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Abstract— We consider concept learning from examples. The
learner receives – step by step – larger and larger initial segments
of a sequence of examples describing an unknown target concept,
processes these examples, and computes hypotheses. The learner
is successful, if its hypotheses stabilize on a correct representation
of the target concept. The underlying model is called identification
in the limit.

The present study concerns different versions of incremental
learning in the limit. In contrast to the general case, now the
learner has only limited access to the examples provided so far.
In the special case of iterative learning, the learner builds its
new hypotheses just on the basis of the current hypothesis and
the next example, without having access to any of the other
examples presented so far. In the case of bounded example-
memory learning, the learner may in addition memorize up to
an a priori fixed number of examples already presented.

Formal studies have shown that restricting the accessibility
of the input data results in a loss of learning power, i. e. there
are concept classes learnable in the limit, but not identifiable
by any incremental learner at all. The present analysis aims
at illustrating this phenomenon and giving insights into the
structure of concept classes incremental learners can cope with.
Examples of identifiable and non-identifiable classes are given;
different learning models are compared to one another with
respect to the competence of the corresponding learners.

I. INTRODUCTION

An often studied aspect of natural learning behaviour is
the ability to learn from examples. There are different the-
oretical approaches of modelling and analyzing this aspect;
some consider concept learning from only positive examples
(i. e. examples matching / belonging to the concept), others
consider concept learning from both positive and negative
examples (counterexamples, i. e. examples not belonging to
the concept). A learner is fed with these examples – one in
each step of the learning process – and step by step returns
hypotheses representing its guess concerning the unknown
target concept. As soon as the learner stabilizes on a correct
hypothesis, the concept is said to be identified from the given
sequence of examples. A class of concepts is learned, if some
learner identifies each concept in the class from each sequence
of examples representing the whole concept. What makes
learning so difficult in this perspective, is that the learner’s
guesses are always based on a finite amount of information,
whereas in general infinitely many examples are needed to
completely specify the concept.

Here we study learning of indexable classes of recursive

concepts1 based on Gold’s [3] approach of identification in
the limit.

In the initial perspective the learner is able to use all the
information seen so far in each step of the learning process.
We may understand the learner as a student writing down all
the examples she reads on a notepad of infinite capacity. While
the notes on her notepad may be changed in each learning step,
her hypothesis on the unknown concept must stabilize on a fix
correct guess. This approach of identification in the limit has
been widely analyzed, cf. Gold [3] and Angluin [2], revealing
universal learning methods. In particular, when learning from
informant (that is, learning from positive and negative exam-
ples) is considered, each indexable class of recursive concepts
is identifiable in the limit.

Now a quite natural question is whether this situation
changes, if the resources are modified, such that the learner has
to work in an incremental fashion. For illustration, imagine the
student’s notepad is limited in capacity, i. e. only a bounded
number of input data can be memorized.

In the extreme case the student does not have any notepad
at all; she only has her current hypothesis in mind. If a
new example is presented, she may or may not revise it.
Consequently, all information seen beforehand must be either
reconstructable from the current hypothesis or it will simply
be forgotten. We then speak of iterative learning, cf. Wieha-
gen [11]. Formally, the input of the learner no longer consists
of all the information seen so far, but of the current hypothesis
and a new piece of information. As it turns out, this approach is
too restrictive to allow identification of all indexable classes of
recursive concepts from informant, see Lange [6], in contrast
to observations in the context of Gold’s initial model.

In a more relaxed case the student actually has a notepad,
but its capacity is restricted to store only a fixed number of
examples. If a new example is presented, and the capacity
of the notepad is not exhausted yet, she may memorize
the current example. But if there is no space left, she may
memorize the current example only in case she removes
another example from the notepad. As in the usual scenario,
hypotheses can be changed in each step. In addition to the
new example, both the information on the notepad and the

1An indexable class of recursive concepts may be seen as an effective
enumeration of concepts, such that there is a uniform procedure which can
decide, for any index n and any element x of a fixed domain (“learning
domain”), whether or not x belongs to n-th concept in the enumeration,
cf. Angluin [2].



current hypothesis can be used to construct the new hypothesis.
The corresponding learning model is called bounded example-
memory learning, cf. Lange and Zeugmann [8]. Indeed, as
soon as one example can be stored, more concept classes
become learnable. Whether a further increase of the space
bound results in an increase of learning power, depends on the
type of data presented: for learning from positive examples
only, every add-on in the capacity of the notepad yields
an add-on in the learning power. In contrast to that, when
both positive and negative examples are presented, learners
using any bounded example-memory can be simulated by
learners using an example-memory with a capacity suitable for
storing one example. So in this case any further extension of
the example-memory will definitely not increase the learning
power.

All these results will be illustrated below. Moreover, we
compare iterative learning from informant to the initial ap-
proach of learning “with notepads of infinite capacity” from
text (i. e. from positive examples only), presenting classes
learnable in one of these models, but not in the other. The
corresponding observations give insights into the structure of
concept classes learnable “without any notepad at all” or “with
notepads of restricted capacity”, i. e., using the results from
Lange and Zeugmann [8] and Lange [6], we try to bring about
an idea of what incrementally learnable classes as well as
suitable learning methods look like.

II. PRELIMINARIES

Let N = {0, 1, 2, . . .} be the set of all natural numbers. If
A is any set, then card(A) denotes the cardinality of A. Let
σ be any finite sequence and let τ be any possibly infinite
sequence. Then σ � τ denotes the concatenation of σ and τ .

Any recursively enumerable set X is called a learning
domain. By ℘(X ) we denote the power set of X . Let C ⊆
℘(X ) and let c ∈ C. C is called a concept class and c a concept.
By co-c we denote the complement of c, i. e. co-c = X \ c.
Sometimes we will identify a concept c with its characteristic
function, i. e. we let c(x) = +, if x ∈ c, and c(x) = −,
otherwise.

We deal with the learnability of indexable concept classes
with uniformly decidable membership defined as follows
(cf. Angluin [2]). A class of non-empty concepts C is said
to be an indexable concept class with uniformly decidable
membership if there are an effective enumeration (cj)j∈N of
all and only the concepts in C and a recursive function f such
that, for all j ∈ N and all x ∈ X , it holds f(j, x) = +, if
x ∈ cj , and f(j, x) = −, otherwise. We refer to indexable
concept classes with uniformly decidable membership by the
phrase indexable classes, for short.

For illustration we describe some well-known examples of
indexable classes. First, let Σ denote any fixed finite alphabet
of symbols and let Σ∗ be the free monoid over Σ. Then, for all
a ∈ Σ and for all n ∈ N, an+1 = aan, while, by convention,
a0 equals the empty string. Moreover, we let X = Σ∗ be the
learning domain. Subsets L ⊆ Σ∗ are also called languages
(instead of concepts). Then the set of all context-sensitive

languages, context-free languages, regular languages, and of
all pattern languages form indexable classes (cf. Hopcroft and
Ullman [4], Angluin [1]). Second, let Xn = {0, 1}n be the set
of all n-bit Boolean vectors. We consider X =

⋃
n≥1Xn as

the learning domain. Then the set of all concepts expressible
as a monomial, a k-CNF, a k-DNF, and a k-decision list
constitute indexable classes (cf. Valiant [10], Rivest [9]).

A. Gold-style language learning

Next, we provide notions and notations that are fundamental
for Gold’s [3] model of identification in the limit.

Let X be the underlying learning domain, let c ⊆ X be
a concept, and let t = (xn)n∈N be an infinite sequence of
elements from c such that {xn | n ∈ N} = c. Then t is
said to be a text for c. By Text(c) and TextSeg(c) we denote
the set of all texts for c and of all initial segments of texts
for c, respectively. Alternatively, let i = ((xn, bn))n∈N be
an infinite sequence of elements from X × {+,−} such that
{xn | n ∈ N} = X , {xn | n ∈ N, bn = +} = c, and
{xn | n ∈ N, bn = −} = co-c. Then we refer to i as
an informant for c. By Info(c) and InfoSeg(c) we denote
the set of all informants for c and of all initial segments of
informants for c, respectively. Moreover, let t be a text, let i
be an informant, and let y be a number. Then ty and iy denote
the initial segments of t and i of length y + 1, respectively.

From now on, let (wn)n∈N be any fixed, repetition-free,
effective enumeration of all elements in X , for example the
lexicographically ordered enumeration.

Let C be an indexable class. As in Gold [3], we define an
inductive inference machine for C (IIM for C, for short)2 to be
a total algorithmic mapping from TextSeg(C) [InfoSeg(C)]
to N. Thus, an IIM, when processing an initial segment
of a text [an informant] for some c ∈ C, always returns
a hypothesis, i. e. a number encoding a certain computer
program.

The numbers output by an IIM are interpreted with respect
to a suitably chosen hypothesis space H = (hj)j∈N. Since we
exclusively deal with indexable classes C, we always assume
that H is also an indexing of some possibly larger indexable
class of non-empty concepts. Hence, membership is uniformly
decidable in H, too. Formally speaking, we deal with class
comprising learning (cf. Zeugmann and Lange [12]). An IIM
returning some number j is construed to hypothesize hj .

In the sequel a data sequence σ = (dn)n∈N for a target
concept c is either a text t = (xn)n∈N or an informant i =
((xn, bn))n∈N for c. By convention, for all y ∈ N, σy denotes
the initial segment ty or iy . For any finite initial segment σy ,
let |σy| denote its length, i. e. |σy| = y + 1.

We define convergence of IIMs as usual. Let σ be given
and let M be an IIM. The sequence (M(σy))y∈N of M ’s
hypotheses converges to a number j iff all but finitely many
of its terms are equal to j.

Now we are ready to define learning in the limit.

2Whenever the target indexable class C is clear from the context, we
suppress the term “for C”.



Definition 1 (Gold [3]) Let C be an indexable class, let c
be a concept, and let H = (hj)j∈N be a hypothesis space.
An IIM M LimTxtH [LimInf H]–identifies c iff, for every
data sequence σ with σ ∈ Text(c) [σ ∈ Info(c)], there is
some j ∈ N with hj = c such that the sequence (M(σy))y∈N
converges to j.

Then M LimTxtH [LimInf H]–identifies C iff, for all c′ ∈
C, M LimTxtH [LimInf H]–identifies c′.

Finally, LimTxt [LimInf ] denotes the collection of all
indexable classes C′ for which there are a hypothesis space
H′ = (h′j)j∈N and an IIM M ′ such that M ′ LimTxtH′

[LimInf H′ ]–identifies C′.

In the above definition, Lim stands for “limit”. Suppose an
IIM identifies some concept c. That means, after having seen
only finitely many data about c the IIM reaches its (unknown)
point of convergence and it computes a correct and finite
description of the target concept. This may be understood as
a process of learning.

As the learner in the definition of LimTxt and LimInf
may always use all the information about the target concept
known in the current learning step, these identification types
correspond to the perspective of learning with notepads of
infinite size.

B. Incremental Learning

Now, we formally define the different models of incremental
learning.

An ordinary IIM M always has access to the whole history
of the learning process, i. e. it computes its current guess on
the basis of all the input data seen so far. In contrast, in
an incremental learning process, the access to the history of
provided examples is limited.

For example, an iterative IIM is only allowed to use its latest
guess and the next data element in the data sequence σ. Con-
ceptionally, an iterative IIM M defines a sequence (Mn)n∈N
of machines each of which takes as its input the output of its
predecessor.

Definition 2 (Wiehagen [11]) Let C be an indexable class, let
c be a concept, and let H = (hj)j∈N be a hypothesis space.
An IIM M ItTxtH [ItInf H]–identifies c iff, for every data
sequence σ = (dn)n∈N with σ ∈ Text(c) [σ ∈ Info(c)], the
following conditions are fulfilled:

(1) for all n ∈ N, Mn(σ) is defined, where
(i) M0(σ) = M(−1, d0)3,

(ii) Mn+1(σ) = M(Mn(σ), dn+1).
(2) the sequence (Mn(σ))n∈N converges to a number j with

hj = c.
Furthermore, M ItTxtH [ItInf H]–identifies C iff, for each

c′ ∈ C, M ItTxtH [ItInf H]–identifies c′.

The learning types ItTxt and ItInf are defined analogously
to Definition 1, where It is short for iterative learning. The

3The term −1 denotes an a priori fixed initial hypothesis. This hypothesis
is used for technical reasons, only. We adopt this convention to the other
definitions below.

idea of iterative learning, as defined here, agrees with our
initial conception of a student learning from examples without
using any notepad at all.

For the sake of simplicity, we introduce the following
shorthand: for any data sequence σ and any y ∈ N, we
define M∗(σy) = My(σ). That is, M∗(σy) denotes the
last hypothesis generated by M when processing the initial
segment σy .

Next, we consider a natural relaxation of iterative learning,
named k-bounded example-memory inference. Now, an IIM
M is allowed to memorize at most k of the data elements
seen so far in the learning process, where k ∈ N is fixed a
priori. Again, M defines a sequence (Mn)n∈N of machines
each of which takes as input the output of its predecessor. A
k-bounded example-memory IIM outputs a hypothesis along
with the set of memorized data elements.

Definition 3 (Lange and Zeugmann [8]) Let C be an
indexable class, let c be a concept, and let H = (hj)j∈N be a
hypothesis space. Moreover, let k ∈ N. An IIM M BemkTxtH
[BemkInf H]–identifies c iff, for every data sequence σ =
(dn)n∈N with σ ∈ Text(c) [σ ∈ Info(c)], the following
conditions are satisfied:

(1) for all n ∈ N, Mn(σ) is defined, where
(i) M0(σ) = M((−1, ∅), d0) = (j0, S0) with S0 ⊆
{d0} and card(S0) ≤ k,

(ii) Mn+1(σ) = M(Mn(σ), dn+1) = (jn+1, Sn+1)
with Sn+1 ⊆ Sn ∪ {dn+1} and card(Sn+1) ≤ k.

(2) for (Mn(σ))n∈N = ((jn, Sn))n∈N the sequence (jn)n∈N
converges to a number j with hj = c.

Furthermore, M BemkTxtH [BemkInf H]–identifies C iff,
for each c′ ∈ C, M BemkTxtH [BemkInf H]–identifies c′.

For every k ∈ N, the learning types BemkTxt and
BemkInf are defined analogously with the customs above.
By definition, Bem0Txt = ItTxt and Bem0Inf = ItInf .

This perception coincides with our idea of a student using
a notepad of restricted size. Of course, using a notepad of
size 0, that is, a notepad on which the student cannot memorize
anything, has the same effect as working without any notepad
at all.

The following proposition is an immediate consequence of
the definitions above.

Proposition 1 Let k ≥ 1. Then
(1) ItTxt ⊆ BemkTxt ⊆ Bemk+1Txt ⊆ LimTxt ,
(2) ItInf ⊆ BemkInf ⊆ Bemk+1Inf ⊆ LimInf .

Which of these inclusions are proper inclusions, will be
discussed below.



III. RESULTS

We concentrate on incremental learning of indexable
classes, the corresponding learnable concept classes, and ap-
propriate learning methods.

First note that any indexable class is learnable in the
limit, i. e. “with a notepad of infinite capacity”, provided both
positive and negative examples are presented. There is even a
universal learning method in this context: assume an indexable
class C, given by the enumeration (cj)j∈N, must be identified.
Any new example will first be added to the list of examples
stored in the notepad. Then the learner returns as its current
hypothesis the least index j, such that cj agrees with the
information memorized in the notepad. This is possible, since
membership is uniformly decidable. Then the sequence of
hypotheses will converge to the minimal index of the unknown
concept in the enumeration (cj)j∈N. This learning method has
been introduced by Gold [3] and is known as identification by
enumeration.

Now what happens, if the learner does not have any notepad
at all? A natural approach to adapt the method of identification
by enumeration is the following: given the current hypothesis k
and the new example (x, b), return the minimal index j ≥ k,
such that cj agrees with (x, b). It is not hard to verify that a
corresponding sequence of hypotheses converges, because the
learner never returns an index larger than the minimal index
of the target concept in the given enumeration. The trouble is,
that finitely many errors may occur in the final hypothesis. So
this variant of identification by enumeration is in general not
suitable for iterative learning from informant.

Now it is conceivable, that the reason for the deficiency of
this method is that it is just too simple, i. e. maybe for iterative
learning of indexable classes in general more complex methods
are needed. But, as we will see in Theorem 1 below, there is
an indexable class which cannot be identified iteratively from
informant. That means, no matter which iterative learner is
chosen, it fails for at least one concept in the class. Hence, the
deficiency of the principle of identification by enumeration for
iterative learning from positive and negative examples cannot
be compensated by any other learning strategy.

In order to verify this, we need the following simple,
but very important observation: imagine an IIM M learns a
concept c iteratively from informant. Moreover, let τ be any
initial segment of some informant for c. Then there must be a
finite extension σ, such that (i) τ � σ forms an initial segment
of some informant for c, (ii) h = M∗(τ � σ) is a correct
hypothesis for c, and (iii) M(h, (x, c(x))) equals h for all
x in the learning domain! Otherwise it would be possible to
construct an informant for c on which M does not converge;
we omit the details. Such a finite segment τ � σ is called a
locking sequence for M and c.

Note that, as soon as a locking sequence for a target concept
c has been processed, a stage is reached, in which the learner
has no chance to determine, for all but finitely many examples
(x, c(x)), whether or not they have been presented yet.

Theorem 1 Let C be a concept class containing all finite
concepts and at least one infinite concept. Then C 6∈ ItInf .

Proof. We only sketch the proof for the special case of
a singleton alphabet {a}. Imagine the concept class Cweak

consists of the infinite concept {a}∗ of all strings over
our alphabet as well as all finite subsets of {a}∗. Assume
some IIM M learns Cweak iteratively from informant. Let
τ be a locking sequence for M and {a}∗. τ contains
only positive examples and even only finitely many, say
(ap0 ,+), (ap1 ,+), . . . , (apk ,+). Now there is also a locking
sequence τ �σ for M and the concept c = {ap0 , ap1 , . . . , apk}
(note that c is finite and thus it belongs to Cweak). σ contains
only positive examples from c and finitely many negative
examples, say (an0 ,−), (an1 ,−), . . . , (anl ,−). Now let m >
max (p0, . . . , pk, n0, . . . , nl), i. e. neither the positive example
(am,+) nor the negative example (am,−) occurs in τ � σ.
Then M∗(τ � (am,+)) = M∗(τ) and thus M∗(τ � (am,+) �
σ) = M∗(τ �σ) by choice of τ . As τ �σ is a locking sequence
for M and c, there is an informant τ � (am,+) � σ � σ′ for
c′ = c ∪ {am}, on which M converges to a hypothesis for c.
So M does not learn c′ from informant, although c′ belongs
to Cweak, a contradiction, and thus we are done. �

As all indexable classes are learnable in the limit from
informant, this justifies the following corollary.

Corollary 2 ItInf ⊂ LimInf .

How can we overcome the weakness of iterative learners?
Let us analyze this problem for the concept class Cweak in the
proof of Theorem 1: assume the learner was allowed to use
extra memory to store the maximal data element (xmax,+)
seen so far. In other words, we consider a student using a
notepad with restricted space sufficient for memorizing just
one example. This kind of extra information now helps the
learner to adapt its hypothesis appropriately.

Suppose the learner M is fed with an informant for any
target concept in our concept class Cweak. As long as only
positive examples are shown, let M return an index of the
concept {a}∗; in each step the currently memorized example
(xmax,+) is adjusted, whenever a longer example is presented.
If the first negative example (x,−) appears, let M output an
index for {az | z ≤ |xmax|} \ {x}. Obviously, this hypothesis
corresponds to a finite variant of the target concept. Hence, at
most finitely many corrections are needed to come up with a
correct final guess. Fortunately, all the relevant data eventually
appear in subsequent steps: if some az , z ≤ |xmax| does
not belong to the target concept, the corresponding example
still has to appear in the current informant. So a 1-bounded
example-memory suffices to identify our concept class from
informant.

As the concept class Cweak is not identifiable iteratively from
informant, this verifies the corollary below.

Corollary 3 ItInf ⊂ Bem1Inf .

Thus, having the ability to memorize one data element
increases the learning power. But what happens, if the incre-
mental learner is allowed to store two, three, or even four



data elements? Will this result in a further add-on in learning
power? Surprisingly, not. As it turned out, an example-memory
of size one is already sufficient for identification of any
indexable class, if both positive and negative examples are
available, i. e. Bem1Inf and LimInf coincide.

Theorem 4 Bem1Inf = LimInf .
Proof. We only sketch the idea of the corresponding proof:

it is similar to the idea explained for our example below
Theorem 1. In each step, the learner uses its example-memory
in order to store from its input the particular element which
has a maximal index in our fixed enumeration (wm)m∈N. If the
new information presented agrees with the latest hypothesis,
M will hypothesize the same concept again. Otherwise, let
(wm, b) be the element stored in the example-memory. Then
let M look for the minimal index j agreeing with the new
information as well as with the latest hypothesis respecting
the first m + 1 elements w0, . . . , wm. Since it might happen
that such an index does not exist, the search must be bounded,
say by m. Thus, if this bounded search is not successful, M
simply returns some auxiliary hypothesis representing the least
finite concept matching the demands j is supposed to meet. In
case the bounded search is successful, M returns the index j.

Verifying the correctness of M is a little bit more involved.
Therefore the relevant details are omitted. �

Still, analyzing the impact of a k-bounded example-memory
in general makes sense, because, in contrast, when learning
from only positive data is concerned, an infinite hierarchy of
more and more powerful bounded-example-memory learners
has been revealed. The proof is omitted, see Lange and
Zeugmann [8] for details.

Theorem 5 For all k ≥ 1: ItTxt ⊂ BemkTxt ⊂
Bemk+1Txt ⊂ LimTxt .

Finally, we concentrate on gaining a better understanding
of the real learning power of iterative machines.

Interestingly, the indexable class used to illustrate the state-
ment of Theorem 1 is neither identifiable iteratively from
informant nor identifiable in the limit from text. Even more: it
seems that the structural complexity making this class so hard
to learn meets a specific conceptional deficiency which ItInf -
learners and LimTxt-learners have in common. So one might
conjecture that iterative learners are under no circumstances
able to exploit the additional information provided by the
negative examples. The following theorem states, that this
is not the case. Indeed there are indexable classes learnable
iteratively from informant, but not learnable in the limit from
text.

Theorem 6 ItInf \ LimTxt 6= ∅.
Proof. This is witnessed by a quite simple concept class

over the singleton alphabet {a}, namely the class consisting
of c = {a}∗ and all concepts ck = c \ {ak} for k ∈ N.
An easy argument using the idea of a locking sequence in
the context of text-learning shows that this concept class does
not belong to LimTxt . To verify that the concept class is

learnable iteratively from informant, let an IIM M guess c, as
long as only positive examples are presented. The first negative
example (ak,−) makes M hypothesize the concept ck, a
hypothesis that will never be changed afterwards. Obviously,
this hypothesis must be correct. �

Still, this does not imply, that the profit resulting from
negative data always outperforms the use of a notepad.
Maybe iterative learners cannot always exploit the additional
information which negative data provide. Actually, there are
concept classes, which are on the one hand appropriate for
identification in the limit from positive examples only, but
on the other hand too complex for iterative identification,
even if negative data are presented. That means, it is not
always possible to simulate a LimTxt-learner without using
any notepad at all, even if the information in the infinite
learning process is completed by adding the formerly missing
negative examples. Consequently, LimTxt is not a subset of
ItInf , and thus both identification models are incomparable.

Theorem 7 LimTxt \ ItInf 6= ∅.
Proof. We consider the alphabet {a, b} and the concept

class C consisting of the infinite concept {a}∗ as well as all
finite concepts containing exactly one element from {b}∗ plus
finitely many elements of {a}∗.

Firstly, note that C is identifiable in the limit from text:
an appropriate IIM only has to guess the concept {a}∗, until
an element from {b}∗ appears in the text. Afterwards M
always hypothesizes the finite concept consisting of exactly all
examples seen so far. As the target concept in the latter case
must be finite, this method is successful, i. e. the sequence of
hypotheses converges to a correct guess.

Secondly, we have to verify that C is not ItInf -identifiable.
For that purpose assume some IIM M learns C itera-
tively from informant. Let τ be a locking sequence for M
and {a}∗. τ contains only finitely many examples: nega-
tive examples from {b}∗ and positive examples from {a}∗,
say (ap0 ,+), (ap1 ,+), . . . , (apk ,+). Let (bz,−) be a neg-
ative example, which does not appear in τ . Now there
is also a locking sequence τ � (bz,+) � σ for M and
the concept c = {ap0 , ap1 , . . . , apk} ∪ {bz} (note that c
is finite and thus it belongs to C). σ contains only pos-
itive examples from c and finitely many negative exam-
ples, say (an0 ,−), (an1 ,−), . . . , (anl ,−). Now let m >
max (p0, . . . , pk, n0, . . . , nl), i. e. neither the positive exam-
ple (am,+) nor the negative example (am,−) occurs in
τ � (bz,+) � σ. Then M∗(τ � (am,+)) = M∗(τ) and thus
M∗(τ � (am,+)� (bz,+)�σ) = M∗(τ � (bz,+)�σ) by choice
of τ . As τ �(bz,+)�σ is a locking sequence for M and c, there
is an informant τ �(am,+)�(bz,+)�σ�σ′ for c′ = c∪{am},
on which M converges to a hypothesis for c. So M does
not learn c′ from informant, although c′ belongs to C. This
contradiction proves the claim. �

So we know that the lack of notepads of infinite size
cannot be compensated by negative information additionally
presented to the learner. Still the question remains, whether



negative examples provide enough additional information to
make any bounded notepad superfluous. Even this question
must be answered in the negative: there are indexable classes,
which cannot be learned iteratively from informant, but a 1-
bounded “notepad” even suffices to identify these classes in
the limit from text, i. e. from positive examples only.

Theorem 8 Bem1Txt \ ItInf 6= ∅.
Proof. We consider the alphabet {a, b} and the concept class

C consisting of the infinite concept {a}∗ as well as all finite
concepts containing exactly one element bz from {b}∗ together
with all elements am with m ≤ z and exactly one element an

with n > m.
Applying similar locking sequence arguments as above, one

easily sees that there is no iterative learner able to identify all
c ∈ C from informant. On the other hand, there is a 1-bounded
example-memory learner M that identifies all c ∈ C from text.
M just memorizes the longest element from {a}∗ presented
so far. M guesses the infinite concept {a}∗ until a string bz+1

is presented. Past this point, M always guesses the concept c
that contains bz , all elements am with m ≤ z as well as the
longest element from {a}∗ seen so far. �
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