are impossible or hard to solve for complex
classes of relational patterns: (i) learning such patterns from text and (ii) the
membership problem for such patterns for all words w ∈ Σ∗. There is reason
to assume that real-world instantiations of these problems can be solved more
easily. To model realistic scenarios more closely, we assume that certain words in
a (relational) pattern language are more likely than others, and thus introduce
the class of probabilistic relational patterns. Our approach addresses the two
issues above in the following way.

Learning from text. In applications, not all words are equally likely to occur
in a text for a target language. Hence it seems unnecessary to demand from a
learner to be successful on all texts of a target language. In this section, we mod-
ify Gold’s success criterion by considering probability distributions over types
in the pattern language and demanding learnability only from texts that are

“sufficiently likely.” Studying the learnability of probabilistic relational pattern
languages in our new model, we obtain upper bounds on the number of relational
patterns that have to be considered to identify the target language.

The membership problem. As a side-effect of our model of probabilistic re-
lational patterns, we obtain a simple and potentially practical mechanism for
testing membership of words of arbitrary length.

We choose to model probabilistic relational pattern languages via probability
distributions on types, i.e., for any type r and any subset A ⊆ r, a variable of
type r is substituted by a word from subset A with a certain probability. We
have to make sure though that the collection of words substituted for distinct
variables does not violate any of the higher-order relations in the pattern.

Definition 15 Let R be a set of relations. A probabilistic relational pattern
over R is a triple (p, vR, prR1), where (p, vR) is a relational pattern over R and,
for each r ∈ R1, prR1 contains exactly one probability distribution on r. For
r ∈ R1 and A ⊆ r, the probability of A with respect to r is then denoted by
prr(A). A probabilistic text for (p, vR, prR1), if existent, is an infinite sequence
of words in L(p, vR), each of which is formed by the following stochastic process:

1. For each variable x in p, for (r, x) ∈ vR, draw a substitution θ(x) ∈ r
according to prr.

2. If, for all n ∈ N+, all r′ ∈ Rn, and all (r′, xi1 , . . . , xin) ∈ vR, the substi-
tutions drawn fulfill (θ(xi1), . . . , θ(xin)) ∈ r′, then return the word resulting
from the substitutions drawn in step 1. Otherwise, repeat from step 1.

Unlike Gold’s definition, we define the success criterion with respect to a
class of patterns rather than pattern languages. This is necessary since two rela-
tional patterns could describe the same language L but differ in the probability
distribution defined on L.

Definition 16 Let P be a class of probabilistic relational patterns and δ ∈ (0, 1).
P is δ-learnable in the limit from likely texts if there is a partial recursive map-
ping S such that, for any (p, vR, prR1) ∈ P, if (τ(i))i∈N is any probabilistic text
for (p, vR, prR1), then, S(τ(0), . . . , τ(n)) is defined for all n and, with probability
at least 1− δ, there is a relational pattern (q, v′R) such that L(q, v′R) = L(p, vR)
and S(τ(0), . . . , τ(n)) = q for all but finitely many n.

The parameter δ determines a confidence level with which the learner S is
supposed to identify a pattern from a probabilistic text, if this text is generated
according to Definition 15. Learning is still a limit process, but success is only
required on a portion of all possible texts.

Our model has some similarities with stochastic finite learning [11, 12]. In the
latter model though, learning is a finite process and the data stream is generated
from a probability distributions over the learning domain (which is in our case
Σ∗) rather than over types. Kearns and Pitt [5] studied PAC learning of pattern
languages generated by patterns with a bounded number of variables, restricting
the class of possible distribution of words by considering only a particular kind

of substitution. The way they restrict substitutions differs from our model, and
their learner expects both positive and negative examples to learn from.

Prior research on (efficient) learning of subclasses of erasing pattern languages
mostly studied patterns in which the number of variables is a priori upper-
bounded [11, 12, 15]. However, in many applications, the number of variables in
target patterns is huge, but the arity of relations is limited. For instance, in
our simplified bioinformatics model, the maximal arity of relations in relational
patterns that describe the two-dimensional structure of RNA sequences is 2.
Therefore, we study relational patterns in which the arity of relations is bounded
and the number of distinct variables is unbounded.

Definition 17 Let k ∈ N, R a finite set of recursive relations, and (p, vR) a
relational pattern. (p, vR) is called k-simple, if

1. Ri = ∅ for all i > k,
2. for every x ∈ X, |{(r, y1, . . . , yi−1, x, yi+1, . . . , yn) ∈ vR | n ≥ 2, 1 ≤ i ≤

n}| ≤ 1, and
3. if r ∈ R, (w1, . . . , wi) ∈ r, and wj = ε for some j ∈ {1, . . . , i} then w1 =

. . . = wi = ε.

A k-simple relational pattern contains at most 1 multi-variable relation per
variable, with an arity of at most k. These relations, as well as all types in a
k-simple pattern, are recursive. Erasing pattern languages generated by patterns
with a bounded number of variable repetitions can also be generated by k-simple
relational patterns.6 In addition, relational patterns generating RNA sequences
as shown in Figure 1 are 2-simple, if each base participates in at most one bond.

Definition 18 requires additional notation. For a relational pattern (p, vR),
any n-ary relation r, and any i ∈ {1, . . . , n}, r[i] denotes the set {w ∈ Σ∗ |
∃w1, . . . , wi−1, wi+1, . . . , wn ∈ Σ∗ [(w1, . . . , wi−1, w, wi+1, . . . , wn) ∈ r]} and

Allowed(x) =
⋂

r(y1,...,yi−1,x,yi+1,...,yn)∈vR

r[i] .

Intuitively, Allowed(x) is the set of all words that can potentially be substituted
for x in the relational pattern (p, vR).

Definition 18 Let π ∈ (0, 1), k ∈ N, R a finite set of recursive relations, and
(p, vR, prR1) a probabilistic relational pattern. (p, vR, prR1) is called (k, π)-good
if (p, vR) is k-simple and, for all t ∈ R1 and all x with (t, x) ∈ vR

1. prt(Allowed(x)) > 0,
2. there is a set A ⊆ t \ {ε} with prt(Allowed(x)∩A)

prt(Allowed(x)) > 1− π.

6 To our knowledge, learnability of this class has not been studied in the literature
before—our positive learnability result presented below in Corollary 21 immediately
yields learnability of such erasing pattern languages from likely texts.

The main result of this section shows that (k, π)-good probabilistic relational
patterns are learnable with high confidence, by cutting down to a finite set of
likely candidate patterns after processing only a single positive example.

Theorem 19 Let δ, π ∈ (0, 1), k ∈ N, R a finite set of recursive relations, and P
any class of (k, π)-good probabilistic relational patterns with respect to R. Then
P is δ-learnable in the limit from likely texts.

Proof. Let (p, vR, prR1) ∈ P be arbitrary and v be the number of independent
variables in (p, vR), i.e., variables x such that for all n ∈ N and for all r ∈ Rn :
(r, y1, . . . , yi−1, x, yi+1, . . . , yn) ∈ vR implies i = 1. Let τ be an arbitrary prob-
abilistic text for L(p, vR). Since (p, vR, prR1) is (k, π)-good, for all t ∈ R1 and
for all variables x of type t in p, there is a set A ⊆ t \ {ε} fulfilling Properties 1
and 2 of Definition 18. m1 = |τ(0)| is an upper bound for the number of inde-
pendent variables in (p, vR) that have been substituted by w ∈ A in τ(0). Since
prt(Allowed(x) ∩A)/prt(Allowed(x)) > 1 − π, each of the v many independent
variables in p are substituted with probability 1− π by a word from A.

Using Chernoff bounds with µ = v(1−π), it follows that the probability that
fewer than (1 − λ1)µ = (1 − λ1)v(1 − π) independent variables are replaced by
a word from A is less than exp(−µλ

2
1

2) = exp(−v(1−π)λ2
1

2) where λ1 ∈ (0, 1).
First, we determine an upper bound for v with a confidence of at least 1− δ1

for some δ1 ∈ (0, δ2). We want to upper-bound the probability Pr[m1 < (1 −
λ1)v(1 − π)] (which is < exp(−v(1−π)λ2

1
2)) by δ1. This can be achieved when

exp(−µ2 +m1 − m2
1

2µ) ≤ δ1 (details are omitted), which holds when µ + m2
1
µ ≥

2m1 − 2 ln δ1 and in particular when µ ≥ 2m1 − 2 ln δ1. The latter is equivalent
to v ≥ 1

1−π (2·m1−2·ln δ1). Thus, with confidence level 1−δ1, 1
1−π (2·m1−2·ln δ1)

is an upper bound for the number of independent variables in p.
Second, we compute an upper bound for the number m2 of independent

variables that are substituted by ε, with confidence level 1−δ2 for δ2 = δ
2 . Using

Chernoff bounds with an expected value of µ′ = vπ, it follows that

Pr[m2 > (1 + λ2) · µ′] = Pr[m2 > (1 + λ2) · v · π] <
[

exp(λ2)
(1 + λ2)(1+λ2)

]v·π
.

If λ2 = min{λ > 0 |
[

exp(λ)
(1+λ)(1+λ)

]vπ
≤ δ2}, then (1 + λ2)vπ + 1 ≥ m2 with

confidence level 1−δ2. Since (p, vR) is k-simple, a variable can be substituted by
ε only if it is in relation with a variable that is substituted by ε. As Ri = ∅ for
i > k and because of Property 2 in Definition 17, with confidence level 1 − δ2,
the number of variables in p that are substituted by ε is at most m2k.

Thus, with confidence at least (1 − δ1)(1 − δ2) > (1 − δ), m1 + m2k is an
upper bound for |p|. Since R is finite, the set of possible candidates for the target
language (with confidence at least 1−δ) is finite and, therefore, the target pattern
can be identified in the limit from positive data with probability 1− δ. ut

For typed pattern languages defined over a finite number of types and with a
bounded number of variable repetitions, we obtain a general positive learnabil-
ity result. They can be represented by a particular kind of k-simple relational

pattern, for which we can prove learnability from likely texts using Theorem 19.
The proof is omitted because of space constraints. We require that every variable
has a non-zero probability of being replaced with a non-empty word.

Theorem 20 Let k ∈ N and let L be the class of all typed pattern languages
generated using finitely many types and patterns with at most k repetitions per
variable. Then there is a set R of relations such that

1. L ⊆ LΣ,R, and
2. for all δ, π ∈ (0, 1), the class {(p, vR, prR1) | (p, vR) ∈ LΣ,R and ∀t ∈

R1 [prt(t \ {ε}) > 1− π]} is δ-learnable from likely texts.

Corollary 21 Let k ∈ N and let L be the class of all erasing pattern languages
generated by patterns with at most k repetitions per variable. Then there is a set
R of relations such that

1. L ⊆ LΣ,R, and
2. for all δ, π ∈ (0, 1), the class {(p, vR, prR1) | (p, vR) ∈ LΣ,R and ∀t ∈

R1 [prt(t \ {ε}) > 1− π]} is δ-learnable from likely texts.

The model of probabilistic relational patterns also yields a straightforward
method for testing membership correctly with high confidence.

Observation 22 Let R be a finite set of recursive relations and let prR1 contain
a probability distribution for each r ∈ R1. Let δ, π ∈ (0, 1). Let A be the following
algorithm, given a probabilistic relational pattern (p, vR, prR1) and w ∈ Σ∗:

1. Let W be the set of words obtained from 2 − 2 ln(δ)/π independent draws
from L(p, vR) as in Definition 15.

2. If w ∈W , return yes, else return no.

Then, for any (p, vR) and any w ∈ L(p, vR) whose probability of being generated
in (p, vR, prR1) by the process in Definition 15 is at least π, A detects the mem-
bership of w in L(p, vR) with probability at least 1− δ. For any (p, vR) and any
w /∈ L(p, vR), A declares non-membership of w in L(p, vR).

The proof is a simple application of Chernoff bounds that implies that, after
2−2 ln(δ)/π independent trials, an event with probability at least π occurs with
probability at least 1− δ. For example, to detect membership with a confidence
of 0.9 for all words whose probability is at least π = 0.00001, a set W of about
660,518 words would be generated. How efficient such a method would be in
practice depends on the efficiency of generating words from relational patterns.

6 Conclusion

We extended the model of (typed) pattern languages by introducing relational
pattern languages, whose expressiveness seems more apt for many applications.
We studied relational pattern languages both with respect to their learnability

from positive data and with respect to the complexity of the membership prob-
lem. We identified interesting sub-problems of the membership problem that
can be solved efficiently, in particular the sub-problem of bounded word length,
which, to our knowledge, has not even been studied for classical patterns yet.

Our probabilistic version of relational patterns, and the corresponding model
of learning from likely texts provide an adaptation for more realistic text mining
and bioinformatics scenarios than Gold’s original model can deal with. In our
new model, a large class of (erasing) probabilistic relational pattern languages
can be learned with high confidence. After seeing just one positive example, the
learner can effectively restrict the set of likely candidate patterns to a finite
set. Finally, we proposed a simple yet potentially efficient method for testing
membership for probabilistic relational patterns correctly with high confidence.

References

1. D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci.,
21:46–62, 1980.

2. D. Angluin. Inductive inference of formal languages from positive data. Inform.
Control, 45:117–135, 1980.

3. E.M. Gold. Language identification in the limit. Inform. Control, 10:447–474,
1967.

4. T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with
and without erasing. Int. J. Comput. Math., 50:147–163, 1994.

5. M. Kearns and L. Pitt. A polynomial-time algorithm for learning k-variable pattern
languages from examples. In COLT, pages 57–71, 1989.

6. T. Koshiba. Typed pattern languages and their learnability. In EuroCOLT, pages
367–379, 1995.

7. S. Lange. Algorithmic learning of recursive languages. Habilitationsschrift, Uni-
versity of Leipzig, 2000.

8. S. Lange and T. Zeugmann. Incremental learning from positive data. J. Comput.
Syst. Sci., 53:88–103, 1996.

9. S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive lan-
guages from positive data: A survey. Theor. Comput. Sci., 397:194–232, 2008.

10. D. Reidenbach. Discontinuities in pattern inference. Theor. Comput. Sci., 397:166–
193, 2008.

11. R. Reischuk and T. Zeugmann. An average-case optimal one-variable pattern
language learner. J. Comput. Syst. Sci., 60:302–335, 2000.

12. P. Rossmanith and T. Zeugmann. Stochastic finite learning of the pattern lan-
guages. Mach. Learn., 44:67–91, 2001.

13. T. Shinohara. Polynomial time inference of extended regular pattern languages.
In RIMS Symposium on Software Science and Engineering, pages 115–127, 1982.

14. R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Elektronische Informationsverarbeitung und Kybernetik, 12:93–99, 1976.

15. K. Wright. Identification of unions of languages drawn from an identifiable class.
In COLT, pages 328–333, 1989.

16. K. Wright. Inductive identification of pattern languages with restricted substitu-
tions. In COLT, pages 111–121, 1990.

