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Abstract. Different formal learning models address different aspects
of human learning. Below we compare Gold-style learning—interpreting
learning as a limiting process in which the learner may change its mind
arbitrarily often before converging to a correct hypothesis—to learning
via queries—interpreting learning as a one-shot process in which the
learner is required to identify the target concept with just one hypothesis.

Although these two approaches seem rather unrelated at first glance,
we provide characterizations of different models of Gold-style learning
(learning in the limit, conservative inference, and behaviourally correct
learning) in terms of query learning. Thus we describe the circumstances
which are necessary to replace limit learners by equally powerful one-
shot learners. Our results are valid in the general context of learning
indexable classes of recursive languages.

In order to achieve the learning capability of Gold-style learners, the
crucial parameters of the query learning model are the type of queries
(membership, restricted superset, or restricted disjointness queries) and
the underlying hypothesis space (uniformly recursive, uniformly r. e., or
uniformly 2-r. e. families). The characterizations of Gold-style language
learning are formulated in dependence of these parameters.

1 Introduction

Undeniably, there is no formal scheme spanning all aspects of human learning.
Thus each learning model analysed within the scope of learning theory addresses
only special facets of our understanding of learning.

For example, Gold’s [8] model of identification in the limit is concerned with
learning as a limiting process of creating, modifying, and improving hypotheses
about a target concept. These hypotheses are based upon instances of the target
concept offered as information. In the limit, the learner is supposed to stabilize
on a correct guess, but during the learning process one will never know whether
or not the current hypothesis is already correct. Here the ability to change its
mind is a crucial feature of the learner.



In contrast to that, Angluin’s [2, 3] model of learning with queries focusses
learning as a finite process of interaction between a learner and a teacher. The
learner asks questions of a specified type about the target concept and the
teacher—having the target concept in mind—answers these questions truthfully.
After finitely many steps of interaction the learner is supposed to return its sole
hypothesis—correctly describing the target concept. Here the crucial features
of the learner are its ability to demand special information on the target con-
cept and its restrictiveness in terms of mind changes. Since a query learner is
required to identify the target concept with just a single hypothesis, we refer to
this phenomenon as one-shot learning.

Our analysis concerns common features and coincidences between these two
seemingly unrelated approaches, thereby focussing our attention on the identifi-
cation of formal languages, ranging over indexable classes of recursive languages,
as target concepts, see [1, 10, 14]. In case such coincidences exist, their revelation
might allow for transferring theoretically approved insights from one model to
the other. In this context, our main focus will be on characterizations of Gold-
style language learning in terms of learning via queries. Characterizing different
types of Gold-style language learning in such a way, we will point out interesting
correspondences between the two models. In particular, our results demonstrate
how learners identifying languages in the limit can be replaced by one-shot learn-
ers without loss of learning power. That means, under certain circumstances the
capability of limit learners is equal to that of one-shot learners using queries.

The crucial question in this context is what abilities of the teacher are re-
quired to achieve the learning capability of Gold-style learners for query learners.
In particular, it is of importance which types of queries the teacher is able to
answer (and thus the learner is allowed to ask). This addresses two facets: first,
the kind of information prompted by the queries (we consider membership, re-
stricted superset, and restricted disjointness queries) and second, the hypothesis
space used by the learner to formulate its queries and hypotheses (we consider
uniformly recursive, uniformly r. e., and uniformly 2-r. e. families). Note that
both aspects affect the demands on the teacher.

Our characterizations reveal the corresponding necessary requirements that
have to be made on the teacher. Thereby we formulate coincidences of the learn-
ing capabilities assigned to Gold-style learners and query learners in a quite
general context, considering three variants of Gold-style language learning. More-
over, we compare our results to several insights in Gold-style learning via oracles,
see [13] for a formal background. As a byproduct of our analysis, we provide a spe-
cial indexable class of recursive languages which can be learned in a behaviourally
correct manner3 in case a uniformly r. e. family is chosen as a hypothesis space,
but which is not learnable in the limit, no matter which hypothesis space is cho-
sen. Although such classes have already been offered in the literature, see [1], up
to now all examples—to the authors’ knowledge—are defined via diagonalisation

3 Behaviourally correct learning is a variant of learning in the limit, see for example
[7, 4, 13]. A definition is given later on.



in a rather involved manner. In contrast to that, the class we provide below is
very simply and explicitly defined without any diagonal construction.

2 Preliminaries and basic results

2.1 Notations

Familiarity with standard mathematical, recursion theoretic, and language the-
oretic notions and notations is assumed, see [12, 9]. From now on, a fixed finite
alphabet Σ with {a, b} ⊆ Σ is given. A word is any element from Σ∗ and a
language any subset of Σ∗. The complement L of a language L is the set Σ∗ \L.
Any infinite sequence t = (wi)i∈N with {wi | i ∈ N} = L is called a text for L.

A family (Ai)i∈N of languages is uniformly recursive (uniformly r. e.) if there
is a recursive (partial recursive) function f such thatAi = {w ∈ Σ∗ | f(i, w) = 1}
for all i ∈ N. A family (Ai)i∈N is uniformly 2-r. e., if there is a recursive func-
tion g such that Ai = {w ∈ Σ∗ | g(i, w, n) = 1 for all but finitely many n} for all
i ∈ N. Note that for uniformly recursive families membership is uniformly de-
cidable.

Let C be a class of recursive languages over Σ∗. C is said to be an indexable
class of recursive languages (in the sequel we will write indexable class for short),
if there is a uniformly recursive family (Li)i∈N of all and only the languages in C.
Such a family will subsequently be called an indexing of C.

A family (Ti)i∈N of finite languages is recursively generable, if there is a
recursive function that, given i ∈ N, enumerates all elements of Ti and stops.

In the sequel, let ϕ be a Gödel numbering of all partial recursive functions
and Φ the associated Blum complexity measure, see [5].

2.2 Gold-style language learning

Let C be an indexable class, H = (Li)i∈N any uniformly recursive family (called
hypothesis space), and L ∈ C. An inductive inference machine (IIM ) M is an
algorithmic device that reads longer and longer initial segments σ of a text
and outputs numbers M(σ) as its hypotheses. An IIM M returning some i is
construed to hypothesize the language Li. Given a text t for L, M identifies L
from t with respect to H in the limit, if the sequence of hypotheses output by M ,
when fed t, stabilizes on a number i (i. e., past some point M always outputs the
hypothesis i) with Li = L.M identifies C in the limit from text with respect toH,
if it identifies every L′ ∈ C from every corresponding text. LimTxt rec denotes
the collection of all indexable classes C′ for which there are an IIM M ′ and a
uniformly recursive family H′ such that M ′ identifies C′ in the limit from text
with respect to H′. A quite natural and often studied modification of LimTxt rec

is defined by the model of conservative inference, see [1]. M is a conservative IIM
for C with respect to H, if M performs only justified mind changes, i. e., if M , on
some text t for some L ∈ C, outputs hypotheses i and later j, then M must have
seen some element w /∈ Li before returning j. The collection of all indexable



classes identifiable from text by a conservative IIM is denoted by ConsvTxt rec.
Note that ConsvTxt rec ⊂ LimTxt rec [14]. Since we consider learning from text
only, we will assume in the sequel that all languages to be learned are non-empty.
One main aspect of human learning is modelled in the approach of learning in
the limit: the ability to change one’s mind during learning. Thus learning is
considered as a process in which the learner may change its hypothesis arbitrarily
often until reaching its final correct guess. In particular, it is in general impossible
to find out whether or not the final hypothesis has been reached, i. e., whether
or not a success in learning has already eventuated.

Note that in the given context, where only uniformly recursive families are
considered as hypothesis spaces for indexable classes, LimTxt rec coincides with
the collection of all indexable classes identifiable from text in a behaviourally
correct manner, see [7]: If C is an indexable class, H = (Li)i∈N a uniformly
recursive family, M an IIM, then M is a behaviourally correct learner for C from
text with respect toH, if for each L ∈ C and each text t for C, all but finitely many
outputs i of M when fed t fulfil Li = L. Here M may alternate different correct
hypotheses arbitrarily often instead of converging to a single hypothesis. Defining
the notion BcTxt rec correspondingly as usual yields BcTxt rec = LimTxt rec (a
folklore result). In particular, each IIM BcTxt-identifying an indexable class
C′ in some uniformly recursive family H′ can be modified to an IIM LimTxt-
identifying C′ in H′.

This coincidence no longer holds, if more general types of hypothesis spaces
are considered. Assume C is an indexable class and H+ = (Ui)i∈N is any uni-
formly r. e. family of languages comprising C. Then it is also conceivable to use
H+ as a hypothesis space. LimTxt r.e. (BcTxt r.e.) denotes the collection of all
indexable classes learnable as in the definition of LimTxt rec (BcTxt rec), if the
demand for a uniformly recursive family H as a hypothesis space is loosened
to demanding a uniformly r. e. family H+ as a hypothesis space. Interestingly,
LimTxt rec = LimTxt r.e. (a folklore result), i. e., in learning in the limit, the ca-
pabilities of IIMs do not increase, if the constraints concerning the hypothesis
space are weakened by allowing for arbitrary uniformly r. e. families. In con-
trast to that, in the context of BcTxt-identification, weakening these constraints
yields an add-on in learning power, i. e., BcTxt rec ⊂ BcTxt r.e.. In particular,
LimTxt rec ⊂ BcTxt r.e. and so LimTxt- and BcTxt-learning no longer coincide
for identification with respect to arbitrary uniformly r. e. families, see also [4, 1].

Hence, in what follows, our analysis of Gold-style language learning will focus
on the inference types LimTxt rec, ConsvTxt rec, and BcTxt r.e..

The main results of our analysis will be characterizations of these inference
types in the query learning model. For that purpose we will make use of well-
known characterizations concerning so-called families of telltales, see [1].

Definition 1. Let (Li)i∈N be a uniformly recursive family and (Ti)i∈N a family
of finite non-empty sets. (Ti)i∈N is called a family of telltales for (Li)i∈N iff for
all i, j ∈ N:
1. Ti ⊆ Li.
2. If Ti ⊆ Lj ⊆ Li, then Lj = Li.



The concept of telltale families is the best known notion to illustrate the
specific differences between indexable classes in LimTxt rec, ConsvTxt rec, and
BcTxt r.e.. Telltale families and their algorithmic structure have turned out to
be characteristic for identifiability in our three models, see [1, 10, 14, 4]:

Theorem 1. Let C be an indexable class of languages.
1. C ∈ LimTxt rec iff there is an indexing of C possessing a uniformly r. e. family

of telltales.
2. C ∈ ConsvTxt rec iff there is a uniformly recursive family comprising C and

possessing a recursively generable family of telltales.
3. C ∈ BcTxt r.e. iff there is an indexing of C possessing a family of telltales.

The notion of telltales is closely related to the notion of locking sequences,
see [6]. If H = (Ui)i∈N is a hypothesis space, M an IIM, and L a language,
then any finite text segment σ of L is called a LimTxt-locking sequence for
M and L (a BcTxt-locking sequence for M , L and H), if M(σ) = M(σσ′)
(UM(σ) = UM(σσ′)) for all finite text segments σ′ of L. If L is LimTxt-learned
by M (BcTxt-learned by M) respecting H, then there exists a LimTxt-locking
sequence σ for M and L (a BcTxt-locking sequence for M , L, and H). Moreover,
UM(σ) = L must be fulfilled for each such locking sequence.

2.3 Language learning via queries

In the query learning model, a learner has access to a teacher that truthfully
answers queries of a specified kind. A query learner M is an algorithmic device
that, depending on the reply on the previous queries, either computes a new
query or returns a hypothesis and halts, see [2]. Its queries and hypotheses are
coded as natural numbers; both will be interpreted with respect to an underlying
hypothesis space. When learning an indexable class C, any indexing H = (Li)i∈N
of C may form a hypothesis space. So, as in the original definition, see [2], when
learning C, M is only allowed to query languages belonging to C.

More formally, let C be an indexable class, let L ∈ C, let H = (Li)i∈N be
an indexing of C, and let M be a query learner. M learns L with respect to H
using some type of queries if it eventually halts and its only hypothesis, say i,
correctly describes L, i. e., Li = L. So M returns its unique and correct guess i
after only finitely many queries. Moreover, M learns C with respect to H using
some type of queries, if it learns every L′ ∈ C with respect to H using queries of
the specified type. Below we consider, for learning a target language L:
Membership queries. The input is a string w and the answer is ‘yes’ or ‘no’,

depending on whether or not w belongs to L.
Restricted superset queries. The input is an index of a language L′ ∈ C. The

answer is ‘yes’ or ‘no’, depending on whether or not L′ is a superset of L.
Restricted disjointness queries. The input is an index of a language L′ ∈ C. The

answer is ‘yes’ or ‘no’, depending on whether or not L′ and L are disjoint.4
4 The term “restricted” is used to distinguish these types of query learning from

learning with superset (disjointness) queries, where, together with each negative
answer the learner is provided a counterexample, i. e., a word in L \ Lj (in L ∩ Lj).



MemQ , rSupQ , and rDisQ denote the collections of all indexable classes C′
for which there are a query learner M ′ and a hypothesis space H′ such that M ′

learns C′ with respect toH′ using membership, restricted superset, and restricted
disjointness queries, respectively. In the sequel we will omit the term“restricted”
for convenience. In the literature, see [2, 3], more types of queries such as (re-
stricted) subset queries and equivalence queries have been analysed, but in what
follows we concentrate on the three types explained above.

Note that, in contrast to the Gold-style models introduced above, learning
via queries focusses the aspect of one-shot learning, i. e., it is concerned with
learning scenarios in which learning may eventuate without mind changes.

Having a closer look at the different models of query learning, one easily finds
negative learnability results. For instance, the class Csup consisting of the lan-
guage L∗ = {a}∗∪{b} and all languages {ak | k ≤ i}, i ∈ N, is not learnable with
superset queries. Assume a query learner M learns Csup with superset queries in
an indexing (Li)i∈N of C and consider a scenario for M learning L∗. Obviously,
a query j is answered ‘yes’, iff Lj = L∗. After finitely many queries, M hypoth-
esizes L∗. Now let i be maximal, such that a query j with Lj = {ak | k ≤ i} has
been posed. The above scenario is also feasible for the language {ak | k ≤ i+ 1}.
Given this language as a target, M will return a hypothesis representing L∗ and
thus fail. This yields a contradiction, so Csup /∈ rSupQ .

Moreover, as can be verified easily, the class Cdis consisting only of the lan-
guages {a} and {a, b} is not learnable with disjointness queries.

Both examples point to a drawback of Angluin’s query model, namely the
demand that a query learner is restricted to pose queries concerning languages
contained in the class of possible target languages. Note that the class Csup would
be learnable with superset queries, if it was additionally permitted to query the
language {a}∗, i. e., to ask whether or not this language is a superset of the target
language. Similarly, Cdis would be learnable with disjointness queries, if it was
additionally permitted to query the language {b}. That means there are very
simple classes of languages, for which any query learner must fail just because
it is barred from asking the “appropriate” queries.

To overcome this drawback, it seems reasonable to allow the query learner to
formulate its queries with respect to any uniformly recursive family comprising
the target class C. So let C be an indexable class. An extra query learner for
C is permitted to query languages in any uniformly recursive family (L′i)i∈N
comprising C. We say that C is learnable with extra superset (disjointness) queries
respecting (L′i)i∈N iff there is an extra query learner M learning C with respect to
(L′i)i∈N using superset (disjointness) queries concerning (L′i)i∈N. Then rSupQ rec

(rDisQ rec) denotes the collection of all indexable classes C learnable with extra
superset (disjointness) queries respecting a uniformly recursive family.

Our classes Csup and Cdis witness rSupQ ⊂ rSupQ rec and rDisQ ⊂ rDisQ rec.
Note that both classes would already be learnable, if in addition to the superset
(disjointness) queries the learner was allowed to ask a membership query for the
word b. So the capabilities of rSupQ-learners (rDisQ-learners) already increase
with the additional permission to ask membership queries. Yet, as Theorem 2



shows, combining superset or disjointness queries with membership queries does
not yield the same capability as extra queries do. For convenience, denote the
family of classes which are learnable with a combination of superset (disjointness)
queries and membership queries by rSupMemQ (rDisMemQ).

Theorem 2. 1. rSupQ ⊂ rSupMemQ ⊂ rSupQ rec.
2. rDisQ ⊂ rDisMemQ ⊂ rDisQ rec.

Proof. ad 1. rSupQ ⊆ rSupMemQ is evident; the class Csup yields the inequality.
In order to prove rSupMemQ ⊆ rSupQ rec, note that, for any word w and any

language L, w ∈ L iff Σ∗ \ {w} 6⊇ L. This helps to simulate membership queries
with extra superset queries. Further details are omitted.

rSupQ rec\rSupMemQ 6= ∅ is witnessed by the class C of all languages Lk and
Lk,l for k, l ∈ N, where Lk = {akbz | z ∈ N}, Lk,l = Lk, if ϕk(k) is undefined,
and Lk,l = {akbz | z ≤ Φk(k) ∨ z > Φk(k) + l}, if ϕk(k) is defined, see [10].

To verify C ∈ rSupQ rec choose a uniformly recursive family comprising C and
all languages L∗k = {akbz | z ≤ Φk(k)}, k ∈ N. Note that L∗k ∈ C iff ϕk(k) is
undefined. An rSupQ rec-learner M for C may act on the following instructions.

- For k = 0, 1, 2, . . . ask a superset query concerning Lk, until the answer ‘yes’
is received for the first time, i. e., until some k with Lk ⊇ L is found.

- Pose a superset query concerning the language L∗k. (* Note that L∗k is a
superset of the target language iff L∗k is infinite iff ϕk(k) is undefined. *)
If the answer is ‘yes’, then output a hypothesis representing Lk and stop.
If the answer is ‘no’ (* in this case ϕk(k) is defined *), then compute Φk(k).
Pose a superset query concerning Lk,1. (* Note that, for any target language
L ⊆ Lk, this query will be answered with ‘yes’ iff akbΦk(k)+1 /∈ L. *)

If the answer is ‘no’, then output a hypothesis representing Lk and stop.
If the answer is ‘yes’, then, for any l = 2, 3, 4, . . ., pose a superset query
concerning Lk,l. As soon as such a query is answered with ‘no’, for some l,
output a hypothesis representing Lk,l−1 and stop.

The details verifying that M learns C with extra superset queries are omitted.
In contrast to that one can show that C /∈ rSupMemQ. Otherwise the halting

problem with respect to ϕ would be decidable. Details are omitted.
Hence rSupMemQ ⊂ rSupQ rec.
ad 2. rDisQ ⊆ rDisMemQ is obvious; the class Cdis yields the inequality.
In order to prove rDisMemQ ⊆ rDisQ rec, note that, for any word w and

any language L, w ∈ L iff {w} and L are not disjoint. This helps to simulate
membership queries with extra disjointness queries. Further details are omitted.

To prove the existence of a class in rDisQ rec\rDisMemQ, define an indexable
class C consisting of L0 = {b} and all languages Li+1 = {ai+1, b}, i ∈ N.

To show that C ∈ rDisQ rec choose a uniformly recursive family comprising C
as well as {a}∗ and all languages {ai+1}, i ∈ N. A learner M identifying C with
extra disjointness queries may work according to the following instructions.

Pose a disjointness query concerning {a}∗. (* Note that the only possible
target language disjoint with {a}∗ is L0. *)
If the answer is ‘yes’, then return a hypothesis representing L0 and stop.



If the answer is ‘no’, then, for i = 0, 1, 2, . . . ask a disjointness query con-
cerning {ai+1}, until the answer ‘no’ is received for the first time. (* Note
that this must eventually happen. *) As soon as such a query is answered
with ‘no’, for some i, output a hypothesis representing Li+1 and stop.

The details verifying that M learns C with extra disjointness queries are omitted.
In contrast one can show that C /∈ rDisMemQ. For that purpose, to deduce a

contradiction, assume that there is a query learner identifying C with disjointness
and membership queries respecting an indexing (L′i)i∈N of C. Consider a learning
scenario of M for the target language L0. Obviously, each disjointness query is
answered with ‘no’; a membership query for a word w is answered with ‘no’ iff
w 6= b . After finitely many queries, M must return a hypothesis representing L0.
Now let i be maximal, such that a membership query concerning a word ai

has been posed. The scenario described above is also feasible for the language
{ai+1, b}. If this language constitutes the target, then M will return a hypothesis
representing L∗ and thus fail. This yields the desired contradiction.

Hence rDisMemQ ⊂ rDisQ rec. �

3 Characterizations of Gold-style inference types

3.1 Characterizations in the query model

One main difference between Gold-style and query learning lies in the question
whether or not a current hypothesis of a learner is already correct. A Gold-
style learner is allowed to change its mind arbitrarily often (thus in general this
question can not be answered), whereas a query learner has to find a correct
representation of the target object already in the first guess, i. e., within “one
shot” (and thus the question can always be answered in the affirmative). An-
other difference is certainly the kind of information provided during the learning
process. So, at first glance, these models seem to focus on very different aspects
of human learning and do not seem to have much in common.

Thus the question arises, whether there are any similarities in these models at
all and whether there are aspects of learning both models capture. This requires
a comparison of both models concerning the capabilities of the corresponding
learners. In particular, one central question in this context is whether Gold-style
(limit) learners can be replaced by equally powerful (one-shot) query learners.
The rather trivial examples of classes not learnable with superset or disjointness
queries already show that quite general hypothesis spaces—such as in learning
with extra queries—are an important demand, if such a replacement shall be
successful. In other words, we demand a more potent teacher, able to answer more
general questions than in Angluin’s original model. Astonishingly, this demand is
already sufficient to coincide with the capabilities of conservative limit learners:
in [11] it is shown that the collection of indexable classes learnable with extra
superset queries coincides with ConsvTxt rec. And, moreover, this also holds for
the collection of indexable classes learnable with extra disjointness queries.

Theorem 3. rSupQ rec = rDisQ rec = ConsvTxt rec.



Proof. rSupQ rec = ConsvTxt rec holds by [11]. Thus it remains to prove that
rSupQ rec = rDisQ rec. For that purpose let C be any indexable class.

First assume C ∈ rDisQ rec. Then there is a uniformly recursive family (Li)i∈N
and a query learner M , such that M learns C with extra disjointness queries with
respect to (Li)i∈N. Now define L′2i = Li and L′2i+1 = Li for all i ∈ N.

Suppose L is a target language. A query learner M ′ identifying L with extra
superset queries respecting (L′i)i∈N is defined via the following instructions:

- Simulate M when learning L.
- If M poses a disjointness query concerning Li, then pose a superset query

concerning L′2i+1 to your teacher. If the answer is ‘yes’, then transmit the
answer ‘yes’ to M . If the answer is ‘no’, then transmit the answer ‘no’ to M .
(* Note that Li ∩ L = ∅ iff L ⊆ Li iff L′2i+1 ⊇ L. *)

- If M hypothesizes Li, then output a representation for L′2i.
It is not hard to verify that M ′ learns C with extra superset queries with

respect to (L′i)i∈N. Hence C ∈ rSupQ rec. This implies rDisQ rec ⊆ rSupQ rec.
The opposite inclusion rSupQ rec ⊆ rDisQ rec is verified analogously. �

As initially in Gold-style learning, we have only considered uniformly recur-
sive families as hypothesis spaces for query learners. Similarly to the notion of
BcTxt r.e., it is conceivable to permit more general hypothesis spaces also in the
query model, i. e., to demand an even more potent teacher. Thus, by rSupQ r.e.

(rDisQ r.e.) we denote the collection of all indexable classes which are learnable
with superset (disjointness) queries respecting a uniformly r. e. family. Interest-
ingly, this relaxation helps to characterize learning in the limit in terms of query
learning.

Theorem 4. rDisQ r.e. = LimTxt rec.

Proof. First we show rDisQ r.e. ⊆ LimTxt rec. For that purpose, let C ∈ rDisQ r.e.

be an indexable class. Fix a uniformly r. e. family (Ui)i∈N and a query learner
M identifying C with disjointness queries with respect to (Ui)i∈N.

The following IIM M ′ LimTxt-identifies C with respect to (Ui)i∈N. Given a
text segment σ of length n, M ′ interacts with M simulating a learning process
for n steps. In step k, k ≤ n, depending on how M ′ has replied to the previous
queries posed by M , the learner M computes either (i) a new query i or (ii) a
hypothesis i. In case (ii), M ′ returns the hypothesis i and stops simulating M .
In case (i), M ′ checks whether there is a word in σ, which is found in Ui within
n steps. If such a word exists, M ′ transmits the answer ‘no’ to M ; else M ′

transmits the answer ‘yes’ to M . If k < n, M executes step k + 1, else M ′

returns any auxiliary hypothesis and stops simulating M . Given segments σ of
a text for some target language, if their length n is large enough, M ′ answers
all queries of M correctly and M returns its sole hypothesis within n steps. So,
the hypotheses returned by M ′ stabilize on this correct guess.

Hence C ∈ LimTxt r.e.(= LimTxt rec) and therefore rDisQ r.e. ⊆ LimTxt rec.
Second we show that LimTxt rec ⊆ rDisQ r.e.. So let C ∈ LimTxt rec be an

indexable class. Fix an indexing H = (Li)i∈N of C and an IIM M , such that M
LimTxt-identifies C with respect to H.



Let (Ui)i∈N be any Gödel numbering of all r. e. languages and (wx)x∈N an
effective enumeration of Σ∗. Suppose L ∈ C is the target language. An rDisQ-
learner M ′ for L with respect to (Ui)i∈N is defined to act on the following instruc-
tions, starting in step 0. Note that Gödel numbers (representations in (Ui)i∈N)
can be computed for all queries to be asked. Step n reads as follows:

- Ask disjointness queries for {w0}, . . . ,{wn}. Let L[n] be the set of words wx,
x ≤ n, for which the corresponding query is answered with ‘no’. (* Note that
L[n] = L ∩ {wx | x ≤ n}. *)

- Let (σnx )x∈N be an effective enumeration of all finite text segments for L[n].
For all x, y ≤ n pose a disjointness query for LM(σy

x) and thus build Candn =
{σyx | x, y ≤ n and LM(σy

x) ∩ L = ∅} from the queries answered with ‘yes’.
(* Note that Candn = {σyx | x, y ≤ n and L ⊆ LM(σy

x)}. *)
- For all σ ∈ Candn, pose a disjointness query for the language

U ′σ =

{
Σ∗ , if M(σσ′) 6= M(σ) for some text segment σ′ of LM(σ) ,

∅ , otherwise .

(* Note that U ′σ is uniformly r. e. in σ and U ′σ∩L = ∅ iff σ is a LimTxt-locking
sequence for M and LM(σ). *)
If all these disjointness queries are answered with ‘no’, then go to step n+ 1.
Otherwise, if σ ∈ Candn is minimal fulfilling U ′σ ∩ L = ∅, then return a
hypothesis representing LM(σ) and stop.

M ′ identifies L with disjointness queries respecting (Ui)i∈N, because (i) M ′ even-
tually returns a hypothesis and (ii) this hypothesis is correct for L. To prove (i),
note that M is a LimTxt-learner for L respecting (Li)i∈N. So there are i, x, y
such that M(σyx) = i, Li = L, and σyx is a LimTxt-locking sequence for M and L.
Then U ′

σy
x

= ∅ and the corresponding disjointness query is answered with ‘yes’.
Thus M ′ returns a hypothesis. To prove (ii), assume M ′ returns a hypothesis
representing LM(σ) for some text segment σ of L. Then, by definition of M ′,
L ⊆ LM(σ) and σ is a LimTxt-locking sequence for M and LM(σ). In particular,
σ is a LimTxt-locking sequence for M and L. Since M learns L in the limit from
text, this implies L = LM(σ). Hence the hypothesis M ′ returns is correct for L.

Therefore C ∈ rDisQ r.e. and LimTxt rec ⊆ rDisQ r.e.. �

Reducing the constraints concerning the hypothesis spaces even more, let
rSupQ2-r.e. (rDisQ2-r.e.) denote the collection of all indexable classes which are
learnable using superset (disjointness) queries with respect to a uniformly 2-r. e.
family.5 This finally allows for a characterization of the classes in BcTxt r.e..

Theorem 5. rSupQ2-r.e. = rDisQ2-r.e. = BcTxt r.e..

Proof. First we show rSupQ2-r.e. ⊆ BcTxt r.e. and rDisQ2-r.e. ⊆ BcTxt r.e.. For
that purpose, let C ∈ rSupQ2-r.e. (C ∈ rDisQ2-r.e.) be an indexable class, (Li)i∈N
an indexing of C. Fix a uniformly 2-r. e. family (Vi)i∈N and a query learner M
identifying C with superset (disjointness) queries respecting (Vi)i∈N.
5 With analogous definitions for Gold-style learning one easily obtains LimTxt2-r.e. =

LimTxtr.e. = LimTxtrec and BcTxt2-r.e. = BcTxtr.e..



To obtain a contradiction, assume that C /∈ BcTxt r.e.. By Theorem 1, (Li)i∈N
does not possess a telltale family. In other words, there is some i ∈ N, such that
for any finite set W ⊆ Li there exists some j ∈ N satisfying W ⊆ Lj ⊂ Li. (∗)

Consider M when learning Li. In the corresponding learning scenario S
– M poses queries representing Vi−1 , . . . , Vi−k , Vi+1 , . . . , Vi+m (in some order);
– the answers are ‘no’ for Vi−1 , . . . , Vi−k and ‘yes’ for Vi+1 , . . . , Vi+m ;
– afterwards M returns a hypothesis representing Li.

That means, for all z ∈ {1, . . . , k}, we have Vi−z 6⊇ Li (Vi−z ∩ Li 6= ∅). In
particular, for all z ∈ {1, . . . , k}, there is a word wz ∈ Li\Vi−z (wz ∈ Vi−z ∩Li). Let
W = {w1, . . . , wk}(⊆ Li). By (∗) there is some j ∈ N satisfying W ⊆ Lj ⊂ Li.

Now note that the above scenario S is also feasible for Lj : wz ∈ Lj implies
Vi−z 6⊇ Lj (Vi−z ∩ Lj 6= ∅) for all z ∈ {1, . . . , k}. Vi+z ⊇ Li (Vi+z ∩ Li = ∅) implies
Vi+z ⊇ Lj (Vi+z ∩Lj = ∅) for all z ∈ {1, . . . ,m}. Thus all queries in S are answered
truthfully for Lj . Since M hypothesizes Li in the scenario S, and Li 6= Lj , M
fails to identify Lj . This is the desired contradiction.

Hence C ∈ BcTxt r.e., so rSupQ2-r.e. ⊆ BcTxt r.e., rDisQ2-r.e. ⊆ BcTxt r.e..

Second we show that BcTxt r.e. ⊆ rSupQ2-r.e. and BcTxt r.e. ⊆ rDisQ2-r.e.. So
let C ∈ BcTxt r.e. be an indexable class. Fix a uniformly r. e. family (Ui)i∈N and
an IIM M , such that M BcTxt r.e.-identifies C with respect to (Ui)i∈N.

Let (Vi)i∈N be a uniformly 2-r. e. family such that indices can be computed
for all queries to be asked below. Let (wx)x∈N an effective enumeration of Σ∗.

Assume L ∈ C is the target language. A query learner M ′ identifying L
with superset (disjointness) queries respecting (Vi)i∈N is defined according to
the following instructions, starting in step 0. Step n reads as follows:

- Ask superset queries for Σ∗\{wi} (disjointness queries for {wi}) for all i ≤ n.
Let L[n] be the set of words wx, x ≤ n, for which the corresponding query is
answered with ‘no’. (* Note that L[n] = L ∩ {wx | x ≤ n}. *)

- Let (σnx )x∈N be an effective enumeration of all finite text segments for L[n].
For all x, y ≤ n pose a superset query for UM(σy

x) (a disjointness query for
UM(σy

x)) and thus build Candn = {σyx | x, y ≤ n and UM(σy
x) ⊇ L} = {σyx |

x, y ≤ n and UM(σy
x) ∩ L = ∅} from the queries answered with ‘yes’.

- For all σ ∈ Candn, pose a superset (disjointness) query for the language

V ′σ =

{
Σ∗ , if UM(σ) 6= UM(σσ′) for some text segment σ′ of UM(σ) ,

∅ , otherwise .

(* Note that V ′σ is uniformly 2-r. e. in σ and V ′σ 6⊇ L iff V ′σ ∩ L = ∅ iff σ is a
BcTxt-locking sequence for M and UM(σ). *)
If all these superset queries are answered with ‘yes’ (all these disjointness
queries are answered with ‘no’), then go to step n+1. Otherwise, if σ ∈ Candn
is minimal fulfilling V ′σ 6⊇ L and thus V ′σ ∩ L = ∅, then return a hypothesis
representing UM(σ) and stop.

M ′ learns L with superset (disjointness) queries in (Vi)i∈N, because (i) M ′ even-
tually returns a hypothesis and (ii) this hypothesis is correct for L. To prove (i),
note that M is a BcTxt-learner for L in (Ui)i∈N. So there are x, y such that



UM(σy
x) = L and σyx is a BcTxt-locking sequence for M , L, and (Ui)i∈N. Then

V ′
σy

x
= ∅ and the corresponding superset query is answered with ‘no’ (the dis-

jointness query with ‘yes’). Thus M ′ returns a hypothesis. To prove (ii), suppose
M ′ returns a hypothesis representing UM(σ) for a text segment σ of L. Then, by
definition of M ′, σ is a BcTxt-locking sequence for M , UM(σ), and (Ui)i∈N. In
particular, σ is a BcTxt-locking sequence for M , L, and (Ui)i∈N. As M BcTxt-
learns L, this implies L = UM(σ) and the hypothesis of M ′ is correct for L.

Therefore C ∈ rSupQ2-r.e. ∩ rDisQ2-r.e., and thus BcTxt r.e. ⊆ rSupQ2-r.e. and
BcTxt r.e. ⊆ rDisQ2-r.e.. �

3.2 Characterizations in the model of learning with oracles—a
comparison

In our characterizations we have seen that the capability of query learners
strongly depends on the hypothesis space and thus on the demands concern-
ing the abilities of the teacher. Of course a teacher might have to be more
potent to answer questions with respect to some uniformly r. e. family than
to work in some uniformly recursive family. For instance, teachers of the first
kind might have to be able to solve the halting problem with respect to some
Gödel numbering. In other words, the learner might use such a teacher as an
oracle for the halting problem. The problem we consider in the following is to
specify nonrecursive sets A ⊆ N such that A-recursive6 query learners using
uniformly recursive families as hypothesis spaces are as powerful as recursive
learners using uniformly r. e. or uniformly 2-r. e. families. For instance, we know
that rDisQ rec ⊂ rDisQ r.e. = LimTxt rec. So we would like to specify a set A, such
that LimTxt rec equals the collection of all indexable classes which can be iden-
tified with A-recursive rDisQ rec-learners. The latter collection will be denoted
by rDisQ rec[A]. Subsequently, similar notions are used correspondingly.

In the Gold-style model, the use of oracles has been analysed for example
in [13]. Most of the claims below use K-recursive or Tot-recursive learners, where
K = {i | ϕi(i) is defined} and Tot = {i | ϕi is a total function}. Concerning
coincidences in Gold-style learning, the use of oracles is illustrated by Lemma 1.

Lemma 1. 1. [13] ConsvTxt rec[K] = LimTxt rec.
2. ConsvTxt rec[Tot ] = LimTxt rec[K] = BcTxt r.e..
3. BcTxt r.e.[A] = BcTxt r.e. for all A ⊆ N.

Proof. ad 3. Let A ⊆ N. By definition BcTxt r.e. ⊆ BcTxt r.e.[A]. Thus it remains
to prove the opposite inclusion, namely BcTxt r.e.[A] ⊆ BcTxt r.e.. For that pur-
pose let C ∈ BcTxt r.e.[A] be an indexable class. Fix an A-recursive IIM M such
that C is BcTxt r.e.-learned by M . Moreover, let (Li)i∈N be an indexing of C.

Striving for a contradiction, assume C /∈ BcTxt r.e.. By Theorem 1, (Li)i∈N
does not possess a telltale family. In other words, there is some i ∈ N, such that
for any finite set W ⊆ Li there exists some j ∈ N satisfying W ⊆ Lj ⊂ Li.
6 A-recursive means recursive with the help of an oracle for the set A.



Since M is a BcTxt-learner for Li in some hypothesis space H, there must
be a BcTxt-locking sequence σ for M , Li, and H. If W denotes the set of words
occurring in σ, there is some language Lj ∈ C with W ⊆ Lj ⊂ Li. Thus σ is a
BcTxt-locking sequence for M , Lj , and H. In particular, M fails to BcTxt r.e.-
identify Lj . This yields the contradiction. Hence BcTxt r.e.[A] = BcTxt r.e..

ad 2. The proofs of ConsvTxt rec[Tot ] ⊆ BcTxt r.e., LimTxt rec[K] ⊆ BcTxt r.e.

are obtained by similar means as the proof of 3. It suffices to use Theorem 1 for
ConsvTxt rec and LimTxt rec instead of the accordant statement for BcTxt r.e..
Note that LimTxt rec[K] = BcTxt r.e. is already verified in [4].

Next we prove BcTxt r.e. ⊆ ConsvTxt rec[Tot ] and BcTxt r.e. ⊆ LimTxt rec[K].
For that purpose, let C be an indexable class in BcTxt r.e.. By Theorem 1 there
is an indexing (Li)i∈N of C which possesses a family of telltales. Next we show:

(i) (Li)i∈N possesses a Tot-recursively generable (uniformly K-r. e.) family
of telltales.

(ii) A ConsvTxt rec-learner (LimTxt rec-learner) for C can be computed from
any recursively generable (uniformly r. e.) family of telltales for (Li)i∈N.

To prove (i), Let (wx)x∈N be an effective enumeration of all words in Σ∗.
Given i ∈ N, let a function fi enumerate a set Ti as follows.

- fi(0) = wz for z = min{x | wx ∈ Li}.
- If fi(0), . . . , fi(n) are computed, then test whether or not there is some j ∈ N

(some j ≤ n), such that {fi(0), . . . , fi(n)} ⊆ Lj ⊂ Li. (* Note that this test
is Tot-recursive (K-recursive). *)

- If such a number j exists, then fi(n + 1) = wz for z = min{x | wx ∈
Li \ {fi(0), . . . , fi(n)}}. If no such number j exists, then fi(n+ 1) = fi(n).

With Ti = {fi(x) | x ∈ N}, it is not hard to verify that (Ti)i∈N is a Tot-recur-
sively generable (uniformly K-r. e.) family of telltales for (Li)i∈N. Here note that,
in the case of using a Tot-oracle, Ti = {fi(x) | fi(y + 1) 6= fi(y) for all y < x}.

Finally, (ii) holds since Theorem 1.1/1.2 has a constructive proof, see [1, 10].
Claims (i) and (ii) imply C ∈ ConsvTxt rec[Tot ] and C ∈ LimTxt rec[K]. So

BcTxt r.e. ⊆ ConsvTxt rec[Tot ] and BcTxt r.e. ⊆ LimTxt rec[K]. �

Since this proof is constructive as are the proofs of our characterizations
above, we can deduce results like for example rDisQ rec[K] = LimTxt rec: Given
C ∈ LimTxt rec, a K-recursive conservative IIM for C can be constructed from a
LimTxt rec-learner for C. Moreover, a rDisQ rec-learner for C can be constructed
from a conservative IIM for C. Thus, a K-recursive rDisQ rec-learner for C can be
constructed from a LimTxt rec-learner. Similar results are obtained by combining
Lemma 1 with our characterizations above. This proves the following theorem.

Theorem 6. 1. rSupQ rec[K] = rDisQ rec[K] = LimTxt rec.
2. rSupQ rec[Tot ] = rDisQ rec[Tot ] = BcTxt r.e..
3. rSupQ2-r.e.[A] = rDisQ2-r.e.[A] = BcTxt r.e. for all A ⊆ N.

4 Discussion

Our characterizations have revealed a correspondence between Gold-style learn-
ing and learning via queries—between limiting and one-shot learning processes.



Crucial in this context is that the learner may ask the “appropriate” queries.
Thus the choice of hypothesis spaces and, correspondingly, the ability of the
teacher is decisive. If the teacher is potent enough to answer disjointness queries
in some uniformly r. e. family of languages, then, by Theorem 4, learning with
disjointness queries coincides with learning in the limit. Interestingly, given uni-
formly recursive or uniformly 2-r. e. families as hypothesis spaces, disjointness
and superset queries coincide respecting the learning capabilities. As it turns
out, this coincidence is not valid, if the hypothesis space may be any uniformly
r. e. family. That means, rDisQ r.e. (and LimTxt rec) is not equal to the collection
of all indexable classes learnable with superset queries in uniformly r. e. families.

Theorem 7. LimTxt rec ⊂ rSupQ r.e..

Proof. To verify LimTxt rec ⊆ rSupQ r.e., the proof of LimTxt rec ⊆ rDisQ r.e. can
be adapted. It remains to quote a class in rSupQ r.e. \ LimTxt rec.

Let, for all k, n ∈ N, Clim contain the languages Lk = {akbz | z ≥ 0} and

Lk,n =


{akbz | z ≤ m} , if m ≤ n is minimal such

that ϕk(m) is undefined ,
{akbz | z ≤ n} ∪ {bn+1ay+1} , if ϕk(x) is defined for all x ≤ n

and y = max{Φk(x) | x ≤ n} .
Clim is an indexable class; the proof is omitted due to the space constraints.
To show Clim ∈ rSupQ r.e., let (Ui)i∈N be a Gödel numbering of all r. e. lan-

guages. Assume L ∈ C is the target language. A learner M identifying L with
superset queries respecting (Ui)i∈N is defined to act on the following instructions:

- For k = 0, 1, 2, . . . ask a superset query concerning Lk ∪ {bras | r, s ∈ N},
until the answer ‘yes’ is received for the first time.

- Pose a superset query concerning the language Lk.
If the answer is ‘no’, then, for r, s = 0, 1, 2, . . . ask a superset query concerning
Lk ∪ {br+1as+1}, until the answer ‘yes’ is received for the first time. Output
a hypothesis representing Lk,r and stop.
If the answer is ‘yes’, then pose a superset query for the language

U ′k =

{
{akbz | z ≤ n} , if n is minimal, such that ϕk(n) is undefined ,
{akbz | z ≥ 0} , if ϕk is a total function .

(* Note that U ′k is uniformly r. e. in k. U ′k is a superset of L iff U ′k = L. *)
If the answer is ‘yes’, then return a hypothesis representing U ′k and stop.
If the answer is ‘no’, then return a hypothesis representing Lk and stop.

The details proving that M rSupQ-identifies Clim respecting (Ui)i∈N are omitted.
Finally, Clim /∈ LimTxt rec holds, since otherwise Tot would be K-recursive.

To verify this, assume M is an IIM learning Clim in the limit from text. Let
k ≥ 0. To decide whether or not ϕk is a total function, proceed as follows:

Let σ be a LimTxt-locking sequence for M and Lk. (* Note that σ exists
by assumption and thus can be found by a K-recursive procedure. *) If there
is some x ≤ max{z | akbz occurs in σ}, such that ϕk(x) is undefined (* also a
K-recursive test *), then return ‘0’. Otherwise return ‘1’.



It remains to show that ϕk is total, if this procedure returns ‘1’. So let the
procedure return ‘1’. Assume ϕk is not total and n is minimal, such that ϕk(n)
is undefined. By definition, the language L = {akbz | z ≤ n} belongs to Clim.
Then the sequence σ found in the procedure is also a text segment for L and
by choice—since L ⊂ Lk—a LimTxt-locking sequence for M and L. As M(σ) is
correct for Lk, M fails to identify L. This is a contradiction; hence ϕk is total.

Thus the set Tot is K-recursive—a contradiction. So Clim /∈ LimTxt rec. �

Since rSupQ r.e. ⊆ rSupQ2-r.e., one easily obtains rSupQ r.e. ⊆ BcTxt r.e..
Whether or not these two collections are equal, remains an open question. Still
it is possible to prove that any indexable class containing just infinite languages
is in rSupQ r.e. iff it is in BcTxt r.e.. We omit the proof. In contrast to that there
are classes of only infinite languages in BcTxt r.e. \ LimTxt rec.

Moreover, note that the indexable class Clim defined in the proof of Theorem 7
belongs to BcTxt r.e. \LimTxt rec. Up to now, the literature has not offered many
such classes. The first example can be found in [1], but its definition is quite
involved and uses a diagonalisation. In contrast to that, Clim is defined com-
pactly and explicitly without a diagonal construction and is—to the authors’
knowledge—the first such class known in BcTxt r.e. \ LimTxt rec.

References

1. D. Angluin. Inductive inference of formal languages from positive data. Inform.
Control, 45:117–135, 1980.

2. D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
3. D. Angluin. Queries revisited. Theoret. Comput. Sci., 313:175–194, 2004.
4. G. Baliga, J. Case, S. Jain. The synthesis of language learners. Inform. Comput.,

152:16–43, 1999.
5. M. Blum. A machine-independent theory of the complexity of recursive functions.

J. ACM, 14:322–336, 1967.
6. L. Blum, M. Blum. Toward a mathematical theory of inductive inference. Inform.

Control, 28:125–155, 1975.
7. J. Case, C. Lynes. Machine inductive inference and language identification. In:

Proc. ICALP 1982, LNCS 140, 107–115, Springer, 1982.
8. E. M. Gold. Language identification in the limit. Inform. Control, 10:447–474, 1967.
9. J. E. Hopcroft, J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Publishing Company, 1979.
10. S. Lange, T. Zeugmann. Language learning in dependence on the space of hy-

potheses. In: Proc. COLT 1993, 127–136, ACM Press, 1993.
11. S. Lange, S. Zilles. On the learnability of erasing pattern languages in the query

model. In: Proc. ALT 2003, LNAI 2842, 129–143, Springer, 2003.
12. H. Rogers, Jr. Theory of Recursive Functions and Effective Computability, MIT

Press, 1987.
13. F. Stephan. Degrees of Computing and Learning. Habilitationsschrift, Ruprecht-

Karls-Universität, Heidelberg, 1999.
14. T. Zeugmann, S. Lange. A guided tour across the boundaries of learning recursive

languages. In: Algorithmic Learning for Knowledge-Based Systems, LNAI 961,
190–258, Springer, 1995.


