
On the learnability of erasing pattern languages

in the query model

Steffen Lange1 and Sandra Zilles2

1 Deutsches Forschungszentrum für Künstliche Intelligenz,
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany,

e-mail: lange@dfki.de
2 Universität Kaiserslautern,

FB Informatik, Postfach 3049, 67653 Kaiserslautern, Germany,
e-mail: zilles@informatik.uni-kl.de

Abstract. A pattern is a finite string of constant and variable symbols.
The erasing language generated by a pattern p is the set of all strings
that can be obtained by substituting (possibly empty) strings of constant
symbols for the variables in p.

The present paper deals with the problem of learning the erasing pat-
tern languages and natural subclasses thereof within Angluin’s model
of learning with queries. The paper extends former studies along this
line of research. It provides new results concerning the principal learn-
ing capabilities of query learners as well as the power and limitations of
polynomial-time query learners.

In addition, the paper focusses on a quite natural extension of Angluin’s
original model. In this extended model, the query learner is allowed
to query languages which are themselves not object of learning. Query
learners of the latter type are often more powerful and more efficient than
standard query learners. Moreover, when studying this new model in a
more general context, interesting relations to Gold’s model of language
learning from only positive data have been elaborated.

1 Introduction

A pattern is a finite string of constant and variable symbols (cf. Angluin [2]).
The erasing language generated by a pattern p is the set of all strings that can
be obtained by substituting strings of constant symbols (including the empty
one!) for the variables in p.1 Thereby, each occurrence of a variable has to be
substituted by the same string.

The erasing pattern languages have found a lot of attention within the past
two decades both in the formal language theory community (see, e. g., Salo-
maa [15, 16], Jiang et al. [9]) and in the learning theory community (see, e. g.,

1 The term ‘erasing’ is coined to distinguish these languages from those pattern lan-
guages originally defined in Angluin [2], where it is forbidden to replace variables by
the empty string.

Shinohara [17], Erlebach et al. [6], Mitchell [12], Nessel and Lange [13], Reiden-
bach [14]). The learning scenarios studied include Gold’s [7] model of learning
in the limit and Angluin’s [3] model of learning with queries. Besides that, in-
teresting applications have been outlined. For example, learning algorithms for
particular subclasses of erasing pattern languages have been used to solve prob-
lems in molecular biology (see Arikawa et al. [5]).

The present paper focusses on the learnability of the erasing pattern lan-
guages and natural subclasses thereof in Angluin’s [3, 4] model of learning with
queries. The paper extends the work of Nessel and Lange [13]; the first systematic
study in this context.

In contrast to Gold’s [7] model of learning in the limit, Angluin’s [3] model
deals with ‘one-shot’ learning. Here, a learning algorithm (henceforth called
query learner) has the option to ask queries in order to receive information
about an unknown language. The queries will truthfully be answered by an ora-
cle. After asking at most finitely many queries, the learner is supposed to output
its one and only hypothesis. This hypothesis is required to correctly describe the
unknown language.

The present paper contains a couple of new results, which illustrate the power
and limitations of query learners in the context of learning the class of all eras-
ing pattern languages and natural subclasses thereof. Along the line of former
studies, the capabilities of polynomial-time query learners (i. e. learners that are
constrained to ask at most polynomially many queries before returning their
hypothesis) are studied as well.

In addition, a problem is addressed that has mainly been ignored so far.
The present paper provides the first systematic study concerning the strength
of query learners that are – in contrast to standard query learners – allowed
to query languages that are themselves not object of learning. As it turns out,
these new learners often outperform standard learners, concerning their principal
learning capability as well as their efficiency.

Moreover, the learning power of non-standard query learners is compared to
the capabilities of Gold-style language learners. As a result of this comparison,
quite interesting coincidences between Gold-style language learning and query
learning – in the more general setting of learning indexable classes of recursive
languages – have been observed. One of them allows for a new approach to
the long-standing open question of whether or not the erasing pattern languages
(over a finite alphabet with at least three constant symbols) are Gold-style learn-
able from only positive examples. To be more precise, the erasing pattern lan-
guages are learnable in the non-standard query model (using a particular type
of queries, namely restricted superset queries), iff they are Gold-style learnable
from only positive examples by a conservative learner (i. e. a learner that strictly
avoids overgeneralized hypotheses).

Next, we summarize the disciplinary results on query learning of all erasing
pattern languages or natural subclasses thereof.

Among the different types of queries investigated in the past (see, e. g., An-
gluin [3, 4]), we consider the following ones:

Membership queries. The input is a string w and the answer is ‘yes’ or ‘no’, re-
spectively, depending on whether or not w belongs to the target language L.

Restricted subset queries. The input is a language L′. If L′ ⊆ L, the answer is
‘yes’. Otherwise, the answer is ‘no’.

Restricted superset queries. The input is a language L′. If L ⊆ L′, the answer is
‘yes’. Otherwise, the answer is ‘no’.

In the original model of learning with queries (cf. Angluin [3]), the query
learner is constrained to choose the input language L′ exclusively from the class
of languages to be learned. Our study involves a further approach, in which
this constraint is weakened by allowing the learner to query languages that are
themselves not object of learning.

The following table summarizes the results obtained and compares them to
the previously known results. The focus is on the learnability of the class of
all erasing pattern languages and the following subclasses thereof: the so-called
regular, k-variable, and non-cross erasing pattern languages.2 The items in the
table have to be interpreted as follows. The item ‘No’ indicates that queries
of the specified type are insufficient to learn the corresponding language class,
while the item ‘Yes’ indicates that the corresponding class is learnable using
queries of this type. The superscript † refers to results, which can be found or
easily derived from results in Angluin [3], Matsumoto and Shinohara [11], and
Nessel and Lange [13], respectively.

Type of erasing pattern languages
Type of const.-free const.-free
queries all regular 1-variable 1-variable k-variable k-variable non-cross

membership No
†

Yes
†

No Yes No No No

restr. subset No Yes No Yes No No No

restr. superset No
†

Yes
†

No
†

No
†

No
†

No
†

No
†

If query learners are allowed to choose input languages that are themselves
not object of learning, their learning capabilities change remarkably, particularly
when the learner is allowed to ask restricted superset queries. It seems as if this
type of queries is especially tailored to accumulate learning-relevant information
about erasing pattern languages. Note that the superscript ‡ marks immediate
outcomes of the table above.

Type of erasing pattern languages
Type of const.-free const.-free

extra queries all regular 1-variable 1-variable k-variable k-variable non-cross

restr. subset No Yes
‡

No Yes
‡

No No No

restr. superset Open Yes
‡

Yes Yes Yes Yes Yes

Of particular interest is also the complexity of a successful query learner M ,
cf. Angluin [3]. M learns a class polynomially, if, for each target language L

2 A pattern p is regular provided that p does not contain any variable more than once.
Moreover, p is said to be a k-variable pattern, if it contains at most k variables, while
it is said to be non-cross, if there are variables x1, . . . , xn and indices e1, . . . , en such
that p = x

e1

1
· · · xen

n
.

in the class, the total number of queries to be asked by M in the worst-case
is polynomial in the length of the minimal description for L. The table below
summarizes the corresponding results. The first (second) row displays the types
of queries (not) suitable for polynomial learning of a particular class; the third
row marks open problems. Here MemQ (SubQ ,SupQ) is short for membership
(restricted subset, restricted superset) queries; the prefix x denotes extra queries.
The superscript † refers to results by Nessel and Lange [13]. Note that the results
on non-learnability are not displayed.

Type of erasing pattern languages
const.-free const.-free non-

all regular 1-variable 1-variable k-variable k-variable cross

polynomially SupQ† xSupQ MemQ,SubQ xSupQ , xSupQ, xSupQ

learnable xSupQ if k = 2 if k = 2

learnable, not MemQ†

polynomially xSubQ

open xSupQ xSupQ , xSupQ,

if k > 2 if k > 2

2 Preliminaries

In the following, Σ denotes a fixed finite alphabet, the set of constant symbols.
Moreover, X = {x1, x2, x3, . . .} is a countable, infinite set of variables. To distin-
guish constant symbols from variables, it is assumed that Σ and X are disjoint.
By Σ∗ we refer to the set of all finite strings over Σ (words, for short), where ε
denotes the empty string or empty word, respectively. A pattern is a non-empty
string over Σ ∪ X .

Several special types of patterns are distinguished. Let p be a pattern. If
p ∈ X ∗, then p is said to be a constant-free pattern. p is a regular pattern, if
each variable in p occurs at most once. If p contains at most k variables, then
p is a k-variable pattern. Moreover, p is said to be a non-cross pattern, if it is
constant-free and there are some n ≥ 1 and indices e1, . . . , en ≥ 1 such that p
equals xe1

1 · · ·xen
n .

For a pattern p, the erasing pattern language Lε(p) generated by p is the set
of all words obtained by substituting all variables in p by strings in Σ∗. Thereby,
each occurrence of a variable in p has to be replaced by the same word.

Below, we generally assume that the underlying alphabet Σ consists of at
least three elements.3 a, b, c always denote elements of Σ.

The erasing pattern languages and natural subclasses thereof will provide
the target objects for learning. The formal learning model analyzed is called

3 As results in Shinohara [17] and Nessel and Lange [13] impressively show, this as-
sumption remarkably reduces the complexity of the proofs needed to establish learn-
ability results in the context of learning the erasing pattern languages and subclasses
thereof. However, some of the learnability results presented below may no longer re-
main valid, if this assumption is skipped. A detailed discussion of this issue is outside
the scope of the paper on hand.

learning with queries, see Angluin [3, 4]. In this model, the learner has access to
an oracle that truthfully answers queries of a specified kind. A query learner M
is an algorithmic device that, depending on the reply on the queries previously
made, either computes a new query or a hypothesis and halts. M learns a target
language L using a certain type of queries provided that it eventually halts and
that its one and only hypothesis correctly describes L. Furthermore, M learns
a target language class C using a certain type of queries, if it learns every L ∈ C
using queries of the specified type. As a rule, when learning a target class C, M
is not allowed to query languages not belonging to C (cf. Angluin [3]).

As in Angluin [3], the complexity of a query learner is measured by the total
number of queries to be asked in the worst-case. The relevant parameter is the
length of the minimal description for the target language.

Below, only indexable classes of erasing pattern languages are considered.
Note that a class of recursive languages is said to be an indexable class, if there
is an effective enumeration (Li)i≥0 of all and only the languages in that class that
has uniformly decidable membership. Such an enumeration is called an indexing.

3 Strength and weakness of query learners

3.1 Learning in the original query model

We first present results related to Angluin’s [3] original model. Here the learner
is only allowed to query languages that are themselves object of learning.

The first result points to the general weakness of query learners when arbi-
trary erasing pattern languages have to be identified.

Theorem 1. The class of all erasing pattern languages is (i) not learnable using
membership queries, (ii) not learnable using restricted subset queries, and, (iii)
not learnable using restricted superset queries.

Proof. Assertions (i) and (iii) are results from Nessel and Lange [13].
To prove Assertion (ii), assume that a query learner M identifies the class of

all erasing pattern languages using restricted subset queries. Then it is possible
to show, that M fails to identify either Lε(x

2
1) or all but finitely many of the

languages Lε(x
2
1x

z
2) for z ≥ 2. 2

The observed weakness has one origin: the query learners are only allowed to
output one hypothesis, which has to be correct. To see this, consider the following
relaxation of the learning model on hand. Suppose that a query learner M has
the freedom to output in each learning step, after asking a query and receiving
the corresponding answer, a hypothesis. Similarly to Gold’s [7] model of learning
in the limit, a query learner is now successful, if the sequence of its hypotheses
stabilizes on a correct one. Accordingly, we say that M learns in the limit using
queries.

Theorem 2. The class of all erasing pattern languages is (i) learnable in the
limit using membership queries, (ii) learnable in the limit using restricted subset
queries, and, (iii) learnable in the limit using restricted superset queries.

However, let us come back to the original learning model, in which the first
hypothesis of the query learner has to be correct. As Theorem 1 shows, positive
results can only be achieved, if the scope is limited to proper subclasses of the
erasing pattern languages.

Suppose that a subclass of the erasing pattern languages is fixed. Naturally,
one may ask whether – similarly to Theorems 1 and 2 – the learnability of this
class does not depend on the type of queries actually considered. However, this
is generally not the case as our next theorem shows.

Theorem 3. Fix two different query types from the following ones: member-
ship, restricted subset, and restricted superset queries. Then there is a class of
erasing pattern languages, which is learnable using the first type of queries, but
not learnable using the second type of queries.

Proof. Scanning the first table above, the class of all erasing pattern languages
generated by constant-free 1-variable patterns is learnable with membership or
restricted subset queries, but not learnable with restricted superset queries.

Moreover, it is not hard to verify, that the class which contains Lε(a) and
all languages Lε(axz

1), where z is a prime number, is learnable using restricted
superset queries, but not learnable using membership queries and not learnable
using restricted subset queries.

Next, the class containing Lε(x
2
1) and all languages Lε(x

2
1x

2
2x

z
3), z ≥ 2, is

learnable with membership queries, but not with restricted subset queries.

A class learnable with restricted subset queries, but not with membership
queries can be constructed via diagonalization. For that purpose fix an effective
enumeration (Mi)i≥0 of all query learners using membership queries and posing
each query at most once.4 Let zi denote the i-th prime number for all i ≥ 0.

Given i ≥ 0, let L2i = Lε(x
zi

1 a). Moreover, simulate the learner Mi. If Mi

queries a word w ∈ Σ∗, provide the answer ‘yes’ iff w ∈ Lε(x
zi

1 a); provide the
answer ‘no’, otherwise. In case Mi never returns a hypothesis in this scenario,
let L2i+1 = L2i = Lε(x

zi

1 a). In case Mi returns a hypothesis, let l be the length
of the longest word Mi has queried in the corresponding scenario. Then define
L2i+1 = Lε(x

zi

1 axzl

2). Finally, let C consist of all languages Li for i ≥ 0.
Note that (Li)i≥0 is an indexing for C; membership is decidable as follows:

assume w ∈ Σ∗ and j ≥ 0 are given. If j = 2i for some i ≥ 0, then w ∈ Lj iff
w ∈ Lε(x

zi

1 a). If j = 2i+1 for some i ≥ 0 and w ∈ L2i, then w ∈ Lj. If j = 2i+1
and w /∈ L2i, then let A = {l ≥ 0 | w ∈ Lε(x

zi

1 axzl

2)}. A is finite and can be
computed from w and i. Simulate Mi as above in the definition of L2i+1. If Mi

does not return a hypothesis, then, since no query is posed twice, Mi queries a
word of a length not in A. Thus there is no l ∈ A with Lj = Lε(x

zi

1 axzl

2); in
particular w /∈ Lj. If Mi returns a hypothesis, one can determine the length l∗

of the longest word Mi has queried. In this case w ∈ Lj iff l∗ ∈ A.
Next, we show that C is learnable using restricted subset queries. A learner M

for C may first query the languages Lε(x
z0

1 a), Lε(x
z1

1 a), Lε(x
z2

1 a), . . . , until the

4 Note that any query learner can be normalized to pose each query at most once
without affecting its learning capabilities.

answer ‘yes’ is received for the first time, say as a reply to the query Lε(x
zi

1 a) =
L2i. Then M queries the language L2i+1. In case the answer is ‘yes’, let M return
the hypothesis L2i+1. Otherwise, let M return the hypothesis L2i. It is not hard
to verify that M is a successful query learner for C.

It remains to verify that C is not learnable using membership queries. As-
sume to the contrary, that C is learnable using membership queries, say by the
learner Mi for some i ≥ 0. Then Mi identifies the language L2i = Lε(x

zi

1 a). In
particular, if its queries are answered truthfully respecting L2i, Mi must return
a hypothesis correctly describing L2i after finitely many queries. Let l be the
length of the longest word Mi queries in the corresponding learning scenario.
Then, by definition, L2i+1 = Lε(x

zi

1 axzl

2). Note that a word of length up to l
belongs to L2i iff it belongs to L2i+1. Thus all queries in the learning scenario of
Mi for L2i are answered truthfully also for the language L2i+1 6= L2i. Since Mi

correctly identifies L2i, Mi fails to learn L2i+1. This yields a contradiction. 2

Next, we systematically investigate the learnability of some prominent sub-
classes of the erasing pattern languages in Angluin’s [3] model.

Theorem 4. The class of all regular erasing pattern languages is (i) learnable
using membership queries, (ii) learnable using restricted subset queries, and, (iii)
learnable using restricted superset queries.

Proof. For a proof of Assertions (i) and (iii) see Nessel and Lange [13]. Adapting
their ideas one can also prove (ii). 2

Theorem 5. The class of all 1-variable erasing pattern languages is (i) not
learnable using membership queries, (ii) not learnable using restricted subset
queries, and, (iii) not learnable using restricted superset queries.

Proof. (i) and (iii) are due to Nessel and Lange [13]. To verify (ii), note that the
class of all languages Lε(axz

1b), z ≥ 0, is not learnable using restricted subset
queries, even if it is allowed to query any 1-variable erasing pattern language. 2

To prove Theorems 6 to 9, similar methods as above can be used. For the
results concerning restricted superset queries, ideas from Nessel and Lange [13]
can be exploited. Further details are omitted.

Theorem 6. The class of all constant-free 1-variable erasing pattern languages
is (i) learnable using membership queries, (ii) learnable using restricted subset
queries, and, (iii) not learnable using restricted superset queries.

Theorem 7. The class of all k-variable erasing pattern languages is (i) not
learnable using membership queries, (ii) not learnable using restricted subset
queries, and, (iii) not learnable using restricted superset queries.

Theorem 8. The class of all constant-free k-variable erasing pattern languages
is (i) not learnable using membership queries, (ii) not learnable using restricted
subset queries, and, (iii) not learnable using restricted superset queries.

Theorem 9. The class of all non-cross erasing pattern languages is (i) not
learnable using membership queries, (ii) not learnable using restricted subset
queries, and, (iii) not learnable using restricted superset queries.

3.2 Learning with extra queries

As it turns out, there are not so many natural subclasses of the erasing pat-
tern languages that are learnable using restricted subset and restricted superset
queries, respectively. But where does the observed weakness stem from? Does it
result from the complexity of the considered language classes? The following in-
vestigations seem to prove that this is not the case. Instead it seems as if, at least
in some cases, the query learners are simply not allowed to ask the ‘appropriate’
queries.

In the extended model, the query learner is not constrained to query just
languages belonging to the target class. In a reasonable model, there has to be
an a priori agreement of how to formulate the queries. For that purpose, we
assume that the query languages are selected from an a priori fixed indexable
class of recursive languages.

As we will see below, this may severely increase the learning power concerning
natural subclasses of the erasing pattern languages. Still, if the class of all erasing
pattern languages is considered, a benefit resulting from extra queries has not
been verified yet.

Theorem 10. The class of all erasing pattern languages is not learnable using
extra restricted subset queries.

It remains open whether or not the class of all erasing pattern languages is
learnable using extra restricted superset queries. The relevance of this problem
is discussed in the last section.

Extra restricted superset queries improve the power of query learners remark-
ably. Due to the space constraints the corresponding proof is omitted.

Theorem 11. The classes of all regular, of all k-variable, and of all non-cross
erasing pattern languages, respectively, are learnable using extra restricted su-
perset queries.

In contrast, extra restricted subset queries do not help for learning the natural
subclasses of the erasing pattern languages considered. Note that there are still
subclasses which are learnable using restricted subset queries if and only if the
learner may ask extra languages. An example can be found in the demonstration
of Theorem 3, third paragraph.

Theorem 12. (i) The classes of all constant-free k-variable and of all non-cross
erasing pattern languages, respectively, are not learnable using extra restricted
subset queries.
(ii) The classes of all regular and of all constant-free 1-variable erasing pattern
languages, respectively, are learnable using extra restricted subset queries.

Proof. Assertion (ii) is an immediate consequence of Theorems 4 and 6. To prove
Assertion (i), note that the class consisting of Lε(x

2
1) and all languages Lε(x

2
1x

z
2),

z ≥ 2, is not learnable with extra restricted subset queries, so the classes of all
constant-free 2-variable and of all non-cross erasing pattern languages, respec-
tively, aren’t either. 2

4 Efficiency of query learners

Having analyzed the learnability of natural subclasses of the class of all erasing
pattern languages in the (extended) query model, we now turn our attention
to the question, which of the learnable classes can even be learned efficiently,
i. e. with polynomially many queries. In particular, it is of interest, whether or
not the permission to query extra languages may speed up learning.

As it turns out, there are subclasses, which are not learnable in the original
model, but even efficiently learnable with extra queries, see Theorem 13, Asser-
tion (iv). Thus, extra restricted superset queries may bring the maximal benefit
imaginable. In contrast, extra restricted subset queries do not help to speed up
learning of the prominent subclasses of the erasing pattern languages considered
above.

Theorem 13. (i) Polynomially many queries suffice to learn the class of all
regular erasing pattern languages with restricted superset queries.
(ii) Polynomially many queries suffice to learn the class of all constant-free 1-
variable erasing pattern languages with membership queries.
(iii) Polynomially many queries suffice to learn the class of all constant-free
1-variable erasing pattern languages with restricted subset queries.
(iv) Polynomially many queries suffice to learn the classes of all regular, of all 1-
variable, and of all non-cross erasing pattern languages, respectively, with extra
restricted superset queries.

Proof. (i) is due to Nessel and Lange [13]. The proofs of (ii) and (iii) are omitted.
Results by Nessel and Lange [13] help to verify Assertion (iv) for the case of
regular erasing pattern languages. Details are omitted.

The more involved proof of Assertion (iv) for the case of non-cross erasing
pattern languages is just sketched:

Assume that the target language L equals Lε(p) for some non-cross pattern
p = xe1

1 · · ·xen
n . A query learner M successful for all non-cross erasing pattern

languages may operate as follows.

1. M poses the query Σ∗ \ {a}. If the answer is ‘no’, then M returns the
hypothesis L = Lε(x1) and stops; otherwise M acts as described in 2.

2. The queries {w | |w| 6= j} for j = 1, 2, . . . help to determine the minimal
exponent e in {e1, . . . , en}. Knowing e, M executes 3.

3. M poses the query Lε(x
e
1). If the answer is ‘yes’, then M returns the hypo-

thesis L = Lε(x
e
1) and stops; otherwise M acts as described in 4.

4. The queries (Lε(x
e
1)∩{w | |w| ≤ j})∪{w | |w| > j} for j = e, e+1, . . . help to

determine further candidates for elements in {e1, . . . , en}. Queries concerning
special words in a selected class of (at most e1 + · · ·+ en) 2-variable erasing
pattern languages help to exactly compute a next exponent e′. Knowing e′,
M executes 5.

5. The queries Σ∗\{w}, for particular words w ∈ Σ∗ in order of growing length,
help to determine in which order the exponents e and e′ appear in p.

Afterwards, M executes (slightly modified versions of) steps 3 to 5 in order
to find further exponents, until the correct structure of p is output.

All in all, this method is successful for all non-cross erasing pattern languages,
but uses only polynomially many extra restricted superset queries. Instead of
formalizing the details we try to illustrate the idea with an example.

Assume Σ = {a, b, c} and the target language is Lε(x
4
1x

2
2x

8
3). Then the cor-

responding learning scenario can be described by the following table.

Step Query Reply Output of M
1 Σ∗ \ {a} ‘yes’
2 {w | |w| 6= 1} ‘yes’

{w | |w| 6= 2} ‘no’
(* e = 2. *)

3 Lε(x
2
1) ‘no’
(* There is a second exponent e′. *)

4 (Lε(x
2
1) ∩ {w | |w| ≤ 2}) ∪ {w | |w| > 2} ‘yes’
...

...
(Lε(x

2
1) ∩ {w | |w| ≤ 5}) ∪ {w | |w| > 5} ‘yes’

(Lε(x
2
1) ∩ {w | |w| ≤ 6}) ∪ {w | |w| > 6} ‘no’

(* e′ = 4. *)
5 Σ∗ \ {a2b4} ‘yes’

Σ∗ \ {a4b2} ‘no’
(* e′ appears only before e in p. *)

3 Lε(x
4
1x

2
2) ‘no’

(* There is a third exponent e′′. *)
4 (Lε(x

4
1x

2
2) ∩ {w | |w| ≤ 6}) ∪ {w | |w| > 6} ‘yes’

...
...

(Lε(x
4
1x

2
2) ∩ {w | |w| ≤ 9}) ∪ {w | |w| > 9} ‘yes’

(Lε(x
4
1x

2
2) ∩ {w | |w| ≤ 10}) ∪ {w | |w| > 10} ‘no’

(* Candidates for e′′ are 6 and 8.
Interesting words are a6b4, a2b8, a8b2. *)

Σ∗ \ {a6b4} ‘yes’
Σ∗ \ {a2b8} ‘no’

(* e′′ = 8, e′′ appears after e in p,
step 5 is not necessary. *)

3 Lε(x
4
1x

2
2x

8
3) ‘yes’ hypothesis

Lε(x
4
1x

2
2x

8
3)

It remains to prove Assertion (iv) for 1-variable erasing pattern languages:
Assume the target language is L = Lε(p) for some 1-variable pattern p. Let

v be the shortest word in L, v = v1 · · · vl for v1, . . . , vl ∈ Σ. A query learner M
successful for all 1-variable erasing pattern languages may operate as follows:

1. With the help of the queries Σ∗\{a} and Σ∗\{b} the learner M can find out,
whether or not L = Lε(x1). If yes, then M returns the hypothesis L = Lε(x1)
and stops; otherwise M acts as described in 2.

2. The queries {w | |w| 6= j} for j = 0, 1, 2, . . . help to compute the length l of v.
To compute v itself, the |Σ|l candidates for v are recursively split into two
equally large sets V1 and V2; which of these sets is taken under consideration,
in each splitting step only depends on the query V1 ∪ {w | |w| 6= l}. If v is
computed, M goes on as in 3.

3. M poses the query Lε(v). On answer ‘yes’, M returns the hypothesis Lε(v)
and stops. On answer ‘no’, M queries all the languages Lε(pi), 1 ≤ i ≤ l+1,
where pi is the pattern resulting from x1v1x2v2 · · ·xlvlxl+1, if the variable
xi is deleted. Thus M can detect exactly those positions in v, where the only
variable has to occur (at least once). Knowing the positions of the variables,
M goes on as in 4.

4. By posing the queries {v}∪{w | |w| ≥ l+ j} for j = 1, 2, . . ., M finds out the
number j∗ of occurrences of the variable x1 in p. Afterwards, special queries
concerning the words of length l + j∗ help to find out the multiplicity of x1

in the positions computed in 3. Finally, a hypothesis for Lε(p) is returned.

All in all, this method is successful for all 1-variable erasing pattern languages,
but uses only polynomially many queries. Instead of formalizing the details we
try to illustrate the idea with an example.

Assume Σ = {a, b, c} and the target language is Lε(ax3
1bx

2
1). Then the cor-

responding learning scenario can be described by the following table.

Step Query Reply Output of M
1 Σ∗ \ {a} ‘yes’
2 {w | |w| 6= 0} ‘yes’

{w | |w| 6= 1} ‘yes’
{w | |w| 6= 2} ‘no’

(* l = 2. v∈{aa, ab, ac, ba, bb, bc, ca, cb, cc}. *)
{aa, ab, ac, ba} ∪ {w | |w| 6= 2} ‘yes’
{aa, ab} ∪ {w | |w| 6= 2} ‘yes’
{aa} ∪ {w | |w| 6= 2} ‘no’

(* v = ab. *)
3 Lε(ab) ‘no’

Lε(ax2bx3) ‘yes’
Lε(x1abx3) ‘no’
Lε(x1ax2b) ‘no’

(* p = axe1

1 bxe2

1 for some e1, e2 ≥ 1. *)
4 {ab} ∪ {w | |w| ≥ 3} ‘yes’

...
...

{ab} ∪ {w | |w| ≥ 7} ‘yes’
{ab} ∪ {w | |w| ≥ 8} ‘no’

(* j∗ = 5. Test a2ba4, a3ba3, a4ba2, a5ba. *)
Σ∗ \ {a2ba4} ‘yes’
Σ∗ \ {a3ba3} ‘yes’
Σ∗ \ {a4ba2} ‘no’ hypothesis

Lε(ax3
1bx

2
1)

Further details are omitted. Note that a similar, slightly extended, method
can be used to verify that polynomially many extra restricted superset queries
suffice to learn the class of all 2-variable erasing pattern languages. 2

Theorem 14. Polynomially many queries do not suffice to learn the class of all
regular erasing pattern languages with either membership queries, or restricted
subset queries, or extra restricted subset queries.

Proof. Note that, for any n ≥ 0, there are at least |Σ|n distinct regular patterns,
such that each pair of corresponding erasing pattern languages is disjoint. By a
result in Angluin [3], given n ≥ 0, any query learner identifying each of these
|Σ|n erasing regular pattern languages using membership or restricted subset
queries must make |Σ|n − 1 queries in the worst case. Angluin’s proof can be
adopted for the case of learning with extra restricted subset queries. Concerning
membership queries and restricted subset queries, Theorem 14 has also been
verified by Nessel and Lange [13]. 2

It remains open, whether or not, for any k ≥ 3, the class of all k-variable
erasing pattern languages, or at least the class of all constant-free k-variable
erasing pattern languages, is learnable using polynomially many extra restricted
superset queries. Until now, we have only been successful in showing that Theo-
rem 13, Assertion (iv) generalizes to the case of learning the class of all 2-variable
erasing pattern languages. The relevant details are omitted.

5 Connections to Gold-style learning

Comparing query learning to the standard models of Gold-style language learn-
ing from positive examples requires some more notions. These will be kept short,
see, e. g., Gold [7], Angluin [1], and Zeugmann and Lange [18] for more details.

Let L be a language. Any infinite sequence t = (wj)j≥0 with {wj | j ≥ 0} = L
is called a text for L. For any n ≥ 0, tn denotes the initial segment w0, . . . , wn

and t+n the set {w0, . . . , wn}.
Let C be an indexable class, let H = (Li)i≥0 be a hypothesis space, and

let L ∈ C. An inductive inference machine (IIM) is an algorithmic device, that
reads longer and longer initial segments of a text and, from time to time, out-
puts numbers as its hypotheses. An IIM M returning some i is construed to
hypothesize the language Li. Given a text t for L, M identifies L from t with
respect to H, if the sequence of hypotheses output by M , when fed t, stabilizes
on a number i (i. e. past some point M always outputs the hypothesis i) with
Li = L. M identifies C from text with respect to H, if it identifies every L′ ∈ C
from every corresponding text. We say that C can be conservatively identified
with respect to H iff there is an IIM M that identifies C from text with respect
to H and that performs exclusively justified mind changes, i. e. if M , on some
text t, outputs hypotheses i and later i′, then M must have seen some word
w /∈ Li before it outputs i′. In other words, M may only change its hypothesis
when it has found hard evidence that it is wrong.

LimTxt (ConsvTxt) denotes the collection of all indexable classes C′ for
which there are an IIM M ′ and a hypothesis space H′ such that M ′ (conserva-
tively) identifies C′ from text with respect to H′. Note that ConsvTxt ⊂ LimTxt ,
cf. Zeugmann and Lange [18].

For the next theorem, let xSupQ denote the class of all indexable classes,
which are learnable with extra restricted superset queries.

Theorem 15. ConsvTxt = xSupQ ⊂ LimTxt.

Proof. “ConsvTxt ⊆ xSupQ”:
Fix C ∈ ConsvTxt . Then there is an indexing (Li)i≥0 and a learner M , such

that M ConsvTxt -identifies C with respect to (Li)i≥0. Obviously, if L ∈ C and
t is a text for L, then M never returns an index i with L ⊂ Li on any segment
of t.

Now the underlying indexable class used for the queries contains all languages
in (Li)i≥0 and all languages Li \ {w} for i ≥ 0 and w ∈ Σ∗. A learner M ′

identifying any L ∈ C with extra restricted superset queries may work as follows:

M ′ poses queries L0, L1, . . ., until the answer ‘yes’ is received for the first
time, say upon the query Lk. (* Note that L ⊆ Lk. *)
Let T be the set of all words w ∈ Σ∗, for which the query Lk \ {w} is
answered with ‘no’. Note that T = L and T is recursively enumerable in k.
The latter guarantees that one can effectively enumerate a text t for L.
M ′ executes step 0. In general, step n, n ≥ 0, consists of the following
instructions:

Determine i := M(tn). Pose the query Li. If the answer is ‘no’, execute
step n + 1. Otherwise hypothesize i and stop. (* In the latter case, as M
never returns an index of a proper superset of L, M ′ returns an index
for L. *)

Further details are omitted.

“xSupQ ⊆ ConsvTxt”:
Fix an indexable class C ∈ xSupQ . Then there is an indexing (Li)i≥0 and a

query learner M , such that M identifies C with extra restricted superset queries
respecting (Li)i≥0. A new indexing (L′

i)i≥0 is defined as follows:

– L′
0 is the empty language.

– If i is the canonical index of the finite set {i1, . . . , in}, then L′
i = Li1∩· · ·∩Lin

.

A learner M ′ identifying C in the limit from text with respect to the hypo-
thesis space (L′

i)i≥0, given a text t, may work as follows.

M ′(t0) := 0.
To compute M ′(tn+1), the learner M ′ simulates a query learning scenario
with M for n steps of computation. If M does not return a hypothesis in the
n-th step, then M ′(tn+1) := M ′(tn). Additionally, if M poses the query Li

in the n-th step, then M will receive the answer ‘no’, if t+n ∩ Li 6= ∅ (i. e. if
Li 6⊇ t+n), and the answer ‘yes’, otherwise. If M returns a hypothesis i in the
n-th step, then the hypothesis M ′(tn+1) is computed as follows:

• Let Li
+

1

, . . . , Li
+
m

be the queries answered with ‘yes’ in the currently

simulated scenario.

• Compute the canonical index i′ of the set {i, i+1 , . . . , i+m}.
• Return the hypothesis M ′(tn+1) = i′.

It is not hard to verify that M ′ learns C in the limit from text; the relevant
details are omitted. Moreover, as we will see next, M ′ avoids overgeneralized
hypotheses, that means, if t is a text for some L ∈ C, n ≥ 0, and M ′(tn) = i′,
then L′

i′ 6⊃ L. Therefore, M ′ can easily be transformed into a learner M ′′ which
identifies the class C conservatively in the limit from text.5

To prove that M ′ learns C in the limit from text without overgeneralizations,
assume to the contrary, that there is an L ∈ C, a text t for L, and an n ≥ 0,
such that the hypothesis i′ = M ′(tn) fulfills L′

i′ ⊃ L. Then i′ 6= 0. By definition
of M ′, there must be a learning scenario S for M , in which

– M poses queries Li−
1

, . . . , Li−
k

, Li+
1

, . . . , Li+m
(in some particular order);

– the queries Li
−

1

, . . . , Li
−

k
are answered with ‘no’;

– the queries Li
+

1

, . . . , Li
+
m

are answered with ‘yes’;

– afterwards M returns the hypothesis i.

Hence i′ is the canonical index of the set {i, i+1 , . . . , i+m}. This implies L′
i′ =

Li ∩ Li
+

1

∩ · · · ∩ Li
+
m

. So each of the languages Li
+

1

, . . . , Li
+
m

is a superset of L.

By definition of M ′, Li
−

j
6⊇ t+n for 1 ≤ j ≤ k. Therefore none of the languages

Li
−

1

, . . . , Li
−

k
are supersets of L. So the answers in the learning scenario S above

are truthful respecting the language L. As M learns C with extra restricted
superset queries, the hypothesis i must be correct for L, i. e. Li = L. This yields
L′

i = L in contradiction to L′
i′ ⊃ L.

So M ′ learns C in the limit from text without overgeneralizations, which
finally implies C ∈ ConsvTxt .

“xSupQ ⊂ LimTxt”:

Finally, this is an immediate consequence of xSupQ = ConsvTxt and the
fact ConsvTxt is a proper subset of LimTxt . 2

Theorem 15 is of relevance for the open question, whether or not the class of
all erasing pattern languages is learnable in the limit from text, if the underlying
alphabet consists of at least three symbols. Obviously, if this class is learnable
with extra restricted superset queries, then the open question can be answered
in the affirmative. Conversely, if it is not learnable with extra restricted superset
queries, then it is not conservatively learnable in the limit from text. Of course
the latter would not yet imply, that the open question can be answered in the
negative. Still it would at least suggest that this is the case, since until now,
there is no ‘natural’ class known that separates LimTxt from ConsvTxt .

5 Note that a result by Zeugmann and Lange [18] states that any indexable class, which
is learnable in the limit from text without overgeneralizations, belongs to ConsvTxt .

References

1. D. Angluin. Inductive inference of formal languages from positive data. Informa-

tion and Control, 45:117–135, 1980.
2. D. Angluin. Finding patterns common to a set of strings. Journal of Computer

and System Sciences, 21:46–62, 1980.
3. D. Angluin. Queries and concept learning. Machine Learning 2:319–342, 1988.
4. D. Angluin. Queries revisited. Proc. Int. Conf. on Algorithmic Learning Theory,

LNAI 2225, 12–31, Springer, 2001.
5. S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi, T. Shinohara.

A machine discovery from amino acid sequences by decision trees over regular
patterns. New Generation Computing, 11:361–375, 1993.

6. T. Erlebach, P. Rossmanith, H. Stadtherr, A. Steger, T. Zeugmann. Learning one-
variable pattern languages very efficiently on average, in parallel, and by asking
questions Proc. Int. Conf. on Algorithmic Learning Theory, LNAI 1316, 260–276,
Springer, 1997.

7. E.M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

8. J. E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Publishing Company, 1979.
9. T. Jiang, A. Salomaa, K. Salomaa, S. Yu. Decision problems for patterns. Journal

of Computer and System Sciences, 50:53–63, 1995.
10. S. Lange, T. Zeugmann. Types of monotonic language learning and their char-

acterization. Proc. ACM Workshop on Computational Learning Theory, 377–390.
ACM Press, 1992.

11. S. Matsumoto, A. Shinohara. Learning pattern languages using queries. Proc.

European Conf. on Computational Learning Theory, LNAI 1208, 185–197, Springer,
1997.

12. A. Mitchell. Learnability of a subclass of extended pattern languages. Proc. ACM

Workshop on Computational Learning Theory, 64–71, ACM-Press, 1998.
13. J. Nessel, S. Lange. Learning erasing pattern languages with queries. Proc. Int.

Conf. on Algorithmic Learning Theory, LNAI 1968, 86–100, Springer, 2000.
14. D. Reidenbach. A negative result on inductive inference of extended pattern lan-

guages. Proc. Int. Conf. on Algorithmic Learning Theory, LNAI 2533, 308–320,
Springer, 2002.

15. A. Salomaa. Patterns (the formal language theory column). EATCS Bulletin,
54:46–62, 1994.

16. A. Salomaa. Return to patterns (the formal language theory column). EATCS

Bulletin, 55:144–157, 1995.
17. T. Shinohara. Polynomial time inference of extended regular pattern languages.

Proc. RIMS Symposium on Software Science and Engineering, LNCS 147, 115–127,
Springer, 1983.

18. T. Zeugmann, S. Lange. A guided tour across the boundaries of learning recursive
languages. Algorithmic Learning for Knowledge-Based Systems, LNAI 961, 190–
258, Springer, 1995.

