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Abstract

A natural approach towards powerful machine learning systems is to enable options for additional
machine/user interactions, for instance by allowing the system to ask queries about the concept to be
learned. This motivates the development and analysis of adequate formal learning models.

In the present paper, we investigate two different types of query learning models in the context of
learning indexable classes of recursive languages: Angluin’s original model and a relaxation thereof,
called learning with extra queries. In the original model the learner is restricted to query languages
belonging to the target class, while in the new model it is allowed to query other languages, too.
As usual, the following standard types of queries are considered: superset, subset, equivalence, and
membership queries.

The learning capabilities of the resulting query learning models are compared to one another and
to different versions of Gold-style language learning fromonly positive data and from positive and
negative data (including finite learning, conservative inference, and learning in the limit). A complete
picture of the relation of all these models has been elaborated. A couple of interesting differences
and similarities between query learning and Gold-style learning have been observed. In particular,
query learning with extra superset queries coincides with conservative inference from only positive
data. This result documents the naturalness of the new querymodel.

1 Introduction

In machine learning, the quite natural approach of learningby ‘asking questions’ was first modeled and

investigated by Angluin [2]. An example for its use in machine learning systems is Shapiro’s Algorithmic

Debugging System, cf. [10]. Since Angluin’s pioneering paper [2], the query learning model has been

receiving a lot of attention (see [3] for a quite recent overview).

Angluin’s [2] model deals with ‘one-shot’ learning. Here, alearning algorithm (henceforth called

query learner) receives information about a target conceptby asking queries which will be truthfully

answered by an oracle. After at most finitely many queries, the learner is required to stop this process and

to output its one and only hypothesis. The learning process is considered successful, if this hypothesis

correctly describes the target concept.

Angluin’s work and ensuing work in this area mainly address the aspect of efficiency of query learn-

ing, measured in terms of the number of queries maximally needed to satisfy the learning goal, see [3]

and the references therein. Thus several interesting polynomial-time query learners for different concept

classes have been designed. In particular, this has revealed close relations between query learning and

PAC-learning, see [11, 2].
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In the present paper, we study the pros and cons of Angluin’s [2] query learning model in the context

of learning indexable classes of recursive languages (indexable classes, for short). The learnability of

indexable classes has been intensively studied within different formal frameworks (see [12] for a survey).

This is motivated by the fact that many interesting and natural classes, including regular, context free,

context sensitive, and pattern languages, constitute indexable classes.

We investigate learning of indexable classes with superset, subset, equivalence, and membership

queries, comparing the learning capabilities of the resulting query learners to one another. In contrast

to former studies, we neglect complexity issues. Regardingfinite classes of concepts, apparently, every

class can be learned with the usual types of queries. This is no longer valid, if infinite classes form

the learning task. For illustration, membership queries donot suffice to learn the class of all extended

pattern languages, see [8]. This motivates a detailed analysis of the power and the limitations of the

query learning models.

Moreover, the resulting query learning models are comparedto models of Gold-style language learn-

ing such as finite learning, conservative inference, and learning in the limit from only positive data as

well as from positive and negative data. In Gold-style learning, the learner may change its recent hy-

pothesis when more information is provided, but it receivesonly ‘local’ information about the object to

be learned. In contrast, in the query model the learner receives rather ‘global’ information and can affect

the sample of information it receives, but it may never revise its hypothesis. So a comparison between

query inference and Gold-style learning may help to explainthe relevance of these different features of

learning. Again, for this purpose it is useful to neglect efficiency issues in query learning.

A complete picture displaying the relations between all discussed versions of query learning and

Gold-style learning is obtained. For example, our analysisshows that any query learner using superset

queries can be simulated by a Gold-style learner receiving only positive data. In contrast to that, there

are classes learnable using subset queries, but not Gold-style learnable from positive data only. This can

be traced back to a duality of superset and subset queries: the relevance of positive data for simulating a

superset query learner matches the relevance of negative data for simulating a subset query learner.

From a theoretical point of view, Angluin’s [2] query learning model has the drawback that learnable

classes may possess non-learnable subclasses. Moreover, acouple of quite simple indexable classes

are not learnable with superset or subset queries. The observed weakness is often caused by the fact

that the learners are constrained to query exclusively languages belonging to the target class. In many

cases, the learners are simply not allowed to make the ‘appropriate’ queries. In the present paper, we

therefore modify Angluin’s [2] original model by relaxing this constraint and introduce a new model,

called learning with extra queries. We analyze the learningpower of the resulting query learners by
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comparing them to the capabilities of query learners in the original model and to Gold-style language

learners. As it turns out, an indexable class is learnable using extra superset queries if and only if there

is a conservative Gold-style language learner that identifies this class from only positive examples. To a

certain extent, this result proves the naturalness of the new model of query inference.

2 Notions and Notations

Familiarity with standard mathematical and recursion theoretic notions and notations as well as with

basic language theoretic concepts is assumed, cf. [9, 5].

From now on, a fixed finite alphabetΣ with {a, b} ⊆ Σ is assumed. ByΣ∗ we denote the set of all

words overΣ and any subsetL ⊆ Σ∗ is called alanguage. ThecomplementL of a languageL is the set

Σ∗ \ L. If C is a class of languages, then we denote byC the class{L | L ∈ C} of all complements of

languages inC.

Let C be a class of recursive languages overΣ∗. C is said to be anindexable class, if there is an

effective enumeration(Li)i∈N of all and only the languages inC such that membership is uniformly

decidable, i. e., there is a computable function that, for any w ∈ Σ∗ andi ∈ N, returns1, if w ∈ Li,

and0, otherwise. Such an enumeration will subsequently be called anindexingof C.

In the query learning model, a learner has access to an oraclethat truthfully answers queries of a

specified kind. Aquery learnerM is an algorithmic device that, depending on the reply on the previous

queries, either computes a new query or returns a hypothesisand halts. Its queries and hypotheses are

coded as natural numbers; both will be interpreted with respect to an underlyinghypothesis space. When

learning an indexable classC, any indexingH = (Li)i∈N of C may form a hypothesis space, such that

M , when learningC, is only allowed to query languages belonging toC, see [2].

More formally, letC be an indexable class, letL ∈ C, let H = (Li)i∈N be an indexing ofC, and let

M be a query learner.M learnsL with respect toH using some type of queriesif it eventually halts and

its only hypothesis, sayi, correctly describesL, i. e.,Li = L. SoM returns its unique and correct guess

i after only finitely many queries. Moreover,M learnsC with respect toH using some type of queries,

if it learns everyL′ ∈ C with respect toH using queries of the specified type. Below we consider:

Membership queries.The input is a stringw and the answer is ‘yes’ or ‘no’, depending on whether or

notw belongs to the target languageL.

Equivalence queries.The input is an indexj of some languageL′ ∈ C. If L = L′, the answer is ‘yes’.

Otherwise, together with the answer ‘no’ a counterexample from (L′ \ L) ∪ (L \ L′) is supplied.

Superset queries.The input is an indexj of some languageL′ ∈ C. If L ⊆ L′, the answer is ‘yes’.

Otherwise, together with the answer ‘no’ a counterexample fromL \ L′ is supplied.
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Subset queries.The input is an indexj of some languageL′ ∈ C. If L′ ⊆ L, the answer is ‘yes’.

Otherwise, together with the answer ‘no’ a counterexample fromL′ \ L is supplied.

Equivalence, superset, and subset queries are also studiedin a restricted form, for which the answer ‘no’

is no longer supplemented by a counterexample.

MemQ, EquQ, SupQ, andSubQdenote the collections of all indexable classesC′ for which there are a

query learnerM ′ and a hypothesis spaceH′ such thatM ′ learnsC′ with respect toH′ using membership,

equivalence, superset, and subset queries, respectively.If the learner uses only the restricted form of

queries, this is indicated by the prefix ‘res’ connected toEquQ, SupQ, or SubQ. Note that, by definition,

resEquQ⊆ EquQ, resSupQ⊆ SupQ, andresSubQ⊆ SubQ.

Moreover, it will be helpful to notice the following simple observation stating that superset and subset

queries yield dual learning models.

Proposition 1 LetC be an indexable class.

(a) C ∈ SupQ iffC ∈ SubQ (b)C ∈ resSupQ iffC ∈ resSubQ

Comparing query learning with the standard models in Gold-style language learning requires some

more notions explained in brief below, see also [4, 1, 12]. Let L be a language. Any infinite sequence

t = (wi)i∈N with {wi | i ∈ N} = L is called atext for L. Then, for anyn ∈ N, tn denotes the initial

segment(w0, . . . , wn) andcontent(tn) denotes the set{w0, . . . , wn}. Any infinite sequence((wi, bi))i∈N

with bi ∈ {+,−}, {wi | bi = +} = L, and{wi | bi = −} = L is said to be aninformantfor L.

Let C be an indexable class,H = (Li)i∈N a hypothesis space (i. e., an indexing possibly comprising

a proper superclass ofC), andL ∈ C. An inductive inference machine(IIM ) is an algorithmic device,

that reads longer and longer initial segmentsσ of a text (informant) and outputs numbersM(σ) as its

hypotheses. As above, an IIMM returning somei is construed to hypothesize the languageLi. Given a

text (an informant)t for L, M identifiesL from t with respect toH, if the sequence of hypotheses output

by M , when fedt, stabilizes on a numberi (i. e., past some pointM always outputs the hypothesisi)

with Li = L. M identifiesC from text (informant)with respect toH, if it identifies everyL′ ∈ C from

every corresponding text (informant). As above,LimTxt(LimInf) denotes the collection of all indexable

classesC′ for which there are an IIMM ′ and a hypothesis spaceH′ such thatM ′ identifiesC′ from text

(informant) with respect toH′. A quite natural and often studied modification ofLimTxt is defined by

the model ofconservative inference. M is aconservativeIIM for C with respect toH, if M performs

only justified mind changes, i. e., ifM , on some textt for someL ∈ C, outputs hypothesesi and laterj,

thenM must have seen some elementw /∈ Li before returningj. The collection of all indexable classes

identifiable from text by a conservative IIM is denoted byConsvTxt.

In contrast to query learners, an IIM is allowed to change itsmind finitely many times before return-

4



ing its final and correct hypothesis. In general, it is not decidable whether or not an IIM has already

output its final hypothesis. In case this is decidable we allude tofinite learning, see [4]. Similar to query

learning, finite learning can be understood as a kind of ‘one-shot’ learning, where the first hypothesis

already has to be correct. The corresponding modelsFinTxt andFinInf are defined as above. Some

helpful results on Gold-style learning are summarized in the following proposition, see [4, 6, 12] for the

details.

Proposition 2 FinTxt⊂ FinInf ⊂ ConsvTxt⊂ LimTxt⊂ LimInf .

3 Comparison results

The scope of this paper is to compare the learning capabilities of Angluin’s query learning models to one

another and to the different versions of Gold-style learning defined above. First, note that learning with

(restricted) equivalence queries coincides with Gold’s model of limit learning from positive and negative

data, while learning with membership queries equals finite learning from positive and negative data.1

Second, the power of superset query learners is rather limited, because they will only be successful for

classes that are Gold-style learnable from only positive data. In contrast, there are indexable classes not

learnable from only positive data, but learnable with subset queries. Thus, subset query learners may

exploit the kind of additional information which negative data normally provide. Still, the potential of

subset query learners is severely limited: there are indexable classes inLimTxt, even inFinInf , which

are not learnable using subset queries. In contrast to the case when learning with equivalence queries

is considered, learners that are allowed to ask superset (subset) queries are more powerful than learners

that are constrained to ask restricted superset (subset) queries. The formal details are summarized in

Theorem 3 and Theorem 4.

Theorem 3 (a) FinTxt⊂ resSupQ⊂ SupQ⊂ LimTxt⊂ LimInf

(b) FinTxt⊂ resSubQ⊂ SubQ⊂ LimInf

Proof. (a)First, FinTxt ⊂ resSupQcan be verified using the following fact known from [12]: ifC ∈

FinTxt, thenL#L′ for all distinct languagesL andL′ in C.

Second, we verifySupQ\ resSupQ6= ∅. Consider the classCrsup containingL0 = {a}∗ and all

languagesLi = ({a}∗ \ {a, ai}) ∪ {bz | z ≥ i}, i ≥ 1. To learnCrsup , a query learnerM starts with a

query corresponding toL0. If the answer is ‘yes’,M knows that the target language equalsL0. If the

answer is ‘no’, an element fromL0, saybz, z ≥ 1, is supplied as a counterexample. Sincebz /∈ Li for

all i > z, M can easily identify the target language by posing queries corresponding toL1, L2, . . . , Lz.

To see thatCrsup /∈ resSupQ, suppose there is a superset query learnerM ′ for Crsup . ConsiderM ′ when

1These results are somehow folklore and will not be proven here.
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learningL1. If M ′ queriesL1, provide the answer ‘yes’. In all other cases provide the answer ‘no’. Let

z be the maximal index of a languageM ′ queries before returning its sole hypothesis. Since the answers

provided are consistent with the two distinct languagesL1 andLz+1, M ′ fails for at least one of them.

SoCrsup /∈ resSupQand henceSupQ\ resSupQ6= ∅.

Third,LimTxt\SupQ6= ∅ follows via Theorem 4(e) andFinInf ⊆ LimTxt. To verifySupQ⊆ LimTxt,

let C ∈ SupQandM a query learner identifyingC with respect to an indexing(Li)i∈N. The following

IIM M ′ LimTxt-identifiesC. Given a text segmentσ of lengthn, M ′ interacts withM simulating a

learning process forn steps. In stepk, k ≤ n, depending on howM ′ has replied to the previous queries

posed byM , the learnerM computes either (i) a new queryi or (ii) a hypothesisi. In case (ii),M ′

returns the hypothesisi and stops simulatingM . In case (i),M ′ checks whether there is a word in

content(σ) \ Li. If such a word exists,M ′ replies ‘no’ using one such word as a counterexample; else

M ′ replies ‘yes’. Ifk < n, M executes stepk + 1, elseM ′ returns any auxiliary hypothesis and stops

simulatingM . Given segmentsσ of a text for some target language, if their lengthn is large enough,M ′

answers all queries ofM correctly andM returns its sole hypothesis withinn steps. So, the hypotheses

returned byM ′ stabilize on this correct guess.

(b) First,FinTxt⊂ resSubQholds, sinceL#L′ for all distinct languagesL andL′ in anyC ∈ FinTxt.

The remaining assertions follow from(a) and Proposition 1. 2

Theorem 4 (a) resSupQ6⊆ SubQ (b) resSubQ6⊆ SupQ (c) resSupQ6⊆ FinInf

(d) resSubQ6⊆ LimTxt (e) FinInf 6⊆ SupQ (f) FinInf 6⊆ SubQ

Proof. For (d) and (f) we provide the separating classes only. The class that containsL = {a}∗ and

Li = L \ {ai} for all i ≥ 1 proves (d). Assertion (f) can be shown using the class consisting of all

languages{a, ai} ∪ {b, . . . , bi}, i ≥ 1. Now (b) follows from (d), becauseSupQ⊆ LimTxt. Moreover,

(a) is obtained from (b) via Proposition 1. Assertions (c) and (e) follow from (d) and (f), respectively,

via Proposition 1, taking into account thatFinInf ⊆ LimTxtand that an indexable classC is in FinInf iff

C is in FinInf . 2

4 Learning with extra queries

Angluin’s [2] query learning model has one drawback: learnable classes may possess non-learnable

subclasses. For instance,Crsup can be identified using superset queries, while its subclassC′

rsup
= Crsup \

{{a}∗} cannot. This drawback is a direct consequence of Angluin’s assumption that the learner may

only ask queries referring to languages in the target class.As the classC′

rsup
illustrates, this assumption

may bar the learner from asking the ‘appropriate’ queries. By Proposition 1, an analogous result holds

for learning with subset queries.
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To overcome these difficulties, we introduce a modified version of Angluin’s [2] model. LetC be an

indexable class. Anextra query learnerfor C is permitted to query languages in any indexing(L′

i
)i∈N

of a superclassC′ of C. We say thatC is learnable using extra superset (subset) queries with respect to

(L′

i
)i∈N iff there is an extra query learnerM learningC with respect to(L′

i
)i∈N using superset (subset)

queries concerningC′. ThenxSupQ(xSubQ) denotes the collection of all indexable classesC learnable

with extra superset (subset) queries; the notionsxresSupQandxresSubQare defined analogously.

The above discussion immediately yields the following result.

Theorem 5 (a) SupQ⊂ xSupQ (b) SubQ⊂ xSubQ

In contrast to the original model, learning with superset queries and learning with restricted superset

queries now coincide (analogously for subset queries).

Theorem 6 (a) xresSupQ= xSupQ (b) xresSubQ= xSubQ

Proof. (a) Obviously, it suffices to verifyxSupQ⊆ xresSupQ. So letC ∈ xSupQand letM be a

corresponding query learner. In order to learn some target languageL, the requiredxresSupQ-learner

M ′ usesM as a subroutine. In the long run,M ′ is supposed to adoptM ’s hypothesis. For this purpose,

M ′ asks the same queries asM does and hands over the obtained replies toM . In order to makeM

work, M ′ has to find supplementing counterexamples in case a supersetquery ofM ′, referring to some

L′, receives the reply ‘no’. But this is easily done.M ′ simply asks, for all elementsw ∈ L′, a superset

query corresponding to the languageΣ∗ \ {w}, until it receives the reply ‘no’. If this happens,M ′ has

found the counterexample needed, sinceΣ∗ \ {w} 6⊇ L iff w ∈ L.

(b) Using (a) and an adaptation of Proposition 1 for learning with extra queries yields the desired

proof. 2

Although the learning power of query learners increases with the permission to ask extra queries, the

learners are not always able to identify also the extra languages they query.

Theorem 7 (a) There is someC ∈ xSupQ such thatC′ /∈ SupQ for all superclassesC′ of C.

(b) There is someC ∈ xSubQ such thatC′ /∈ SubQ for all superclassesC′ of C.

Proof. (a)Let Cxsup be the class consisting ofΣ∗ and all finite subsets ofΣ∗ \ {a}.

First, to verifyCxsup ∈ xSupQ, choose an indexing ofΣ∗ \ {a} and all languages inCxsup . A learner

M for Cxsup may initially make a query forΣ∗ \ {a}. If the answer is ‘no’, then the target languageL

must beΣ∗. If the answer is ‘yes’,M can determineL by (i) asking finite subsets ofΣ∗ \ {a} until some

finite Li ⊇ L is found and (ii) asking subsets ofLi until the minimal subset ofLi forcing the answer

‘yes’ is known.

Second, no superclass ofCxsup belongs toSupQ. Assuming the contrary, supposeC′ is a superclass

of Cxsup in SupQ. Then distinguish two cases.
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Case 1.Σ∗ \ {a} ∈ C′: SinceC′ also contains all finite subsets ofΣ∗ \ {a}, arguments used already

in [4] imply C′ /∈ LimTxtand thusC′ /∈ SupQby Theorem 3.

Case 2.Σ∗ \ {a} /∈ C′: Assume some learnerM identifiesC′ with superset queries. Consider a

special scenarioS of M when learningΣ∗. If M queriesΣ∗, let M get the answer ‘yes’. IfM queries

someLi 6= Σ∗, let M get the answer ‘no’ together with some counterexamplewi 6= a. Note that some

wi ∈ Σ∗ \ Li with wi 6= a exists, becauseLi 6= Σ∗ \ {a}. After finitely many queriesM guessesΣ∗.

Let Li1
, . . . , Lin

be those languages queried in the scenarioS, which have been answered ‘no’. Let

L = {wi1
, . . . , win

} be the set of the corresponding counterexamples. Notice that L is a finite subset of

Σ∗ \ {a} and hence belongs toC′. But, since all queries in the scenarioS are answered truthfully with

respect toL, M fails to learnL. SoC′ /∈ SupQ.

(b) This follows from(a), as Proposition 1 holds analogously for learning with extraqueries. 2

Considering the classesC′

rsup
andCxsup in xSupQ\ SupQ, it is remarkable that for both classes there

is a successful learner which uses restricted superset queries and which is additionally allowed to ask

membership queries. So one might suspect that the full capabilities of xSupQ-learners can already be

achieved by learners using restricted superset and membership queries. But this is not the case. Indeed,

[7] provides a class inxSupQwhich is not learnable with superset and membership queries. An adapta-

tion of Proposition 1 for extra query learning implies an analogous result concerning subset queries.

It remains to compare learning with extra queries to the Gold-style learning types. A method similar

to that used in the proof of Theorem 3 yieldsxSupQ⊆ LimTxt. But interestingly, there is an even stronger

relation between Gold-style language learning from text and learning with extra superset queries. The

learning capabilities ofconservativeIIMs and of extra superset query learners coincide. Note that, with

Proposition 2 and Theorem 8, thenxSupQ⊂ LimTxt.

Theorem 8 xSupQ= ConsvTxt

Proof. ‘ConsvTxt⊆ xSupQ’: Fix C ∈ ConsvTxt. Then there is an indexing(Li)i∈N comprisingC and an

IIM M , such thatM ConsvTxt-identifiesC with respect to(Li)i∈N. Note that, ifL ∈ C andt is a text for

L, thenM never returns an indexi with L ⊂ Li on any initial segment oft.

Now the indexable class used for the queries contains all languages in(Li)i∈N and all languages

Σ∗ \ {w} for w ∈ Σ∗. An xSupQ- learnerM ′ identifying anyL ∈ C may work as follows.M ′ uses

queries concerning languages of the formΣ∗ \ {w} to construct a text forL and simulatesM on the

obtained text segments untilM returns an index of a superset ofL. This index is then returned byM ′.

First, to effectively enumerate a textt for L, M ′ determines the setT of all wordsw ∈ Σ∗, for which

the query representingΣ∗ \ {w} is answered with ‘no’. SinceT = L andT is recursively enumerable,

any recursive enumeration ofT yields a text forL.
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Second, to compute its hypothesis,M ′ executes steps 0, 1, 2, . . . until it receives a stop signal. In

general, stepn, n ∈ N, consists of the following instructions:

Determinei := M(tn), wheret is a recursive enumeration of the setT . Pose a query referring

to Li.2 If the answer is ‘no’, execute stepn + 1. Otherwise hypothesize the languageLi and stop.

(* In the latter case, asM never hypothesizes a proper superset ofL, M ′ returns an index forL. *)

Further details are omitted.

‘xSupQ⊆ ConsvTxt’: Fix someC ∈ xSupQ. Then there is an indexing(Li)i∈N comprisingC and a query

learnerM , such thatM learnsC with extra superset queries in(Li)i∈N. Define a new indexing(L′

i
)i∈N:

• L′

0 is the empty language.

• If i ≥ 1 andi is the canonical index3 of the non-empty set{i1, . . . , in}, thenL′

i
= Li1

∩ · · · ∩Lin
.

An IIM M ′ identifying C in the limit from text with respect to the hypothesis space(L′

i
)i∈N, given

a textt, may work as follows:M ′(t0) := 0. To computeM ′(tn+1), the learnerM ′ interacts withM

simulating a learning process forn steps. In stepk, k ≤ n, depending on howM ′ has replied to the

previous queries posed byM , the learnerM computes either (i) a new queryi or (ii) a hypothesisi.

If case (i) occurs, thenM ′ checks whether there is a word incontent(tn) \ Li. If such a word, sayw,

is found, thenM ′ provides the reply ‘no’, accompanied byw as a counterexample, to the query learner

M . If no such word is found, thenM ′ provides the reply ‘yes’. Ifk < n, thenM ′ proceeds with step

k + 1, otherwiseM ′ returns the hypothesisM ′(tn+1) := M ′(tn) and stops.

If case (ii) occurs, thenM ′ computes the hypothesisM ′(tn+1) according to the following directives:

• Let L
i
+

1
, . . . , L

i
+
m

be the languages represented by the queries answered with ‘yes’ in the currently

simulated scenario.

• Compute the canonical indexi′ of the set{i, i+1 , . . . , i+
m
} and return the hypothesisM ′(tn+1) = i′.

It is not hard to verify thatM ′ learnsC in the limit from text; the relevant details are omitted.

Moreover, as we will see next,M ′ avoids overgeneralized hypotheses, that means, ift is a text for some

L ∈ C, n ∈ N, andM ′(tn) = i′, thenL′

i′
6⊃ L. Therefore,M ′ can easily be transformed into a learner

M ′′ which identifies the classC conservatively in the limit from text.4

To prove thatM ′ avoids overgeneralizations, assume to the contrary, that there is anL ∈ C, a textt

for L, and ann ∈ N, such that the hypothesisi′ = M ′(tn) fulfills L′

i′
⊃ L. Theni′ 6= 0. By definition of

M ′, there must be a learning scenarioS for M , in which
2Since one cannot ensure thatLi belongs toC, this indicates why restricted superset and membership queries do not

suffice for achieving the power ofxSupQ.
3See [9] for the definition of canonical indices of finite sets.
4Note that a result in [12] states that any indexable class, which is learnable in the limit from text without overgeneraliza-

tions, belongs toConsvTxt.
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• M poses queries representingL
i
−

1
, . . . , L

i
−

k
, L

i
+

1
, . . . , L

i
+
m

(in some particular order);

• the answers are ‘no’ concerningL
i
−

1
, . . . , L

i
−

k
and ‘yes’ concerningL

i
+

1
, . . . , L

i
+
m

;

• afterwardsM returns the hypothesisi.

Hencei′ is the canonical index of{i, i+1 , . . . , i+
m
}. This impliesL′

i′
= Li ∩ L

i
+

1
∩ · · · ∩ L

i
+
m

. As by

assumptionL′

i′
⊃ L, each of the languagesL

i
+

1
, . . . , L

i
+
m

is a superset ofL. By definition of M ′,

L
i
−

j
6⊇ content(tn) for 1 ≤ j ≤ k. Therefore none of the languagesL

i
−

1
, . . . , L

i
−

k
are supersets ofL.

So the answers in the learning scenarioS above are truthful respecting the languageL. As M learnsC

with extra superset queries, the hypothesisi must be correct forL, i. e.,Li = L. This yieldsL′

i′
⊆ L in

contradiction toL′

i′
⊃ L.

So M ′ learnsC in the limit from text without overgeneralizations, which—by the argumentation

above—impliesC ∈ ConsvTxt. 2

5 Summary

The following figure summarizes the observed comparison results. Concerning the indicated results not

proved yet, note thatMemQ⊆ xSupQandMemQ⊆ xSubQfollow from the fact that each membership

query for a wordw can be simulated by a superset query forΣ∗ \ {w} or a subset query for{w}. An

example for a class inresSupQ\ xSubQis the class of all finite languages.

LimInf = resEquQ= EquQ

FinInf = MemQ

FinTxt

6

HHHHY
����*

PPPPPPPi

�������1

SupQ

resSupQ

6

6

LimTxt

ConsvTxt= xresSupQ= xSupQ

����*

6

xresSubQ= xSubQ

SubQ

resSubQ

6

HHHY

6

Each learning type is represented as a vertex in a digraph. A directed path fromA to B indicates that the

learning typeB outperforms typeA, i. e.,B is a proper superset ofA. A missing path betweenA and

B means thatA andB are incomparable, i. e., there are learning problems solvable with respect to the

learning typeA, but not solvable with respect to the learning typeB, and vice versa.
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