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Abstract

A natural approach towards powerful machine learning systie to enable options for additional
machine/user interactions, for instance by allowing thetesy to ask queries about the concept to be
learned. This motivates the development and analysis afuade formal learning models.

In the present paper, we investigate two different typesuefylearning models in the context of
learning indexable classes of recursive languages: Amglariginal model and a relaxation thereof,
called learning with extra queries. In the original modd tbarner is restricted to query languages
belonging to the target class, while in the new model it isvedld to query other languages, too.
As usual, the following standard types of queries are camnsit superset, subset, equivalence, and
membership queries.

The learning capabilities of the resulting query learningdels are compared to one another and
to different versions of Gold-style language learning fronly positive data and from positive and
negative data (including finite learning, conservativetiafice, and learning in the limit). A complete
picture of the relation of all these models has been elabdraf couple of interesting differences
and similarities between query learning and Gold-stylenieg have been observed. In particular,
query learning with extra superset queries coincides witiservative inference from only positive
data. This result documents the naturalness of the new oqoedg!.

1 Introduction

In machine learning, the quite natural approach of learbyasking questions’ was first modeled and
investigated by Angluin [2]. An example for its use in maehiearning systems is Shapiro’s Algorithmic
Debugging System, cf. [10]. Since Angluin’s pioneering @aj2], the query learning model has been
receiving a lot of attention (see [3] for a quite recent ovam).

Angluin’s [2] model deals with ‘one-shot’ learning. Herelearning algorithm (henceforth called
guery learner) receives information about a target conbgsking queries which will be truthfully
answered by an oracle. After at most finitely many queriesldarner is required to stop this process and
to output its one and only hypothesis. The learning processnsidered successful, if this hypothesis
correctly describes the target concept.

Angluin’s work and ensuing work in this area mainly addréssdspect of efficiency of query learn-
ing, measured in terms of the number of queries maximallgeedo satisfy the learning goal, see [3]
and the references therein. Thus several interesting polial-time query learners for different concept
classes have been designed. In particular, this has relvelalge relations between query learning and
PAC-learning, see [11, 2].



In the present paper, we study the pros and cons of Anglihtgery learning model in the context
of learning indexable classes of recursive languages Xatule classes, for short). The learnability of
indexable classes has been intensively studied withiargifft formal frameworks (see [12] for a survey).
This is motivated by the fact that many interesting and ratclasses, including regular, context free,
context sensitive, and pattern languages, constitutexaide classes.

We investigate learning of indexable classes with supessdiset, equivalence, and membership
gueries, comparing the learning capabilities of the resylquery learners to one another. In contrast
to former studies, we neglect complexity issues. Regarfiniig classes of concepts, apparently, every
class can be learned with the usual types of queries. Thise isnmger valid, if infinite classes form
the learning task. For illustration, membership queriemdbsuffice to learn the class of all extended
pattern languages, see [8]. This motivates a detailed sisady the power and the limitations of the
guery learning models.

Moreover, the resulting query learning models are comptretbdels of Gold-style language learn-
ing such as finite learning, conservative inference, ancdhieg in the limit from only positive data as
well as from positive and negative data. In Gold-style leagnthe learner may change its recent hy-
pothesis when more information is provided, but it recemely ‘local’ information about the object to
be learned. In contrast, in the query model the learnerveseather ‘global’ information and can affect
the sample of information it receives, but it may never revis hypothesis. So a comparison between
guery inference and Gold-style learning may help to explagnrelevance of these different features of
learning. Again, for this purpose it is useful to neglectadincy issues in query learning.

A complete picture displaying the relations between altdssed versions of query learning and
Gold-style learning is obtained. For example, our analgs®wvs that any query learner using superset
gueries can be simulated by a Gold-style learner receivirhg ositive data. In contrast to that, there
are classes learnable using subset queries, but not Gdédestirnable from positive data only. This can
be traced back to a duality of superset and subset quereselgvance of positive data for simulating a
superset query learner matches the relevance of negatwéodaimulating a subset query learner.

From a theoretical point of view, Angluin’s [2] query leangimodel has the drawback that learnable
classes may possess non-learnable subclasses. Moremzrple of quite simple indexable classes
are not learnable with superset or subset queries. Thewadusereakness is often caused by the fact
that the learners are constrained to query exclusivelyuaggs belonging to the target class. In many
cases, the learners are simply not allowed to make the ‘apjpte’ queries. In the present paper, we
therefore modify Angluin’s [2] original model by relaxin@is constraint and introduce a new model,

called learning with extra queries. We analyze the learpiogrer of the resulting query learners by



comparing them to the capabilities of query learners in thgiral model and to Gold-style language
learners. As it turns out, an indexable class is learnabigextra superset queries if and only if there
is a conservative Gold-style language learner that idestthis class from only positive examples. To a

certain extent, this result proves the naturalness of themnedel of query inference.

2 Notions and Notations

Familiarity with standard mathematical and recursion thBo notions and notations as well as with
basic language theoretic concepts is assumed, cf. [9, 5].

From now on, a fixed finite alphab&twith {a,b} C ¥ is assumed. BY* we denote the set of all
words overy and any subsdat C ¥ is called danguage ThecomplemenL of a languagd. is the set
¥*\ L. If C is a class of languages, then we denot&lipe class{L | L € C} of all complements of
languages it.

Let C be a class of recursive languages o¥¢r C is said to be anndexable classif there is an
effective enumeratiofiL;);cy of all and only the languages i such that membership is uniformly
decidable, i. e., there is a computable function that, fgr@anc >* andi € N, returnsl, if w € L;,
and0, otherwise. Such an enumeration will subsequently becatalendexingof C.

In the query learning model, a learner has access to an dratiéruthfully answers queries of a
specified kind. Aquery learner) is an algorithmic device that, depending on the reply on tegipus
queries, either computes a new query or returns a hypotaedisalts. Its queries and hypotheses are
coded as natural numbers; both will be interpreted withees an underlyingypothesis spac&Vhen
learning an indexable clags any indexingH = (L;);en Of C may form a hypothesis space, such that
M, when learnind’, is only allowed to query languages belonging’isee [2].

More formally, letC be an indexable class, léte C, let H = (L;);en be an indexing o€, and let
M be a query learneit! learns L with respect tdH using some type of queridst eventually halts and
its only hypothesis, say correctly describeg, i.e., L; = L. SoM returns its unique and correct guess
1 after only finitely many queries. MoreoveY/ learnsC with respect tdH using some type of queries

if it learns everyL’ € C with respect tdH using queries of the specified type. Below we consider:

Membership queriesThe input is a stringv and the answer is ‘yes’ or ‘no’, depending on whether or
notw belongs to the target language

Equivalence queriesThe input is an indeX of some languagé’ € C. If L = L/, the answer is ‘yes’.
Otherwise, together with the answer ‘no’ a counterexampolf L' \ L) U (L \ L’) is supplied.

Superset queriesThe input is an indey of some languagé’ € C. If L C L/, the answer is ‘yes’.

Otherwise, together with the answer ‘no’ a counterexamplmf \ L’ is supplied.
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Subset queriesThe input is an index of some languagé’ € C. If L' C L, the answer is ‘yes’.

Otherwise, together with the answer ‘no’ a counterexamolnfZ.’ \ L is supplied.

Equivalence, superset, and subset queries are also stn@diesktricted formfor which the answer ‘no’
is no longer supplemented by a counterexample.

MemQ EquQ SupQ andSubQdenote the collections of all indexable clas§efr which there are a
query learnenV/’ and a hypothesis spa¢# such that\/’ learnsC’ with respect td+’ using membership,
equivalence, superset, and subset queries, respectifehe learner uses only the restricted form of
gueries, this is indicated by the prefre$ connected tdequQ SupQ or SubQ Note that, by definition,
resEquQC EquQ resSupQC SupQ andresSubQC SubQ

Moreover, it will be helpful to notice the following simpléeervation stating that superset and subset
gueries yield dual learning models.

Proposition 1 LetC be an indexable class.
(@) C € SupQiffC € SubQ (b € resSupQ iff € resSubQ

Comparing query learning with the standard models in Gottedanguage learning requires some
more notions explained in brief below, see also [4, 1, 12} L&e a language. Any infinite sequence
t = (w;)ieny With {w; | i € N} = L is called atextfor L. Then, for anyn € N, ¢,, denotes the initial
segmentwy, . . ., w,) andcontentt,, ) denotes the sé&twy, . .., w, }. Any infinite sequencéw;, b;));en
with b; € {+, =}, {w; | b; = +} = L, and{w; | b; = —} = L is said to be amformantfor L.

Let C be an indexable clas${ = (L;);cn @ hypothesis space (i. e., an indexing possibly comprising
a proper superclass @), andL € C. An inductive inference machin®@M) is an algorithmic device,
that reads longer and longer initial segmemtsf a text (informant) and outputs numbeys(o) as its
hypotheses. As above, an IIM returning some is construed to hypothesize the langudgeGiven a
text (an informant} for L, M identifiesL from¢ with respect tdH, if the sequence of hypotheses output
by M, when fedt, stabilizes on a numbéir(i. e., past some point/ always outputs the hypothesis
with L; = L. M identifiesC from text (informantwith respect tdgH, if it identifies everyL’ € C from
every corresponding text (informant). As abokenTxt(LimInf) denotes the collection of all indexable
classe€’’ for which there are an [IM\/" and a hypothesis spa&€¢ such that\/’ identifiesC’ from text
(informant) with respect t@{’. A quite natural and often studied modificationlomTxtis defined by
the model ofconservative inferencel is aconservativdlM for C with respect toH, if M performs
only justified mind changes, i. e., i, on some text for someL € C, outputs hypothesesand later;,
then M must have seen some elemeng L; before returning. The collection of all indexable classes
identifiable from text by a conservative [IM is denoted®ynsvTxt

In contrast to query learners, an IIM is allowed to changenitsd finitely many times before return-
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ing its final and correct hypothesis. In general, it is notidigisle whether or not an IIM has already
output its final hypothesis. In case this is decidable wedalkofinite learning see [4]. Similar to query
learning, finite learning can be understood as a kind of ‘simat* learning, where the first hypothesis
already has to be correct. The corresponding moBigl$xt and Fininf are defined as above. Some
helpful results on Gold-style learning are summarized exfftdtlowing proposition, see [4, 6, 12] for the
details.

Proposition 2 FinTxt C FinInf C ConsvTxtC LimTxt C Liminf.

3 Comparison results

The scope of this paper is to compare the learning capaisitii Angluin’s query learning models to one
another and to the different versions of Gold-style leagrdefined above. First, note that learning with
(restricted) equivalence queries coincides with Gold’sielof limit learning from positive and negative
data, while learning with membership queries equals fimtering from positive and negative data.
Second, the power of superset query learners is ratheelinitecause they will only be successful for
classes that are Gold-style learnable from only positita.da contrast, there are indexable classes not
learnable from only positive data, but learnable with sulgseries. Thus, subset query learners may
exploit the kind of additional information which negativatd normally provide. Still, the potential of
subset query learners is severely limited: there are indexaasses iimTxt, even inFinInf, which

are not learnable using subset queries. In contrast to sewhen learning with equivalence queries
is considered, learners that are allowed to ask superdetdggueries are more powerful than learners
that are constrained to ask restricted superset (subsetlequ The formal details are summarized in
Theorem 3 and Theorem 4.

Theorem 3 (a) FinTxt C resSupQC SupQcC LimTxt C Liminf

(b) FINTxt C resSubQc SubQcC Liminf

Proof. (a)First, FinTxt C resSupQcan be verified using the following fact known from [12]:df
FinTxt, thenL#L’ for all distinct language& andZ’ in C.

Second, we verifyfSupQ\ resSupQ+# (). Consider the clas§,,, containingL, = {a}* and all
languaged.; = ({a}* \ {a,a'}) U{b* | z > i}, i > 1. To learnC,s,,, @ query learnei/ starts with a
guery corresponding ta,. If the answer is ‘yes’ M knows that the target language equajs If the
answer is ‘no’, an element frorh,, sayb?, z > 1, is supplied as a counterexample. Sihtet L, for
all i« > z, M can easily identify the target language by posing querieesponding td_,, Lo, ..., L..

To see that’,,, ¢ resSupQsuppose there is a superset query leatdéfor C,,,. Consider)/’ when

These results are somehow folklore and will not be provea.her



learningL,. If M’ queriesL,, provide the answer ‘yes’. In all other cases provide thevansno’. Let
z be the maximal index of a languagdé&’ queries before returning its sole hypothesis. Since theenss
provided are consistent with the two distinct languagesnd L., M’ fails for at least one of them.
S0C,syp ¢ resSupand henc&SupQ\ resSupQ# ().

Third, LimTxt\ SupQ+# 0 follows via Theorem 4(e) anininf C LimTxt To verify SupQC LimTxt,
let C € SupQand M a query learner identifying with respect to an indexingl;);cn. The following
IIM M’ LimTxtidentifiesC. Given a text segment of lengthn, M’ interacts withA/ simulating a
learning process fot steps. In step, £ < n, depending on how/’ has replied to the previous queries
posed byM, the learnerd computes either (i) a new quetyor (ii) a hypothesis. In case (ii), M’
returns the hypothesisand stops simulating/. In case (i),M’ checks whether there is a word in
contento) \ L,. If such a word exists)/’ replies ‘no’ using one such word as a counterexample; else
M’ replies ‘'yes'. Ifk < n, M executes step + 1, elseM’ returns any auxiliary hypothesis and stops
simulating)M . Given segments of a text for some target language, if their lengtts large enough)/’
answers all queries df/ correctly andM returns its sole hypothesis withinsteps. So, the hypotheses
returned by)’ stabilize on this correct guess.

(b) First, FinTxt C resSubQholds, since.# L’ for all distinct languageé andZ’ in anyC € FinTxt

The remaining assertions follow frofa) and Proposition 1. O

Theorem 4 (a) resSupQZ SubQ (b) resSub@ SupQ (c) resSup@ FinInf

(d) resSubQ@Z LimTxt  (e) FinInfZ SupQ  (f) FininfZ SubQ

Proof. For (d) and (f) we provide the separating classes only. Tasschat containgd = {a}* and
L; = L\ {a'} for all i > 1 proves (d). Assertion (f) can be shown using the class ctmgisf all
languageda,a’} U {b,...,b'}, i > 1. Now (b) follows from (d), becausBupQC LimTxt Moreover,
(a) is obtained from (b) via Proposition 1. Assertions (c)l &) follow from (d) and (f), respectively,
via Proposition 1, taking into account théhinf C LimTxtand that an indexable claggs in FinInf iff

Cisin FiniInf. O

4 Learning with extra queries

Angluin’s [2] query learning model has one drawback: lebtealasses may possess non-learnable
subclasses. For instaneg,,,, can be identified using superset queries, while its subflags= Cysup \
{{a}*} cannot. This drawback is a direct consequence of Angluisssimption that the learner may
only ask queries referring to languages in the target classhe clasg’;,,, illustrates, this assumption

may bar the learner from asking the ‘appropriate’ queries PBoposition 1, an analogous result holds

for learning with subset queries.



To overcome these difficulties, we introduce a modified wersif Angluin’s [2] model. LeC be an
indexable class. Aextra query learnefor C is permitted to query languages in any index{ig);cy
of a superclas€’ of C. We say that is learnable using extra superset (subset) queries wigece$o
(L));en iff there is an extra query learndéd learningC with respect tq L});cn USing superset (subset)
queries concerning’. ThenxSupQ(xSubQ denotes the collection of all indexable clas§dsarnable
with extra superset (subset) queries; the notioasSup@ndxresSubCare defined analogously.

The above discussion immediately yields the following hesu
Theorem 5 (a) SupQcC xSupQ  (b) Sub@ xSubQ

In contrast to the original model, learning with supersedrggs and learning with restricted superset
gueries now coincide (analogously for subset queries).
Theorem 6 (a) xresSup@ xSupQ  (b) xresSub& xSubQ
Proof. (a) Obviously, it suffices to verifixSupQ C xresSupQ So letC € xSupQand letM be a
corresponding query learner. In order to learn some tasgejuagel, the requiredkresSup@earner
M’ usesM as a subroutine. In the long rui/’ is supposed to adopt/’s hypothesis. For this purpose,
M’ asks the same queries &6 does and hands over the obtained replied/to In order to make\/
work, M’ has to find supplementing counterexamples in case a supgiesgt of M/, referring to some
L', receives the reply ‘no’. But this is easily don&’ simply asks, for all elements € L/, a superset
query corresponding to the language\ {w}, until it receives the reply ‘no’. If this happens/’ has
found the counterexample needed, sitice, {w} 2 Liff w € L.

(b) Using (a) and an adaptation of Proposition 1 for learnindhweitra queries yields the desired

proof. O

Although the learning power of query learners increasels thi¢ permission to ask extra queries, the
learners are not always able to identify also the extra laggs they query.
Theorem 7 (a) There is somé € xSupQ such that’ ¢ SupQ for all superclasse3 of C.
(b) There is somé € xSubQ such that’ ¢ SubQ for all superclasse of C.
Proof. (a)Let C,..,, be the class consisting & and all finite subsets at* \ {a}.

First, to verifyC,,,, € xSupQ choose an indexing &* \ {a} and all languages i,,,,. A learner
M for C,s,, may initially make a query foE* \ {a}. If the answer is ‘no’, then the target languabe
must beX*. If the answer is ‘'yes’M can determind. by (i) asking finite subsets af* \ {a} until some
finite L; O L is found and (ii) asking subsets af until the minimal subset of.; forcing the answer
‘yes’ is known.

Second, no superclass ©f;,, belongs taSupQ Assuming the contrary, suppoSeis a superclass

of C,sup In SupQ Then distinguish two cases.



Case 1.5* \ {a} € C": SinceC’ also contains all finite subsets Bf \ {a}, arguments used already
in [4] imply C" ¢ LimTxtand thu’ ¢ SupQby Theorem 3.

Case 2.3* \ {a} ¢ C": Assume some learne¥! identifiesC’ with superset queries. Consider a
special scenari® of M when learning=*. If M queriesy*, let M get the answer ‘yes’. I\ queries
somel; # ¥*, let M get the answer ‘no’ together with some counterexample: a. Note that some
w; € ¥\ L; with w; # a exists, becausg, # ¥* \ {a}. After finitely many queries// guesse&*.

LetZ,,,...,L;, bethose languages queried in the scenériahich have been answered ‘no’. Let
L ={w;,...,w; } bethe set of the corresponding counterexamples. Noti¢d tisaa finite subset of
¥*\ {a} and hence belongs t§. But, since all queries in the scenaicare answered truthfully with
respect ta_, M fails to learnL. SoC’ ¢ SupQ

(b) This follows from(a), as Proposition 1 holds analogously for learning with egtraries. O

Considering the classé$

sup

andC,,,, in xSupQ\ SupQ it is remarkable that for both classes there
is a successful learner which uses restricted superseiequerd which is additionally allowed to ask
membership queries. So one might suspect that the full dapsbof xSupQlearners can already be
achieved by learners using restricted superset and mehipenseries. But this is not the case. Indeed,
[7] provides a class inSupQwhich is not learnable with superset and membership quekiesadapta-
tion of Proposition 1 for extra query learning implies anlagaus result concerning subset queries.

It remains to compare learning with extra queries to the Gojtke learning types. A method similar
to that used in the proof of Theorem 3 yiekfSupQC LimTxt But interestingly, there is an even stronger
relation between Gold-style language learning from text l@arning with extra superset queries. The
learning capabilities ofonservativedlMs and of extra superset query learners coincide. Note with
Proposition 2 and Theorem 8, theS8upQcC LimTxt
Theorem 8 xSupQ= ConsvTxt

Proof. ‘ConsvTxtC xSupQ Fix C € ConsvTxt Then there is an indexind’;);cxy comprisingC and an
IIM M, such that\/ ConsvTxtidentifiesC with respect td L;),cn. Note that, ifL € C andt is a text for
L, thenM never returns an indexwith L C L; on any initial segment of.

Now the indexable class used for the queries contains alluages in(L;);cy and all languages
¥\ {w} for w € ¥*. An xSupQ learnerM’ identifying any € C may work as follows.)M’ uses
queries concerning languages of the farh\ {w} to construct a text fol, and simulates\/ on the
obtained text segments uniif returns an index of a supersetiof This index is then returned hy/’.

First, to effectively enumerate a textor L, M’ determines the séft of all wordsw € >*, for which
the query representing* \ {w} is answered with ‘no’. Sinc& = L andT is recursively enumerable,

any recursive enumeration @fyields a text forL.



Second, to compute its hypothesid; executes steps 0, 1, 2, ... until it receives a stop signal. In
general, step, n € N, consists of the following instructions:
Determine; := M(t,), wheret is a recursive enumeration of the &t Pose a query referring
to L,;.? If the answer is ‘no’, execute step+ 1. Otherwise hypothesize the languageand stop.

(* In the latter case, a8/ never hypothesizes a proper superset,ai/’ returns an index fof. *)

Further details are omitted.

‘XSupQC ConsvTxt Fix someC € xSupQ Then there is an indexind.; );cx comprisingC and a query

learner)M, such that\/ learnsC with extra superset queries (i, ),cn. Define a new indexingL;);cn:

e [; is the empty language.
e If i > 1 andi is the canonical indéxof the non-empty setiy, ... ,i,}, thenl, = L; n---NL;,.
An IIM M’ identifying C in the limit from text with respect to the hypothesis spaté);cn, given
a textt, may work as follows:M’(ty) := 0. To computeM’(t,.1), the learnerM’ interacts withA/
simulating a learning process farsteps. In steg, £ < n, depending on how/’ has replied to the
previous queries posed by, the learnerM/ computes either (i) a new queiyr (ii) a hypothesis.
If case (i) occurs, theM’ checks whether there is a worddontentt,,) \ L;. If such a word, saw,
is found, then)’ provides the reply ‘no’, accompanied byas a counterexample, to the query learner
M. If no such word is found, then/’ provides the reply ‘yes’. It < n, thenM’ proceeds with step
k + 1, otherwiseM’ returns the hypothesi®/’(t,,.1) := M'(t,,) and stops.

If case (ii) occurs, theft/’ computes the hypothesig’ (¢, 1) according to the following directives:

o Let LZ.1+, ..., L+ be the languages represented by the queries answered esthirijthe currently
simulated scenario.

e Compute the canonical indéXof the set{i, ], ..., } and return the hypothesid’(,,,1) = 7.

It is not hard to verify thatV’ learnsC in the limit from text; the relevant details are omitted.
Moreover, as we will see next/’ avoids overgeneralized hypotheses, that meanss i text for some
L eC,neN,andM'(t,) =i, thenL!, p L. Therefore, M’ can easily be transformed into a learner
M" which identifies the clas§ conservatively in the limit from text.

To prove thatV/’ avoids overgeneralizations, assume to the contrary, ltleat tis anl. € C, a textt
for L, and am € N, such that the hypothesis= M'(t,,) fulfills L/, > L. Then:i’ # 0. By definition of

M’, there must be a learning scenasidor M, in which

2Since one cannot ensure thiag belongs taC, this indicates why restricted superset and membershigegudo not
suffice for achieving the power aSupQ

3See [9] for the definition of canonical indices of finite sets.

“Note that a result in [12] states that any indexable clasgwik learnable in the limit from text without overgenezali
tions, belongs t@€onsvTxt




e M poses queries representiﬁq, ce LZ.I:, LZ.1+, ., L+ (in some particular order);
e the answers are ‘no’ concernirg-, ..., L, and ‘yes’ concernind.,., ..., L; ;

e afterwards)M returns the hypothesis

Hence: is the canonical index ofi, i} ,...,4}}. This impliesZ), = L; N Lz 0o N L. As by
assumption’!, O L, each of the Ianguagesif, ..., L+ is a superset of.. By definition of M’,
LZ.; 2 contenft,,) for 1 < j < k. Therefore none of the Ianguagé;l, . ..,Li; are supersets af.
So the answers in the learning scenéfiabove are truthful respecting the langudgeAs M learnsC
with extra superset queries, the hypothésisust be correct for, i.e.,L; = L. This yieldsL], C L in
contradiction tal}, O L.

So M’ learnsC in the limit from text without overgeneralizations, whichey-the argumentation

above—implie€’ € ConsvTxt O

5 Summary

The following figure summarizes the observed comparisamtsesConcerning the indicated results not
proved yet, note thdflemQC xSupQandMemQ<C xSubQfollow from the fact that each membership
query for a wordw can be simulated by a superset queryXdr\ {w} or a subset query fofw}. An

example for a class iresSupQ, xSubQis the class of all finite languages.

LimInf = resEquQ= EquQ

/

Lir?Txt

ConsvTxt= xresSupQ= xSupQ xresSubQ= xSubQ
SJpQ ‘%f = n{mc; SJbQ
res\lupQ res\lubQ

\ FinTxt /

Each learning type is represented as a vertex in a digraplredtdd path fron¥ to B indicates that the
learning typeB outperforms typed, i.e., B is a proper superset of. A missing path betweeA and
B means thatd and B are incomparable, i. e., there are learning problems slawaith respect to the

learning typeA, but not solvable with respect to the learning typeand vice versa.
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