
Query suggestion by query search:
a new approach to user support in web search

Shen Jiang
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

sjiang1@cs.ualberta.ca

Sandra Zilles
Department of Computer Science

University of Regina
Regina, Saskatchewan, Canada

zilles@cs.uregina.ca

Robert Holte
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

holte@cs.ualberta.ca

Abstract—This paper introduces and analyzes a new ap-
proach to query suggestion. After the user issues a query q0,
for every document retrieved in a certain rank range [Θ1, Θ2],
a query search procedure constructs queries that rank the
document high enough for the user to see it. From this set of
queries the suggestions to be presented to the user are then
selected so as to give the best possible access to the documents
that were ranked in [Θ1, Θ2] for the user’s initial query q0. This
approach turns out to be successful under certain assumptions,
which are discussed in this paper.

I. INTRODUCTION

Even information-literate users of web search engines
often have difficulty formulating queries that allow them to
easily find documents relevant to their information need. A
user’s query fails if all the relevant documents are so deep
in its result list that the user will not reach them with the
amount of scrolling that users are typically prepared to do.
Often a query that fails can be turned into a successful query
by simple modifications, such as adding terms, deleting
terms, or replacing terms by synonyms or related terms.

Query suggestion is a technique that aims to improve the
efficiency of a user’s web search by suggesting alternatives
to a user’s initial query. This paper proposes and analyzes
a new approach to query suggestion. The main idea is to
construct a set of queries whose top-ranked documents are
likely to be relevant to the user’s initial query q0 but are not
top-ranked by q0. Our approach is based on the assumption
that some relevant documents occur reasonably high in the
result list, just slightly too deep for the user to find them.

If we know which rank range the user usually views and
in which rank range the relevant documents usually are, we
can identify the documents that are likely to be relevant but
not seen by the user. If we can find queries that would bring
those documents into the rank range typically viewed by
users, these queries can serve as query suggestions.

This idea motivates the following process. We employ
a query search technique [9] to construct a search space
consisting of potential query suggestion candidates and
then search this space to identify “good” candidates (see
Section III-A). After that, a query suggestion selection is

performed to select from the candidates a certain number of
query suggestions by maximizing an objective function.

This approach is only valid if we can verify that there
actually are thresholds Θ1 and Θ2 such that most users are
likely to view only the documents with a rank smaller than
Θ1 in the result lists for queries they issue, and that a relevant
document occurs in the top Θ2 documents of the result list
with “sufficiently large” probability. A recent study based
on transaction log analysis [5] actually gives evidence that
Θ1 = 21 and Θ2 = 120 is a reasonable rank range for our
approach. probability of about 65% that a relevant document
is ranked in the top 120 results, with an increase of only
about 2% when considering the top 300 results.

A system-centered evaluation approach is used to evaluate
our system rather than a user study. Our evaluation method
assumes that we know a likelihood function telling us at
which ranks relevant documents are most likely to be found
when a user issues a query. The function we use, from [5],
may introduce some noise, but it can be applied without the
expense of hand-labeled ground truth data.

The major contribution of this paper is our novel approach
to query suggestion. This approach solves the query sug-
gestion problem by suggesting queries that move up those
documents that are likely to be relevant (ranked above Θ2)
but likely to not be viewed by the users (ranked below
Θ1). This makes our approach different from existing query
suggestion approaches, cf. Section V. In our approach,
we innovatively employ Martin and Holte’s query search
technique [9], which was invented for a different purpose,
to generate query suggestion candidates. Our experiments
verify that the candidates generated by query search are of
good quality and therefore applicable in our approach and
potentially other relevant applications.

Our second contribution is an evaluation method for
query suggestion systems that is based on rank-relevance
likelihood functions such as the ones in [5].

A. Terminology

The following terminology is used throughout the paper,
assuming a given web search engine (in our case Google).



We fix rank thresholds Θ1, Θ2 with Θ1<Θ2. Θ1 is the
expected rank below which users view documents in the
result list returned by the search engine upon a query. Θ2 is
a rank threshold up to which relevant documents occur in the
result list with a “large enough” probability. We use Θ1 = 21
and Θ2 = 120 throughout the paper, but our contributions
do not hinge on the specific choices of Θ1 and Θ2.

If q is a query and d a document (web page), we say
that q covers d in case d is of rank lower than Θ1 in the
result list returned by the search engine upon query q. By a
low (high) rank we refer to a low (high) rank number, i.e.,
documents with a low rank occur high up in the result list.

We assume a user interacting with the search engine in
order to satisfy a specific information need. The user’s first
query q0 in such an interaction is called the initial query.
The original rank rd of a document d is its rank in the result
list returned upon the initial query (the minimal such rank
number, in case d occurs several times in the result list).

II. UNDERLYING ASSUMPTIONS AND OBJECTIVES

Our system-centered evaluation rests on assumptions with
implications on the objectives according to which we imple-
ment and evaluate our system.

Models of rank vs. relevance: A first crucial assump-
tion our approach builds on is that the initial query posed
by the user is good enough for relevant documents to occur
“high enough” in the result list (up to rank Θ2). Moreover,
our system is designed in a way that the set of suggested
queries maximizes the probability that the one the user
will pick covers some document(s) relevant to the user. For
this purpose we need not only appropriate values for the
thresholds Θ1 and Θ2, but also a likelihood function that
expresses, for every rank r, the probability that the document
originally ranked r is relevant to the user.

Two such likelihood functions, based on two different
assumptions, are given in [5]. Assumption LastRel presumes
that the user stops searching as soon as the first relevant
document is found. Assumption AllRel presumes that the
user may click several relevant documents before stopping.
Either of these likelihood functions could be used in our
system’s objective functions and for evaluation. However,
they almost certainly substantially underestimate the number
of documents with ranks below 300, because they assume
that relevant documents that did not appear in the first 300
results still exist on the web but had ranks greater than 300.
In reality, because the log analyzed to create the likelihood
function is several years old, a substantial number of these
relevant documents are no longer on the web at all, so their
rank today is simply undefined, not greater than 300. We
therefore conducted a simple experiment in order to update
the probability values reported in [5]. Out of about 750,000
clicked URLs occurring in the transaction log dataset used
in [5], we randomly sampled 50,000 clicked URLs (for
AllRel) and another 50,000 URLs that were clicked just

before users stopped searching (for LastRel), both only out
of the cases where the clicked URL was not ranked in the
top 300 in the user’s initial query. We tested what percentage
of these URLs no longer exist on the web and multiplied
the percentage by the percentage of URLs that are not
ranked in the top 300 among all the clicked URLs. Thus
we found that 13.6% of all clicked URLs are missing in
the AllRel case and that 11.8% of all clicked URLs are
missing in the LastRel case. Consequently, we updated every
probability value p of a document being relevant given its
rank by adding p · x/(100− x) for x = 13.6 and x = 11.8
respectively.1 We will use

Ppr(d relevant | rank(d) = rd)

to denote the likelihood function resulting from this update
of the values given in [5], where this notation represents the
probability that a document d is relevant given its original
rank rd. Whether it is for LastRel or AllRel will be indicated
explicitly in the accompanying text.

As an alternative to using the updated likelihood functions
from [5] to give “weights” to documents, we also consider
a model that gives equal weight to the documents with an
original rank in [Θ1,Θ2]. We do this by using a likelihood
function according to which all these documents have the
same probability of being relevant, i.e., for some constant
c > 0

Pc(d relevant | rank(d) = rd) =

{
c , if Θ1 ≤ rd ≤ Θ2 ,

0 , otherwise

User models: When measuring the system performance
we would like to determine the probability that a user is
satisfied with the query suggestions. If only one of the
queries suggested yields satisfactory results for the user
then it is crucial whether or not we believe the user will
recognize this query suggestion among the “useless” ones.
Let Q∗ = {q1, . . . , qm} be the set of query suggestions and
D∗ the set of documents covered by at least one qi. For
every d ∈ D∗, rd denotes the original rank of d. Let z be
in {pr, c}. Two extreme cases can be described as follows.

(1) The user always recognizes a satisfactory query sug-
gestion. In this case, the objective of the query suggestion
system is to maximize the probability that at least one of
the qi ∈ Q∗ covers some relevant document(s), which is

λopt,z(Q∗) = 1−
∏

d∈D∗

(1−Pz(d relevant | rank(d) = rd)) .

(2) The user just picks a query suggestion at random. In
this case, the objective of the query suggestion system is to
maximize

1Note that this is optimistic since a missing URL does not imply the
document previously addressed by that URL is no longer on the web itself.
This introduces some additional noise to the likelihood functions we use,
but probably gives a more realistic picture than assuming all these URLs
are just ranked beyond 300 in their respective user sessions.



λrnd,z(Q∗)

= 1
m

∑m

i=1
[1−

∏
d∈Di

(1− Pz(d relevant | rank(d) = rd))] ,

where Di is the set of documents covered by qi.
Note that these cases are extremes; the truth probably lies

in between those two cases.
Moreover, for evaluation purposes, if a document sat-

isfying the user’s information need is already covered by
the initial query then according to our assumptions the
user does not need any query suggestions. Therefore, when
measuring the performance of our system, we assume that
the documents covered by the initial query are not relevant.
Consequently, when using Ppr, the probability that a docu-
ment originally ranked in [Θ1,Θ2] is relevant increases. To
account for that, we divided the corresponding probability
values by 1 −

∑
j∈{1,...,20} Ppr(d relevant | rank(d) = j)

whenever Ppr was used. Furthermore, whenever Pc was
used, given the constant value c, λopt,c and λrnd,c only
depend on the number of documents in D∗ (or Di) that
are originally ranked in [Θ1,Θ2]. In what follows, these
numbers are reported instead of λopt,c and λrnd,c. We denote
the changed measures using a capital Λ rather than λ. This
yields four measures, Λopt,pr, Λopt,c, Λrnd,pr, Λrnd,c, that
can be taken as objective functions in our system and for
the evaluation of our system; Λopt,pr and Λrnd,pr can use
either assumption LastRel or assumption AllRel. Note that,
under assumption AllRel, the value for Ppr depends on the
expected number of relevant documents for a given query.
We set this number to 5 when Ppr was used in our system’s
objective function and used three different values for it (1,
5, and 10) in evaluating our system.

III. QUERY SUGGESTION SYSTEM

The process by which our system determines query sug-
gestions for an initial query q0, consists of these steps:

1) Issue the query q0 to the Google search engine. The
documents ranked in the range [Θ1,Θ2] in the result
list form the set D of reference documents.

2) For every d ∈ D, construct a set Qd of queries such
that every query in Qd covers d. Qc =

⋃
d∈D Qd is

the set of all candidate queries.
3) Select m queries from Qc so as to maximize a given

objective function. The selected queries are returned
as query suggestions.

A. Construction of candidate queries

In the query construction process first for every reference
document a single root query is constructed. This root query
has the property that it covers the reference document and
consists of a bounded number t of terms, t ∈ [T1, T2] (in
our implementation T1 = 5 and T2 = 10; a term for us is
any string that does not contain a space symbol).

The root query for a document d is constructed as follows.
First, a seed sequence is built by removing stop words and
non-title terms with a term frequency less than 3 from d, then
ordering the remaining terms. The seed sequence starts with
the title terms of d (in the same order as in the title) followed
by the other terms in order of decreasing term frequency. The
root query qd is the shortest initial segment of the resulting
seed sequence S that has at least T1 and at most T2 terms
and that covers d. The latter property is tested by issuing the
query to the Google API (University Research Program for
Google Search). In case no such initial segment exists, the
same procedure is repeated with a modified seed sequence
S′ created by prepending the initial query to S. This slightly
increases the success with which root queries are found.

For every reference document d for which a root query is
found, a set of candidate queries is derived. The candidate
queries for d still cover d but they are simpler than the
root query for d and thus usually cover not only d but also
some other reference documents, so that among the set of
candidate queries for all reference documents we hope to be
able to find a relatively small number of query suggestions
that cover a large number of reference documents. The
construction of candidate queries involves a query search
technique as proposed in [9]. In a top-down search over the
space of all subqueries of the root query we search for the
set of shortest subqueries that cover d. To prune the search
tree, we do not shorten a subquery any further if it does
not cover d, assuming that shorter queries are less likely to
bring d to the top of the result list. Moreover, we bound the
length of query candidates to be in an interval [V1, V2].2 In
pseudocode, this looks as follows.

for all d ∈ D and corresponding root query qd do
Cd := [qd];

for all d ∈ D do
Qd := ();
while Cd is not empty do

q := any element in Cd;
remove q from Cd;
if length(q) ∈ [V1, V2] then add q to Qd;
for all q− created by deleting a term from q do

if q− covers d and length(q) ≥ V1 then
add q− to Cd;
if q ∈ Qd then remove it ;
if length(q−) ≤ V2 then

for all d′∈D covered by q− do
add q− to Cd′ ;

Note that reference documents d′ without root queries can
have candidate queries if they are covered by queries con-
structed from the root queries of other reference documents.

B. Selection of query suggestions

After the construction of candidate queries most of the
relevant documents are covered by at least one candidate

2In our experiments we used V1 = 2 and V2 = 5.



query (we do not have a theoretical guarantee for this,
but it is shown empirically by the results in Section IV-B
and in [9]). However, in order to keep the list of query
suggestions short enough for the user to see them all in
a single glance, we have to select a subset of m queries (we
used m = 10 in our implementation). We do this by greedily
selecting queries from the set Qc of query candidates to
maximize either Λopt,pr (for LastRel or AllRel) or Λopt,c.

This simple greedy selection turned out to yield results
slightly inferior to those obtained by a variant involving
a one-step lookahead greedy selection. In particular, this
variant always selects a query for which there remains a
second query candidate such that the value of the objective
function for that pair of queries achieves the highest increase.

All results given below are based on this lookahead
variant. Regarding speed, obviously the greedy query selec-
tion procedure is very quick. The construction of candidate
queries requires only a small number of queries to be issued
on average (empirically about 30). If run “inside Google”
this would take a fraction of a second. Alternatively, the
construction of candidate queries can be done ahead of time,
for example when a document is indexed.

IV. SYSTEM EVALUATION

To evaluate our system, we sampled 250 queries con-
sisting of at most 2 terms (short queries) and 250 queries
consisting of at least 3 terms (long queries), where stop
words were not counted as terms; all queries were randomly
sampled from an AOL transaction log recorded in 20063.
The two groups of 250 user queries formed separate test
sets. For each test set we ran and evaluated our implemen-
tation in different variants according to the different criteria
introduced in Section II.

A. Parameter tuning

To obtain the results described here we tuned a series
of parameters. These included the rank threshold used in
the definition of “covering” when constructing root queries,
different algorithmic variants of dealing with the case that
no root query is found if the initial query is not included, the
definition of “term”, whether or not phrases were allowed
in the construction of root queries, and different algorithmic
variants for the query selection. A detailed discussion of all
the variants tested is beyond the scope of this paper. What
is described above and evaluated here is the most successful
version resulting from tuning the parameters one after the
other in the given order and always fixing a parameter to its
tuned value before the next parameter was tuned. The reader
is referred to [4] for more details.

3This log was downloaded from http://gregsadetsky.com/aol-data/ and
used in [10].

B. Results and interpretation

98.40% of the short queries (97.20% of the long queries)
had a non-empty set of reference documents, i.e., had more
than 20 documents in their result list when issued to Google.
On average, 93.09% (90.72% for long queries) of the corre-
sponding reference documents were still existing html web
pages (our system does not support other documents (e.g. pdf
files) so far). Over those, for on average 85.59% (87.25% for
long queries) the construction of a root query was successful.
The average length of the constructed root queries was 5.22
terms (5.39 terms for long queries). Finally, on average
91.23% (87.70% for long queries) of all reference documents
were assigned at least one query suggestion candidate.

Our system achieved performance values as shown in
Table I for short queries and Table II for long queries.

Assumption AllRel AllRel LastRel LastRel
Criteria Λopt,pr[5] Λopt,c Λopt,pr[5] Λopt,c

Λopt,pr[1] 11.08% 10.01% 11.22% 9.78%
Λopt,pr[5] 44.23% 40.67% 44.72% 39.97%
Λopt,pr[10] 68.55% 64.26% 69.18% 63.49%
Λrnd,pr[1] 1.56% 1.40% 1.59% 1.38%
Λrnd,pr[5] 7.54% 6.76% 7.65% 6.67%
Λrnd,pr[10] 14.44% 12.98% 14.64% 12.81%

Λopt,c 46.7 52.3 45.1 52.3
Λrnd,c 6.0 6.5 5.8 6.5

Table I
EXPERIMENTAL RESULTS (SHORT QUERIES)

Assumption AllRel AllRel LastRel LastRel
Criteria Λopt,pr[5] Λopt,c Λopt,pr[5] Λopt,c

Λopt,pr[1] 10.57% 9.44% 10.76% 9.28%
Λopt,pr[5] 42.63% 38.76% 43.30% 38.24%
Λopt,pr[10] 66.83% 61.93% 67.66% 61.32%
Λrnd,pr[1] 1.47% 1.30% 1.50% 1.29%
Λrnd,pr[5] 7.09% 6.30% 7.25% 6.24%
Λrnd,pr[10] 13.61% 12.10% 13.91% 12.00%

Λopt,c 42.5 47.6 40.9 47.6
Λrnd,c 5.4 5.9 5.2 5.9

Table II
EXPERIMENTAL RESULTS (LONG QUERIES)

The columns represent the criteria used in our objective
functions; the rows represent those used for evaluation. The
numbers in square brackets denote the number of relevant
documents for a given query that are assumed to exist in the
corpus. Numbers in boldface are those explained below.

Each number in the first 6 rows is the probability that
the query suggestion the user selects will cover at least one
relevant document. In the short query case for instance, if
Λopt,pr is chosen as an objective function, Ppr is derived
from the LastRel assumption, the system implementation
assumes there are 5 relevant documents but in fact there are
10 relevant documents, then the user has a chance of 69.18%



to find a relevant document satisfying his/her information
need in case he/she immediately recognizes a useful query
among the 10 query suggestions made by our system (or
looks at them all). If there are in fact only 5 relevant
documents, the chance decreases to 44.72%. Note that if
a user looks at only one query suggestion at random, the
chances of being successful are only 14.64% and 7.65%,
but this is an extreme case that we consider unlikely. All
these numbers are measured under the assumption that the
user was unhappy with the top 20 documents returned by
the initial query.

The results when there is just one relevant document and
the user chooses a satisfactory suggestion seem low (11.22%
for short queries, 10.76% for long queries), but note that the
case that only one relevant document exists for a query is
relatively unlikely (unless a URL is issued as a query—
a case that is filtered out in all our experiments and the
experiments in [5]) and obviously expected to be a tough
case for any query suggestion system.

Each number in the bottommost two rows is an average
absolute number of reference documents. In the short query
case, there are on average 52.3 reference documents covered
collectively by the 10 query suggestions, with each indi-
vidual query covering 6.5 reference documents on average
(note that some relevant documents are covered by more than
one suggested query). If Pc is used both in the objective
function and for evaluation (second and fourth column of
numbers, bottommost two rows) then of course assumptions
AllRel/LastRel have no influence.

In general, the results show that our approach to query
suggestion is slightly more successful if the initial query is
short. This is quite intuitive since short queries are less spe-
cific than long queries and thus a small set of refined queries
can more easily cover a large set of reference documents
by clustering them into subtopics. We also observe that the
combination of assumption LastRel with Λopt,pr[5] yields
the overall best results when evaluated with any measure
relying on Ppr.

The numbers shown in Tables I and II should not be seen
as true optimal values achievable by our approach. Several
facts indicate that (i) these numbers are pessimistic estimates
and the true performance values of the implemented system
are higher, and (ii) further system improvements resulting in
provably higher performance values are possible.

Regarding (i). Our query suggestions cover not only
documents with an original rank in [21, 120] but also some
with a higher original rank. Those have a certain probability
of being relevant that is not accounted for in our evaluation
(we only account for documents in the range [21, 120]).
In fact, one can argue that if a query q′ covers several
relevant documents with an original rank in [21, 120] plus
some documents with a higher original rank, then the latter
documents have a much higher chance of being relevant than
their expected relevance value. The reason is that they are

probably semantically related to the relevant documents that
are covered by q′.

Regarding (ii). Evaluating our system, we did not take into
account potential changes to the user interface used in web
search. In our evaluation we do not count the documents
covered by the suggested query q′ if they were already
covered by the initial query q0–since we consider them as
already being viewed by the user initially. In that sense, those
documents use up space in the result list for q′ unnecessarily.
If the user selects a query suggestion the interface could
display in the results only those documents that were not
already covered by the initial query q0. Consequently, the
new top 20 results for q′ could contain more documents
with an original rank in [21, 120]. We evaluated our system
a second time using this approach and achieved substantially
higher values, see the columns labeled “new” in Table III,
compared to the previous values (columns labeled “old”),
for both short and long queries.

old (short) new (short) old (long) new (long)
Criteria Λopt,pr[5] Λopt,pr[5] Λopt,pr[5] Λopt,pr[5]

Λopt,pr[5] 44.72% 46.67% 43.30% 45.77%
Λopt,pr[10] 69.18% 71.30% 67.66% 70.41%
Λrnd,pr[5] 7.65% 8.91% 7.25% 8.79%
Λrnd,pr[10] 14.64% 16.81% 13.91% 16.55%

Λopt,c Λopt,c Λopt,c Λopt,c

Λopt,c 52.3 57.0 47.7 53.1
Λrnd,c 6.5 7.7 5.9 7.3

Table III
EXPERIMENTAL RESULTS FOR SHORT AND LONG QUERIES UNDER

ASSUMPTION LastRel AND A CHANGED INTERFACE

V. RELATED WORK

One technique strongly related to query suggestion is
query expansion, where queries are refined by adding terms
to them, see, e.g., [11]. Other methods of changing the
initial query to a suggested query, are based on, for example,
substituting one or more query terms [6], [13]. Our method
is novel in the way candidate terms or queries are obtained.
Unlike most existing systems, they are not selected based on
the similarity to the initial query terms or queries. Instead,
we employ the query search technique to construct query
suggestion candidates.

[12] uses a kind of queries similar to our candidate queries
for document summarization. Such queries, called query
associations, are used for query expansion in [1], but there
the candidates stem from query associations of documents
with a low original rank. Query associations are taken from
a transaction log, while we extract them from reference
documents by query search. As discussed in [2], the terms
used by users and the terms in a corpus are usually very
different.

Besides query suggestion and query expansion, there are
other techniques for user assistance in web search, such



as Result Clustering, which has been adopted by many
popular search engines, e.g., Vivisimo [7]. Here the retrieval
results with an original rank in a certain range are clustered
and each cluster is assigned a label. The cluster labels are
listed in the result page beside the normal retrieval results.
Query suggestion can be viewed as clustering with a special
labeling; each suggested query can be interpreted as a cluster
label, and the documents covered by each suggested query
form a cluster. One important difference between query
suggestion and clustering is that query suggestion does not
only cluster documents within a certain original rank range
but also other documents in the corpus due to their being
covered by a suggested query. See, e.g., [3], [8], [14] for
more on result clustering.

VI. CONCLUSIONS

We introduced and analyzed a new approach to query
suggestion and evaluation of query suggestion systems.

The construction of query suggestion candidates relies
purely on the documents in a specific original rank range and
uses a query search technique [9]. The objective functions
we proposed are of general value and can be used for
evaluation of other query suggestion systems. This results
in a new approach to system-centered evaluation of query
suggestion.

The evaluation of our system validates our approach and
shows clear tendencies as to which objective functions are
favourable in our framework. The suggestions made by our
system support the intuitive idea that query expansion in
general is a good strategy for query suggestion but not
quite sufficient. Many suggested queries, especially if the
initial query is short, are actually query expansions, but some
are not (note though that most contain all but one original
term). This is remarkable since, unlike most systems, our
system does not intentionally construct queries to have such
properties except in those rare cases when the primary
method of constructing seed queries fails. These properties
here are shown to be favourable at least when using the
Google search engine.

ACKNOWLEDGMENTS

This research draws on data provided by the University
Research Program for Google Search, a service provided
by Google to promote a greater common understanding of
the web. We also gratefully acknowledge support by the
Alberta Ingenuity Centre for Machine Learning and thank
Shane Bergsma, Christopher Pinchak (both of the University
of Alberta, Edmonton), and Joel Martin (National Research
Council, Ottawa) for their assistance in early stages of this
work.

REFERENCES

[1] B. Billerbeck, F. Scholer, H.E. Williams, and J. Zobel. Query
expansion using associated queries. In Proc. 12th Interna-
tional Conf. on Information and Knowledge Management,
pages 2–9. ACM, 2003.

[2] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Probabilistic
query expansion using query logs. In Proc. 11th International
Conf. on World Wide Web, pages 325–332. ACM, 2002.

[3] M.A. Hearst and J.O. Pedersen. Reexamining the cluster hy-
pothesis: scatter/gather on retrieval results. In Proc. 19th ACM
SIGIR Conf. on Research and Development in Information
Retrieval, pages 76–84. ACM, 1996.

[4] S. Jiang. Searching for Queries to Improve Document
Retrieval in Web Search. M.Sc. thesis, Department of Com-
puting Science, University of Alberta, 2009.

[5] S. Jiang, S. Zilles, and R. Holte. Empirical analysis of the
rank distribution of relevant documents in web search. In
Proc. IEEE/WIC/ACM International Conf. on Web Intelli-
gence, pages 208–213, 2008.

[6] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating
query substitutions. In Proc. 15th International Conf. on
World Wide Web, pages 387–396. ACM, 2006.

[7] S. Koshman, A. Spink, and B.J. Jansen. Web searching on the
Vivisimo search engine. JASIST, 57(14):1875–1887, 2006.

[8] A.V. Leouski and W.B. Croft. An evaluation of techniques for
clustering search results. Technical report, Dept. of Computer
Science, University of Massachusetts, Amherst, 1996.

[9] J.D. Martin and R.C. Holte. Searching for content-based
addresses on the world-wide web. In Proc. 3rd ACM Conf.
on Digital Libraries, pages 299–300. ACM, 1998.

[10] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search.
In Proc. 1st International Conference on Scalable Information
Systems, page 1. ACM, 2006.

[11] I. Ruthven. Re-examining the potential effectiveness of
interactive query expansion. In Proc. 26th ACM SIGIR Conf.
on Research and Development in Information Retrieval, pages
213–220. ACM, 2003.

[12] F. Scholer and H.E. Williams. Query association for effective
retrieval. In Proc. 11th International Conf. on Information
and Knowledge Management, pages 324–331. ACM, 2002.

[13] N. Stojanovic. Information-need driven query refinement.
Web Intelligence and Agent Systems, 3(3):155–169, 2005.

[14] O. Zamir and O. Etzioni. Grouper: a dynamic clustering
interface to web search results. Computer Networks, 31(11-
16):1361–1374, 1999.


