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Abstract

We investigate the use of machine learning to create effective heuristics for search
algorithms such as IDA* or heuristic-search planners such as FF. Our method
aims to generate a sequence of heuristics from a given weak heuristic h0 and a
set of unsolved training instances using a bootstrapping procedure. The training
instances that can be solved using h0 provide training examples for a learning
algorithm that produces a heuristic h1 that is expected to be stronger than h0. If
h0 is so weak that it cannot solve any of the given instances we use random walks
backward from the goal state to create a sequence of successively more difficult
training instances starting with ones that are guaranteed to be solvable by h0.
The bootstrap process is then repeated using hi in lieu of hi−1 until a sufficiently
strong heuristic is produced. We test this method on the 24-sliding tile puzzle,
the 35-pancake puzzle, Rubik’s Cube, and the 20-blocks world. In every case
our method produces a heuristic that allows IDA* to solve randomly generated
problem instances quickly with solutions close to optimal.

The total time for the bootstrap process to create strong heuristics for these
large state spaces is on the order of days. To make the process effective when
only a single problem instance needs to be solved, we present a variation in which
the bootstrap learning of new heuristics is interleaved with problem-solving using
the initial heuristic and whatever heuristics have been learned so far. This substan-
tially reduces the total time needed to solve a single instance, while the solutions
obtained are still close to optimal.
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1. Introduction

Modern heuristic search and planning systems require good heuristics. A pop-
ular approach to creating heuristics for a state space is abstraction: from the state
space description one creates a description of an abstract state space that is easier
to search; exact distances in the abstract space give admissible estimates of dis-
tances in the original space [4, 5, 16, 24, 34, 36]. One limitation of this approach
is that it is often memory-intensive. This has led to the study of compression
schemes [3, 7, 42], disk-based methods [52], and distributed methods [8]. These
methods extend the range of problems to which abstraction is applicable, but since
combinatorial problems grow in size exponentially it is easy to imagine problems
so large that, with the computers of the foreseeable future, even the best heuris-
tics created by these systems will be too weak to enable arbitrary instances to be
solved reasonably quickly.

A second limitation of abstraction is that it can only be applied to state spaces
given in a suitable declarative form. There are situations in which there is no
such state-space description, for example, if a planner is controlling a system or
computer game, or when such a description would be vastly less efficient than a
“hard-coded” one, or when the state space is described declaratively but in a dif-
ferent language than the abstraction system requires. We call such representations
opaque. With an opaque representation, a state space is defined by a successor
function that can be called to compute a state’s children but cannot otherwise be
reasoned about. By definition, abstraction cannot be applied to create heuristics
when the state space is represented opaquely.

An approach to the automatic creation of heuristics that sidesteps both of these
limitations is to apply machine learning to a set of states whose distance-to-goal
is known (the training set) to create a function that estimates distance-to-goal for
an arbitrary state, i.e., a heuristic function. This idea has been applied with great
success to the 15-puzzle and other state spaces of similar size (see Ernandes and
Gori [9] and Samadi, Felner, and Schaeffer [41]), but could not be applied to larger
spaces, e.g., the 24-puzzle, because of the excessive time it would take to create
a sufficiently large training set containing a sufficiently broad range of possible
distances to goal. To overcome this obstacle, Samadi et al. [41] reverted to the
abstraction approach: instead of learning a heuristic for the 24-puzzle directly
they learned heuristics for two disjoint abstractions of the 24-puzzle and combined

2



them to get a heuristic for the 24-puzzle. This approach inherits the limitations
of abstraction mentioned above and, in addition, the crucial choices of which
abstractions to use and how to combine them are made manually.

Ernandes and Gori [9] proposed a different way of extending the machine
learning approach to scale to arbitrarily large problems, but never implemented
it. We call this approach “bootstrap learning of heuristic functions” (bootstrap-
ping, for short). The contribution of the present paper is to validate their proposal
by supplying the details required to make automatic bootstrapping practical and
showing experimentally that it succeeds on state spaces that are at or beyond the
limit of today’s abstraction methods.

Bootstrapping is an iterative procedure that uses learning to create a series of
heuristic functions. Initially, this procedure requires a heuristic function h0 and
a set of states we call the bootstrap instances. Unlike previous machine learning
approaches to creating heuristics, there are no solutions given for any instances,
and h0 is not assumed to be strong enough to solve any of the given instances. A
standard heuristic search algorithm (e.g., IDA* [29]) is run with h0 in an attempt to
solve the bootstrap instances within a given time limit. The set of solved bootstrap
instances, together with their solution lengths (not necessarily optimal), is fed to a
learning algorithm to create a new heuristic function h1 that is intended to be better
than h0. After that, the previously unsolved bootstrap instances are used in the
same way, using h1 as the heuristic instead of h0. This procedure is repeated until
all but a handful of the bootstrap instances have been solved or until a succession
of iterations fails to solve a large enough number of “new” bootstrap instances
(ones that were not solved on previous iterations).

If the initial heuristic h0 is too weak to solve a sufficient number of the given
bootstrap instances within the given time limit we use a random walk method to
automatically generate bootstrap instances at the “right” level of difficulty (easy
enough to be solvable with h0, but hard enough to yield useful training data for
improving h0).

As in the earlier studies by Ernandes and Gori [9] and Samadi et al. [41],
which may be seen as doing one step of the bootstrap process with a very strong
initial heuristic, the learned heuristic might be inadmissible, i.e., it might some-
times overestimate distances, and therefore IDA* is not guaranteed to find opti-
mal solutions with the learned heuristic. With bootstrapping, the risk of excessive
suboptimality of the generated solutions is much higher than with the one-step
methods because on each iteration the learning algorithm might be given solution
lengths larger than optimal, biasing the learned heuristic to even greater over-
estimation. The suboptimality of the solutions generated is hence an important
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performance measure in our experiments.
We test our method experimentally on four problem domains that are at, or

beyond, the limit of what current abstraction methods can solve optimally—the
24-sliding-tile puzzle, the 35-pancake puzzle, Rubik’s Cube, and the 20-blocks
world—in each case starting with an initial heuristic so weak that the previous,
one-step methods would fail because they would not be able to generate an ad-
equate training set in a reasonable amount of time. In all the domains, boot-
strapping succeeds in producing a heuristic that allows IDA* to solve randomly
generated problem instances quickly with solutions that are very close to optimal.
On these domains our method systematically outperforms Weighted IDA* [30]
and BULB [15].

The time it takes for our bootstrap method to complete its learning on these
large state spaces is on the order of days. This is acceptable when the learned
heuristic will be used to solve many instances, but a different approach is needed
in order to solve a single instance quickly. For this we introduce a method that
interleaves the bootstrapping process for creating a succession of ever stronger
heuristics with a process that uses the set of heuristics that are currently available
(initially just h0) to try to solve the given instance. The total time required to
solve a single instance using this method is substantially less than the learning
time for the bootstrap method, and the solutions it produces are of comparable
suboptimality. For example, with this method the total time to solve an instance
of the 24-puzzle is just 14 minutes, on average, and the solution found is only
6.5% longer than optimal. When applied to the blocksworld instances used in
the IPC2 planning competition, our interleaving method solves all the instances
within the 30-minute time limit, and almost all are solved optimally.

The remainder of the paper is organized as follows. Section 2 provides a full
description of the Bootstrap and RandomWalk methods, which are experimen-
tally evaluated in Section 3. The interleaving method for quickly solving single
instances is described and evaluated in Section 4. Section 5 surveys previous
work related to bootstrapping and Section 6 closes the paper with a summary and
conclusions.

2. The Bootstrap and RandomWalk Algorithms

This section describes the algorithmic approach and implementation of our
method for learning heuristics. The input to our system consists of a state space, a
fixed goal state g, a heuristic function h0, a set Ins of states to be used as bootstrap
instances, and a set of state features to be used for learning. We do not assume
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that h0 is sufficiently strong that any of the given bootstrap instances can be solved
using it. In principle, h0 could be completely trivial (returning 0 for all states) but
in practice it is useful to include weak but non-trivial heuristics among the features
used for learning. If that is done it makes sense to use their maximum as h0 in the
absence of any stronger heuristic.

In the first subsection, we focus on the bootstrap procedure, which incremen-
tally updates the initial heuristic with the help of a set of bootstrap instances. This
procedure requires h0 to be strong enough to solve several of the given instances
at least suboptimally in the given time limit. If it is not, a set of easier instances
is needed to improve the initial heuristic to the point where the easiest bootstrap
instances can be solved. This set of easier instances is generated by the random
walk method described in the second subsection.

2.1. The Bootstrap Algorithm
Our bootstrap procedure, Algorithm 1, proceeds in two stages. In the first

stage, for every instance i in Ins, a heuristic search algorithm is run with start
state i and the current heuristic hin (line 7). Every search is cut off after a limited
period of time (tmax). If i is solved within that time then the user-defined features
of i, together with its solution length, are added to the training set. In addition,
features and solution lengths for all the states on the solution path for i are added
to the training set (lines 8 and 9). This increases the size of the training set at
no additional cost and balances the training set to contain instances with long and
short solutions.

The second stage examines the collected training data. If “enough” bootstrap
instances have been solved then the heuristic hin is updated by a learning algo-
rithm (line 16) and the training set is reset to be empty. If not “enough” boot-
strap instances have been solved, the time limit is increased without changing hin

(line 21). Either way, as long as the current time limit (tmax) does not exceed
a fixed upper bound (t∞), the bootstrap procedure is repeated on the remaining
bootstrap instances with the current heuristic hin. “Enough” bootstrap instances
here means a number of instances above a fixed threshold insmin (line 15). Vari-
able NumSolved keeps track of the number of bootstrap instances solved in each
iteration. It increases whenever a new instance is solved (line 12) and it will be set
to zero for the next iteration (line 19). The procedure terminates if tmax exceeds
t∞ or if the remaining set of bootstrap instances is too small.

Notice (line 17) that each heuristic hin created by bootstrap is the maximum
of the heuristic returned by the learning algorithm using the current training set
(hlearn) and h0. This is not an essential requirement of the bootstrap process but it
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Algorithm 1
1: procedure Bootstrap(h0,hin, Ins): hout

2: uses global variables tmax, t∞, insmin, g
3: create an empty training set TS
4: NumSolved : = 0
5: while (NumSolved+size(Ins) ≥ insmin) && (tmax ≤ t∞) do
6: for each instance i ∈ Ins do
7: if Heuristic Search(i, g, hin, tmax) succeeds then
8: for each state s on i’s solution path Pi do
9: Add (feature vector(s), distance(s,g,Pi)) to TS

10: end for
11: remove i from Ins
12: NumSolved : = NumSolved + 1
13: end if
14: end for
15: if (NumSolved ≥ insmin) then
16: hlearn := learn a heuristic from TS
17: Define hin(x), for any state x, to be max(h0(x),hlearn(x))
18: clear TS
19: NumSolved : = 0
20: else
21: tmax := 2 × tmax

22: end if
23: end while
24: return hin

is advisable when h0 is known to be an admissible heuristic since it can only make
the heuristic more accurate. In all the experiments reported below, this method
was used. It is also possible to take the maximum over all previously learned
heuristics as well as hlearn and h0, or to add the previously learned heuristics to
the set of features used for learning. We did not do either of these because of the
considerable increase in computation time they would have caused.

Table 1 shows each iteration of the bootstrap procedure on the 15-puzzle (de-
fined in Section 3) when Ins contains 5000 randomly generated solvable instances,
insmin is 75, and tmax is 1 second. The definition of the initial heuristic h0, the
learning method, and the features used for learning are the same as those for the
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24-puzzle that are given in Section 3 below. The first row shows the result of the
initial iteration. All 5000 instances in Ins were attempted but IDA* with h0 was
only able to solve 986 of them in the time limit (column Number Solved). The
optimal solution length for the solved instance is shown in column Average Op-
timal Cost. The average number of nodes generated in solving these instances is
shown in column Average Nodes Generated. The states along these 986 solution
paths, together with their distances to the goal, form the training set to which a
learning algorithm is applied to create a new heuristic, h1.1 The suboptimality of
the heuristic learned on this iteration (h1), measured on an independent test set, is
shown in column Average Suboptimality.

Iteration Number Average Average Average
Solved Optimal Cost Nodes Generated Suboptimality

(solved instances) (solved instances) (test instances)
0 986 46.11 517,295 1.2%
1 3326 54.37 205,836 2.8%
2 519 58.52 353,997 5.5%
3 156 60.44 276,792 8.3%

Table 1: Bootstrap iterations for the 15-puzzle.

An attempt is then made using h1 to solve each of the 4014 instances that
were not solved using h0. The next row (iteration 1) shows that 3326 of these
were solved in the time limit. All the states along all these solution paths were
used to learn a new heuristic h2, which was then used in an attempt to solve each
of the 688 instances that were not solved on the first two iterations. The next row
(iteration 2) shows that 519 of these were solved. The heuristic, h3, learned from
these solution paths solved 156 of the 169 instances not solved to this point, and
those solution paths provide the training data to create a new heuristic, h4. The
bootstrap process ends at this point because there are fewer than insmin unsolved
instances, and h4 is returned as the final heuristic. In this example, there was
no need for the bootstrap process to increase the time limit tmax because each
iteration solved insmin or more instances with the initial tmax value.

There are no strong requirements on the set Ins of bootstrap instances—it may
be any set representative of the instances of interest to the user. However, for the
bootstrap process to incrementally span the gap between the easiest and hardest

1As explained above, h1, and all other heuristics created by Bootstrap, are defined, for any state
x, as the maximum of h0(x) and hlearn(x), where hlearn is the heuristic created by the learning
algorithm in the current iteration.
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of these instances, Ins must contain instances at intermediate levels of difficulty.
At present this is simply an intuitive informal requirement for which we have no
proof of necessity.

2.2. The RandomWalk Algorithm
It can happen that the initial heuristic h0 is so weak that the heuristic search

algorithm is unable to solve enough instances in Ins, using h0, to get a sufficiently
large set of training data. For this case we need a procedure that generates boot-
strap instances that are (i) easier to solve than the instances the user provided
but (ii) harder to solve than instances solvable by simple breadth-first search in
acceptable time (to guarantee a high enough quality of training data).

This is accomplished using random walks backward from the goal2 of a suit-
ably chosen length to generate instances. As described in Algorithm 2, we first
test whether the initial heuristic is strong enough to solve a sufficient number
(at least insmin many) of the user-provided bootstrap instances (Ins) in the given
time limit tmax (line 5). If so, the bootstrap procedure can be started immediately
(line 10). Otherwise, we perform random walks backward from the goal, up to
depth “length”, and collect the final states as special bootstrap instances (RWIns).
The bootstrap procedure is then run on these special instances (line 7) to create
a stronger heuristic. This process is repeated with increasingly longer random
walks (line 8) until it produces a heuristic that is strong enough for bootstrapping
to begin on the user-given instances or fails to produce a heuristic with which
sufficiently many instances in RWIns can be solved within time limit t∞.

The choice of “lengthIncrement” is an important consideration. If it is too
large, the instances generated may be too difficult for the current heuristic to solve
and the process will fail. If it is too small, a considerable amount of time will
be wasted applying the bootstrap process to instances that do not substantially
improve the current heuristic. In our system, the lengthIncrement parameter was
set automatically as follows.

1. Run a breadth-first search backward from the goal state with a time limit
given by the initial value of tmax. Let S be the set of states thus visited.

2For spaces with uninvertible operators, this requires a predecessor function, not just the suc-
cessor function provided by an opaque representation. Hence the RandomWalk part of the process
will not be applicable to certain opaque domains. Moreover, the RandomWalk procedure works
only for single goal states, not for sets of goal states. Neither of these restrictions applies to the
Bootstrap procedure itself, since there the search progresses in the forward direction.
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Algorithm 2 In a random walk we disallow the inverse of the previous move.
1: procedure RandomWalk (h0, Ins, lengthIncrement): hout

2: uses global variables tmax, t∞, insmin, g
3: length := lengthIncrement
4: hin := h0

5: while (hin is too weak to solve insmin many instances in Ins within time tmax)
&& (tmax ≤ t∞) do

6: RWIns := 200 instances, each generated by applying “length” many random
moves backward from g

7: hin := Bootstrap(h0, hin, RWIns)
8: length := length + lengthIncrement
9: end while

10: return Bootstrap(h0, hin, Ins)

2. Repeat 5000 times: do a random walk backward from the goal (always dis-
allowing the inverse of the previous move) until a state not in S is reached.
Set lengthIncrement to be the floor of the average length of these 5000 ran-
dom walks.

The intuition motivating this definition of lengthIncrement is as follows. Ini-
tially, it generates problem instances that, on average, are just a little more difficult
than can be solved using breadth-first search with a time limit of tmax. These are
thus expected to provide training examples that are solvable using h0 and cause a
non-trivial heuristic function to be learned. On subsequent iterations, we imagine
that most of the instances created by random walks whose length is the next larger
multiple of lengthIncrement will be within a short breadth-first search of the in-
stances that were solved on the previous iteration—in other words, just slightly
more difficult, on average, than the previous instances. By being slightly more
difficult they are easy enough to be solved using the current heuristic but provide
training instances that allow a better heuristic to be learned.

The RandomWalk approach is not guaranteed to succeed. It might fail to
generate problems of a suitable level of difficulty (easy enough to be solvable
using the current heuristic but hard enough to help produce a better heuristic).

Table 2 illustrates the RandomWalk procedure on the 20-blocks world when
Ins contains 5000 randomly generated solvable instances, insmin is 75, tmax is 1
second, and 200 random walk instances are generated (RWIns) for each distinct
random walk length. The definition of this domain, the initial heuristic h0, the
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learning method, and the features used for learning are given in Section 3 below.
Random walks are necessary in this domain because h0 is too weak to solve a
sufficient number (insmin) of the bootstrap instances (Ins). The value of “length-
Increment” was set automatically by our method at 20.

The first row shows the result of the initial iteration. 200 instances (RWIns)
have been generated by random walks of length 20 (column RW length) and
passed to the bootstrap procedure along with h0. IDA* using h0 as the heuristic
was able to solve 197 of these instances (column Number Solved) within the
time limit (column Time Limit, in seconds) so there is just one iteration of the
bootstrap process, which returns a new heuristic, h1. This heuristic is then used to
attempt to solve the bootstrap instances in Ins. It is too weak to solve a sufficient
number of them in the time limit so another iteration of the RandomWalk process
is needed.

row RW Number Average Time
length Solved Optimal Cost Limit

1 20 197 8.97 1
2 40 145 11.76 1
3 60 115 13.96 1
4 60 79 16.05 2
5 80 99 16.08 2
6 80 95 19.37 4
7 100 174 20.41 4
8 120 139 23.5 4

Table 2: RandomWalk procedure applied to the 20-blocks world.

The random walk length is increased by 20 (the value of lengthIncrement)
and a set (RWIns) of 200 instances is generated by random walks of length 40 and
passed to the bootstrap procedure along with h1. 145 of them are solved in the first
bootstrap iteration and the bootstrap procedure returns a new heuristic, h2, since
fewer than insmin unsolved RandomWalk instances remain. This heuristic is used
to attempt to solve the bootstrap instances (Ins). It is too weak to solve a sufficient
number of them in the time limit so another iteration of the RandomWalk process
is needed.

The random walk length is increased by 20 and a set of 200 instances (RWIns)
are generated by random walks of length 60 and passed to the bootstrap proce-
dure along with h2. The bootstrap process (row 3) is only able to solve 115 of
these instances using h2 in its first iteration. A new heuristic, h3, is learned from
these but is not passed back to the RandomWalk procedure because there are still
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more than insmin unsolved RandomWalk instances (RWIns). A second iteration
of the bootstrap procedure attempts to solve them with its new heuristic, h3, but
fails to solve a sufficient number (insmin) and therefore doubles the time limit
and attempts them again with h3. Row 4 shows that this iteration of the boot-
strap procedure succeeds in solving 79 of them with the new time limit, and from
these it learns a new heuristic, h4. Since there are now fewer than insmin unsolved
RandomWalk instances, the bootstrap procedure returns h4 to the RandomWalk
process. This heuristic is used in an attempt to solve the bootstrap instances (Ins).
It is too weak to solve a sufficient number of them in the time limit so another
iteration of the RandomWalk process is needed.

As the table shows, in total 6 iterations of the loop in the RandomWalk process
were executed (6 distinct values of the RandomWalk length) and for each of these
iterations either one or two bootstrap iterations were required to find a heuristic
that could solve the random walk instances. The time limit had to be increased
twice. The RandomWalk process ended because the heuristic, h8, created from
the RandomWalk instances solved in the final row of the table, was able to solve
a sufficient number (insmin) of the bootstrap instances (Ins) that the bootstrap pro-
cedure could finally be started on the set of bootstrap instances (Ins) with h8 as its
initial heuristic.

Once the bootstrap process begins to operate on the bootstrap instances, the
RandomWalk process will not be invoked again. However, there is a role that it
could play. If in some iteration the Bootstrap process fails to solve a sufficient
number of instances, instead of doubling its current time limit (line 21 of Algo-
rithm 1) it could instead invoke the RandomWalk process to generate instances
of the appropriate level of difficulty. Preliminary experiments with this idea suc-
ceeded on artificially contrived sets of bootstrap instances for the 15-puzzle and
17-pancake puzzle, but failed on Rubik’s Cube. Because of the latter we aban-
doned this idea and all the experiments reported in this paper are based on using
RandomWalk only as an initial step, if needed, to create a heuristic strong enough
to allow the bootstrap process to begin operating on the bootstrap instances.

2.3. Summary: System Overview
A summary of the overall system and its operation is depicted in Figure 1.

The key inputs from the user are an initial heuristic h0 and a set of bootstrap in-
stances. The RandomWalk procedure tests whether h0 is strong enough to solve
a sufficiently large number of the bootstrap instances. If it is not, RandomWalk
internally generates its own instances through random walks of a length that it
determines automatically. These instances are passed to the Bootstrap procedure,
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Figure 1: System overview.

which returns a heuristic. This procedure repeats, with instances created by ran-
dom walks of increasing lengths, until the current heuristic is strong enough to
solve a sufficiently large number of the bootstrap instances. At this point Boot-
strap is invoked one last time, with the bootstrap instances. The final heuristic it
creates on these instances is the heuristic that is output by the system.

3. Experiments with Bootstrap and RandomWalk

Our experiments ran on a 2.6 GHz computer. Except where explicitly stated
otherwise, IDA* was the search algorithm used.

Domains. Because it is essential in this study to be able to determine the
suboptimality of the solutions our method produces, we chose as testbeds domains
in which optimal solution lengths can be computed in a reasonable amount of time,
either by existing heuristic search methods or by a hand-crafted optimal solver for
the domain. The following domains met this criterion.3

• (n2−1)–sliding-tile puzzle [46] – The sliding-tile puzzle consists of n2−1
numbered tiles that can be moved in an n × n grid. A state is a vector of
length n2 in which component k names what is located in the kth puzzle
position (either a number 1, . . . , n2 − 1 for a tile or a symbol representing
the blank). Every operator swaps the blank with a tile adjacent to it. The
left part of Figure 2 shows the goal state that we used for the 24-puzzle
while the right part shows a state created from the goal state by applying

3Experiments on smaller versions of some of these domains (the 15-puzzle, the 17- and 24-
pancake puzzles, and the 15-blocks world) can be found in a previous publication [27].
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two operators, namely swapping the blank with tile 1 and then swapping it
with tile 6 .

1 2 3 4
5 6 7 8 9

10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

1 6 2 3 4
5 7 8 9

10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

Figure 2: The goal state for the 24-puzzle (left) and a state two moves from the goal (right).

The number of states reachable from any given state is (n2)!/2, cf. [1]. We
report results on the 24-puzzle (n = 5), the largest version of the puzzle
that has been solved optimally by abstraction-based heuristic search meth-
ods [32]. This domain has roughly 1025 reachable states.

• n-pancake puzzle [6] – In the n-pancake puzzle, a state is a permutation of
n numbered tiles and has n−1 successors, with the lth successor formed by
reversing the order of the first l + 1 positions of the permutation (1 ≤ l ≤
n− 1). The upper part of Figure 3 shows the goal state that we used in our
experiments, while the lower part shows the 3rd successor of the goal (the
first four positions have been reversed).

1 2 3 4 5 · · · 34 35

4 3 2 1 5 · · · 34 35

Figure 3: The goal state for the 35-pancake puzzle (above) and a state one move from the goal
(below).

All n! permutations are reachable from any given state. We report results
for n = 35 which contains more than 1040 reachable states. The largest
version of the puzzle that has been solved optimally by general-purpose
abstraction-based methods is n = 19 [22].

• Rubik’s Cube [31] – Rubik’s Cube is a 3x3x3 cube made up of 20 move-
able 1x1x1 “cubies” with coloured stickers on each exposed face. Each face
of the cube can be independently rotated 90 degrees clockwise or counter-
clockwise or 180 degrees. The left part of Figure 4 shows the goal state for
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Figure 4: The goal state for Rubik’s Cube (left) and a state one move from the goal (right) (modi-
fied from Zahavi et al. [51]).

Rubik’s Cube while the right part shows the state produced by rotating the
right face 90 degrees counterclockwise.

We used the standard encoding of the puzzle, including the standard oper-
ator pruning methods that reduce the branching factor from 18 to approxi-
mately 13.34847 [31]. The number of states reachable from any given state
is approximately 4.3252× 1019 [31]. Rubik’s Cube is at the limit of today’s
general-purpose heuristic search methods for finding optimal solutions.

• n-blocks world [45] – In the blocks world, each block can have at most one
block on top of it and one block below it. A block with no block below it is
said to be on the table. A block with no block above it is said to be clear. A
move consists in moving a clear block to be on top of some other clear block
or onto the table. We used n = 20 blocks in our experiments; the number of
reachable states is more than 1020 [45]. The left side of Figure 5 shows the
goal state that we used; the right side of Figure 5 shows the state produced
from the goal state by moving block 20 to the table and then moving block
19 to the top of block 20.

Learning algorithm and features. The learning algorithm used in all exper-
iments was a neural network (NN) with one output neuron representing distance-
to-goal and three hidden units trained using standard backpropagation [40] and
mean squared error (MSE).4 Training ended after 500 epochs or when MSE<
0.005.

4We do not consider the choice of the particular learning algorithm critical; we chose this
neural network setting to be the same as previous work on learning heuristics [9, 41]. Using only
three hidden units made sure that, for every domain we experimented with, the number of inputs
was at least as large as the number of hidden units. We experimented with various error measures
that penalize overestimation, but found none that yielded substantially better results than MSE.
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Figure 5: The goal state for the 20-blocks world (left) and a state two moves from the goal (right).

It is well known that the success of any machine learning application depends
on having “good” features. The issue of automatically creating good features for
learning search control knowledge has been studied, in the context of planning,
by Yoon et al. [49]. In our experiments we did not carefully engineer the fea-
tures used or exploit special properties of the domain. Our intention was to show
that the bootstrap learning approach is effective, even in the absence of carefully
chosen features and human insight into the domain. We did deliberately choose
features that could be quickly calculated since their values are all needed every
time a heuristic value must be computed for a state.

The input features for the NN are described separately for each domain below;
most of them are values of weak heuristics for the respective problems.

Initial heuristics. The initial heuristic h0 for each domain was defined as the
maximum of the heuristics used as features for the NN. In all the domains other
than Rubik’s Cube, h0 was too weak for us to evaluate it on the test instances in a
reasonable amount of time. After each iteration of our method, the new heuristic
was defined as the maximum of the output of the NN and the initial heuristic. No
domain-specific knowledge, such as geometric symmetry or duality [51] was used
to augment the heuristics in any of the experiments reported.

One advantage that h0 has compared to the heuristics generated by bootstrap-
ping is that it can be computed more quickly, since the maximum of a set of feature
values can be evaluated faster than a neural network output with the same features
as input. For example, the computation of each neural network heuristic in our
experiments was between 1.25 (Rubik’s Cube) and 2.0 (24-puzzle) times slower

We also briefly experimented with linear regression instead of a neural network; the preliminary
results were on par with those of the neural net.
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than the computation of the corresponding h0 heuristics.
Bootstrap instances. Ins consisted of either 500 or 5000 solvable instances

generated uniformly at random except for Rubik’s Cube where they were gener-
ated by random walks of various lengths between 1 and 25.

Numeric parameters. In all experiments, insmin = 75, tmax = 1 second,
t∞ = 512 seconds, and the size of the set RWIns was 200.

The tables below summarize the results on our test domains. All these re-
sults are based on a set of test instances generated independently of the bootstrap
instances, in contrast to Table 1, where some measurements were based on the
bootstrap instances solved in the respective Bootstrap iteration. In the tables with
Bootstrap results, the “Iteration” column indicates which Bootstrap iteration is
being described in each row. The “No. Solved” and “Total Unsolved“ columns
show, respectively, the number of bootstrap instances solved in a particular itera-
tion and the total number of bootstrap instances that are not yet solved at the end
of that iteration.

The “Avg. Subopt” column gives the average suboptimality of the solutions
found for the test instances by the heuristic produced at the end of an iteration,
calculated as follows. We define the suboptimality for an instance as the cost of
the solution found for that instance divided by its optimal solution cost. We then
compute the average over all the instances of the individual suboptimalities and
subtract one. For example, Avg. Subopt=7% means that, on average, the solution
found for a test instance was 7% longer than its optimal solution.

“Avg. Nodes Gen.” is the average number of nodes generated to solve the test
instances using the heuristic produced at the end of an iteration. “Avg. Solving
Time” is the average search time in seconds to solve the test instances. Unless
specifically stated, no time limit was imposed when systems were solving the
test instances. “Learning Time” in the row for iteration i is the time used by our
method to complete all iterations up to and including i, including all the Ran-
domWalk processing required before iteration 0 could begin. The letters “s”, “m”,
“h”, and “d” represent units of time—seconds, minutes, hours, and days, respec-
tively.

Each row in the “Other Methods” tables gives the data for a non-bootstrapping
system that we tried or found in the literature. The “h (Algorithm)” column indi-
cates the heuristic used, with the search algorithm, if different from IDA∗, given
in parentheses. The symbol #k indicates that the same heuristic is used in this row
as in row k. The run-times taken from the literature are marked with an asterisk
to indicate they may not be strictly comparable to ours. Some suboptimalities
from the literature are computed differently than ours; these too are marked with
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an asterisk. All weighted IDA∗ (W-IDA∗) and BULB results are for our own im-
plementations of these algorithms, except for the BULB results on Rubik’s Cube,
which are from Furcy and Koenig [15].

The last Bootstrap iteration shown in the tables represents the last successful
iteration of the Bootstrap process. If there were fewer than insmin unsolved boot-
strap instances remaining after that iteration (24-puzzle, 35-pancake puzzle, and
Rubik’s Cube and the 20-blocks world using 5000 bootstrap instances), the Boot-
strap process terminated as soon as that iteration was done and the “Bootstrap
Completion Time” shown in each table, which measures the entire time required
by the Bootstrap process, is equal to the “Learning Time” reported for the final
iteration. However, if there were insmin or more unsolved bootstrap instances
remaining after the last iteration shown in a table (Rubik’s Cube and 20-blocks
world, each with 500 bootstrap instances), another bootstrap iteration would have
been attempted on those instances but Bootstrap terminated it without creating a
new heuristic because tmax exceeded t∞. In such a case the “Bootstrap Completion
Time” includes the time taken by the final, unsuccessful iteration. For example,
the “Learning Time” for iteration 1 in Table 9 shows that it takes 2 days to learn
the final heuristic for Rubik’s Cube using 500 bootstrap instances, but the “Boot-
strap Completion Time” is reported as 2 days and 19 hours. The difference (19
hours) is the time required by an iteration after iteration 1, which failed to solve
insmin new instances within the time limit of t∞.

3.1. 24-puzzle
Tables 3 and 4 show our results on the 50 standard 24-puzzle test instances first

solved by Korf and Felner [32], which have an average optimal cost of 100.78.
The input features for the NN were: Manhattan distance (MD), number of out-
of-place tiles, position of the blank, and five heuristics, each of which is a 4-tile
pattern database (PDB [5]). The total memory used to hold the PDBs was about
50 megabytes. The time to build the pattern databases and generate bootstrap
instances, which we call the pre-processing time, was about 2 minutes.

The initial heuristic is sufficiently weak that nine RandomWalk iterations were
necessary before bootstrapping itself could begin (ten iterations were required
when there were only 500 bootstrap instances). Table 3 shows the results for all
bootstrap iterations when it is given 500 bootstrap instances. Table 4 is analogous,
but when 5000 bootstrap instances are given. In both cases, there is a very clear
trend: search becomes faster in each successive iteration (see the “Avg. Nodes
Gen.” and “Avg. Solving Time” columns) but suboptimality becomes worse. The
increase in suboptimality is most likely caused by the fact that the solutions for
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the training instances become increasingly suboptimal on successive iterations.
Suboptimal training instances bias the system to learn new heuristics that over-
estimate to an even greater extent which, in turn, leads to even more suboptimal
solutions in subsequent iterations.

There is clearly a rich set of time-suboptimality tradeoffs inherent in the boot-
strap approach. In this paper we do not address the issue of how to choose among
these options, we assume that a certain number of bootstrap instances are given
and that the heuristic produced by the final bootstrap iteration is the system’s fi-
nal output. There is also clearly an interesting relationship between “Learning
Time” and “Solving Time”: the heuristics created later in the process solve prob-
lems faster on average. In Section 4 we present one approach to exploiting this
relationship when there is only one problem instance to solve.

Iteration No. Total Avg. Avg. Avg. Solving Learning
Solved Unsolved Subopt. Nodes Gen. Time Time

0 (first) 141 359 5.1% 121,691,641 153.34s 1h 38m
1 98 261 5.9% 156,632,352 205.68s 2h 16m
2 112 149 5.6% 70,062,610 89.03s 3h 57m

3 (final) 128 21 5.7% 62,559,170 81.52s 11h 43m
Bootstrap Completion Time = 11 hours and 43 minutes

Table 3: 24-puzzle, Bootstrap (500 bootstrap instances).

There are two key differences between using 500 and 5000 bootstrap instances.
The most obvious, and in some settings by far the most important, is the total time
required for the combined RandomWalk and Bootstrap process. Because after ev-
ery iteration an attempt is made to solve every bootstrap instance, having 10 times
as many bootstrap instances makes the process roughly 10 times slower. The sec-
ond difference is more subtle. The larger bootstrap set contains a larger number of
more difficult problems, and those drive the Bootstrap process through additional
iterations (in this case seven additional iterations), producing, in the end, faster
search but worse suboptimality than when fewer bootstrap instances are used.

Figure 6 shows the distribution of suboptimality values for iterations 0, 13, 26
of the Bootstrap process with 5000 bootstrap instances. A data point (x, y) on the
plot means that for y% of the test instances the solution was at most x% subop-
timal. We see that there is an across-the-board degradation of the suboptimalities
from early to later iterations: the curve for iteration 26 is strictly below the curve
for iteration 13 which, in turn, is strictly below the curve for iteration 0.

Figure 7 shows the distribution of solving times in an analogous manner; the
x-axis measures solving time in seconds. The left plot is for the instances that are
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Iteration No. Total Avg. Avg. Avg. Solving Learning
Solved Unsolved Subopt. Nodes Gen. Time Time

0 (first) 413 4587 4.7% 1,798,903,624 2364.69s 19h
2 116 4060 4.9% 1,386,730,491 1776.41s 23h
4 84 3807 4.8% 1,051,748,928 1366.37s 1d 9h
6 116 3521 5.0% 307,700,388 403.09s 1d 17h
8 263 3029 5.1% 555,085,735 719.79s 1d 23h

10 212 2534 5.7% 140,197,951 182.82s 2d 4h
12 112 2188 6.2% 164,616,540 223.68s 2d 8h
14 116 1850 6.4% 135,943,434 175.11s 2d 12h
16 141 1573 6.4% 35,101,918 45.83s 2d 20h
18 270 1057 7.2% 24,416,967 31.47s 3d 3h
20 156 652 7.7% 18,566,788 24.60s 3d 9h
22 147 393 7.3% 12,172,889 16.13s 3d 12h
24 79 224 7.9% 10,493,649 13.65s 3d 22h

26 (final) 137 12 8.1% 7,445,335 9.65s 4d 21h
Bootstrap Completion Time = 4 days and 21 hours

Table 4: 24-puzzle, Bootstrap (5000 bootstrap instances).

Figure 6: 24-puzzle, distribution of suboptimality values.

solved in 200 seconds or less and the right plot is for the remaining instances with
a different scale on the x-axis. There are a few test instances that take extremely
long to solve using the heuristic learned on the first iteration, but by iteration 13
all the instances can be solved in under 2500 seconds. Using the final heuristic,
all instances are solved in under 72 seconds. We see that there is an across-the-
board improvement in solving times: the plot for iteration 0 is strictly below the
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plot for iteration 13 which, in turn, is strictly below the plot for iteration 26. The
same general trends for suboptimality and solving time were seen in all other test
domains unless specifically noted otherwise below.
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Figure 7: 24-puzzle, distribution of solving times.

Table 5 shows the results of other systems on the same test instances. Row 1
reports on W-IDA* using our initial heuristic (h0) multiplied by a weight (W)
chosen so that Subopt is roughly equal to the Subopt value achieved by the final
bootstrap heuristic (Table 4, iteration 26). In Row 2, W is chosen so that Nodes
Gen. is roughly equal to the Nodes Gen. value achieved by the final bootstrap
heuristic (Table 4, iteration 26). The results of analogous settings for BULB’s
beam width (B) when h0 is used are shown in Rows 3 and 4. Bootstrap (Table 4,
iteration 26) dominates in all cases, in the sense that if W and B are set so that
W-IDA* and BULB compare to Bootstrap in either one of the values (Subopt or
Nodes Gen.), then the heuristic obtained in the final Bootstrap iteration (Table 4,
iteration 26) is superior in the other value. Note however, that W-IDA* guarantees
that the solution cost achieved is always within a factor of W of the optimal one—
a guarantee that our learned heuristics cannot provide. This has to be kept in mind
for all subsequent comparisons of Bootstrap to W-IDA*.

Row 5 shows the results with the heuristic hsum, which is defined as the sum
of the heuristic values among the NN’s input features (h0 is the maximum of these
values). Although hsum can, in general, be much greater than the actual distance
to goal, hsum might be quite an accurate heuristic when a moderate number of
weak heuristics are used for NN features, as in our experiments. By comparing
its performance with Bootstrap’s we can see the return on investment for learning
how to combine the different heuristics as opposed to just giving them all equal
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weight as hsum does. As the results show, hsum, with our NN features for the
24-puzzle, performs very poorly in terms of suboptimality. It is superior to Boot-
strap with 500 instances (Table 3, iteration 3) and Bootstrap with 5000 instances
(Table 4, iteration 26), in terms of both nodes generated and solving time.

row h (Algorithm) Avg. Avg. Avg. Solving
Subopt. Nodes Gen. Time

1 h0 (W-IDA*,W=1.5) 9.0% 39,356,250,896 28770.8s
2 h0 (W-IDA*,W=2.6) 80.5% 7,579,345 5.5s
3 h0 (BULB,B=20,000) 13.8% 85,136,475 185.4s
4 h0 (BULB,B=10,000) 122.9% 7,624,139 13.4s
5 hsum 181.4% 151,892 0.1s

Results from previous papers
6 Add 6-6-6-6 0% 360,892,479,670 47 hours*
7 #6 (DIDA*) 0% 75,201,250,618 10 hours*
8 #6, Add 8-8-8 0% 65,135,068,005 ?
9 #6, W=1.4 (RBFS) 9.4%∗ 1,400,431 1.0*s

10 PE-ANN,
Add 11-11-2 (RBFS) 0.7%* 118,465,980 111.0*s

11 #10, W=1.2 (RBFS) 3.7%* 582,466 0.7*s

Table 5: 24-puzzle, other methods.

Rows 6 to 8 show the results of state-of-the-art heuristic search methods for
finding optimal solutions. Row 6 shows the results using the maximum of disjoint
6-tile PDBs and their reflections across the main diagonal as a heuristic, due to
Korf and Felner [32]. Row 7 shows the results for DIDA∗, obtained by Zahavi,
Felner, Holte, and Schaeffer [50] using the same heuristic. In Row 8 the heuristic
used is the maximum of the heuristic from Row 6 and a partially created disjoint
8-tile PDB, see Felner and Adler [10] (solving time was not reported). The very
large solving times required by these systems shows that the 24-puzzle represents
the limit for finding optimal solutions with today’s abstraction methods and mem-
ory sizes. Row 9, due to Samadi et al. [41], illustrates the benefits of allowing
some amount of suboptimality. Here, RBFS [30] is used with the heuristic from
Row 6 multiplied by 1.4. The number of nodes generated has plummeted. Al-
though this result is better, in terms of nodes generated and solving time, than
Bootstrap (Table 4, iteration 26), it hinges upon having a very strong heuristic
since we have just noted that W-IDA* with our initial heuristic is badly outper-
formed by Bootstrap.

Rows 10 and 11 in Table 5 show the PE-ANN results by Samadi et al. [41]. As
discussed in the introduction, this is not a direct application of heuristic learning
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to the 24-puzzle because it was infeasible to generate an adequate training set
for a one-step method. Critical choices for abstracting the 24-puzzle were made
manually to obtain these results. Row 10 shows that our automatic method is
superior to PE-ANN used in this way by a factor of more than 20 in terms of nodes
generated. The suboptimality values shown in rows 10 and 11 are not directly
comparable to those in Tables 3 and 4 because Samadi et al. defined average
suboptimality differently, as the total length of the solutions found divided by the
total length of the optimal solutions. The suboptimality of Bootstrap with 5000
instances, calculated in this way, happens to be the same (to one decimal place) as
in Table 4 (8.1%) and is inferior to PE-ANN’s. Row 11 shows that if PE-ANN’s
learned heuristic is suitably weighted it can outperform Bootstrap in both nodes
generated and suboptimality.

To see how Bootstrap’s results would change if it were given a stronger initial
heuristic, we reran the experiment with h0 being the state-of-the-art admissible
heuristic, namely Korf and Felner’s maximum of disjoint 6-tile PDBs and their
reflections across the main diagonal [32]. We adjusted the features used by the
neural network accordingly: instead of 8 features, we now used 13, namely one
for each of the four disjoint PDBs, one for each of the four reflected PDBs, one
for the sum of the first four PDB features, one for the sum of the four reflected
PDB features, plus one each for Manhattan Distance, position of the blank, and
number of tiles out of place. Note that increasing the number of features might
increase Bootstrap’s completion time and its solving time.

The use of a stronger h0 decreased Bootstrap’s completion time by more than
50% when 500 bootstrap instances were used but increased it by about 25% when
5000 bootstrap instances were used. The suboptimality of the solutions found us-
ing the final Bootstrap heuristic were unaffected by the use of the stronger heuris-
tic when 500 bootstrap instances were used but increased from 8.1% to 11.2%
when 5000 bootstrap instances were used. The most important consequence of us-
ing a stronger h0 is a dramatic reduction of the number of nodes generated by the
final heuristic Bootstrap produced. With 500 bootstrap instances only 5,087,295
nodes are generated on average, a 12-fold reduction compared to Table 3, and
with 5000 bootstrap instances use of the stronger h0 produces more than a 6-fold
reduction in nodes generated.

We also reran W-IDA* and BULB with this strong h0. W-IDA* is still out-
performed by Bootstrap, but not as badly. W=1.45 yields an average suboptimal-
ity similar to Bootstrap’s with 5000 instances and the strong h0, but generates
roughly 3 times as many nodes. W=1.5 generates a similar number of nodes but
has a higher suboptimality (16% on average, compared to 11.2%). BULB, using
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the strong heuristic, is more clearly outperformed by Bootstrap. When generating
a comparable number of nodes to Bootstrap with 5000 instances and the strong
h0, BULB’s suboptimality is much higher than Bootstrap’s (418.3% compared to
11.2%). B=20,000 resulted in a suboptimality (13.3%) approaching Bootstrap’s,
but at the cost of generating 36 times more nodes on average.

3.2. 35-pancake puzzle
For the 35-pancake puzzle the input features for the NN were seven 5-token

PDBs, a binary value indicating whether the middle token is out of place, and the
number of the largest out-of-place token. Optimal solution lengths were computed
using the highly accurate, hand-crafted “break” heuristic.5 50 randomly generated
instances, with an average optimal solution cost of 33.6, were used for testing. The
pre-processing time to build pattern databases and bootstrap instances was about
18 minutes while the memory used to hold the pattern databases was about 272
megabytes.

The initial heuristic is so weak that seven RandomWalk iterations were nec-
essary before bootstrapping itself could begin (9 iterations were required when
there were only 500 bootstrap instances). Table 6 has rows for all bootstrap iter-
ations with 500 bootstrap instances and Table 7 has rows for selected iterations
with 5000 bootstrap instances. In both cases, we see the same trends as in the 24-
puzzle concerning suboptimality, solving time, and the influence of the number of
bootstrap instances.

Iteration No. Total Avg. Avg. Avg. Solving Learning
Solved Unsolved Subopt. Nodes Gen. Time Time

0 (first) 134 366 10.4% 178,891,711 217s 7h
1 77 289 10.2% 181,324,430 219s 9h
2 81 208 11.4% 169,194,509 202s 11h
3 100 108 11.3% 191,333,354 228s 16h

4 (final) 77 31 12.3% 131,571,637 158s 1d 02h
Bootstrap Completion Time = 1 day and 2 hours

Table 6: 35-pancake puzzle, Bootstrap (500 bootstrap instances).

Figure 8 shows the distribution of solving times for iterations 0, 15, and 30
of the Bootstrap process with 5000 bootstrap instances. Like the corresponding
figure for the 24-puzzle (Figure 7) we see that there are some instances that take

5For details on “break” see http://tomas.rokicki.com/pancake/ or Helmert [20].
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Iteration No. Total Avg. Avg. Avg. Solving Learning
Solved Unsolved Subopt. Nodes Gen. Time Time

0 (first) 102 4898 9.2% 2,766,675,135 4,168s 1d 17h
2 258 4394 9.7% 1,591,749,582 1,923s 2d 07h
4 128 4110 10.2% 586,345,3534 687s 2d 20h
6 265 3630 10.8% 295,187,243 345s 3d 08h
8 216 3198 11.6% 134,075,802 157s 3d 18h

10 95 2999 12.2% 65,290,479 102s 4d 04h
12 150 2732 12.3% 47,998,040 76s 4d 20h
14 128 2456 12.3% 45,571,411 71s 5d 15h
16 250 2008 12.4% 39,128,839 45s 5d 23h
18 118 1766 13.2% 38,126,208 43s 6d 05h
20 102 1575 13.0% 39,440,284 44s 6d 16h
22 210 1177 13.5% 36,423,262 52s 7d 00h
24 170 814 14.2% 25,034,580 42s 7d 10h
26 105 600 14.9% 26,089,593 43s 7d 23h
28 170 279 15.1% 13,156,609 21s 8d 07h

30 (final) 125 36 15.4% 14,506,413 21s 8d 11h
Bootstrap Completion Time = 8 days and 11 hours

Table 7: 35-pancake puzzle, Bootstrap (5000 bootstrap instances).
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Figure 8: 35-pancake puzzle, distribution of solving times.

a very long time to solve using the heuristic learned in the first iteration and that
by the middle iteration there are no such problematic instances: all instances are
solved in 500 seconds or less. But unlike the 24-puzzle, here the speedup in
solving the hardest instances is accompanied by a slowdown in solving the easier
instances: in the left side of Figure 8 the plot for iteration 15 is below that for
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iteration 0. By the final iteration, there is an across-the-board improvement in
solving time compared to the two other iterations shown.

Because of its large size, no previous general-purpose search system with au-
tomatically created heuristics has been applied to this problem domain, so Table 8
includes results only for W-IDA∗, BULB, and hsum. None of these methods was
able to achieve a “Nodes Gen.” value similar to Bootstrap with 5000 instances.
For W-IDA* and BULB Rows 1 and 3 show the minimum number of nodes these
two algorithms generated (we tried 15 values for W between 1.1 and 10, and 15
values for B between 2 and 20,000). As can be seen, W-IDA∗ and BULB produce
a very high degree of suboptimality when generating the fewest nodes. Looking
for settings for which W-IDA∗ or BULB can compete with Bootstrap in terms of
suboptimality was not successful. Allowing 10 times more time than IDA* with
Bootstrap’s final heuristic (iteration 30 in Table 7) needed on each test instance,
W-IDA∗ did not complete any instances at all. Row 4 shows that hsum, like W-
IDA* and BULB, is inferior to Bootstrap (Table 7, iteration 30) in terms of both
nodes generated and suboptimality.

row h (Algorithm) Avg. Avg. Avg. Solving
Subopt. Nodes Gen. Time

1 h0 (W-IDA*,W=9) 108.9% 1,092,647,373 857s
2 h0 (BULB,B=20,000) 405.4 % 426,578,146 1,360s
3 h0 (BULB,B=500) 2907.9 % 154,193,966 483s
4 hsum 59.0% 71,081,642 69s

Table 8: 35-pancake puzzle, other methods.

As we did for the 24-puzzle, to see the effect of giving Bootstrap a strong
initial heuristic, we reran the experiments with h0 being the strongest general-
purpose type of admissible heuristic that is known for the 35-pancake puzzle, the
additive heuristics defined by Yang et al. [48]. The particular h0 we used was
a 5-5-5-5-5-5-5 additive PDB. The features used for learning were the seven 5-
pancake PDBs, their sum, and the same two non-PDB features used with the weak
h0.

The use of the stronger h0 did not affect Completion Times for either 500
or 5000 bootstrap instances. For 500 bootstrap instances, use of the stronger h0

decreased suboptimality (from 12.3% to 5.5%) and reduced the number of nodes
generated by almost a factor of 5. For 5000 bootstrap instances, the stronger h0

decreased suboptimality even more (from 15.4% to 5.9%) but had little effect on
the number of nodes generated.
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3.3. Rubik’s Cube
For Rubik’s Cube, the input features for the NN were the three PDBs used by

Korf [31], namely, one PDB based on the eight corner cubies and two PDBs each
based on six edge cubies. 333 megabytes of memory is used for the PDBs and the
pre-processing took about 16 minutes.

Korf’s 10 standard Rubik’s Cube instances [31] were used for testing. The
average optimal solution cost for these instances is 17.5. The initial heuristic was
sufficient to begin the Bootstrap process directly, so no random walk iterations
were necessary.

Tables 9 and 10 show the results for each bootstrap iteration when 500 and
5000 bootstrap instances are given. In either case, bootstrapping produces very
substantial speedup over search using h0. For instance, using 500 bootstrap in-
stances produces a heuristic that reduces the number of nodes generated by a fac-
tor of 43 compared to h0 while producing solutions that are only 4% longer than
optimal. The trends across bootstrap iterations are the same as those observed in
previous experiments.

Iteration No. Total Avg. Avg. Avg. Solving Learning
Solved Unsolved Subopt. Nodes Gen. Time Time

0 (first) 256 244 2.8% 67,264,270,264 78,998s 5m
1 (final) 76 178 4.0% 8,243,780,391 10,348s 2d

Bootstrap Completion Time = 2 days 19 hours

Table 9: Rubik’s Cube, Bootstrap (500 bootstrap instances).

The results of other systems are shown in Table 11. Rows 1 and 2 are when
the initial heuristic (h0) is used with W-IDA* on the same set of test instances.
Row 3 shows the results with hsum. As in the Pancake puzzle, Bootstrap (Table 10,
iteration 14) outperforms hsum in both suboptimality and nodes generated.

Rows 4 to 6 show the results of state-of-the-art heuristic search methods for
finding optimal solutions. Row 4 shows the results using the initial heuristic
(h0) [31]. Row 5 shows the results by Zahavi et al. [51] when dual lookups [11]
for both 6-edge PDBs were used in conjunction with the heuristic of Row 4. In
Row 6 [51], the edge PDBs used in Row 5 are increased from 6-edge to 7-edge
and dual lookup is used. Bootstrap outperforms all of these optimal systems in
terms of nodes generated and solving time.

For BULB, we compared our results to those of Furcy and Koenig [15], which
were obtained using h0. However, Furcy and Koenig used a different set of test in-
stances: they created 50 solvable instances by doing random walks of length 500
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Iteration No. Total Avg. Avg. Avg. Solving Learning
Solved Unsolved Subopt. Nodes Gen. Time Time

0 (first) 2564 2436 3.4% 69,527,536,555 86,125s 43m
1 355 2081 4.6% 7,452,425,544 10,477s 10h
2 126 1955 5.8% 3,314,096,404 3,976s 1d 06h
3 82 1873 9.7% 3,722,365,147 4,444s 2d 16h
4 166 1707 12.6% 974,287,428 1,119s 5d 08h
5 149 1558 16.0% 748,608,645 848s 7d 05h
6 162 1396 21.8% 599,503,676 823s 9d 09h
7 166 1230 20.1% 614,676,983 842s 11d 07h
8 76 1154 21.8% 465,772,443 626s 13d 04h
9 256 898 22.9% 552,259,662 624s 16d 14h

10 85 813 22.9% 518,980,590 577s 19d 10h
11 136 677 25.3% 624,542,989 686s 23d 20h
12 218 459 24.7% 422,066,562 464s 27d 06h
13 206 253 27.5% 251,228,458 280s 30d 02h

14 (final) 192 61 29.3% 192,012,863 208s 31d 15h
Bootstrap Completion Time = 31 days and 15 hours

Table 10: Rubik’s Cube, Bootstrap (5000 bootstrap instances).

row h (Algorithm) Avg. Avg. Avg. Solving
Subopt. Nodes Gen. Time

1 h0 (W-IDA*,W=1.9) 30.4% 5,653,954,001 6,632s
2 h0 (W-IDA*,W=3.3) 76.4% 217,463,103 245s
3 hsum 54.5% 246,235,226 256s

Results from previous papers
4 h0 0% 360,892,479,670 102,362s*
5 #5 with dual lookup 0% 253,863,153,493 91,295s*
6 max{8,7,7} with dual lookup 0% 54,979,821,557 44,201s*

Table 11: Rubik’s Cube, other methods.

backward from the goal state. This set of instances is currently unavailable, mak-
ing it impossible to do a precise comparison with our method. With that in mind,
an inspection of Furcy and Koenig’s results shows that with an appropriate setting
of B, BULB’s performance in terms of nodes generated is similar to Bootstrap’s;
the average number of nodes generated on Furcy and Koenig’s 50 instances, using
B=50,000, was 189,876,775, compared to 192,012,863 for Bootstrap on Korf’s
10 instances (see iteration 14 in Table 10). Because the optimal solution costs for
Furcy and Koenig’s instances are not known, a comparison of suboptimalities is
not possible.
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3.4. 20-blocks world
We used 9 input features for the NN: seven 2-block PDBs, the number of

out of place blocks, and the number of stacks of blocks. Optimal solutions were
computed using the hand-crafted blocks world solver PERFECT [45]. We used 50
random test instances in which the goal state has all the blocks in one stack. The
average optimal solution length of the test instances is 30.92. The total amount
of memory required for this experiment was less than 3 kilobytes while the pre-
processing took a few seconds.

The initial heuristic is so weak that six RandomWalk iterations were necessary
before bootstrapping could begin (eight iterations for 500 bootstrap instances). Ta-
bles 12 and 13 show the bootstrap iterations for the 20-blocks world. The heuris-
tics used in the feature vector were so weak that solving the test instances using
the early heuristics produced by Bootstrap was infeasible; therefore, iteration 0 is
not shown in Table 12 and iterations 0 through 2 are not shown in Table 13. The
completion time of Bootstrap using 500 bootstrap instances is much longer than
the total time to learn the final heuristic (iteration 3 in Table 12) because “enough”
instances were not solved in the last iteration of the Bootstrap and the process ter-
minated due to tmax exceeding t∞. The trends in these results are the same as for
the domains discussed previously.

Iteration No. Total Avg. Avg. Avg. Solving Learning
Solved Unsolved Subopt. Nodes Gen. Time Time

1 75 338 1.8% 13,456,726,519 55,213s 11h
2 95 243 2.4% 8,886,906,652 35,692s 1d 02h

3 (final) 90 167 3.8% 615,908,785 2,763s 1d 10h
Bootstrap Completion Time = 2 days

Table 12: 20-blocks world, Bootstrap (500 bootstrap instances).

The results of BULB on the same set of test instances are shown in Table 14.
For suboptimality, BULB could not compete with Bootstrap; we tried 15 values
for B between 2 and 20,000. The best suboptimality achieved by BULB is shown
in Row 1. It shows that even with much greater suboptimality, BULB is inferior
to Bootstrap in terms of nodes generated and solving time. BULB’s results when
B is set so that BULB is approximately equal to Bootstrap (Table 13, iteration 13)
in terms of nodes generated is shown in Row 2. Again Bootstrap dominates.

W-IDA* with time limits 10 times larger than the solving time using Boot-
strap’s final heuristic for each test instance failed to solve more than half the test
instances (W was varied between 1.2 and 10). In the best case (W=9) W-IDA*
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Iteration No. Total Avg. Avg. Avg. Solving Learning
Solved Unsolved Subopt. Nodes Gen. Time Time

3 275 2781 2.2% 12,771,331,089 52,430s 3d 06h
4 290 2491 3.2% 8,885,364,397 35,636s 4d 04h
5 450 2041 3.5% 941,847,444 3,828s 5d 21h
6 556 1485 4.0% 660,532,208 2,734s 7d 03h
7 162 1323 4.1% 789,515,580 3,240s 8d 05h
8 117 1206 5.4% 191,696,476 791s 9d 05h
9 508 698 6.5% 22,413,312 93s 9d 22h

10 377 321 8.0% 11,347,282 47s 10d 18h
11 98 223 8.7% 17,443,378 72s 10d 10h
12 83 140 8.9% 7,530,329 31s 10d 20h

13 (final) 89 51 9.6% 5,523,983 23s 11d 01h
Bootstrap Completion Time = 11 days and 1 hour

Table 13: 20-blocks world, Bootstrap (5000 bootstrap instances).

row h (Algorithm) Avg. Avg. Avg. Solving
Subopt. Nodes Gen. Time

1 h0 (BULB,B=20,000) 28.8% 278, 209, 980 2,482s
2 h0 (BULB,B=2,400) 58.8% 5,809,791 32s

Table 14: 20-blocks world, other methods.

solved 24 of the test instances. An attempt to compare our results to hsum failed
because the heuristics used in the feature vector were so weak that even the sum
of these values is still a weak heuristic for this domain. hsum failed to solve any
instance given a time limit of one day per instance.

4. Solving Single Instances Quickly

The preceding experiments demonstrate that bootstrap learning can help to
speed up search dramatically with relatively little degradation in solution qual-
ity. An inherent and non-negligible expense is the time invested in learning the
heuristic function. The Bootstrap completion times reported are on the order of
days. Such a lengthy process would be warranted if the final heuristic was going
to be used to solve numerous problem instances that were distributed in the same
way as the bootstrap instances, since one would expect most of the new instances
would be solved as quickly with the final heuristic as the bootstrap instances were,
i.e., within the time limit used in the last iteration of the bootstrap process.

However, many planning problems require just a single instance to be solved—
a task for which our bootstrapping approach may seem ill-suited because of the
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large total time required. In this section we investigate whether a variation of our
bootstrapping method can quickly solve a single instance of a given problem do-
main. Instead of minimizing solving time at the expense of requiring very large
learning times, as in the previous sections, we are now looking for a balance in
the learning and solving times so that the sum of the learning and solving times
is made as small as can be. With this goal in mind, we present a method that
involves interleaving the learning and solving processes. The method is fully au-
tomatic once the ratio of solving time to learning time is specified. We present
experimental results on the 24-puzzle, the 35-pancake puzzle, Rubik’s Cube, the
20-blocks world and the IPC2 blocksworld instances. In all domains other than
Rubik’s Cube, interleaving bootstrap learning and problem-solving proves very
effective at solving single instances.

4.1. Method and implementation
An important factor influencing the total time for the bootstrap process in the

previous experiments is the number of bootstrap instances. For instance, Tables 3
and 4 show that increasing this number from 500 to 5000 increases the total time
from 12 hours to 5 days for the 24-puzzle. In fact, a very large portion of the train-
ing time is spent on trying to solve bootstrap instances that are still too difficult
for the current heuristic. This suggests that considerable time could be saved if
we ran our system without any initial bootstrap instances given at the outset, just
using random walks to create training instances at successive levels of difficulty
until a heuristic was created with which the one and only target instance ins∗ could
be quickly solved. Following Algorithm 2, this procedure would basically work
as follows, starting with h being the initial heuristic.

If h is too weak to solve ins∗ within a time limit of tmax, gener-
ate a set RWIns of instances by random walks backward from the
goal. Improve h by applying the bootstrap procedure (Algorithm 1)
to (h0, h,RWIns), where h0 = h. Repeat this process, increasing the
length of the random walks in each iteration, until ins∗ can be solved
using the current heuristic h within a time limit of tmax.

The total time required by this procedure, including training time and solving
time, would be the measure for evaluation.

The obvious problem with this approach is the use of the parameter tmax, be-
cause the total time will strongly depend on the value of this parameter. If tmax is
too low, we might need many iterations. If tmax is too high, we force the solver,
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when using too weak a heuristic, to spend the full amount of tmax in vain while
it would be advantageous to invest more in learning. Automatic adjustment of
tmax involves the time-consuming process of attempting to solve a non-negligible
number of instances created by RandomWalk, and hence the naive method just
described is expected to be infeasible.

Avoiding tmax completely by fixing a training time and then trying to solve
ins∗ with the heuristic learned after the fixed amount of training is not any more
promising. Here the training time is the critical parameter that cannot be set with-
out prior knowledge.

Our approach to an automated process that does not hinge critically on such
parameters is to interleave learning and solving as follows. We alternate between
the execution of two threads, a learning thread and a solving thread. The learning
thread runs the RandomWalk process in the manner just described to produce a se-
quence of stronger and stronger heuristics. The solving thread uses the heuristics
generated by the RandomWalk process to solve ins∗. Initially this thread uses the
initial heuristic. When a new heuristic is produced, the solving thread is updated
to take into account the existence of a new, probably stronger, heuristic.

There are many possible ways of updating the solving thread when a new
heuristic becomes available; here we examine just three.

1. The simplest approach to updating the solving thread is to abort the current
search and start a new search from scratch using the new heuristic. We call
this approach “Immediate Restart”.

2. The second approach is to finish the current IDA* iteration but using the
new heuristic instead of the previous one. If that iteration ends without
solving ins∗ it will have computed the IDA* bound, DB , to use on the next
iteration. The next iteration uses the new heuristic, h, and IDA* bound
max(DB , h(ins∗)). We call this approach “Heuristic Replacement”.

3. The third approach is to subdivide the solving thread into a set of solving
sub-threads, one for each heuristic that is known. As soon as a new heuristic
is learned in the learning thread, this approach starts an additional solving
sub-thread, which uses the new heuristic to try to solve ins∗. In this approach
no thread is ever stopped completely until ins∗ is solved in one of the solving
sub-threads. We call this approach “Independent Solvers”.6

6As opposed to the other two approaches, Independent Solvers has the advantage that it can
easily be parallelized.
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Regardless of the approach, the total time by which we evaluate the interleaved
learning and solving process is the sum of the times used by both threads (includ-
ing all the sub-threads) up to the point when ins∗ is solved in one sub-thread.

Pseudocode for the interleaved learning and solving processes for the Imme-
diate Restart and and Heuristic Replacement approaches is shown in Algorithm 3.
We use a fixed ratio, ts:tl, of the time allocated to solving (ts) and the time allo-
cated to learning (tl).7 Line 3 calls “continue” with the Solver thread and a time
limit ts. This executes the solver until it has solved ins∗ or until ts seconds have
elapsed. If ins∗ is not yet solved the loop (lines 4 to 10) is executed until it is.
Line 5 calls “continue” with the RandomWalk procedure described above and a
time limit tl. This resumes execution of the RandomWalk process at the point
where it was previously suspended, runs it for time tl, suspends it, and returns
whatever its current heuristic is at the time of suspension. If the heuristic returned
is new, the solving thread is updated, as described above, to take into account the
new heuristic (line 7). Line 9 resumes the (updated) solving thread. The entire
process stops when a solution for ins∗ is found.

Algorithm 3
1: procedure Interleaving(ins∗, hin, ts, tl): solution
2: Create a solving thread, Solver, using hin.
3: solved := continue(Solver,ts)
4: while (!solved) do
5: h := continue(RandomWalk,tl)
6: if (h is a new heuristic) then
7: UPDATE(Solver,h)
8: end if
9: solved := continue(Solver,ts)

10: end while
11: return the solution from the solving thread

Determining the best ratio ts:tl for each domain is beyond the scope of this
paper; in the current system the ratio has to be set manually. Generally, the weaker

7Technically, not only is the ratio of solving time to learning time given, but also the actual
time units. Using a “ratio” of 100:200 will in practice yield different results than a “ratio” of 1:2.
For simplicity, and since we always set ts = 1 second in our experiments, we still use the term
“ratio” to refer to the setting of ts and tl.
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the initial heuristic the more the ratio should allocate time to the learning thread.
We ran experiments with ratios of 1:1 to 1:10 and, if necessary, for larger values
of tl; see Section 4.2 for details. Since the initial heuristics in our experiments are
always rather weak, we did not use ratios favouring the solving thread.

Pseudocode for the interleaved learning and solving processes for the Inde-
pendent Solvers approach is shown in Algorithm 4. It follows exactly the same
general pattern as Algorithm 3, but there is a growing list of Solvers instead of
just one Solver. When a new heuristic is learned a new solving sub-thread us-
ing this heuristic is added at the beginning of the list. The procedure Indepen-
dentSolvers divides the available time for solving, ts, among the set of available
solving threads—exactly how this is done is described in the next paragraph. No
thread is terminated until ins∗ is solved in one of the solving sub-threads.

Algorithm 4
1: procedure Interleaving(ins∗, hin, ts, tl): solution
2: Create a list, Solvers, containing just one solving sub-thread using hin.
3: solved := IndependentSolvers(Solvers,ts)
4: while (!solved) do
5: h := continue(RandomWalk,tl)
6: if (h is a new heuristic) then
7: add a solving sub-thread using h to the beginning of Solvers
8: end if
9: solved := IndependentSolvers(Solvers,ts)

10: end while
11: return the solution from the independent solving sub-threads

For the allocation of solving time among the various solving sub-threads,
many strategies are possible. The one we report here we call “Exponential”.
When a new heuristic is learned, this strategy halves the time allocated to the
solving sub-threads using previous heuristics and allocates ts

2
seconds to the sub-

thread using the new heuristic. Thus the solving sub-thread for the new heuristic
gets half the total time available for solving on each round until another heuristic
is created. The motivation for this strategy is that heuristics created later in the
learning process are expected to be stronger than those created at early stages, so
the more recently created heuristics may be more likely to quickly solve the tar-
get instance. It therefore seems reasonable to invest more time in solvers using
the heuristics learned in later iterations. The reason not to suspend solving sub-
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threads with weak heuristics completely is that there is still a chance that they are
closer to finding a solution than the solving sub-thread using the most recently
created heuristic. This may be (i) because more time has already been invested
in the sub-threads using weaker heuristics or (ii) because a weaker heuristic may
occasionally still behave better on one particular target instance than an overall
stronger heuristic.

Other strategies, such as Röger and Helmert’s alternation technique [39], are
certainly possible.8

Algorithm 5
1: procedure IndependentSolvers (exponential) (Solvers,time):status
2: t := time
3: for i = 1 to |Solvers| do
4: S := ith sub-thread in Solvers
5: if i 6= |Solvers| then
6: t := t/2
7: end if
8: if continue(S, t) succeeds then
9: return true

10: end if
11: end for
12: return false

Pseudocode for the Exponential time allocation strategy is shown in Algo-
rithm 5. The time invested in the solving sub-thread using the best available
heuristic (the first in the Solvers list) is twice as large as that invested in the sub-
thread using the second best heuristic, which again is a factor of two larger than
the time for the next “weaker” sub-thread, and so on. The weakest two sub-threads
will always be allocated the same amount of time, so that the total time spent on
the sub-threads sums up to the time allocated to the solving thread overall.

This strategy for allocating the total solving time into time budgets for the
currently available heuristic solvers borrows from the hyperbolic dove-tailing ap-
proach to interleaved search introduced by Kirkpatrick [28]. Kirkpatrick proved

8Not reported here are the results of using a uniform strategy, which allocates the same amount
of time to all solving sub-threads. We found its performance inferior to that of the “Exponential”
strategy. See Jabbari Arfaee’s thesis [26] for details.
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his approach to be average-case optimal and worst-case optimal for a certain vari-
ation of the so-called cow path problem, which was first studied by Baeza-Yates,
Culberson, and Rawlins [2]. However, this variation of the cow path problem does
not exactly model the search problem we are facing. Hence we do not have any
formal guarantees on the efficiency of our method.

4.2. Experiments
We ran experiments comparing the three versions of our interleaving approach,

with different ts:tl ratios, on the same domains used in Section 3. The experimen-
tal settings for each domain, i.e., the features, and the neural network settings were
the same as those described in Section 3, and we used the same computer. The
test instances used for each domain in Section 3 are here used as individual target
instances for testing. We also report results on the IPC2 blocksworld instances,
along with comparisons to state-of-the-art planners on those instances. In all our
experiments, the parameter ts used in Algorithm 4 was set to 1 second, while tl
was varied from 1 to 10 seconds in steps of 1. Whenever the ratio 1:10 resulted in
a lower mean total time than the ratios 1:1 to 1:9, we also tested the ratios 1:11,
1:12, etc. until the mean total time started increasing again. The ratio resulting in
the lowest total time is marked in the tables below as the “best ratio”. The tables
only show the results for ratios 1:1, 1:2, 1:5, and the best ratio.

4.2.1. 24-puzzle
Table 15 shows the results for our three interleaving strategies for the solvers.

The min, max, mean, med and std columns, respectively, show the minimum,
maximum, mean, median, and standard deviation, of the total times on the 50
instances of the 24-puzzle that were used for this experiment. The Subopt column
shows the average suboptimality of the solutions found, calculated in the same
manner as in Section 3. The trends apparent in these results are:

• The average suboptimality increases as the ts:tl ratio increases in favour of
the learning thread. This can be explained by the trends observed in Sec-
tion 3. There we have seen that more bootstrap iterations result in larger sub-
optimality. Since more bootstrap iterations also result in stronger heuristics,
the target instance is more likely to be solved first by one of the strongest
heuristics created in the interleaving process. A solver using this stronger
heuristic, though solving the target instance faster, provides a solution that
has a higher cost than the solutions that solvers using the weaker heuristics
would have eventually provided.
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• The mean and median values initially decrease with growing tl, i.e.,when
the ts:tl ratio favours the learning thread. It turns out that, on average, the
heuristic that solves the target instance requires only a few seconds of solv-
ing time. Therefore, most of the solving time is spent on unsuccessful trials
using other heuristics. Increasing the learning time makes the system pro-
duce stronger heuristics faster. This in turn decreases the total solving time
for most instances (mean and median decreases). However, the mean and
median values eventually start to increase at some point. This happens for
the following reason. As just noted, the heuristic that solves the target in-
stance requires a few seconds of solving time. Since ts is one second, this
means that the solving thread must be suspended and resumed a few times
in order for this heuristic to completely solve an instance. As tl increases
this heuristic gets created sooner but the delays between suspending and
resuming the solving thread also get longer (they are length tl), and for a
sufficiently large tl the increase in the delays between solving episodes out-
weigh the advantage of creating the heuristic sooner.

• The mean total times for the best ratio of all three strategies is similar (less
than 10% difference).

row ratio (ts:tl) min max mean med std Subopt
Immediate Restart

1 1:1 5m 30s 62m 05s 18m 49s 17m 25s 8m 45s 6.3%
2 1:2 4m 24s 47m 04s 15m 54s 14m 18s 6m 54s 6.4%
3 1:5 (best) 4m 04s 51m 00s 15m 24s 15m 18s 7m 58s 6.5%

Heuristic Replacement
4 1:1 5m 30s 61m 54s 18m 19s 17m 03s 8m 29s 6.2%
5 1:2 4m 16s 36m 30s 15m 6s 13m 52s 5m 48s 6.3%
6 1:5 4m 04s 37m 32s 14m 28s 14m 08s 5m 57s 6.3%
7 1:6 (best) 3m 58s 36m 34s 14m 05s 13m 56s 5m 48s 6.5%

Independent Solvers (Exponential)
8 1:1 20m 48s 44m 54m 23m 36s 21m 54m 4m 07s 6.4%
9 1:2 15m 36s 43m 36s 18m 03s 16m 30s 4m 15s 6.7%

10 1:5 12m 30s 42m 42s 15m 50s 14m 30s 5m 53s 6.9%
11 1:10 (best) 11m 31s 53m 46s 15m 48s 14m 14s 6m 55s 7.0%

Table 15: Solving a single instance of the 24-puzzle.

The mean total time spent on a target instance (including the learning time)—
under 16 minutes (960 seconds)—is substantially lower than the total time spent
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by our bootstrap system using a large set of bootstrap instances but no interleaving.
According to Tables 3 and 4, the latter requires more than 11 hours when using
500 bootstrap instances and almost 5 days when using 5000 bootstrap instances.
Alternatively, to minimize learning time one could consider using the heuristics
created by the first bootstrap iteration. With 5000 bootstrap instances, this heuris-
tic solves instances considerably slower, on average, than the interleaving methods
(2364.9 seconds, or about 39 minutes—see iteration 0 in Table 4—compared to
under 16 minutes). The heuristic created on the first iteration of bootstrapping
with 500 bootstrap instances solves instances faster than interleaving (153.34 sec-
onds, or about 2.5 minutes—see iteration 0 in Table 3), but it takes 98 minutes to
learn this heuristic (see the “Learning Time” Column for iteration 0 in Table 3).
Therefore, our method to solve a target instance has substantial speedup over the
normal bootstrap method. Our method also fares well in comparison to the sys-
tems reported in Table 5. It dominates W-IDA* (W=1.5) and has a suboptimality
superior to BULB (B=20,000) and far superior to hsum. Its total time (under 960
seconds) is less than that of any of the optimal methods. Its time is inferior to that
of the weighted RBFS system reported in line 9 of Table 5 but its suboptimality is
superior. Comparisons with the PE-ANN system in lines 10 and 11 of Table 5 are
not possible because the training times for that system are unknown.

If Bootstrap is given a strong initial heuristic h0 (the maximum of disjoint
6-6-6-6 PDBs and their reflections), the total times are similar to those reported
in Table 15, but the suboptimality reduces to roughly 4% for all the interleaving
strategies.

4.2.2. 35-pancake puzzle
Table 16 provides detailed results for the 35-pancake puzzle. The trends ob-

served in this experiment are similar to those observed for the 24-puzzle except
here the Independent Solvers strategy has mean and median times that are consid-
erably higher than those of the other two strategies.

The suboptimality of the heuristics produced by any of the interleaving strate-
gies is superior to any of the suboptimalities reported for basic bootstrapping in
Tables 6 and 7, and the mean total solving time for the interleaving strategies are
less than half the time required to finish the first bootstrapping iteration with 500
bootstrap instances (7 hours—see Table 6). In Table 8 we see that instances are
solved much more quickly using hsum, W-IDA* (W=9), or BULB (B≤20,000),
than using any of our interleaving methods, but with much greater suboptimality.

If Bootstrap is given a strong initial heuristic h0 (a 5-5-5-5-5-5-5 additive
PDB), the total times are slighlty smaller than in Table 16 and suboptimality de-
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row ratio (ts:tl) min max mean med std Subopt
Immediate Restart

1 1:1 2h 36m 6h 48m 3h 41m 3h 24m 0h 46m 7.5%
2 1:2 2h 07m 5h 18m 2h 54m 2h 39m 0h 40m 8.0%
3 1:5 1h 45m 5h 57m 2h 38m 2h 26m 0h 48m 8.2%
4 1:6 (best) 1h 37m 4h 29m 2h 07m 2h 07m 0h 33m 8.3%

Heuristic Replacement
5 1:1 2h 34s 6h 45m 3h 36m 3h 24m 0h 42m 7.6%
6 1:2 2h 06m 5h 15m 2h 50m 2h 39m 0h 38m 8.0%
7 1:5 1h 45m 5h 00m 2h 34m 2h 19m 0h 42m 8.2%
8 1:8 (best) 1h 39m 4h 54m 2h 29m 2h 14m 0h 42m 8.1%

Independent Solvers (Exponential)
9 1:1 7h 13m 9h 48m 7h 36m 7h 28m 0h 30m 7.8%

10 1:2 5h 24m 7h 28m 5h 45m 5h 32m 0h 24m 8.0%
11 1:5 4h 19m 6h 42m 4h 45m 4h 39m 0h 28m 8.3%
12 1:9 (best) 1h 50m 7h 01m 3h 23m 3h 28m 0h 50m 8.9%

Table 16: Solving a single instance of the 35-pancake puzzle.

creases to around 4.5% for all the interleaving strategies.

4.2.3. Rubik’s Cube
Table 17 shows the experimental results for Rubik’s Cube. As for the 35-

Pancake Puzzle, the Independent Solvers strategy has mean and median times
that are considerably higher than the other two strategies.

The reason the suboptimality is the same for all variations tested is that in
all cases, almost all the instances are solved using the third heuristic created by
bootstrapping. This happens because h0 and the first two learned heuristics are
very weak, and too much time (25 hours) is needed to learn the fourth heuristic.
This may also explain why the best ratio here is smaller than for the other domains.

Although interleaving is very much superior to the basic bootstrapping pro-
cess when there is only a single Rubik’s Cube instance to solve, the best mean
total time in Table 17 (10 hours and 54 minutes, or 39,240 seconds) is only 11%
better than the time required to solve an average instance optimally using the best
known heuristic for Rubik’s Cube (44,201 seconds, see Row 6 of Table 11). How-
ever, all the interleaving strategies shown in Table 17 outperform simply using
our initial heuristic to solve each instance, which requires 102,362 seconds (28
hours and 26 minutes) on average (see Row 4 of Table 11). Heuristic Replace-
ment with a 1:5 ratio dominates W-IDA* which, with W=1.4, requires more time
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to solve an instance (12 hours and 36 minutes on average) and produces a greater
suboptimality (13.3% compared to 6.4%).

row ratio (ts:tl) min max mean med std Subopt
Immediate Restart

1 1:1 0h 41m 19h 27m 13h 29 13h 50m 4h 54m 6.4%
2 1:2 (best) 1h 01m 19h 48m 11h 42m 11h 18m 4h 45m 6.4%
3 1:5 2h 01m 28h 01m 13h 08m 11h 10m 7h 02m 6.4%

Heuristic Replacement
4 1:1 0h 41m 18h 43m 13h 21m 13h 28m 4h 59m 6.4%
5 1:2 1h 01m 17h 54m 11h 18m 10h 42m 4h 45m 6.4%
6 1:5 (best) 2h 01m 19h 41m 10h 54m 9h 16m 5h 24m 6.4%

Independent Solvers (Exponential)
7 1:1 1h 22m 26h 16m 15h 36m 15h 02m 6h 34m 6.4%
8 1:2 (best) 2h 02m 29h 54m 14h 51m 13h 04m 4h 45m 6.4%
9 1:5 4h 03m 29h 29m 17h 23m 14h 45m 4h 30m 6.4%

Table 17: Solving a single instance of Rubik’s Cube.

4.2.4. 20-blocks world
Table 18 shows the experimental results for the 20-blocks world. In each case

the solutions were only 1.3% longer than optimal, on average, and at least 37 of
the 50 instances were solved optimally. Unlike the previous domains, here the
Independent Solvers strategy slightly outperforms the others in terms of mean
total time.

In this experiment, our initial heuristic is so weak that it takes a few iterations
of RandomWalk until the heuristic becomes sufficiently strong that the solver us-
ing it can solve the instance in a reasonable amount of time. After this point,
for a few iterations, the learned heuristics enable the instances to be solved more
quickly without changing the solution quality. For this reason, we observe a con-
stant suboptimality of 1.3% for all different strategies.

The speedup compared to the initial bootstrap method (which needed 2 days
when using 500 bootstrap instances and 11 days when using 5000 bootstrap in-
stances) is again remarkable. In addition, the solution lengths are much closer to
optimal than before (cf. Tables 12 and 13 for Bootstrap results on the 20-blocks
world).

BULB with B≤20,000 would solve a single instance faster than our method
(see Table 14), but even for B=20,000 the suboptimality would be more than 20
times higher than that of Bootstrap. For W-IDA* we were unable to find a value
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row ratio (ts:tl) min max mean med std Subopt
Immediate Restart

1 1:1 0h 17m 25h 38m 5h 18m 1h 22m 7h 28m 1.3%
2 1:2 0h 17m 19h 24m 4h 28m 1h 28m 5h 53m 1.3%
3 1:5 0h 10m 15h 58m 4h 15m 1h 24m 5h 15m 1.3%
4 1:9 (best) 0h 26m 15h 48m 4h 01m 2h 00m 4h 40m 1.3%

Heuristic Replacement
5 1:1 0h 17m 25h 35m 5h 00m 1h 23m 7h 17m 1.3%
6 1:2 0h 17m 19h 22m 4h 16m 1h 16m 5h 46m 1.3%
7 1:5 (best) 0h 10m 15h 55m 4h 06m 1h 22m 5h 12m 1.3%

Independent Solvers (Exponential)
8 1:1 0h 17m 25h 52m 6h 04m 2h 03m 7h 38m 1.3%
9 1:2 0h 17m 19h 44m 4h 52m 1h 52m 5h 58m 1.3%
10 1:5 (best) 0h 10m 15h 48m 3h 49m 1h 24m 4h 45m 1.3%

Table 18: Solving a single instance of the 20-blocks world.

of W that can solve all the test instances in a reasonable amount of time with a
suboptimality close to our interleaving method so we base our comparison on the
instances solved using a 2-hour time limit per instance. Heuristic Replacement
with a ratio of 1:5 solved 27 of the 50 instances with this time limit and its solu-
tions were just 2.4% suboptimal. With this time limit W-IDA* (W=4) also solved
27 instances but its suboptimality was 150%.

4.2.5. IPC2 blocks world instances
We further tested our interleaving technique on the 35 instances of blocks

world domains of varying size used in Track 1 of the IPC2 planning competition.9

This version of the blocks world has a “hand” that is used to pick up and put
down blocks, as opposed to the “handless” version we have used in the 20-blocks
world experiments elsewhere in this paper. Despite this difference we used the
same features and initial heuristic here as in the previous experiments with the
“handless” 20-blocks world.

Table 19 shows the results on the hardest 20 instances of the IPC2 set. The first
column names the instances, where x-y refers to the yth instance that consists of
x blocks. The other columns show the total time (in seconds) and suboptimality
achieved by our interleaving method using the exponential allocation strategy.
In this table, empty “Time” entries indicate that the total time was below 0.1

9see http://www.cs.toronto.edu/aips2000/ for more details
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seconds and empty “Subopt” entries indicate the instance was solved optimally.
The 15 instances with the fewest blocks (between 4 and 8) are not shown; all
were solved optimally by our system in less than 0.1 seconds. Table 19 shows
that our interleaving method is capable of solving all the instances in less than 30
minutes (the time limit for solving an instance in the IPC2 competition) while the
solutions are almost always optimal, and those that are not optimal are very close
to optimal.

instance Optimal ratio (1:1) ratio (1:2) ratio (1:5)
Time Subopt Time Subopt Time Subopt

9-0 30
9-1 28
9-2 26
10-0 34 22 33 65
10-1 32 2
10-2 34 13 19 38
11-0 32 73 58 47
11-1 30 58 42 46
11-2 32 2 3 6
12-0 34 12 18 37
12-1 34 3 4 9
13-0 42 1451 4.8% 1102 4.8% 914 4.8%
13-1 44 170 1024 861
14-0 38 23 51 67
14-1 36 62 73 176
15-0 40 313 5% 310 5% 242 5%
15-1 52 627 475 393
16-1 54 1347 1271 1105
16-2 52 1001 751 603
17-0 48 331 258 230

Table 19: IPC2 Blocks world instances, results for interleaving using the exponential allocation
strategy.

The Fast Downward planner [19], with the setting10 that uses multi-heuristic
best-first search11 and preferred operators, also solved all 35 of these blocks world
instances. It took Fast Downward, on average, less than a second to solve each

10This setting is referred to as “M + P” in Helmert’s paper [19].
11This search algorithm is a best-first search algorithm that alternates between expanding nodes

from different open lists that are sorted based on different heuristics [39]. Here, the casual graph
heuristic [19] and FF’s relaxed plan heuristic [23] are used.
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instance, and its solutions are 200% suboptimal.12 Our interleaving approach re-
quired much more time (about 138 seconds, on average) but found solutions that
were only 0.3% suboptimal.

The FF planner [23] solved 29 of the 35 instances in the time limit of 30 min-
utes. The solutions generated for the solved instances were 2.3% suboptimal and
it took less than 6 seconds, on average, for FF to solve one of these 29 instances.
These 29 instances were all solved optimally by our interleaving approach but in a
greater amount of time (25 seconds) on average. Of course, our method was also
able to solve the 6 problems in 30 minutes that FF could not.

The best performing optimal planners from IPC5 such as Gamer and HSP∗F
13

solved 30 of the 35 instances within a time limit of 30 minutes [21].14 Further-
more, the landmark cut heuristic [21], which is competitive with the state-of-the-
art optimal planners in overall performance, solved 28 of the 35 instances within
the same time limit. Its average solving time on these 28 instances was 76 sec-
onds. Our interleaving approach also solved these 28 instances optimally, and did
so in less than 19 second on average.

Yoon, Fern, and Givan [49] report two sets of results on these blocks world
instances. One set is for a method they present for learning a heuristic function to
guide planning, the other is for a method they present for learning a decision list
policy to guide planning. In both cases they learned from the solutions found by
solving the easiest 15 instances (the ones not shown in Table 19) with FF’s heuris-
tic and then solved the remaining 20 instances with the learned heuristic/policy in
conjunction with FF’s heuristic. Their methods are therefore “one step” methods,
they are not methods aimed at solving single instances quickly. The learning phase
for the method that learned a heuristic took 600 seconds. They then took 12.94
seconds, on average, to solve each of the 20 test instances (all 20 were solved
within the 30 minute time limit). The solutions found had an average suboptimal-
ity of 120%.15 Our interleaving method solved the same instances in 242 seconds,
on average, with almost optimal solutions (the average suboptimality was 0.5%).

12All results for the planning systems discussed here are taken from the papers cited.
13see http://ipc.informatik.uni-freiburg.de/ for more details about the com-

petition and the planners.
14Neither the solving time nor the instances solved is reported for these two planners.
15Fern et al. computed average suboptimality differently than we have defined it in this paper.

They defined average suboptimality as the total length of the solutions found divided by the total
length of the optimal solutions. In this paragraph, we use their method to compute the suboptimal-
ity of our systems to allow a comparison to be made.
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Our single-instance method could therefore solve approximately 3 problems from
scratch in the same time that their method could perform learning once and solve
3 problems. Their method for learning a decision list policy took less time to
learn and solve a single instance than our method (100.05 seconds, on average)
but produced longer solutions (their average suboptimality was 17%).

5. Related work

Bootstrap learning to iteratively improve an initially weak evaluation function
for single-agent search is an idea due to Rendell [37, 38], who used it to enable
unidirectional search to solve random instances of the 15-puzzle for the first time.
Our method differs from Rendell’s in several key details, the most important be-
ing that Rendell assumed the user would provide a set of bootstrap instances for
each iteration, at least one of which was required to be solvable using the current
evaluation function. We, on the other hand, assume that the entire set of bootstrap
instances is given at the outset, and if the initial system cannot solve any of them
it generates its own instances.

The only other study of bootstrap learning of heuristics is due to Humphrey,
Bramanti-Gregor, and Davis [25]. Their SACH system learns a heuristic to solve
a single instance, and the bootstrapping is done over successive failed attempts to
solve the instance. Impressive results were obtained on the fifteen most difficult
standard 100 instances of the 15-puzzle. On average these instances were solved
by A* with only 724,032 nodes generated in total over all of SACH’s iterations,
and the solutions found were only 2% suboptimal.

Hauptman et al. [17, 18] use genetic programming [33] to iteratively improve
an initial population of heuristic functions. The key difference between this and
bootstrapping is that it creates new heuristics by mutating and recombining heuris-
tics in its current population rather than learning a new heuristic from solved in-
stances. Training instances in their system (the analog of our bootstrap instances)
are used only for evaluating the fitness of the newly created heuristics. The main
application to date has been to the standard 6x6 Rush Hour puzzle, which is suf-
ficiently small (3.6 × 1010) that most instances can be solved quickly even with-
out a heuristic, hence guaranteeing that the evaluation of fitness will succeed in
distinguishing better heuristics from worse ones. The heuristic learned by their
system reduced the number of nodes generated by an IDA* variant by a factor of
2.5 compared to search with no heuristic. The time required for learning and the
suboptimality of the solutions generated were not reported. They have also used
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FreeCell as testbed [17], but in that application a policy was evolved to guide
search, not a heuristic function.

The online learning of heuristics as studied by Fink [13] is also related to
bootstrapping. Fink proves his learning algorithm has certain desirable properties,
but it has the practical shortcoming that it requires optimal solution lengths to be
known for all states that are generated during all of the searches.

Thayer, Dionne, and Ruml [47] used online learning to update an initial heuris-
tic function during a greedy best-first search that aims at solving a specific in-
stance of a search problem. They computed the error of the heuristic after each
node is expanded by the search algorithm. The error is defined as the difference
between the heuristic value of the state and the sum of the heuristic value of the
child with the largest heuristic estimate and the cost of the action that generates
the child. This error estimate is then used to update the heuristic function during
search. Their experimental results showed that when such an update is used with
the greedy best-first search, it can improve the performance of the initial heuris-
tic in terms of both solution quality and solving time. For example, the heuristic
created by this system improves over Manhattan Distance in the 15-puzzle by a
factor of about 3 in terms of solution cost and by factor of about 2 in terms of
time needed to solve each problem instance. In their experiments, Thayer et al.
included a system, “ANN-offline, which learns a heuristic in a one-step manner
resembling the system of Ernandes and Gori [9]. This produced a heuristic that
was much more accurate than the heuristic learned by their online method but,
interestingly, much poorer at guiding greedy best-first search. As they observe,
this highlights the different requirements for heuristics that are used for pruning
unpromising paths, which is the focus of our paper, compared to heuristics that
are used to determine the order in which paths are to be explored.

Other systems for learning heuristics limit themselves to just one step of what
could be a bootstrapping process [9, 35, 41, 43, 44, 49]. Such systems typically
assume the initial heuristic (h0) is sufficiently strong that arbitrary instances can
be solved with it, and use learning to create a better heuristic, i.e., one that allows
instances to be solved more quickly than with h0 although perhaps with greater
suboptimality. If our bootstrap method is given an initial heuristic as strong as
these systems require, it performs the same as they do, i.e., it performs only one
iteration and produces an improved heuristic without introducing much subopti-
mality. For example, on the 15-puzzle Samadi et al.’s one-step system [41] cre-
ates a heuristic that allows solutions to random solvable instances to be found by
RBFS after generating only 2,241 nodes, on average, and the solutions found are
only 3.3% longer than optimal. Our system, if supplied with an initial heuristic
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comparable in strength to Samadi et al.’s initial heuristic, terminates after one it-
eration with a heuristic that allows solutions to the same instances to be found by
RBFS after generating only 9,402 nodes, and the solutions found are only 0.5%
longer than optimal [27]. Of course, our bootstrapping method has the advantage
over these systems that it does not require a strong initial heuristic; it will succeed
even if given an initial heuristic so weak that it cannot solve any of the bootstrap
instances in a reasonable amount of time.

Two previous systems have used random walks to generate successively more
difficult instances to bootstrap the learning of search control knowledge in a form
other than a heuristic function. Fern, Yoon, and Givan [12] used random walks
in learning policies to control a Markov Decision Process, and Finkelstein and
Markovitch [14] used them in the context of learning macro-operators to augment
a heuristic-guided hill-climbing search. In both cases the initial random walk
length and the increment were user-specified.

6. Conclusions

This paper gives experimental evidence that machine learning can be used to
create strong heuristics from very weak ones through an automatic, incremental
bootstrapping process augmented by a random walk method for generating suc-
cessively more difficult problem instances. Our system was tested on four prob-
lem domains that are at or beyond the limit of current abstraction methods and
in each case it successfully created heuristics that enable IDA* to solve randomly
generated test instances quickly and almost optimally. The total time needed for
this system to create these heuristics strongly depends on the number of bootstrap
instances it is given. Using 500 bootstrap instances, heuristics are produced ap-
proximately 10 times faster than using 5000 bootstrap instances. Search is slower
with the heuristics produced using fewer bootstrap instances, but the solutions
found are closer to optimal. This work significantly extends previous, one-step
methods that fail unless they are given a very strong heuristic to start with.

The total time for the bootstrap process to create strong heuristics for these
large state spaces is on the order of days. This is acceptable when the learning
time can be amortized over a large number of test instances. To make heuristic
learning effective when only a single problem instance needs to be solved, we pre-
sented a variation in which the bootstrap learning of new heuristics is interleaved
with problem-solving using the initial heuristic and whatever heuristics have been
learned so far. When tested on the same four domains, this method was shown to
substantially reduce the total time needed to solve a single instance while still pro-
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ducing solutions that are very close to optimal. When applied to the blocksworld
instances used in the IPC2 planning competition, our interleaving method solved
all the instances within the 30-minute time limit, and almost all were solved opti-
mally.
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