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Abstract. The present study aims at insights into the nature of incre-
mental learning in the context of Gold’s model of identification in the
limit. With a focus on natural requirements such as consistency and con-
servativeness, incremental learning is analysed both for learning from
positive examples and for learning from positive and negative exam-
ples. The results obtained illustrate in which way different consistency
and conservativeness demands can affect the capabilities of incremental
learners. These results may serve as a first step towards characterising
the structure of typical classes learnable incrementally and thus towards
elaborating uniform incremental learning methods.

1 Introduction

Considering data mining tasks, where specific knowledge has to be induced from
a huge amount of more or less unstructured data, several approaches have been
studied empirically in machine learning and formally in the field of learning
theory. These approaches differ in terms of the form of interaction between the
learning machine and its environment. For instance, scenarios have been anal-
ysed, where the learner receives instances of some target concept to be identified
or where the learner may pose queries concerning the target concept [6, 2, 11].
For learning from examples, one critical aspect is the limitation of a learning
machine in terms of its memory capacity. In particular, if huge amounts of data
have to be processed, it is conceivable that this capacity is too low to memorise
all relevant information during the whole learning process. This has motivated
the analysis of so-called incremental learning, cf. [4, 5, 7–9, 12], where in each step
of the learning process, the learner has access only to a limited number of ex-
amples. Thus, in each step, its hypothesis can be built upon these examples and
its former hypothesis, only. Other examples seen before have to be ‘forgotten’.

It has been analysed how such constraints affect the capabilities of learning
machines, thus revealing models in which certain classes of target concepts are
learnable, but not learnable in an incremental manner. However, some quite
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natural constraints for successful learning have mainly been neglected in the
corresponding studies. These constraints are (a) the requirement for consistent
learning, i. e., the demand that none of the intermediate hypotheses a learner
explicates should contradict the data processed so far, and (b) the requirement
for conservative learning, i. e., the demand that each intermediate hypothesis
should be maintained as long as it is consistent with the data seen.

The fact that there is no comprehensive analysis of how these demands affect
the capabilities of incremental learners can be traced back to a lack of knowledge
about the nature of incremental learning. In particular, there is no formal basis
explaining typical or uniform ways for solving learning tasks in an incremental
way. In terms of learning theory, incremental learning is one of the very few mod-
els, for which no characterisation of the typical structure of learnable classes is
known. For other models of learning from examples, characterisations and uni-
form learning methods have often been the outcome of analysing the impact
of consistency or conservativeness, see, e. g., [13]. Thus, also in the context of
incremental learning, it is conceivable that studying these natural requirements
may yield insights into typical learning methods. In other words, analysing con-
sistency and conservativeness may be the key for a better understanding of the
nature of incremental learning and may thus, in the long term, provide charac-
terisations of learnable classes and uniform incremental learning methods.

The present study aims at insights into the nature of incremental learning
in the context of Gold’s model of learning in the limit from examples [6]. For
that purpose, we analyse Wiehagen’s version of incremental learning, namely
iterative learning [12] with a focus on consistent and conservative learners. In
Gold’s approach, learning is considered as an infinite process, where in each step
the learner is presented an example en for the target concept and is supposed to
return an intermediate hypothesis. In the limit, the hypotheses must stabilise on
a correct representation of the target concept. Here, in step n+1 of the learning
process, the learner has access to all examples e0, . . . , en provided up to step n
plus the current example en+1. In contrast, an iterative learner has no capacities
for memorising any examples seen so far, i. e., its hypothesis hn+1 in step n + 1
is built only upon the example en+1 and its previous hypothesis hn.

The present paper addresses consistency and conservativeness in the context
of iterative learning. Here several possible ways to formalise the demands for
consistency and conservativeness become apparent. Assume an iterative learner
has processed the examples e0, . . . , en+1 for some target concept and returns
some hypothesis hn+1 in step n+1. From a global perspective, one would define
hn+1 consistent, if it agrees with the examples e0, . . . , en+1. But since the learner
has not memorised e0, . . . , en, it might be considered natural to just demand
that hn+1 agrees with the current example en+1. This is justified from a rather
local perspective. Similarly, when defining conservativeness from a global point of
view, one might demand that hn+1 = hn in case hn does not contradict any of the
examples e0, . . . , en+1, whereas a local variant of conservativeness would mean to
require that hn+1 = hn in case hn does not contradict the current example en+1.



Note that local consistency is a weaker requirement than global consistency,
whereas local conservativeness is stronger than global conservativeness.

In the present paper, we restrict our focus on recursive languages as target
concepts [1, 13]. In particular, the target classes are required to be indexable,
i. e., there exist algorithms deciding the membership problem uniformly for all
possible target languages. This restriction is motivated by the fact that many
classes of target concepts relevant for typical learning tasks are indexable.

The paper is structured as follows. In Section 2, we provide the definitions
and notations necessary for our formal analysis. Then Section 3 is concerned
with a case study of iterative learning of regular erasing pattern languages – a
quite natural and simple to define indexable class which has shown to be suitable
for representing target concepts in many application scenarios. This case study
shows how consistency and conservativeness may affect the learnability of such
pattern languages in case quite natural hypothesis spaces are chosen for learn-
ing. Section 4 focuses on consistency in iterative learning. It has turned out,
that iterative learners can be normalised to work in a locally consistent way,
whereas global consistency is a constraint reducing the capabilities of iterative
learners. Both results hold for learning from positive examples as well as for
learning from both positive and negative examples. Section 5 then is concerned
with conservativeness. Here we show that, in the scenario of learning from only
positive examples, the effects of global conservativeness demands and local con-
servativeness demands are equal, as far as the capabilities of iterative learners are
concerned. In contrast to that there are classes which can be learned iteratively
from positive and negative examples by a globally conservative learner, but not
in a locally conservative manner. Concerning the effect of weak conservativeness
demands (i. e., of global conservativeness), we can show that they strictly reduce
the capabilities of iterative learners which are given both positive and negative
examples as information. However, the corresponding comparison in the case of
learning from only positive examples is still open. In our point of view, not only
the mere results presented here, but in particular the proof constructions and
separating classes give an impression of characteristic methods of iterative learn-
ing and characteristic properties of iteratively learnable classes, even though we
cannot provide a formal characterisation yet. Section 6 contains our conclusions.

2 Preliminaries

Let Σ be a fixed finite alphabet, Σ∗ the set of all finite strings over Σ, and
Σ+ its subset excluding the empty string. |w| denotes the length of a string w.
Any non-empty subset of Σ∗ is called a language. For any language L, co(L) =
Σ∗ \ L. N is the set of all natural numbers. If L is a language, then any infinite
sequence t = (wj)j∈N with {wj | j ∈ N} = L is called a text for L. Moreover,
any infinite sequence i = ((wj , bj))j∈N over Σ∗ × {+,−} such that {wj | j ∈
N} = Σ∗, {wj | j ∈ N, bj = +} = L, and {wj | j ∈ N, bj = −} = co(L) is
referred to as an informant for L. Then, for any n ∈ N, t[n] and i[n] denote the
initial segment of t and i of length n + 1, while t(n) = wn and i(n) = (wn, bn).



Furthermore, content(t[n]) = {wj | j ≤ n}. Let content(i[n]), content+(i[n]),
and content−(i[n]) denote the sets {(wj , bj) | j ≤ n}, {wj | j ≤ n, bj = +}, and
{wj | j ≤ n, bj = −}.

A family (Lj)j∈N of languages is called an indexing for a class C of recursive
languages, if C = {Lj | j ∈ N} and there is a recursive function f such that
Lj = {w ∈ Σ∗ | f(j, w) = 1} for all j ∈ N. C is called an indexable class (of
recursive languages), if C possesses an indexing.

In our proofs, we will use a fixed Gödel numbering (ϕj)j∈N of all (and only all)
partial recursive functions over N as well as an associated complexity measure
(Φj)j∈N, see [3]. Then, for k, x ∈ N, ϕk is the partial recursive function computed
by program k and we write ϕk(x) ↓ (ϕk(x) ↑), if ϕk(x) is defined (undefined).

2.1 Learning from text

Let C be an indexable class, H = (Lj)j∈N any indexing of some C′ ⊇ C (called
hypothesis space), and L ∈ C. An inductive inference machine (IIM for short)
M is an algorithmic device that reads longer and longer initial segments σ of a
text and outputs numbers M(σ) as its hypotheses. An IIM M returning some j
is construed to hypothesise the language Lj . The following definition of learning
from positive data is based on Gold [6]. Given a text t for L, M learns L from
t with respect to H, if (a) the sequence of hypotheses output by M , when fed t,
stabilises on a number j (* i. e., past some point M always outputs the hypothesis
j *) and (b) this number j fulfils Lj = L.

An iterative inductive inference machines is only allowed to use its previous
hypothesis and the current string in a text for computing its current hypothesis.
More formally, an iterative IIM M is an algorithmic device that maps elements
from N∪{init}×Σ∗ into N, where init denotes a fixed initial ‘hypothesis’ which
the IIM may never output. Let t = (wn)n∈N be any text for some language L ⊆
Σ∗. Then we denote by (M [init , t[n]])n∈N the sequence of hypotheses generated
by M when processing t, i. e., M [init , w0] = M(init , w0) and, for all n ∈ N,
M [init , t[n + 1]] = M(M [init , t[n]], wn+1).

Definition 1. [12] Let C be an indexable class, H = (Lj)j∈N a hypothesis space,
and L ∈ C. An iterative IIM M learns L from text with respect to H iff, for any
text t = (wn)n∈N for L, the sequence (M [init , t[n]])n∈N stabilises on a number j
with Lj = L. Moreover, M learns C from text with respect to H, if it identifies
every L′ ∈ C from text with respect to H. Finally, ItTxt denotes the collection of
all indexable classes C′ for which there is a hypothesis space H′ and an iterative
IIM learning C′ from text with respect to H′.

In the definition of consistent learning, a hypothesis of a learner is said to be
consistent, if it reflects the data it was built upon correctly. Since an iterative IIM
M , when processing some text t, is only allowed to use its previous hypothesis,
say Lj′ , and the current string v in t for computing its current hypothesis Lj ,
it is quite natural to distinguish two variants of consistent learning. In the first
case, it is demanded that Lj contains all elements of t seen so far, while, in the
second case, it is only required that Lj contains the string v.



Definition 2. Let C be an indexable class, H = (Lj)j∈N a hypothesis space, and
M an iterative IIM. M is globally (locally) consistent for C iff content(t[n]) ⊆
LM [init,t[n]] (t(n) ∈ LM [init,t[n]]) for every text segment t[n] for some L ∈ C. Fi-
nally, ItGConsTxt (ItLConsTxt) denotes the collection of all indexable classes C′
for which there is a hypothesis space H′ and an iterative IIM which is globally
(locally) consistent for C′ and learns C′ from text with respect to H′.

Finally we consider conservative learning. Informally speaking, a conservative
learner maintains its current hypothesis as long as the latter does not contradict
any data seen. Hence, whenever a conservative IIM changes its recent hypothesis,
this must be justified by data having occurred which prove an inconsistency of
its recent hypothesis. Similarly to the case of consistent iterative learning, it is
quite natural to distinguish two variants of conservativeness.

Definition 3. Let C be an indexable class, H = (Lj)j∈N be a hypothesis space,
and M be an iterative IIM. M is globally (locally) conservative for C iff, for
every text segment t[n + 1] for some L ∈ C, M [init , t[n + 1]] 6= M [init , t[n]]
implies content(t[n + 1]) 6⊆ LM [init,t[n]] (implies t(n + 1) /∈ LM [init,t[n]]). Finally,
ItGConvTxt (ItLConvTxt) denotes the collection of all indexable classes C′ for
which there is a hypothesis space H′ and an iterative IIM which is globally (lo-
cally) conservative for C′ and learns C′ from text with respect to H′.

Note that we allow a mind change from init after the first input data is
received.

2.2 Learning from informant

For all variants of ItTxt considered so far we define corresponding models cap-
turing the case of learning from informant. Now an iterative IIM M maps N ×
(Σ∗×{+,−}) into N. Let i = (wn, bn)n∈N be any informant for some language L,
and let init be a fixed initial hypothesis. Then (M [init , i[n]])n∈N is the sequence
of hypotheses by M processing i, i. e., M [init , (w0, b0)] = M(init , (w0, b0)) and,
for all n ∈ N, M [init , i[n + 1]] = M(M [init , i[n]], (wn+1, bn+1)).

Definition 4. [12] Let C be an indexable class, H = (Lj)j∈N a hypothesis space,
and L ∈ C. An iterative IIM M learns L from informant with respect to H, iff for
every informant i for L, the sequence (M [init , i[n]])n∈N stabilises on a number
j with Lj = L. Moreover, M learns C from informant with respect to H, if M
learns every L′ ∈ C from informant with respect to H.

The notion ItInf is defined similarly to the text case. Now also the consis-
tency and conservativeness demands can be formalised. For instance, for consis-
tency, let C be an indexable class,H = (Lj)j∈N a hypothesis space, and M an iter-
ative IIM. M is globally (locally) consistent for C iff content+(i[n]) ⊆ LM [init,i[n]]

and content−(i[n]) ⊆ co(LM [init,i[n]]) (b = + for w ∈ LM [init,i[n]] and b = −
for w /∈ LM [init,i[n]]) for every informant segment i[n] for some L ∈ C, where
i(n) = (w, b). Finally, the definitions of ItGConsInf , ItLConsInf , ItGConvInf ,
ItLConvInf can be adapted from the text case to the informant case.



3 A case study: The regular erasing pattern languages

Let Σ be any fixed finite alphabet. Let X = {x1, x2, . . . } be an infinite set of
variables, disjoint with Σ. A regular pattern α is a string from (Σ ∪X)+ which
contains every variable at most once. Let α be a regular pattern. Then Lε(α),
the regular erasing pattern language generated by α, contains all strings in Σ∗

that can be obtained by replacing the variables in α by strings from Σ∗, see,
e. g., [10]. Note that Lε(α) constitutes a regular language. Subsequently, let Crp

denote the collection of all regular erasing pattern languages.
Our first result can be achieved by adapting a standard idea, see, e. g., [4].

Theorem 1. There is a learner witnessing both Crp ∈ ItGConsTxt and Crp ∈
ItLConvTxt.

Sketch of the proof. Let (Dj)j∈N be the canonical enumeration of all finite subsets
of N and (Lε(αj))j∈N be an effective, repetition-free indexing of Crp. Moreover
let L′

j =
⋂

z∈Dj
Lε(αz). Hence (L′

j)j∈N is an indexing comprising the class Crp.
The proof is essentially based on the following fact.

Fact 1. There is an algorithm A which, given any string w ∈ Σ+ as input,
outputs an index j such that Dj = {z ∈ N | w ∈ Lε(αz)}.

A learner M witnessing Crp ∈ ItGConsTxt and Crp ∈ ItLConvTxt with
respect to (L′)j∈N may simply work as follows:

Initially, if the first string w appears, M starts its subroutine A, determines
j = A(w), and guesses the language L′

j , i. e., M(init , w) = j. Next M , when
receiving a new string v, refines its recent hypothesis, say j′, as follows. M
determines the canonical index j of the set {z | z ∈ Dj′ , v ∈ Lε(αz)} ⊆ Dj′ and
guesses the languages L′

j , i. e., M(j′, v) = j.
It is not hard to see that M learns as required. 2

Although the iterative learner M used in this proof is locally conservative
and globally consistent, M has the disadvantage of guessing languages not con-
tained in the class of all regular erasing pattern languages. At first glance, it
might seem that this weakness can easily be compensated, since the final guess
returned by M is always a regular erasing pattern language and, moreover, one
can effectively determine whether or not the recent guess of M equals a regular
erasing pattern language. Surprisingly, even under this quite ‘perfect’ circum-
stances, it is impossible to replace M by an iterative, locally conservative, and
globally consistent learner for Crp that hypothesises languages in Crp, exclusively.

Theorem 2. Let card(Σ) ≥ 2. Let (Lj)j∈N be any indexing of Crp. Then there
is no learner M witnessing both Crp ∈ ItGConsTxt and Crp ∈ ItLConvTxt with
respect to (Lj)j∈N.

Proof. Let {a, b} ⊆ Σ. Assume to the contrary that there is an iterative learner M
which learns Crp locally conservatively and globally consistently, hypothesising
only regular erasing pattern languages. Consider M for any text of some L ∈
Crp with the initial segment σ = aba, aab. Since M must avoid overgeneralised



hypotheses, there are only two possible semantically different hypotheses which
are globally consistent with σ, namely x1abx2 and ax1ax2. Distinguish two cases:

Case (a). LM [init,σ] = Lε(x1abx2).
Consider M processing σ1 = σab, aa and σ2 = σaa. Since ab ∈ Lε(x1abx2)

and M is locally conservative for Crp, we obtain M [init , σab] = M [init , σ]. For
reasons of global consistency, LM [init,σ1] = Lε(ax1). Now, since M [init , σab] =
M [init , σ], this yields LM [init,σ2] = Lε(ax1). However, σ2 can be extended to a
text for Lε(ax1ax2), on which M will fail to learn locally conservatively, since
M [init , σ2] overgeneralises the target. This contradicts the assumptions on M .

Case (b). LM [init,σ] = Lε(ax1ax2).
Here a similar contradiction can be obtained for M processing σ1 = σaa, ab

and σ2 = σab.
Both cases yield a contradiction and thus the theorem is verified. 2

However, as Theorems 3 and 4 show, each of our natural requirements, in its
stronger formulation, can be achieved separately, if an appropriate indexing of
the regular erasing pattern languages is used as a hypothesis space. We provide
the proof only for the first result; a similar idea can be used also for Theorem 4.

Theorem 3. There is an indexing (L∗
j )j∈N of Crp and a learner M witnessing

Crp ∈ ItLConvTxt with respect to (L∗
j )j∈N.

Proof. As in the proof of Theorem 1, let (Dj)j∈N be the canonical enumeration
of all finite subsets of N and (Lε(αj))j∈N an effective, repetition-free indexing of
Crp. Moreover let L′

j =
⋂

z∈Dj
Lε(αz) for all j ∈ N. Hence (L′

j)j∈N is an indexing
comprising the class Crp. The proof is based on the following fact.

Fact 2. There is an algorithm A′ which, given any index j as input, outputs
an index k with Lε(αk) = L′

j, if such an index exists, and ’no’, otherwise.

(* Since every regular erasing pattern language is a regular language and both
the inclusion problem as well as the equivalence problem for regular languages
are decidable, such an algorithm A′ exists. *)

The required iterative learner uses the algorithm A′ and the iterative learner
M from the demonstration of Theorem 1 as its subroutines. Let (L∗

〈k,j〉)k,j∈N be
an indexing of Crp with L∗

〈k,j〉 = Lε(αk) for all k, j ∈ N. We define an iterative
learner M ′ for Crp that uses the hypothesis space (L∗

〈k,j〉)k,j∈N.
Initially, if the first string w appears, M ′ determines the canonical index

k of the regular erasing pattern language Lε(w) as well as j = M(init , w),
and outputs the hypothesis 〈k, j〉, i. e., M ′(init , w) = 〈k, j〉. Next M ′, when
receiving a string v, refines its recent hypothesis, say 〈k′, j′〉, as follows. First,
if v ∈ L∗

〈k′,j′〉, M ′ repeats its recent hypothesis, i. e., M ′(〈k′, j′〉, v) = 〈k′, j′〉.
(* Note that j′ = M(j′, v), too. *) Second, if v /∈ L∗

〈k′,j′〉, M ′ determines j =
M(j′, v) and runs A′ on input j. If A′ returns some k ∈ N, M ′ returns 〈k, j〉,
i. e., M ′(〈k′, j′〉, v) = 〈k, j〉. If A′ returns ’no’, M ′ determines the canonical
index k of the regular erasing pattern language Lε(v) and returns 〈k, j〉, i. e.,
M ′(〈k′, j′〉, v) = 〈k, j〉.



By definition, M ′ is an iterative and locally conservative learner. Let t be any
text for any L ∈ Crp. Since M learns L, there is some n such that M [init , t[n]] = j
with L′

j = L. By definition, for 〈k, j〉 = M ′[init , t[n]], we have Lε(αk) = L′
j . Thus

L∗
〈k,j〉 = Lε(αk). Since M ′ is a locally conservative learner, M ′ learns L, too. 2

Theorem 4. There is an indexing (Lj)j∈N of Crp and a learner M witnessing
Crp ∈ ItGConsTxt with respect to (Lj)j∈N.

This case study shows that the necessity of auxiliary hypotheses representing
languages outside the target class may depend on whether both global consis-
tency and local conservativeness or only one of these properties is required. In
what follows, we analyse the impact of consistency and conservativeness sepa-
rately in a more general context, assuming that auxiliary hypotheses are allowed.

4 Incremental learning and consistency

This section is concerned with the impact of consistency demands in iterative
learning. In the case of learning from text, the weaker consistency demand,
namely local consistency, does not restrict the capabilities of iterative learners.

Theorem 5. ItLConsTxt = ItTxt.

Proof. By definition, ItLConsTxt ⊆ ItTxt . To prove ItTxt ⊆ ItLConsTxt , fix
an indexable class C ∈ ItTxt . Let (Lj)j∈N be an indexing comprising C and M
an iterative learner for C with respect to (Lj)j∈N.

The required learner M ′ uses the indexing (L′
〈j,w〉)j∈N,w∈Σ∗ , where L′

〈j,w〉 =
Lj ∪{w} for all j ∈ N, w ∈ Σ∗. Initially, M ′(init , w) = 〈j, w〉 for j = M(init , w).
Next M ′, upon a string v, refines its recent hypothesis, say 〈j′, w′〉, as follows.
First, M ′ determines j = M(j′, v). Second, if v ∈ Lj , M returns 〈j, w′〉; other-
wise, it returns 〈j, v〉. Obviously, M ′ witnesses C ∈ ItLConsTxt . 2

In contrast to that, requiring local consistency results in a loss of learning
potential, as the following theorem shows.

Theorem 6. ItGConsTxt ⊂ ItTxt.

Proof. By definition, ItGConsTxt ⊆ ItTxt . It remains to provide a separating
class C that witnesses ItTxt \ ItGConsTxt 6= ∅.

Let Σ = {a, b} and let (Aj)j∈N be the canonical enumeration of all finite
subsets of {a}+. Now C contains the language L = {a}+ and, for all j ∈ N, the
finite language Lj = Aj ∪ {bz | z ≤ j}.
Claim 1. C ∈ ItTxt .

The required iterative learner M may work as follows. As long as exclusively
strings from {a}+ appear, M just guesses L. If a string of form bj appears for the
first time, M guesses Lj . Past that point, M , when receiving a string v, refines
its recent guess, say Lk, as follows. If v ∈ L or v = bz for some z ≤ k, M repeats
its guess Lk. If v = bz for some z > k, M guesses Lz.



It is not hard to verify that M is an iterative learner that learns C as required.
Claim 2. C /∈ ItGConsTxt .

Suppose to the contrary that there is an indexing (L′
j)j∈N comprising C and

a learner M witnessing C ∈ ItGConsTxt with respect to (L′
j)j∈N.

Consider M when processing the text t = a1, a2, . . . for L. Since M is a
learner for C, there has to be some n such that M [init , t[n]] = M [init , t[n + m]]
for all m ≥ 1. (* Note that M [init , t[n]] = M [init , t[n]az] for all z > n + 1. *)

Now let j be fixed such that Aj = content(t[n]) = {a1, . . . , an+1}. Consider
M when processing any text t̂ for Lj with t̂[n] = t[n]. Since M is a learner for
C, there is some n′ > n such that content(t̂[n′]) = Lj as well as L′

k = Lj for k =
M [init , t̂[n′]]. (* Note that there is some finite sequence σ with t̂[n′] = t[n]σ. *)

Next let j′ > j be fixed such that Aj ⊂ Aj′ . Moreover fix any string az in
Aj′ \ Aj . (* Note that z > n + 1 and az /∈ Lj . *) Consider M when processing
any text t̃ for the language Lj′ having the initial segment t̃[n′ + 1] = t[n]azσ.
Since M [init , t[n]] = M [init , t[n]az], one obtains M [init , t̃[n+1]] = M [init , t̂[n]].
Finally since M is an iterative learner, t̂[n′] = t̂[n]σ, and t̃[n′ + 1] = t̃[n + 1]σ,
one may conclude that M [init , t̃[n′ + 1]] = M [init , t̂[n′]] = k. But L′

k = Lj , and
therefore az /∈ L′

k. The latter implies content(t̃[n′ + 1]) 6⊆ L′
k, contradicting the

assumption that M is an iterative and globally consistent learner for C. 2

In the case of learning from informant, the results obtained are parallel to
those in the text case. Theorem 7 can be verified similarly to Theorem 5.

Theorem 7. ItLConsInf = ItConsInf .

Considering the stronger consistency requirement, there are even classes
learnable iteratively from text, but not globally consistently from informant.

Theorem 8. ItTxt \ ItGConsInf 6= ∅.

Proof. It suffices to provide a class C ∈ ItTxt \ ItGConsInf .
Let Σ = {a, b} and let (Aj)j∈N be the canonical enumeration of all finite

subsets of {a}+. Now C contains the language L = {a}+ and, for all j, k ∈ N,
the finite language L〈j,k〉 = Aj ∪Ak ∪ {bj , bk}.
Claim 1. C ∈ ItTxt .

The required iterative learner M may work as follows. As long as only strings
from {a}+ appear, M guesses L. If a string of form bz appears for the first time,
M guesses L〈z,z〉. Past that point, M refines its recent guess, say L〈j′,k′〉, when
receiving a string v as follows. If j′ = k′ and v = bz with z 6= j′, M guesses
L〈j′,z〉. In all other cases, M repeats its guess L〈j′,k′〉.

It is not hard to verify that M is an iterative learner that learns C as required.
Claim 2. C /∈ ItGConsInf .

Suppose to the contrary that there is an indexing (L′
j)j∈N comprising C and

a learner M witnessing C ∈ ItGConsInf with respect to (L′
j)j∈N.

Consider an informant i = ((wn, bn)n∈N) for L such that |wn| ≤ n for all
n ∈ N. Since M is a learner for C, there has to be some n such that M [init , i[n]] =
M [init , i[n + m]] for all m ≥ 1. (* Note that M [init , i[n]] = M [init , i[n](az,+)]
for all z > n + 1. *)



Let j be fixed such that content+(i[n]) ⊆ Aj and bj /∈ content−(i[n]). Now
consider M when processing an informant ı̂ for L〈j,j〉 with ı̂[n] = i[n]. Since M
is a learner for C, there has to be some n′ > n such that content (̂ı[n′]) = L〈j,j〉
and L′

k = L〈j,j〉 for k = M [init , ı̂[n′]]. (* Note that there is some finite sequence
σ such that ı̂[n′] = i[n]σ. *)

Now let k′ > j be fixed such that Aj ⊂ Ak′ , content−(̂ı[n]) ∩ Ak′ = ∅, and
bk′

/∈ content−(̂ı[n]). Let az be any string in Ak′ \Aj . (* Note that z > n+1 and
az /∈ L〈j,j〉. *) Consider M when processing any informant ı̃ for the language
L〈j,k′〉 with ı̃[n′+1] = i[n](az,+)σ. Since M [init , i[n]] = M [init , i[n](az,+)], one
obtains M [init , ı̃[n + 1]] = M [init , ı̂[n]]. Finally since M is an iterative learner,
ı̂[n′] = ı̂[n]σ, and ı̃[n′ +1] = ı̃[n+1]σ, one may conclude that M [init , ı̃[n′ +1]] =
M [init , ı̂[n′]] = k. But L′

k = L〈j,j〉, and therefore az /∈ L′
k. The latter implies

content+(̃ı[n′ + 1]) 6⊆ L′
k, contradicting the assumption that M is an iterative

and globally consistent learner for C. 2

Obviously ItTxt ⊆ ItInf , and thus we obtain the following corollary.

Corollary 1. ItGConsInf ⊂ ItInf .

5 Incremental learning and conservativeness

This section deals with conservativeness in the context of iterative learning. Here
the results for learning from text differ from those for the informant case.

5.1 The case of learning from text

Let us first discuss the different conservativeness definitions in the context of
learning from positive examples only. By definition, local conservativeness is a
stronger demand, since the learner is required to maintain a hypothesis if it is
consistent with the most recent piece of information, even if it contradicts some
previously processed examples. However, it turns out that this demand does not
have any negative effect on the capabilities of iterative learners. Intuitively, a
globally conservative learner may change mind depending on inconsistency with
only a limited set of examples, which can be coded within the hypothesis.

Theorem 9. ItGConvTxt = ItLConvTxt.

Proof. By definition, ItLConvTxt ⊆ ItGConvTxt . Fix an indexable class C ∈
ItGConvTxt ; let (Lj)j∈N be an indexing and M an iterative IIM identifying
C globally conservatively with respect to (Lj)j∈N. It remains to prove C ∈
ItLConvTxt . For that purpose, we need the following notion and technical claim.
Notion. For any text t and any n ∈ N, let mc(t[n],M) denote the set {t(0)} ∪
{t(m) | 1 ≤ m ≤ n and M [init , t[m − 1]] 6= M [init , t[m]]} of all strings in
content(t[n]), which force M to change its mind when processing t[n].
Technical claim. Let L ∈ C, t a text for L, and n ∈ N. Let j = M [init , t[n]]. If
t(n + 1) ∪mc(t[n],M) ⊆ Lj , then M [init , t[n + 1]] = M [init , t[n]].



Proof. Let W = content(t[n + 1]) \ Lj . As t(n + 1) ∪ mc(t[n],M) ⊆ Lj , then
M [init , t[m + 1]] = M [init , t[m]] for all m < n with t(m + 1) ∈ W . Now let τ
be the subsequence of t[n] obtained by deleting all w ∈ W from t[n]. Obviously,
M [init , τ ] = M [init , t[n]] and mc(t[n],M) ⊆ content(τ) ⊆ Lj . This implies

M [init , t[n + 1]] = M [init , τ t(n + 1)] = M [init , τ ] = M [init , t[n]] ,

because M is globally conservative for L. (QED, technical claim).
Define an indexing (L′

j)j∈N by L′
2〈j,k〉 = Lj and L′

2〈j,k〉+1 = ∅ for all j, k ∈ N.
We now define an IIM M ′ (witnessing C ∈ ItLConvTxt using (L′

j)j∈N), such
that, on any finite text segment σ for some L ∈ C, the following invariant holds:

M ′[init , σ] = 2〈M [init , σ], k〉+ y for some k ∈ N, y ∈ {0, 1}, such that
– Dk = mc(σ,M) (* and thus Dk ⊆ content(σ) *).
– If y = 0, then Dk ⊆ LM [init,σ].

The reader may check that this invariant holds, if M ′ is defined as follows:
Definition of M ′(init , w), for w ∈ Σ∗: Let j = M(init , w).

– If w ∈ Lj , let M ′(init , w) = 2〈j, k〉, where Dk = {w}.
– If w /∈ Lj , let M ′(init , w) = 2〈j, k〉+ 1, where Dk = {w}.

Definition of M ′(2〈j, k〉+ 1, w), for w ∈ Σ∗, j, k ∈ N: Let j′ = M(j, w).

– If j = j′ and Dk ⊆ Lj , let M ′(2〈j, k〉+ 1, w) = 2〈j, k〉.
– If j = j′ and Dk 6⊆ Lj , let M ′(2〈j, k〉+ 1, w) = 2〈j, k〉+ 1.
– If j 6= j′, let M ′(2〈j, k〉+ 1, w) = 2〈j′, k′〉+ 1, where Dk′ = Dk ∪ {w}.

Definition of M ′(2〈j, k〉, w), for w ∈ Σ∗, j, k ∈ N: Let j′ = M(j, w).

– If w /∈ Lj and j = j′, let M ′(2〈j, k〉, w) = 2〈j, k〉+ 1.
– If w /∈ Lj and j 6= j′, let M ′(2〈j, k〉, w) = 2〈j′, k′〉+1, where Dk′ = Dk∪{w}.
– If w ∈ Lj (* by the invariant, there is some text segment σ with M [init , σ] =

j and Dk = mc(σ,M) ⊆ Lj ; hence Dk∪{w} ⊆ Lj and j = j′ by the technical
claim *), let M ′(2〈j, k〉, w) = 2〈j, k〉.

By definition, M ′ is locally conservative with respect to (L′
j)j∈N. Since M is

globally conservative for C with respect to (Lj)j∈N and because of the invariant,
it is not hard to verify that M ′ learns C iteratively. Thus C ∈ ItLConvTxt . 2

So local and global conservativeness are equal constraints for iterative text
learners. Whether they reduce the capabilities of iterative text learners in gen-
eral, i. e., whether ItGConvTxt and ItTxt coincide, remains an open question.

5.2 The case of learning from informant

First, comparing the two versions of conservativeness, the informant case yields
results different from those in the text case, namely that globally conservative
iterative learners cannot be normalised to being locally conservative. In particu-
lar, the property that globally conservative learners can code all previously seen
examples, for which their current hypothesis is inconsistent, no longer holds in
the informant case.



Theorem 10. ItLConvInf ⊂ ItGConvInf .

Proof. By definition, ItLConvInf ⊆ ItGConvInf . Thus it remains to provide a
separating class C that witnesses ItGConvInf \ ItLConvInf 6= ∅.

Let Σ = {a} and (Dj)j∈N the canonical enumeration of all finite subsets of
{a}+. Assume D0 = ∅. For all j ∈ N, set Lj = {a0} ∪Dj and L′

j = {a}+ \Dj .
Let C be the collection of all finite languages Lj and all co-finite languages L′

j .
Claim 1. C ∈ ItGConvInf .

For all j, k, z ∈ N, let H2〈j,k,z〉 = {a}+ \ {az} and H2〈j,k,z〉+1 = {az}. Now
the required iterative learner M , processing an informant i = ((wn, bn))n∈N for
some L ∈ C may work as follows.

(i) As long as neither (a0,+) nor (a0,−) appear, M guesses — depending on
whether or not (w0, b0) = (az,+) or (w0, b0) = (az,−) — in the first case
H2〈j,k,z〉, in the second case H2〈j,k,z〉+1, where Dj = content+(i[n]) and
Dk = content−(i[n]) (* The recent guess of M is inconsistent, so M can
change its mind without violating the global conservativeness demand. *)

(ii) If (a0,+) or (a0,−) appears for the first time, the following cases will be
distinguished. If w0 = a0 and b0 = +, M guesses L0. If w0 = a0 and b0 = −,
M guesses L′

0. Otherwise, let j′ = 2〈j, k, z〉+y, y ∈ {0, 1}, denote the recent
guess of M . If (a0,+) appears, M ′ guesses the finite language Lj . If (a0,−)
appears, M ′ guesses the co-finite language L′

k.
(iii) Then M refines its recent guess as follows. If a positive example (az,+)

appears, the recent guess of M is Lj′ , and az /∈ Lj′ , M guesses Lj = Lj′ ∪
{az}. If a negative example (az,−) appears, the recent guess of M is L′

k′ ,
and az ∈ L′

k′ , M guesses L′
k = L′

k′ \ {az}. Else M repeats its recent guess.

It is not hard to verify that M is an iterative learner that learns C as required.
Claim 2. C /∈ ItLConvInf .

Suppose to the contrary that there is an indexing (L∗
j )j∈N comprising C and

a learner M which locally conservatively identifies C with respect to (L∗
j )j∈N.

Let j = M(init , (a,+)). We distinguish the following cases:
Case 1. L∗

j ∩ {a}+ is infinite.
Choose ar ∈ L∗

j with r > 1 and L = {a0, a1, ar}. Consider M on the infor-
mant i = (a,+), (ar,+), (a0,+), (a2,−), . . . , (ar−1,−), (ar+1,−), (ar+2,−), . . .
for L. As M learns C, there is an n ≥ 2 with M [init , i[n]] = M [init , i[n +
m]] for all m ≥ 1. (* M [init , i[n](as,−)] = M [init , i[n]] for all as with as /∈
(content+(i[n]) ∪ content−(i[n])). *) Let as be any string in L∗

j with s > r + 1,
as /∈ (content+(i[n]) ∪ content−(i[n])). As Lj ∩ {a}+ is infinite, such as exists.
(* There is some σ with i = (a,+), (ar,+)σ(as−1,−), (as,−), (as+1,−), . . . *)

Next let ı̂ = (a1,+), (ar,+), (as,+)σ(as−1,−), (as+1,−), (as+2,−), . . . Con-
sider M when processing the informant ı̂ for L′ = {a0, a1, ar, as}. Since M is
locally conservative and as ∈ L∗

j , M [init , ı̂[2]] = M [init , i[1]]. As M is an iter-
ative learner, M [init , ı̂[n + 1]] = M [init , i[n]]. Past step n + 1, M receives only
negative examples (az,−) with az /∈ (content+(i[n])∪ content−(i[n])). Hence M
converges on ı̂ to the same hypothesis j as on i, namely to j = M [init , i[n]].
Finally because L 6= L′, M cannot learn both finite languages L and L′.



Case 2. L∗
j ∩ {a}+ is finite.

An argumentation similar to that used in Case 1 shows that M must fail to
learn some co-finite language in C. We omit the relevant details. 2

The observed difference in the above theorem can now even be extended to
a proper hierarchy of iterative learning from informant; globally conservative
learners in general outperform locally conservative ones, but are not capable
of solving all the learning tasks a general iterative learner can cope with. So
there are classes in ItInf which cannot be learned by any iterative, globally
conservative learner.

Theorem 11. ItGConvInf ⊂ ItInf .

Proof. By definition, ItGConvInf ⊆ ItInf . Thus it remains to provide a sepa-
rating class C that witnesses ItInf \ ItGConvInf 6= ∅.

Let (Dj)j∈N be the canonical enumeration of all finite subsets of N.
Let C =

⋃
k∈N Ck, where Ck are defined below based on following cases.

Case (a). If ϕk(k) ↑, then Ck contains just one language, namely Lk = {ak}.
Case (b). If ϕk(k) ↓, then Ck contains infinitely many languages. Let s =

Φk(k). For all j ∈ N, Ck contains the language L〈k,j〉 = Lk∪{bs}∪{cs+z | z ∈ Dj}
as well as the language L′

〈k,j〉 = Lk∪{cs+z | z 6∈ Dj}. (* Note that L〈k,j〉 contains
a finite subset of {c}∗, whereas L′

〈k,j〉 contains a co-finite subset of {c}∗. *)
It is not hard to verify that C constitutes an indexable class.

Claim 1. C ∈ ItInf .
Let i = ((wn, bn))n∈N be an informant for some L ∈ C. A corresponding

iterative learner M may be informally defined as follows:

(i) As long as no positive example (ak,+) appears, M ′ encodes in its guess all
examples seen so far.

(ii) If some positive example (ak,+) appears, M ′ tests whether or not Φk(k) ≤
|w|, where w is the longest string seen so far. In case that ϕk(k) ↓ has
been verified, M ′ guesses Lk, where in its hypothesis all examples seen so
far are encoded. Subsequently, M ′ behaves according to (iv). In case that
Φk(k) > |w|, M ′ guesses Lk, where the encoded examples can be simply
ignored. Afterwards, M ′ behaves according to (iii).

(iii) As long as M ′ guesses Lk, M ′ uses the recent example (wn, bn) to check
whether or not Φk(k) ≤ |wn|. In the positive case, M ′ behaves as in (iv).
Else M ′ repeats its recent guess, without encoding any further example.

(iv) Let s = Φk(k). As long as (bs,+) and (bs,−) neither appear nor belong to
the examples encoded in the recent guess, M ′ adds the new example into
the encoding of examples in the recent guess. If (bs,+) (or (bs,−)) appears
or is encoded, M ′ guesses a language L〈k,j〉 (or L′

〈k,j〉, respectively) that is
consistent with all examples encoded. Past that point, M ′ works like the
iterative learner M used in the proof of Theorem 10, Claim 1.

It is not hard to see that M ′ is an iterative learner for C.
Claim 2. C 6∈ ItGConvInf .



Suppose the converse. That is, there is an indexing (L∗
j )j∈N comprising C and

an iterative learner M which globally conservatively identifies C with respect to
(L∗

j )j∈N. We shall show that M can be utilised to solve the halting problem.

Algorithm A: Let k be given. Let i = (wn, bn)n∈N be a repetition-free informant
for Lk with w0 = ak and b0 = + such that, for all n ∈ N, wm = bn implies
m < n. For m = 0, 1, 2, . . . test in parallel whether (α1) or (α2) happens.
(α1) Φk(k) ≤ m.
(α2) An index jm = M(init , i[m]) is output such that content+(i[m]) ⊆ L∗

jm

and content−(i[m]) ∩ L∗
jm

= ∅.
If (α1) happens first, output “ϕk(k) ↓.” Otherwise, i.e., (α2) happens first,
output “ϕk(k) ↑.”

Fact 1. On every input k, algorithm A terminates.
It suffices to show that either (α1) or (α2) happens. Suppose, (α1) does not

happen, and thus ϕk(k) ↑. Hence, Lk ∈ Ck ⊆ C. Consequently, M , when process-
ing the informant i for Lk, eventually returns a hypothesis jm = M(init , i[m])
such that L∗

jm
= Lk. Thus, (α2) must happen.

Fact 2. Algorithm A decides the halting problem.
Obviously, if (α1) happens then ϕk(k) is indeed defined. Suppose (α2) hap-

pens. We have to show that ϕk(k) ↑. Assume ϕk(k) ↓. Then, Φk(k) = s for some
s ∈ N. Since (α2) happens, there is an m < s such that jm = M(init , i[m])
as well as content+(i[m]) ⊆ L∗

jm
and content−(i[m]) ∩ L∗

jm
= ∅. (* Note that

neither (bs,+) nor (bs,−) appears in the initial segment i[m]. *)
Now, similarly to the proof of Theorem 10, Claim 2 one has to distinguish two

cases: (i) L∗
jm

contains infinitely many strings from {c}∗ and (ii) L∗
jm

contains
only finitely many strings of from {c}∗. In both cases, an argumentation similar
to that used in the proof of Theorem 10, Claim 2 can be utilised to show that M
fails to learn at least one language in Ck which contain a finite (co-finite) subset
of {c}∗. We omit the relevant details. Since M is supposed to learn C, the latter
contradicts our assumption that ϕk(k) ↓, and thus Fact 2 follows.

Since the halting problem is undecidable, C 6∈ ItGConvInf . 2

6 Some concluding remarks

We have studied iterative learning with two versions of consistency and conser-
vativeness. In fact, a third version is conceivable. Note that an iterative learner
M may use a redundant hypothesis space for coding in its current hypothesis all
examples, upon which M has previously changed its guess. So one may think of
mind changes as ‘memorising examples’ and repeating hypotheses as ‘forgetting
examples’. One might call a hypothesis consistent with the examples seen, if
it does not contradict the ‘memorised’ examples, i. e., those upon which M has
changed its hypothesis. Similarly, M may be considered conservative, if M sticks
to its recent hypothesis, as long as it agrees with the ‘memorised’ examples.



Obviously, this version of consistency is equivalent to local consistency – the
proof is essentially the same as for Theorem 5 and the fact is not surprising.

However, the third version of conservativeness is worth considering a little
closer. For iterative learning from text Theorem 9 immediately implies that this
notion is equivalent to both global and local conservativeness. The idea is quite
simple: a conservative learner really has to ‘know’ that it is allowed to change
its hypothesis! Thus being inconsistent with forgotten positive examples doesn’t
help at all, because the learner cannot memorise the forgotten examples and
thus not justify its mind change. In this sense, ‘forgotten’ examples are really
examples without any relevance for the learner on the given text. This intuition
is already reflected in the technical claim used in the proof of Theorem 9.

Many similar insights may be taken from the proofs above to obtain further
results. For instance, the separating classes provided in the proofs of Theorems 6
and 8, additionally lift our results to a more general case of incremental learning,
where the learner has a k-bounded memory, i. e., the capacity for memorising up
to k examples during the learning process, cf. [9]. Note that among our results we
did not have a characterisation of the structure of classes learnable iteratively,
however, our analysis will hopefully serve as a first step into this direction.
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