
Predicting the Size of IDA*’s Search Tree

Levi H. S. Lelisa, Sandra Zillesb, Robert C. Holtea

aComputing Science Department, University of Alberta, Edmonton, AB, Canada T6G 2E8
bDepartment of Computer Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

Abstract

Korf, Reid and Edelkamp initiated a line of research for developing methods
(KRE and later CDP) that predict the number of nodes expanded by IDA* for a
given start state and cost bound. Independently, Chen developed a method (SS)
that can also be used to predict the number of nodes expanded by IDA*. In this pa-
per we improve both of these prediction methods. First, we present ε-truncation, a
method that acts as a preprocessing step and improves CDP’s prediction accuracy.
Second and orthogonally to ε-truncation, we present a variant of CDP that can
be orders of magnitude faster than CDP while producing exactly the same predic-
tions. Third, we show how ideas developed in the KRE line of research can be used
to improve the predictions produced by SS. Finally, we make an empirical com-
parison between our new enhanced versions of CDP and SS. Our experimental
results suggest that CDP is suitable for applications that require less accurate but
fast predictions, while SS is suitable for applications that require more accurate
predictions but can afford more computation time.

Keywords:
heuristic search, predicting search performance

1. Introduction

Tree search is a popular technique for solving combinatorial problems [1]. A
frequent impediment of the application of tree searching algorithms is the inabil-
ity to quickly predict the running time of an algorithm on a particular problem
instance. While one instance of a problem might be solved in a blink of an eye,
another instance of the same problem might take centuries.

Korf, Reid, and Edelkamp [2] launched a line of research aimed at creat-
ing a method to predict exactly how many nodes the search algorithm Iterative-
Deepening A* (IDA*) [1] would expand on an iteration with cost bound d given

Preprint submitted to Artificial Intelligence Journal January 24, 2013

a particular heuristic function. This was in contrast with the traditional approach
to search complexity analysis, which focused on “big-O” complexity typically pa-
rameterized by the accuracy of the heuristic [3, 4, 5, 6]. Korf, Reid, and Edelkamp
developed a prediction formula, known as KRE as a reference to the author’s
names, for the special case of consistent heuristics,1 proved that it was exact
asymptotically (in the limit of large d), and experimentally showed that it was
extremely accurate even at depths of practical interest. Zahavi et al. [7] created
Conditional Distribution Prediction (CDP), an extension of KRE that also makes
accurate predictions when the heuristic employed is inconsistent. CDP works by
sampling the state space as a preprocessing step with respect to a type system, i.e.,
a partition of the state space. The information learned during sampling is used to
efficiently emulate the IDA* search tree and thus to approximate the number of
nodes expanded on an iteration of the algorithm. CDP is reviewed in Section 2.

In the present paper we identify a source of prediction error that has hitherto
been overlooked in the CDP system. We call it the “discretization effect”. We also
disprove the intuitively appealing idea, specifically asserted by Zahavi et al., that
a “more informed” system cannot make worse predictions than a “less informed”
system.2 The possibility of this statement being false follows directly from the
discretization effect, because a more informed system is more susceptible to the
discretization effect than a less informed one. We will show several cases of this
statement being false and use the phrase “informativeness pathology” to refer to
this situation. One of our contributions is a method for counteracting the dis-
cretization effect, which we call “ε-truncation”. One way to view ε-truncation is
that it makes a prediction system less informed, in a carefully chosen way, so as
to improve its prediction accuracy by reducing the discretization effect. In our
experiments ε-truncation rarely degraded predictions; in the vast majority of cases
it improved the prediction accuracy, often substantially. Our second contribution
to the CDP system is an algorithmic improvement to CDP that reduces its running
time. Our CDP variant, named Lookup CDP (or L-CDP for short), decomposes
a CDP prediction into independent subproblems. The solutions to these subprob-
lems are computed in a preprocessing step and the results stored in a lookup table
to be reused later during prediction. L-CDP can be orders of magnitude faster
than CDP while it is guaranteed to produce the same predictions as CDP. Similar

1Heuristic h is consistent iff h(s) ≤ c(s, t)+h(t) for all states s and t, where c(s, t) is the cost
of the cheapest path from s to t and h(s) is the estimated cost-to-go from s to a goal state.

2“More informed” is defined formally in Definition 4 below.

2

to a pattern database (PDB) [8], L-CDP’s lookup table is computed only once,
and the cost of computing it can be amortized by making predictions for a large
number of instances. ε-truncation and L-CDP are orthogonal to each other as the
former improves the prediction accuracy and the latter improves the prediction
runtime of CDP.

Independent of the KRE line of research, Knuth [9] created a method to effi-
ciently predict the size of a search tree by making random walks from the root
node. Knuth’s assumption was that branches not visited would have the same
structure as the single branch visited by the random walk. Despite its simplic-
ity, Knuth proved his method to be efficient in the domains tested. However, as
pointed out by Knuth himself, his method does not produce accurate predictions
when the tree being sampled is unbalanced. Chen [10] extended Knuth’s method
to use a stratification of the state space to reduce the variance of sampling. Like
CDP’s type systems, the stratification used by Chen is a partition of the state space.
The method developed by Chen, Stratified Sampling, or SS, relies on the assump-
tion that nodes in the same part of the partition will root subtrees of the same size.
SS is reviewed in detail in Section 8. In addition to the contributions to the CDP
prediction method, in this paper we connect the KRE line of research to that of
SS. We do so by showing that the type systems employed by CDP can also be
used as stratifiers for SS. Our empirical results show that SS employing CDP’s
type systems substantially improves upon the predictions produced by SS using
the type system proposed by Chen.

The final contribution of the present paper is an empirical comparison of our
enhanced versions of CDP and SS. In our empirical comparison we consider
scenarios that require (1) fast, and (2) accurate predictions. The first scenario
represents applications that require less accurate but almost instantaneous predic-
tions. For instance, quickly estimating the size of search subtrees would allow
one to fairly divide the search workload among different processors in a parallel
processing setting. The second scenario represents applications that require more
accurate predictions but allow more computation time. Our experimental results
suggest that if L-CDP’s preprocessing time is acceptable or can be amortized, it is
suitable for applications that require less accurate but very fast predictions, while
SS is suitable for applications that require more accurate predictions but allow
more computation time.

We start by reviewing the CDP prediction method and type systems in the
next two sections, before introducing the discretization effect (Section 4) and ε-
truncation (Section 5). We show empirically that ε-truncation can substantially
improve CDP’s prediction accuracy in Section 6. In Section 7 we present L-CDP

3

and show empirically that it can be orders of magnitude faster than CDP while
producing exactly the same predictions. In Section 8 we review SS and in Section
9 we show how the type systems developed for CDP can substantially improve
SS’s predictions. Finally, in Section 10 we present an empirical comparison of
our enhanced versions of CDP and SS.

This article extends earlier conference publications [11, 12].

2. The CDP Prediction Framework

The notation introduced in this and the next section is summarized in Table 1.
We now review the CDP system. CDP predicts the number of nodes expanded on
an iteration of IDA* for a given cost bound assuming that no goal is found during
the iteration. In CDP, predictions are based on a partition of the nodes in an IDA*
search tree. We call this partition a type system.

Definition 1 (Type System). Let S(s∗) be the set of nodes in the search tree rooted
at s∗. T = {t1, . . . , tn} is a type system for S(s∗) if it is a disjoint partitioning of
S(s∗). For every s ∈ S(s∗), T (s) denotes the unique t ∈ T with s ∈ t.

For the sliding-tile puzzle (defined in Section 6), for example, one could define
a type system based on the position of the blank tile. In this case, two nodes s and
s′ would be of the same type if s has the blank in the same position as s′, regardless
of the configuration of the other tiles in the two nodes. As another example, s and
s′ could be of the same type if s and s′ have the same heuristic value. In some
cases we use not only the heuristic value of a node when computing its type, but
also the heuristic value of the nodes in its neighborhood, as we explain in Section 3
below.

The accuracy of the CDP formula is based on the assumption that two nodes
of the same type root subtrees of the same size. IDA* with parent pruning will not
generate a node ŝ from s if ŝ is the parent of s. Thus, the subtree below a node
s depends on the parent from which s was generated. Zahavi et al. [7] use the
information of the parent of a node s when computing s’s type so that CDP is able
to make accurate predictions of the number of nodes expanded on an iteration of
IDA* when parent pruning is used.

Note that, as in Zahavi et al.’s work, all type systems considered in this paper
have the property that h(s) = h(s′) if T (s) = T (s′), where h is the underlying
heuristic function. We assume this property in the formulae below, and denote by
h(t) the value h(s) for any s such that T (s) = t.

4

Definition 2. Let t, t′ ∈ T . p(t′|t) denotes the average fraction of the children
generated by a node of type t that are of type t′. bt is the average number of
children generated by a node of type t.

For example, if a node of type t generates 5 children on average (bt = 5) and 2
of them are of type t′, then p(t′|t) = 0.4. CDP samples the state space in order to
estimate p(t′|t) and bt for all t, t′ ∈ T . CDP does its sampling as a preprocessing
step and although type systems are defined for nodes in a search tree rooted at s∗,
sampling is done before knowing the start state s∗. This is achieved by considering
a state s drawn randomly from the state space as the parent of nodes in a search
tree. As explained above, due to parent-pruning, CDP uses the information about
the parent of a node when computing the type of the node. Therefore, when
estimating the values of p(t′|t) and bt, the sampling is done based on the children
of the state s drawn randomly from the state space, as though s and its children
were part of a search tree. We denote by π(t′|t) and βt the respective estimates thus
obtained. The values of π(t′|t) and βt are used to estimate the number of nodes
expanded on an iteration of IDA*. The predicted number of nodes expanded by
IDA* with parent pruning for start state s∗, cost bound d, heuristic h, and type
system T is formalized as follows.

CDP(s∗, d, h, T) = 1 +
∑

s∈child(s∗)

d∑
i=1

∑
t∈T

N(i, t, s, d) . (1)

Here the outermost summation iterates over the children of the start state s∗. As-
suming unit-cost edges, in the middle summation we account for g-costs from 1
to the cost bound d (the g-cost of node s in a search tree is the lowest cost path in
the tree from the start state to s); any value of i greater than d would be pruned by
IDA*. The innermost summation iterates over the types in T . Finally, N(i, t, s, d)
is the number of nodes n with T (n) = t occurring at level i of the search tree
rooted at s. A value of one is added to the summation as CDP expands the start
state so that the type of its children can be computed. N(i, t, s, d) is computed
recursively as follows.

N(1, t, s, d) =

{
0 if T (s) 6= t ,

1 if T (s) = t ,

The case i = 1 is the base of the recursion and is calculated based on the types
of the children of the start state. For i > 1, the value N(i, t, s, d) is given by

5

Figure 1: The first step of a CDP prediction for start state s0.

∑
u∈T

N(i− 1, u, s, d)π(t|u)βuP (t, i, d) . (2)

Here π(t|u)βu is the estimated number of nodes of type t a node of type u gen-
erates; P is a pruning function that is 1 if the cost to reach type t plus the type’s
heuristic value is less than or equal to the cost bound d, i.e., P (t, i, d) = 1 if
h(t) + i ≤ d, and is 0 otherwise.

Example 1. Consider the example in Figure 1. Here, after sampling the state
space to calculate the values of π(t|u) and βu, we want to predict the number
of nodes expanded on an iteration of IDA* with cost bound d for start state s0.
We generate the children of s0, depicted in the figure by s1 and s2, so that the
types that will seed the prediction formula can be calculated. Given that T (s1) =
u1 and T (s2) = u2 and that IDA* does not prune s1 or s2, the first level of
prediction will contain one node of type u1 and one of type u2, represented by the
two upper squares in the right part of Figure 1. We now use the values of π and
β to estimate the number of nodes of each type on the next level of search. For
instance, to estimate how many nodes of type t1 there will be on the next level of
search we sum up the number of nodes of type t1 that are generated by nodes of
type u1 and u2. Thus, the estimated number of nodes of type t1 at the second level
of search is given by π(t1|u1)βu1 + π(t1|u2)βu2 . Note that N(1, ui, si, d) = 1
for i ∈ {1, 2}, N(1, u1, s2, d) = N(1, u2, s1, d) = 0, and N(1, u, s, d) = 0
for all other pairs of values of u and s. Thus π(t1|u1)βu1 + π(t1|u2)βu2 equals∑

u∈T N(1, u, s1, d)π(t1|u)βu +
∑

u∈T N(1, u, s2, d)π(t1|u)βu.
If h(t1) + 2 (heuristic value of type t1 plus the cost of reaching t1) exceeds

the cost bound d, then the number of nodes of type t1 is set to zero, because

6

IDA* would have pruned those nodes. This process is repeated for all types at
the second level of prediction. Similarly, we get estimates for the third level of
the search tree. Prediction goes on until all types are pruned. The sum of the
estimated number of nodes of every type at every level is the estimated number of
nodes expanded by IDA* with cost bound d for start state s0.

According to the formulae above and the example in Figure 1, in order to
predict the number of nodes IDA* expands with a cost bound d, for every level
i ≤ d, CDP predicts how many instances of each type will be generated; i.e., it
predicts a vector (N [1], . . . , N [|T |]) of numbers of instances of each type on a
level.3 We will call such a vector a type allocation vector. The type allocation
vector for the first level of prediction is computed from the types of the children
of the start state (the i = 1 base case of the recursive calculation shown above).
Once the allocation vector is calculated for the first level, the vector for the next
level is estimated according to Equation 2. At level i, for each type t such that
h(t) + i exceeds the cost bound d, the corresponding entry in the type allocation
vector, N [t], is set to zero to indicate that IDA* will prune nodes of this type from
its search. The prediction continues to deeper and deeper levels as long as at least
one entry in the type allocation vector is greater than zero.

CDP is seeded with the types of the children of the start state s∗, as shown
in Equation 1. Zahavi et al. [7] showed that seeding the prediction formula with
nodes deeper in the search tree improves the prediction accuracy at the cost of
increasing the prediction runtime. In this improved version of CDP one collects
Cr, the set of nodes s such that s is at a distance r < d from s∗. Then the prediction
is made for a cost bound of d− r when nodes in Cr seed CDP. In our experiments
we also used this improved version of CDP.

3. Improved CDP Predictions

Zahavi et al. derived a set of conditions for which CDP is guaranteed to make
perfect predictions ([7], Section 4.5.1, p. 60). This set of conditions can be gen-
eralized with the definition of the purity of a type system, i.e., if a type system is
pure, then CDP predictions are guaranteed to be perfect.

Definition 3. A type system T is said to be pure if node n has exactly p(t′|t) × bt
children of type t′ for all t, t′ ∈ T and all n ∈ t.

3We use N [t] or N(i, t) to denote N(i, t, s, d) when i, s and d are clear from the context.

7

Intuitively, there is no uncertainty in the prediction model when a pure type
system is employed, and as stated by Zahavi et al., a simple proof by induction
shows that a pure type system results in perfect predictions.

A trivial example of a pure type system is a one-to-one mapping from the
original state space S to the type system space T . In this case, every node in
the search tree is of a different type. Such a type system is not of interest for
large state spaces and d-values because the prediction calculations would be too
costly. Unfortunately, type systems that are pure and compact are hard to obtain
in practice. For instance, Zahavi et al.’s basic “two-step” model defined (in our
notation) as Th(s) = (h(parent(s)), h(s)), where parent(s) returns the parent of
s in the search tree, is not pure, as verified in their experiments.

In a first attempt to improve CDP’s prediction accuracy we used “more in-
formed” type systems, i.e., type systems that split every type in Th into a set of
types. Two new domain-independent type systems we introduce, which are “more
informed” than Th, are:

Tc(s)=(Th(s), c(s, 0), . . . , c(s,H)), where c(s, k) is the number of children
of s, considering parent pruning, whose h-value is k, andH is the maximum
h-value observed in the sampling process;

Tgc(s) = (Tc(s), gc(s, 0), . . . , gc(s,H)), where gc(s, k) is the number of
grandchildren of s, considering parent pruning, whose h-value is k.

For instance, two nodes s and s′ will be of the same Tc type (where c stands
for children) if h(parent(s)) = h(parent(s′)) and h(s) = h(s′), and, in addition,
s and s′ generate the same number of children with the same heuristic distribu-
tion. Similarly, two nodes s and s′ are of the same Tgc type (where gc stands
for grandchildren) if besides matching on the information required by the Tc type
system, s and s′ generate the same number of grandchildren with same heuristic
distribution.

The intuitive concept of one type system being “more informed” than another
is captured formally as follows.

Definition 4. Let T1, T2 be type systems. T1 is a refinement of T2, denoted T1 � T2,
if |T1| ≥ |T2| and for all t1 ∈ T1 there is a t2 ∈ T2 with {s | T1(s) = t1} ⊆ {s |
T2(s) = t2}. If t1 ∈ T1 and t2 ∈ T2 are related in this way, we write T2(t1) = t2.

Note that Tgc � Tc � Th, and so, by transitivity, Tgc � Th.

8

Figure 2: Grid example.

Example 2. Consider the grid domain depicted in Figure 2. In this domain an
agent lies on an infinite grid and wants to arrive at the goal position; Figure 2
shows the agent starting at position (3, 3) and the goal at position (0, 0). The
agent can move to one of the four adjacent positions, except when the position
is blocked by a wall; in Figure 2 a gray square represents a wall. If Manhattan
Distance is the heuristic function used in this domain, then the heuristic value of
the agent’s state is 6 (3 from the x-coordinate plus 3 from the y-coordinate).

Consider a type system in which nodes with the same heuristic value are of the
same type. In this case states A, B, C, and D would be of the same type. Note,
however, that these four states are not necessarily of the same Th type. Recall that
Th uses both the heuristic value of the node and of the node’s parent in the search
tree. A, B, C, and D will be of the same Th type if they are generated by PA, PB,
PC and PD, respectively. In this case, A, B, C, and D have a heuristic value of 3
and are generated by nodes with heuristic value of 4, resulting in the (4, 3) type.

Consider again nodes A, B, C, and D when they are generated by parents
PA, PB, PC and PD, respectively, and are therefore of the same type—(4, 3)—
according to Th. The Tc type system, which is a refinement of Th, further partitions
the nodes that are of the same type according to Th. In our example, according
to the Tc type system, nodes A and D are of different type than B and C. A and
D are of the same Tc type because, with parent-pruning, they both generate two

9

Notation Meaning
T type system
T (s) type of a node s
p(t′|t) probability of type t generating type t′

bt average branching factor of nodes of type t
π(t′|t) approximation of p(t′|t)
βt approximation of bt

P (t, i, d) pruning function
N(i, t, s∗, d) number of nodes of type t at level i

Th(s) type defined as (h(parent(s)), h(s))

Tc(s) type defined by Th and the h-values of s’s children
Tgc(s) type defined by Tc and the h-values of s’s grandchildren
T1 � T2 T1 is a refinement of T2

Table 1: Notation used in the CDP prediction framework.

children with heuristic value of 4 (for A these are grid cells (−1, 3) and (1, 3))
and one child with heuristic value of 2 (for A this is grid cell (0, 2)). B and C
are of another Tc type: with parent-pruning both generate one child with heuristic
value of 4 and one child with heuristic value of 2.

Intuitively, if T1 � T2 one would expect predictions using T1 to be at least as
accurate as the predictions using T2, since all the information that is being used
by T2 to condition its predictions is also being used by T1 ([7], p. 59). However,
our experiments show that this is not always true. The underlying cause of poorer
predictions by T1 when T1 � T2 is the discretization effect, which we will now
describe.

4. The Discretization Effect

In this section we identify a source of error in CDP’s predictions that has previ-
ously gone unnoticed, which we call the discretization effect. Understanding this
source of error allows us to propose a method to counteract it—the ε-truncation
method that is fully described in the next section.

Consider the state space shown in the left part of Figure 3. Each circle is a
state, and the number inside a circle is its heuristic value. All states in this space
have two neighbors. There is a chain containing c + 2 states, terminating at each

10

Figure 3: Example of the discretization effect. Numbers represent the heuristic value of a state,
and states with heuristic value of zero are goal states. The search graph has c states with heuristic
value of one and two goal states. The right part shows the search tree of the last iteration of IDA*
with start state k = 3 and cost bound d = 3; dashed lines represent pruned nodes.

p(t0|t1) 1
2c

p(t1|t1) 2c−1
2c

p(t0|t0) 3
4

p(t1|t0) 1
4

Table 2: Exact type-transition probabilities for the graph shown in Figure 3.

end with a self-loop, with two goal states at one end of the chain having a heuristic
value of 0 and the remaining c states having a heuristic value of 1. In this example
we ignore parent pruning and we use the following type system: T (s) = h(s).
Hence there are only two types: t0 is the type of the nodes with heuristic value
0, and t1 is the type of the nodes with heuristic value 1. The key feature of this
construction is that the probability of a node of type t1 generating a node of type
t0 can be made arbitrarily small by making c sufficiently large. Table 2 shows
the exact probabilities of each kind of transition between types. CDP’s sampling
would estimate these; Table 3 shows that the estimates (to two decimal places)
based on an exhaustive sample of size 12 for c = 10 are equal to the theoretical
values.

We are interested in the prediction for a single start state, the kth node with
heuristic value 1. Note that the solution depth for this state is d = k. The IDA*
search tree for start state k = 3 and cost bound d = 3 is shown in the right part
of Figure 3. Dashed lines represent nodes that are generated but not expanded
because their f -value exceeds d. When d = k, as in the figure, level i contains

11

p(t0|t1) 0.05

p(t1|t1) 0.95

p(t0|t0) 0.75

p(t1|t0) 0.25

Table 3: Transition probabilities estimated by sampling the state space in Figure 3 when c = 10.

2i expanded nodes, for 0 ≤ i < d, and level d contains one expanded node (the
one with heuristic value 0 is counted as being expanded), so the total number of
expanded nodes is 2d.

For start state k = 4, cost bound d = 4, and c = 10, IDA* expands 24 = 16
nodes but CDP, using the exact transition probabilities (see Table 3), predicts it
will expand 17.0264, an error of 1.0264. Table 4 summarizes CDP predictions at
each level. We see that CDP’s predictions of the total number of nodes expanded at
each level (rightmost column) is perfect at all levels except the last. The cause of
the error can be seen in the middle two columns, which show the predicted number
of nodes expanded at each level of a particular type. At every level CDP is over-
estimating the number of nodes of type t0 and correspondingly underestimating
the number of nodes of type t1. This occurs because one of the ten possible start
states of type t1 (namely, k = 1) would generate one child of type t0, while all the
others would generate none. This is represented in CDP’s predictions by saying
that every start state of type t1 generates 0.1 children of type t0. For start states
other than k = 1, probability mass is being drawn away from the true prediction
by an event that happens rarely for that type. Moreover, the error is compounded
at each successive level in the tree: already at level 3, the percentage of nodes of
type t0 has risen to more than 10% of the nodes at that level, whereas at level 1
only 5% of the nodes are predicted to be of type t0. These errors are invisible until
IDA*’s pruning starts to treat nodes of type t0 different than nodes of type t1. In
the example, this happens at level 4, where nodes of type t1 are pruned but nodes
of type t0 are not.

Note that we would obtain a smaller prediction error if we were to totally
ignore the rare event of t1 generating a child of type t0 by artificially setting the
p(t0|t1) entry in Table 3 to 0.0 and renormalizing p(t1|t1) (it would become 1.0).
With this change CDP would get exactly the right total number of nodes on all
levels except level 4, where it would predict that 0 nodes are expanded (since it
thinks they are all of type t1). This is an error of 1.00 compared to the error of
1.0264 obtained using the actual values in Table 3.

12

level t0 t1 total by level
0 0 1 1
1 0.1 1.9 2
2 0.34 3.66 4
3 0.876 7.124 8
4 2.0264 - 2.0264

total 3.3424 13.684 17.0264

Table 4: CDP prediction level by level when c = 10, k = 4, and d = 4. The dash represents a type
and level that was pruned off.

Our method is based on this idea of altering the estimated probabilities so that
rare events are ignored and common events correspondingly have their probabili-
ties increased. However, we do this in a more sophisticated manner than having a
global threshold to identify rare events. We use an optimization method to define
a threshold, εi, to be used at level i. This allows different levels to have different
definitions of “rare event”. Applied to the example in this section, our method will
set p(t0|t1) to 0 at levels 0 to 3, but will leave it as 0.05 at level 4. This keeps its
predictions perfect at levels 0 to 3 and predicts that there will be 0.8 (0.05 · 8 · 2)
nodes expanded at level 4, for an error of 0.2.

5. The ε-Truncation Prediction Method

Our ultimate goal is to minimize the error in predicting the number of nodes
expanded by IDA*. Section 4 suggests that this requires avoiding the discretiza-
tion effect—by ignoring small probabilities of generating nodes of a certain type.
The CDP system does not ignore small fractional numbers. By contrast, there is a
chance that minimizing the absolute error for type allocation vectors might force
the system to ignore some of these harmful small numbers.

It is hence natural to consider modifying the π-values used as estimates in CDP
according to the following procedure (P1).

Procedure (P1). For each type u ∈ T do:

1. Compute a redistribution of π(t|u) values, by solving the following opti-
mization problem for each level i.

Find a type allocation vector (a1, . . . , a|T |) that minimizes:

13

∑
t∈T

dN(i,u,s∗,d)·βue∑
j=0

pr(j, t, u, dN(i, u, s∗, d) · βue) · |(at − j)| (3)

subject to the following constraints:∑
t∈T

at = dN(i, u, s∗, d) · βue and at ≥ 0 for t ∈ T .

Here pr(j, t, u,N) is short for the estimated probability of gener-
ating exactly j children of type t from N many parents of type u,
i.e.,

pr(j, t, u,N) = π(t|u)j(1− π(t|u))N−j .

2. For each t′ ∈ T , replace π(t′|u) by at′/
∑

t∈T at.

However, Procedure (P1) is flawed. For any type t, it ignores the possibility
that a large number of states of distinct types occurring at one level can all generate
a state of type t with low probability, summing up to a large probability of having
a state of type t at the next level.

Example 3. Suppose at prediction level i one node each of 100 different types
t1, . . . , t100 occurs. Suppose further that each of these 100 types generates one
node of type t with probability 0.01. Procedure (P1) would correspond to solv-
ing at least 100 optimization problems (one for each type), potentially replacing
π(t|ti) by 0 for all i ∈ {1, . . . , 100}. Consequently, the prediction system might
suggest that no node of type t occurs at level i+ 1. However, it would be better to
consider the interaction of the 100 types t1, . . . , t100 at level i and to predict that
one node of type t will occur at level i+ 1.

In order to take into account that, for some type t, nodes of different types t1
and t2 may both generate nodes of type t at any level of prediction, we need to
reformulate Procedure (P1) using a system of “supertypes.”

5.1. Supertypes
Intuitively, a supertype at level i is a set of pairs (t, u) of types where type t

occurs at level i and type u is generated at level i+ 1.

14

Example 4. We now illustrate the concept of supertypes with the example of the
grid domain shown in Figure 2. We adopt the Th type system in this example.
Consider that at a given level of search we see node B of type (4, 3), with B
being generated by moving the agent from PB to B, and node D of type (2, 3),
with D being generated by moving the agent from PX to D. The pairs of types(
(4, 3), (3, 4)

)
and

(
(2, 3), (3, 4)

)
will be in the same supertype as both B of type

(4, 3) and D of type (2, 3) can generate a node of type (3, 4)—from B the agent
could move to PC and from D the agent could move to PD.

The following conditions should be met by the supertypes:

• If the set of types that can be generated by a type t1 occurring at level i
overlaps with the set of types that can be generated by a type t2 occurring at
level i—say both sets contain type u—then (t1, u) and (t2, u) will be in the
same supertype.

Consider for instance the four trees in Figure 4. Suppose nodes s1 and s2
of types t1 = Tgc(s1) and t2 = Tgc(s2), respectively, occur at level i of
the prediction. The types t1 and t2 can potentially generate pairs of type
t3 = Tgc(s3) and pairs of type t4 = Tgc(s4) at level i + 1 (following the
left branches of tree1 and tree2, framed in boxes in the figure). Hence we
would like to put (t1, t3) and (t2, t3) in one supertype for level i; similarly
we would put (t1, t4), and (t2, t4) in one supertype for level i.

• Any type u at level i + 1 will be generated by a single supertype at level
i. This is achieved by taking information from a coarser type system into
account. If t1 and t2 at level i can generate type u1 and u2, respectively,
at level i + 1, and u1 and u2 are indistinguishable in a fixed coarser type
system, then (t1, u1) and (t2, u2) will be in the same supertype for level i.

In the example in Figure 4, both s1 (of type t1) and s2 (of type t2) generate
nodes of type Tc(s′1) = Tc(s

′
2) in the coarser type system Tc (see the framed

boxes in tree1 and tree2). These state pairs at level i + 1 (see the framed
boxes in tree3 and tree4) could be of type t3 or t4 in the (refined) type sys-
tem Tgc. Thus (t1, t3), (t2, t3), (t1, t4), and (t2, t4) will all be in a single
supertype for level i.

Formally, we define supertype systems as follows.

Definition 5. Let T, T ′ be type systems, T � T ′, and t′ ∈ T ′. For all i, the su-
pertype st(t′, i, s) over T contains exactly the pairs (t1, t2) ∈ T × T for which

15

Figure 4: Four potential search subtrees for a search problem. Numbers inside the nodes denote
h-values. For j ∈ {1, 2, 3, 4}, treej determines the type Tgc(sj). The subtrees framed in boxes
determine the type Tc(s′1) = Tc(s

′
2) = Tc(s3) = Tc(s4).

T ′(t2) = t′ and t1 occurs at level i starting the prediction from s. The supertype
system ST (i, s) over T with respect to T ′ is defined by ST (i, s) = (st(t′1, i, s), . . . , st(t

′
z, i, s))

where T ′ = {t′1, . . . , t′z}. We write st instead of st(t′, i, s) whenever t′, i, s are
clear from context.

Let T, T ′ be type systems such that T � T ′ that induce the supertype ST (i, s∗).
In order to adapt CDP and Procedure (P1) to supertypes, we estimate, for each
node s∗, level i, cost bound d, type t, and supertype st ∈ ST (i, s∗), the probabil-
ity of generating a node of type t from a node of supertype st at level i. We denote
this estimate by πi,ds∗ (t|st), defined by

πi,ds∗ (t|st) =

∑
{tp|(tp,t)∈st} π(t|tp)βtpN(i, tp, s

∗, d)∑
{tp|(tp,t)∈st} βtpN(i, tp, s∗, d)

.

We write π(t|st) instead of πi,ds∗ (t|st), whenever i, d, and s∗ are clear from the
context.

The number of nodes NST (i, st, s∗, d) of a supertype st ∈ ST at a level i of
prediction is given by

NST (i, st, s∗, d) =
∑

(tp,tc)∈st

N(i, tp, s
∗, d)βtp . (4)

We then reformulate the CDP formula equivalently, computing N(i, t, s∗, d)
by

N(i, t, s∗, d) =
∑
st∈ST

NST (i− 1, st, s∗, d)πi−1,ds∗ (t|st)P (t, i, d) , (5)

16

instead of Equation (2). Note that, in contrast with Equation (2), Equation (5)
does not include any β-values as factors, due to the fact that those are already
incorporated in the calculation in the NST values in Equation (4).

Procedure (P1) would then be adapted to the following procedure (P2).
Procedure (P1). For each supertype st ∈ ST at any level i do:

1. Compute a redistribution of π(t|st) values, by solving the following opti-
mization problem.

Find a type allocation vector (a1, . . . , a|T |) that minimizes:

∑
t∈T

dNST (i,st,s∗,d)e∑
j=0

pr(j, t, st, dNST (i, st, s∗, d)e) · |(at − j)| (6)

subject to the following constraints:∑
t∈T

at = dNST (i, st, s∗, d)e and at ≥ 0 for t ∈ T .

Here pr(j, t, st, N) is short for the probability of generating ex-
actly j children of type t from N many parents of supertype st,
i.e.,

pr(j, t, st, N) = π(t|st)j(1− π(t|st))N−j .

2. For each each t′ ∈ T , replace π(t′|st) by at′/
∑

t∈T at.

5.2. ε-Truncation as a Preprocessing Step
Ideally, one would now follow Procedure (P2) at every step of the predic-

tion. However, although the optimization problem can be solved in polynomial
type, solving distinct instances at every step of prediction is computationally pro-
hibitive. For example, in an experiment we ran on the (4x4) 15 sliding-tile puz-
zle, following Procedure (P2) at every step of the prediction was almost three
orders of magnitude slower than CDP without the optimization. We hence de-
veloped a method that sacrifices the optimality of the optimization problem in
Procedure (P2) for feasibility, by redistributing π(t|st) values and π(t|u) values
only in a pre-processing step. The goal of this pre-processing step is to find, for
each level i, a cutoff value εi, below which π(t|u) values will be set to zero. Our
approach, called ε-truncation, can be summarized as follows.

17

1. As before, sample the state space to obtain π(t|u) and βu for each t, u ∈ T .
2. For each level i ∈ {1, . . . , d} compute a cutoff value εi. (This step will be

explained in detail below.)
3. For each level i and each t, u ∈ T , replace the estimate π(t|u) by an estimate
πi(t|u) that is specific to level i. πi(t|u) is determined as follows.

(a) If π(t|u) < εi then πi(t|u) = 0.
(b) If π(t|u) ≥ εi then

πi(t|u) =
π(t|u)∑

v∈T,π(v|u)≥εi π(v|u)
.

Thus the π(t|u) values not smaller than εi are scaled so that they sum
up to 1.

4. In computing CDP use πi(t|u) at level i instead of π(t|u).

The key step in this process is Step 2, the calculation of the εi values.

2. For each level i ∈ {1, . . . , d} compute a cutoff value εi as follows.
(a) Solve a (small) specified number z of instances of Equation (6) for

level i.
(b) For every previously estimated value π(t|st), compute the fraction of

times that this π(·|·)-value was set to zero in the z solutions to Equa-
tion (6) for level i.
In Figure 5 the set of values that π(t|st) can assume corresponds to
the x-axis. The fraction of times a π(·|·)-value was set to zero is the
corresponding value on the y-axis.

(c) Compute a candidate cutoff value ε̂i as follows. ε̂i is the largest π(t|st)
for which all values π ≤ π(t|st) were set to zero in at least 50% of the
z instances at level i.
In Figure 5 this is the smallest x-value at which the curve intersects
the horizontal y=0.5 line. We thus suggest to ignore (i.e., set to zero)
only probabilities π(·|·) that were set to zero in the majority of the z
solutions to the optimization problem.

(d) Compute the actual cutoff value εi as follows:
i. If for each type u ∈ T there is at least one type t ∈ T such that
π(t|u) ≥ ε̂i, let εi = ε̂i.
In this case, it is safe to use ε̂i as a cutoff value, since for each
u ∈ T there will be some π(·|u)-value that is not set to zero.

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

p
e
rc

.
o
f
ti
m

e
s
 t
h
e
 p

ro
b
.

o
f
a
 t

y
p
e
 b

e
in

g
 g

e
n
.
w

a
s
 s

e
t
to

 z
e
ro

probability of a type being generated by a super type

level 10
level 21

Figure 5: ε̂i calculation for i=10 and i=21 (8-puzzle with Manhattan Distance).

Level (i) 10 11-12 13 14 15 16-17 18-19 20-23 24
εi 0.05 0.07 0.08 0.07 0.05 0.04 0.03 0.01 0.00

Table 5: εi values for the 8-puzzle with Manhattan Distance.

ii. If for some type u ∈ T there is no type t ∈ T such that π(t|u) ≥
ε̂i, let εi be the largest value δi < ε̂i such that, for all u ∈ T there
is some t ∈ T such that π(t|u) ≥ δi.
In this case, we cannot use ε̂i as a cutoff value, since this would
imply setting all π(·|u) values to zero, for type u.

For illustration, Table 5 shows the εi values calculated using 10,000 randomly
generated start states for the 8-puzzle with Manhattan Distance. The value of 0.05
for level 15 in Table 5 means that, out of the 10,000 searches, the majority of
types that were generated with probability of 0.05 or lower at level 15 had their
values of p(·|·) set to zero by the optimization algorithm. In this table, as in all the
experiments in this paper, the εi values approach zero as i gets larger.

CDP is applicable only in situations in which one is interested in making a
large number of predictions, so that the time required for sampling is amortized.

19

We show in the next section that the ε-truncation procedure can substantially in-
crease the accuracy of the CDP predictions. However, this improvement in accu-
racy comes at the cost of an increased preprocessing time. For instance, it takes
approximately 10 hours to sample one billion random states to approximate the
values of p(t|u) and bu for the 15-puzzle. The ε-truncation procedure adds another
15 hours of preprocessing for finding the value of εi. In the experiments described
in the next section we assume one is interested in making a sufficiently large
number of predictions, so that the preprocessing time required by ε-truncation is
amortized.

6. Experimental Results on ε-Truncation

This section presents the results of experiments showing that: (a) refining a
type system often reduces prediction accuracy; (b) ε-truncation often substantially
improves predictions; (c) ε-truncation of a refinement of a type system usually
gives greater improvements than ε-truncation of the basic type system, and (d)
ε-truncation rarely reduces the prediction accuracy. Each experiment will use two
type systems, a basic one and a refinement of the basic one, and will compare the
predictions made by CDP with each type system and with ε-truncation applied to
both type systems.

Domains. Our experiments are run on three domains: the sliding-tile puzzle,
the pancake puzzle, and Rubik’s Cube.

• sliding-tile puzzle [13] – The sliding-tile puzzle with parameters n and m
consists of n×m−1 numbered tiles that can be moved in an n×m grid. A
state is a vector of length n×m in which component k names what is located
in the kth puzzle position (either a number in {1, . . . , n×m−1} representing
a tile or a special symbol representing the blank). Every operator swaps the
blank with a tile adjacent to it. The left part of Figure 6 shows the goal
state that we used for the (4 × 4)-puzzle, also called the 15-puzzle, while
the right part shows a state created from the goal state by applying two
operators, namely swapping the blank with tile 1 and then swapping it with
tile 5. The number of states reachable from any given state is (n ×m)!/2,
cf. [14].

We use three sizes of the sliding-tile puzzle: two that are small enough
that the entire reachable portion of the state space can be enumerated and
used in lieu of “sampling”—the (3 × 3)-puzzle, also called the 8-puzzle,

20

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

1 5 2 3
4 6 7
8 9 10 11

12 13 14 15

Figure 6: The goal state for the 15-puzzle (left) and a state two moves from the goal (right).

and the (3 × 4)-puzzle—and one that is large enough to be of practical
interest—the 15-puzzle. The small domains are an important element of the
experiments because phenomena witnessed in them cannot be attributed to
sampling effects.

• pancake puzzle [15] – In the pancake puzzle with parameter n, a state is
a permutation of n numbered tiles and has n − 1 successors, with the lth

successor formed by reversing the order of the first l + 1 positions of the
permutation (1 ≤ l ≤ n − 1). The upper part of Figure 7 shows the goal
state of the 15-pancake puzzle, while the lower part shows a state in which
the first four positions have been reversed.

1 2 3 4 5 · · · 14 15

4 3 2 1 5 · · · 14 15

Figure 7: The goal state for the 15-pancake puzzle (above) and a state one move from the goal
(below).

All n! permutations are reachable from any given state. We report results
for n = 15 which contains 15! reachable states.

One may think of each tile as a pancake and each permutation as a pile
of pancakes that have to be sorted into the goal permutation. To move a
pancake from position 1 into position p in the pile, all the pancakes stacked
from position 1 to position p have to be flipped together.

• Rubik’s Cube [16] – Rubik’s Cube is a 3 × 3 × 3 cube made up of 20
moveable 1 × 1 × 1 “cubies” with colored stickers on each exposed face.
Each face of the cube can be independently rotated by 90 degrees clockwise
or counterclockwise, or by 180 degrees. The left part of Figure 8 shows the
goal state for Rubik’s Cube while the right part shows the state produced by
rotating the right face 90 degrees counterclockwise.

21

Figure 8: Rubik’s Cube (modified from Zahavi et al. [7])

Experimental Setup. The choice of the set of start states will be described in
the specific sections below, but we always applied the same principle as Zahavi et
al. [7]: start state s is included in the experiment with cost bound d only if IDA*
would actually have used d as a cost bound in its search with s as the start state;
Zahavi et al. called this selection of s and d the restricted selection and showed
that if the selection of s and d is not restricted, the number of nodes expanded by
the IDA* in the experiments would be substantially different than the number of
nodes expanded by the algorithm in real situations (cf. Table 5 of Zahavi et al. [7]).
Like Zahavi et al., we are interested in verifying the accuracy of the predictions
in real situations, thus we also adopt the restricted selection. As mentioned in
Section 2, unlike an actual IDA* run, we count the number of nodes expanded
in the entire iteration for a start state even if the goal is encountered during the
iteration.

The number of start states used to determine the εi values is closely related
to the value of r that will be used in the experiment — recall that the value of
r determines the level at which CDP collects states to seed the prediction. For
example, the number of states at level 10 of the 8-puzzle is expected to be much
lower than the number of states at level 25 of the 15-puzzle. Therefore, in order
to find suitable ε-values for the 8-puzzle we have to use more start states than are
required to determine ε-values for the 15-puzzle. The number of states used to
determine the εi values is stated below for each experiment.

Error Measures. We report the prediction results using three different mea-
sures: Relative Signed Error, Relative Unsigned Error, and Root Mean Squared
Relative Error (RMSRE).

• Relative Signed Error – For each prediction system we will report the ra-
tio of the predicted number of nodes expanded, averaged over all the start

22

states, to the actual number of nodes expanded, on average, by IDA*. Let
PI be the set of problem instances used in an experiment; CDP(s, d, h, T)
is the predicted number of nodes expanded by IDA* for start state s, cost
bound d, heuristic function h, and type system T ; A(s, d) is the actual num-
ber of nodes expanded by IDA* when s is the start state with cost bound d.
The relative signed error for experiment with PI is calculated as follows.∑

s∈PI CDP(s, d, h, T)∑
s∈PI A(s, d)

This ratio will be rounded to two decimal places. Thus a ratio of 1.00 does
not necessarily mean the prediction is perfect, it just means the ratio is closer
to 1.00 than it is to 0.99 or 1.01. This ratio we call the relative signed error.
It is the same as the “Ratio” reported by Zahavi et al. [7] and is appropriate
when one is interested in predicting the total number of nodes that will be
expanded in solving a set of start states. It is not appropriate for measuring
the accuracy of the predictions on individual start states because errors with
a positive sign cancel errors with a negative sign. If these exactly balance
out, a system will appear to have no error (a ratio of 1.00) even though there
might be substantial error in every single prediction.

• Relative Unsigned Error – To evaluate the accuracy of individual predic-
tions, an appropriate measure is relative unsigned error, calculated as fol-
lows.

∑
s∈PI

|CDP(s,d,h,T)−A(s,d)|
A(s,d)

|PI|

A perfect score according to this measure is 0.00.

• RMSRE – Another error measure we use to compare predictions for indi-
vidual start states is the root mean squared relative error (RMSRE), which
is calculated as follows.√√√√∑s∈PI(

CDP(s,d,h,T)−A(s,d)
A(s,d)

)2

|PI|

A perfect score according to this measure is 0.00.

23

All our experiments were run on an Intel Xeon CPU X5650, 2.67GHz.

6.1. Sliding-Tile Puzzles
We used the same type system as Zahavi et al. [7], which is a refinement of Th

we call Th,b. Th,b is defined by Th,b(s) = (Th, blank(parent(s)), blank(s)) where
blank(s) returns the kind of location (corner, edge, or middle) the blank occupies
in state s. For instance, if we assume that the righthand state in Figure 6 (let us call
it s) was generated by moving tile 4 to the left, then we would have the following
Th,b type for s: (3, 2, E,M). The 3 in the tuple stands for the heuristic value of
the parent of s (we assume the heuristic being used is Manhattan Distance); the
2 stands for the heuristic value of s; the E tells us that the blank position of the
parent of s was on an edge; finally, the M means that the blank is on a middle
position in s.

For the (3x4)-puzzle there are two kinds of edge locations that blank(s) needs
to distinguish—edge locations on the short side (length 3) and edge locations on
the long side (length 4). Tgc,b is defined analogously. For square versions of the
puzzle, Tgc is exactly the same as Tgc,b and therefore Tgc � Th,b. However, for
the (3x4)-puzzle, Tgc and Tgc,b are not equal. We used the following coarse type
systems to define the supertypes for Tgc, Tgc,b, and Th,b: Tc, Tc augmented with the
kind of blank location of the parent of the node, and Tp,b(s) = (h(s), blank(s)),
respectively.

For the 8-puzzle we used 10,000 random start states to determine the εi values
and every solvable state in the space to measure prediction accuracy. The upper
part of Table 6 shows the results for the Manhattan Distance heuristic, which is
admissible and consistent, with r=10. The bold entries in this and all other tables
of results indicate the best predictions for a given error measure. Here we see
a few cases of the informativeness pathology: Tgc’s predictions are worse than
Th,b’s, despite its being a refinement of Th,b. Applying ε-truncation substantially
reduces Tgc’s prediction error for all three error measures.

We also ran experiments on the 8-puzzle using the inconsistent heuristic de-
fined by Zahavi et al. [7]. Two pattern databases (PDBs) [8] were built, one based
on the identities of the blank and tiles 1–4 (tiles 5–8 were indistinguishable), and
another based on the identities of the blank and tiles 5–8 (tiles 1–4 were indistin-
guishable). The locations in the puzzle are numbered in increasing order left-to-
right and top-to-bottom and the first PDB is consulted for states having the blank
in an even location; the second PDB is consulted otherwise. Since the blank’s
location changes parity every time it moves, we are guaranteed that the heuristic
value of a child node will be taken from a different PDB than that of its parent.

24

Signed Error Unsigned Error RMSRE
d IDA* Th,b ε-Th,b Tgc ε-Tgc Th,b ε-Th,b Tgc ε-Tgc Th,b ε-Th,b Tgc ε-Tgc

Manhattan Distance. r=10.
18 134.4 1.00 1.00 1.00 1.00 0.03 0.03 0.01 0.01 0.05 0.05 0.02 0.02
19 238.4 1.00 1.00 1.00 1.00 0.04 0.04 0.01 0.01 0.05 0.05 0.02 0.02
20 360.1 1.01 1.01 1.01 0.99 0.05 0.05 0.03 0.02 0.07 0.07 0.04 0.03
21 630.7 1.00 1.00 1.02 0.99 0.06 0.06 0.03 0.03 0.07 0.07 0.04 0.04
22 950.6 1.01 1.01 1.03 0.98 0.07 0.07 0.05 0.04 0.09 0.09 0.06 0.05
23 1,649.5 1.00 1.00 1.04 0.98 0.07 0.07 0.05 0.04 0.09 0.09 0.06 0.05
24 2,457.5 1.01 1.01 1.06 0.97 0.08 0.08 0.08 0.05 0.11 0.11 0.09 0.07
25 4,245.5 1.00 1.00 1.07 0.97 0.09 0.09 0.08 0.05 0.11 0.11 0.09 0.06
26 6,294.4 1.00 1.00 1.10 0.96 0.10 0.10 0.10 0.06 0.12 0.12 0.12 0.08
27 10,994.9 0.99 0.99 1.11 0.97 0.11 0.11 0.11 0.06 0.14 0.14 0.13 0.08

Inconsistent Heuristic. r=1.
18 14.5 0.71 0.78 1.16 1.02 0.37 0.42 0.43 0.36 0.55 0.67 0.69 0.57
19 22.2 0.72 0.73 1.19 1.01 0.45 0.45 0.49 0.39 0.59 0.59 0.69 0.54
20 27.4 0.73 0.82 1.23 0.98 0.45 0.50 0.54 0.40 0.62 0.75 0.78 0.57
21 43.3 0.74 0.77 1.27 0.99 0.48 0.49 0.56 0.40 0.63 0.65 0.77 0.53
22 58.5 0.75 0.83 1.33 0.95 0.47 0.51 0.62 0.40 0.63 0.73 0.86 0.54
23 95.4 0.75 0.81 1.39 0.97 0.48 0.49 0.62 0.38 0.63 0.68 0.84 0.50
24 135.7 0.76 0.84 1.45 0.92 0.45 0.47 0.65 0.37 0.58 0.66 0.90 0.49
25 226.7 0.76 0.83 1.51 0.97 0.43 0.42 0.65 0.33 0.55 0.57 0.88 0.44
26 327.8 0.76 0.85 1.57 0.91 0.41 0.39 0.67 0.30 0.49 0.51 0.90 0.40
27 562.0 0.76 0.85 1.63 0.98 0.39 0.36 0.66 0.26 0.46 0.44 0.86 0.34

Same Inconsistent Heuristic. r=10.
18 14.5 0.88 0.90 1.00 1.00 0.04 0.04 0.01 0.01 0.11 0.10 0.03 0.03
19 22.2 0.87 0.88 1.00 1.00 0.06 0.06 0.01 0.01 0.13 0.12 0.05 0.05
20 27.4 0.86 0.87 1.01 1.01 0.07 0.07 0.03 0.03 0.15 0.14 0.07 0.07
21 43.3 0.86 0.87 1.02 1.02 0.09 0.09 0.04 0.04 0.16 0.16 0.09 0.09
22 58.5 0.85 0.85 1.03 1.03 0.11 0.10 0.07 0.07 0.18 0.17 0.12 0.12
23 95.4 0.84 0.85 1.05 1.04 0.13 0.12 0.09 0.09 0.19 0.18 0.14 0.13
24 135.7 0.83 0.83 1.07 1.05 0.15 0.15 0.11 0.10 0.21 0.20 0.15 0.14
25 226.7 0.82 0.82 1.10 1.06 0.17 0.17 0.13 0.12 0.22 0.22 0.17 0.15
26 327.8 0.81 0.82 1.13 1.07 0.19 0.19 0.16 0.13 0.23 0.23 0.19 0.16
27 562.0 0.81 0.80 1.17 1.08 0.21 0.21 0.18 0.13 0.24 0.24 0.22 0.16

Table 6: 8-puzzle.

Heuristics defined by PDBs are admissible and consistent, but as we are alternat-
ing the lookup between two different PDBs the resulting heuristic is admissible
but inconsistent. Again we used 10,000 random start states to determine the εi
values and every solvable state in the space to measure prediction accuracy. The
results of this experiment, with r=1, are shown in the middle part of Table 6. They
exhibit the informativeness pathology and demonstrate that ε-truncation can sub-
stantially reduce prediction error. ε-truncation produces slightly worse predictions
when using the coarser type system for some of the cost bounds when measuring
unsigned error or RMSRE (see d=20, 21, 22, 23, 24, 25, 26 in the middle part of
Table 6). Note, however, that this decrease in accuracy is not observed when

25

signed error is measured. Large overestimations and underestimations of the ac-
tual number of nodes expanded might cancel each other out when the signed error
is measured, giving the impression that the predictions are accurate even if they
are not. The decrease in performance caused by ε-truncation disappears for larger
values of r as shown in the bottom part of Table 6. The improvements in accuracy
by ε-truncation are still observed in the bottom part of Table 6.

For the (3x4)-puzzle we used 10 random start states to determine the εi values
and 10,000 to measure prediction accuracy. The upper part of Table 7 shows the
results for Manhattan Distance. Both the unsigned error and the RMSRE for Tgc,b
are very close to those for Th,b’s, suggesting that being more informed provides no
advantage. ε-truncation substantially improves Tgc,b’s predictions in all three error
measures. The lower part of the table is for Manhattan Distance multiplied by 1.5,
which is inadmissible and inconsistent. Here Tgc,b’s predictions are considerably
more accurate than Th,b’s and are substantially improved by ε-truncation. In both
cases ε-truncation did not modify the predictions for Th.

Signed Error Unsigned Error RMSRE
d IDA* Th,b ε-Th,b Tgc,b ε-Tgc,b Th,b ε-Th,b Tgc,b ε-Tgc,b Th,b ε-Th,b Tgc,b ε-Tgc,b

Manhattan Distance.
33 30,461.9 1.02 1.02 1.01 1.00 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01
34 49,576.8 1.02 1.02 1.02 1.01 0.02 0.02 0.02 0.01 0.03 0.03 0.02 0.01
35 80,688.2 1.04 1.04 1.04 1.01 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.02
36 127,733.4 1.05 1.05 1.05 1.02 0.05 0.05 0.04 0.02 0.06 0.06 0.05 0.03
37 201,822.7 1.07 1.07 1.08 1.03 0.06 0.06 0.06 0.03 0.08 0.08 0.07 0.04
38 327,835.3 1.09 1.09 1.11 1.04 0.08 0.08 0.09 0.04 0.10 0.10 0.10 0.05
39 478,092.5 1.12 1.12 1.15 1.05 0.11 0.11 0.13 0.06 0.13 0.13 0.14 0.07
40 822,055.4 1.16 1.16 1.20 1.07 0.14 0.14 0.17 0.08 0.17 0.17 0.19 0.09
41 1,163,312.1 1.20 1.20 1.26 1.10 0.17 0.17 0.23 0.10 0.21 0.21 0.25 0.12
42 1,843,732.2 1.27 1.27 1.34 1.13 0.23 0.23 0.30 0.13 0.27 0.27 0.32 0.15

Manhattan Distance multiplied by 1.5.
33 926.2 1.05 1.04 1.01 1.00 0.02 0.02 0.00 0.00 0.04 0.03 0.01 0.01
34 1,286.9 1.06 1.06 1.02 1.00 0.03 0.02 0.01 0.01 0.05 0.05 0.02 0.02
35 2,225.6 1.09 1.08 1.03 1.00 0.05 0.05 0.02 0.01 0.07 0.07 0.03 0.02
36 2,670.7 1.11 1.10 1.04 0.99 0.06 0.05 0.02 0.01 0.09 0.09 0.04 0.03
37 3,519.5 1.14 1.13 1.06 0.99 0.08 0.08 0.04 0.02 0.12 0.11 0.06 0.04
38 5,570.8 1.19 1.18 1.09 0.98 0.12 0.12 0.06 0.03 0.16 0.16 0.08 0.05
39 6,983.8 1.23 1.22 1.12 0.97 0.15 0.15 0.08 0.03 0.20 0.20 0.11 0.06
40 9,103.3 1.29 1.28 1.18 0.97 0.19 0.19 0.12 0.05 0.25 0.25 0.16 0.08
41 13,635.3 1.36 1.36 1.24 0.96 0.27 0.27 0.18 0.06 0.33 0.33 0.21 0.09
42 16,634.2 1.43 1.43 1.30 0.95 0.32 0.32 0.22 0.07 0.39 0.39 0.27 0.10

Table 7: (3x4)-puzzle. r=20.

For the 15-puzzle, we used 5 random start states to determine the εi values
and 1,000 to measure prediction accuracy. To define π(t|u) and βt, one billion

26

random states were sampled and, in addition, we used the process described by
Zahavi et al. [7] to non-randomly extend the sampling: we sampled the child of
a sampled state if the type of that child had not yet been sampled. Table 8 shows
the results when Manhattan Distance is the heuristic and Th,b and Tgc are the type
systems. Here again we see the informativeness pathology (Th,b’s predictions are
better than Tgc’s) which is eliminated by ε-truncation. Like for the (3x4)-puzzle,
ε-truncation does not modify the predictions when using the coarser type system.

Signed Error Unsigned Error RMSRE
d IDA* Th,b ε-Th,b Tgc ε-Tgc Th,b ε-Th,b Tgc ε-Tgc Th,b ε-Th,b Tgc ε-Tgc
50 8,909,564.5 1.16 1.16 1.18 1.08 0.09 0.09 0.10 0.05 0.12 0.12 0.12 0.07
51 15,427,786.9 1.15 1.15 1.19 1.07 0.11 0.11 0.12 0.07 0.13 0.13 0.14 0.08
52 28,308,808.8 1.25 1.25 1.28 1.14 0.14 0.14 0.17 0.09 0.18 0.18 0.20 0.11
53 45,086,452.6 1.23 1.23 1.29 1.13 0.16 0.16 0.20 0.11 0.20 0.20 0.23 0.13
54 85,024,463.5 1.36 1.36 1.41 1.22 0.21 0.21 0.27 0.15 0.26 0.26 0.30 0.17
55 123,478,361.5 1.36 1.36 1.45 1.24 0.24 0.24 0.31 0.17 0.29 0.29 0.34 0.20
56 261,945,964.0 1.44 1.44 1.54 1.30 0.28 0.28 0.39 0.21 0.35 0.35 0.43 0.25
57 218,593,372.3 1.43 1.43 1.57 1.32 0.33 0.33 0.45 0.26 0.40 0.40 0.49 0.30

Table 8: 15-puzzle. Manhattan Distance. r=25.

Signed Error Unsigned Error RMSRE
d IDA* Th,b ε-Th,b Tc ε-Tc Th,b ε-Th,b Tc ε-Tc Th,b ε-Th,b Tc ε-Tc
50 562,708.5 0.55 0.24 1.77 1.20 537.97 124.62 1.29 1.17 3,157.70 733.36 2.14 2.08
51 965,792.6 0.70 0.31 1.39 1.04 812.37 157.73 1.32 1.12 6,449.94 1,236.62 2.30 1.92
52 1,438,694.0 0.96 0.43 1.68 1.23 513.99 151.99 1.52 1.35 2,807.23 696.84 2.51 2.34
53 2,368,940.3 1.29 0.58 1.75 1.32 694.34 216.27 1.56 1.26 5,665.10 1,696.83 2.56 2.05
54 3,749,519.9 1.64 0.73 2.03 1.54 647.24 226.79 1.77 1.53 3,309.93 1,054.35 2.75 2.46
55 7,360,297.6 1.90 0.86 2.07 1.59 650.59 246.84 1.72 1.35 5,080.16 1,900.50 2.68 2.12
56 12,267,171.0 2.30 1.03 2.19 1.61 927.71 367.99 2.16 1.86 6,380.99 2,454.03 3.53 3.41
57 23,517,650.8 2.69 1.21 2.29 1.78 600.13 243.38 2.02 1.55 3,819.40 1,522.75 3.08 2.40

Table 9: 15-puzzle. Inconsistent Heuristic. r=1.

Like for the 8-puzzle, an inconsistent heuristic for the 15-puzzle was created
with one PDB based on the identities of the blank and tiles 1–7, and another
that kept the identities of the blank and tiles 9–15, exactly as used by Zahavi
et al. (see their Table 11). We alternate the PDB that is used for the heuristic
lookup depending on the position of the blank as described for the 8-puzzle. The
results with Th,b and Tc as type systems are shown in Table 9. Here we see that
even though Th,b presents a reasonable signed error, it has in fact a very large
unsigned error and RMSRE, and once again ε-truncation produced substantial
improvement in prediction accuracy—in this case for both coarse and refined type
systems. These prediction results could be improved by increasing the r-value

27

used. However, we wanted our results to be comparable to those in Zahavi et al.’s
Table 11.

6.2. Pancake Puzzle
For the 15-pancake puzzle, we used 10 random start states to determine the εi

values and 1,000 to measure prediction accuracy. We used Th and Tc as the type
systems. The coarser type systems used to define the supertypes for Tc and Th
were Th and Tp(s) = (h(s)), respectively. To define π(t|u) and βt, 100 million
random states were sampled and, in addition, we used the extended sampling
process described for the 15-puzzle. The results with r=4 and a PDB heuristic
that keeps the identities of the smallest eight pancakes are shown in the upper part
of Table 10. In both cases Tc outperforms Th but is also substantially improved
by ε-truncation. As in the previous experiment, here ε-truncation does not modify
the predictions for the coarser type system.

Signed Error Unsigned Error RMSRE
d IDA* Th ε-Th Tc ε-Tc Th ε-Th Tc ε-Tc Th ε-Th Tc ε-Tc

Admissible and Consistent Heuristic
11 44,771.2 1.12 1.12 1.06 1.00 0.51 0.51 0.19 0.13 0.59 0.59 0.22 0.15
12 346,324.5 1.15 1.15 1.07 0.98 0.59 0.59 0.23 0.14 0.70 0.70 0.27 0.18
13 2,408,281.6 1.27 1.27 1.14 1.01 0.63 0.63 0.25 0.15 0.74 0.74 0.30 0.19
14 20,168,716.0 1.37 1.37 1.19 1.05 0.67 0.67 0.28 0.17 0.78 0.78 0.33 0.21
15 127,411,357.4 1.60 1.60 1.30 1.15 0.76 0.76 0.32 0.20 0.84 0.84 0.37 0.25

The heuristic above multiplied by 1.5
12 188,177.1 1.99 1.99 1.25 1.13 1.50 1.50 0.50 0.37 1.78 1.78 0.62 0.47
13 398,418.8 2.12 2.12 1.31 1.12 1.61 1.61 0.52 0.39 2.08 2.08 0.74 0.54
14 3,390,387.6 2.31 2.31 1.37 1.11 1.62 1.62 0.50 0.32 1.96 1.96 0.68 0.44
15 6,477,150.7 2.23 2.23 1.27 0.98 1.73 1.73 0.54 0.36 2.23 2.23 0.75 0.49
16 16,848,215.1 2.79 2.79 1.49 1.12 1.97 1.97 0.55 0.37 2.46 2.46 0.75 0.47

Table 10: 15-pancake puzzle. r=4.

6.3. Rubik’s Cube
For the 3 × 3 × 3 Rubik’s Cube we used 10 random start states to determine

the εi values and 1,000 to measure prediction accuracy. We sampled 100 million
random states. The random states were generated by random walks from the goal
state, whose length was randomly selected between 0 and 180 steps. We prune
redundant moves in the main search as described by Korf [16], which reduces the
branching factor from 18 to approximately 13.35. Korf considered two kinds of
redundant move pruning. First, he noted that twisting the same face twice in a row
leads to redundant states; second, twisting the front face and then the back face

28

leads to the same state as twisting the faces in opposite order. We used the same
procedure described by Zahavi et al. [7] to implement redundant move pruning
during sampling: the last operator in the random walk is used as a basis to prune
redundant moves. We used Th and Tc as the type systems. The coarser type
systems used to define the supertypes for Th and Tc were Tp and Th, respectively.
The heuristic we used was a PDB of the 8 corner cubies [16] over an abstraction
on the sides of the puzzle. The corner cubies are those with three sides exposed
in the puzzle, see Figure 8. The abstraction was built by mapping three colors to
one color and the other three colors to a second color, in such a way that, in the
abstract goal state, two opposite sides of the cube always differ in color.

Signed Error Unsigned Error RMSRE
d IDA* Th ε-Th Tc ε-Tc Th ε-Th Tc ε-Tc Th ε-Th Tc ε-Tc

Admissible and Consistent Heuristic
9 119,506.2 0.94 0.94 0.99 0.99 0.06 0.06 0.02 0.02 0.07 0.07 0.03 0.03
10 1,626,583.9 0.94 0.94 0.99 0.99 0.06 0.06 0.02 0.02 0.07 0.07 0.03 0.03
11 21,985,207.8 0.94 0.94 0.99 0.99 0.06 0.06 0.02 0.02 0.07 0.07 0.03 0.03
12 295,893,415.9 0.93 0.93 0.99 0.99 0.06 0.06 0.02 0.02 0.07 0.07 0.03 0.03

The heuristic above multiplied by 1.5
9 7,515.5 0.91 0.91 0.98 0.98 0.08 0.08 0.02 0.02 0.09 0.09 0.03 0.03
10 51,616.2 0.91 0.91 0.98 0.98 0.08 0.08 0.02 0.02 0.10 0.10 0.03 0.03
11 685,630.9 0.91 0.91 0.98 0.98 0.07 0.07 0.03 0.03 0.09 0.09 0.04 0.04
12 8,674,465.2 0.91 0.91 0.98 0.98 0.07 0.07 0.02 0.02 0.09 0.09 0.03 0.03
13 116,376,337.0 0.91 0.91 0.98 0.98 0.07 0.07 0.02 0.02 0.08 0.08 0.03 0.03

Table 11: 3× 3× 3 Rubik’s Cube. r=3.

The upper part of Table 11 shows the results while using the admissible and
consistent heuristic described above. Here, Th results in fairly accurate predic-
tions, which are further improved when Tc is used. ε-truncation does not modify
the predictions in this case.

The lower part of Table 11 shows the results when the admissible and con-
sistent heuristic used in the previous experiment is multiplied by 1.5. The result-
ing heuristic is inadmissible and inconsistent. Similar to the previous experiment,
CDPmakes very accurate predictions and ε-truncation does not modify the results.

7. Lookup CDP

We have demonstrated that ε-truncation improves the accuracy of the CDP pre-
dictions. We now present Lookup CDP (L-CDP), a variant of CDP that improves
its runtime; it can be orders of magnitude faster than CDP. L-CDP takes advantage

29

of the fact that the CDP predictions are decomposable into independent subprob-
lems. The number of nodes expanded by each node s in the outermost summation
in Equation 1 can be calculated separately. Each pair (t, d) where t is a type and d
is a cost bound represents one of these independent subproblems. In the example
of Figure 1, the problem of predicting the number of nodes expanded by IDA* for
start state s0 and cost bound d could be decomposed into two independent sub-
problems, one for (u1, d− 1) and another for (u2, d− 1); the sum of the solutions
to these subproblems plus one (as the start state was expanded) gives the solution
to the initial problem. In L-CDP, the predicted number of nodes expanded by
each pair (t, d) is computed in a preprocessing step and stored in a lookup table.
The number of entries stored in the lookup table depends on the number of types
|T | and on the number of different cost bounds d. For instance, the type system
we use for the 15-pancake puzzle has approximately 3,000 different types, and
the number of different cost bounds in this domain is 16, which results in only
3, 000× 16 = 48, 000 entries to be precomputed and stored in memory. If the val-
ues of d are not known a priori, L-CDP can be used as a caching system. In this
case L-CDP builds its lookup table as the user asks for predictions for different
start states and cost bounds. Once the solution of a subproblem is computed, its
result is stored in the lookup table and it is never computed again.

The following procedure summarizes L-CDP.

1. As in CDP, we sample the state space to approximate the values of p(t′|t)
and bt and to compute the ε-values needed for ε-truncation [11].

2. We compute the predicted number of nodes expanded for each pair (t, d)
and store the results in a lookup table. This is done with dynamic program-
ming: pairs (t, d) with smaller values of d are computed first. This way,
when computing the (t, k)-values for a fixed k, we can use the (t, k′)-values
with k′ < k that were already computed.

3. For start state s∗ and cost bound d we collect the set of nodes Cr. Then,
for each node in Cr with type t, we sum the entries of the (t, d − r)-values
from our lookup table. This sum added to the number of nodes expanded
while collecting the nodes in Cr is the predicted number of nodes expanded
by IDA* for s∗ and d.

The worst-case time complexity of a CDP prediction is O(|T |2 · (d− r) +Qr)
as there can be |T | types at a level of prediction that generate |T | types on the next
level. d − r is the largest number of prediction levels in a CDP run. Finally, Qr

is the number of nodes generated while collecting Cr. The time complexity of an

30

L-CDP prediction (Step 3 above) is O(Qr) as the preprocessing step has reduced
the L-CDP computation for a given type to a constant-time table lookup. The
preprocessing L-CDP does is not significantly more costly than the preprocessing
CDP does because the runtime of the additional preprocessing step of L-CDP
(Step 2 above) is negligible compared to the runtime of Step 1 above. Both CDP
and L-CDP are only applicable when one is interested in making a large number
of predictions so that their preprocessing time is amortized.

7.1. Experimental Results on Lookup CDP
We now compare the prediction runtime of CDP with that of L-CDP. Note

that the accuracy of both methods is the same as they make exactly the same pre-
dictions. Thus, here we only report prediction runtime. We ran experiments on
the 15-puzzle, 15-pancake puzzle, and Rubik’s Cube using the consistent heuris-
tics described before. We used a set of 1,000 random start states to measure the
runtime for each of the domains.

Table 12 presents the average prediction runtime in seconds for L-CDP and
CDP for different values of r and d. The bold values highlight the faster pre-
dictions made by L-CDP. For lower values of r, L-CDP is orders of magnitude
faster than CDP. However, as we increase the value of r the two prediction sys-
tems have similar runtime. For instance, with the r-value of 25 on the 15-puzzle
L-CDP is only slightly faster than CDP as, in this case, collecting Cr dominates
the prediction runtime.

8. The Knuth-Chen Method

We now review a method introduced by Knuth [9] that was later improved by
Chen [17] and which can also be used to predict the number of nodes expanded on
an iteration of IDA* with a given cost bound. The Knuth-Chen method, Stratified
Sampling (or SS for short), also uses type systems (Chen called them stratifiers).
We will show empirically that the type systems developed to be used with CDP
substantially improve the predictions of SS.

Knuth [9] presents a method to predict the size of a search tree by repeatedly
performing a random walk from the start state. Each random walk is called a
probe. Knuth’s method assumes that all branches have a structure similar to that
of the path visited by the random walk. Thus, walking on one path is enough
to predict the structure of the entire tree. Knuth noticed that his method was not
effective when the tree being sampled is unbalanced. Chen [17] addressed this

31

15-puzzle
r = 5 r = 10 r = 25

d L-CDP CDP L-CDP CDP L-CDP CDP

50 0.0001 0.3759 0.0060 0.3465 3.0207 3.1114
51 0.0002 0.4226 0.0065 0.3951 4.3697 4.4899
52 0.0001 0.4847 0.0074 0.4537 6.9573 7.1113
53 0.0002 0.5350 0.0071 0.5067 9.1959 9.3931
54 0.0002 0.6105 0.0073 0.5805 14.5368 14.8017
55 0.0000 0.6650 0.0077 0.6369 17.4313 17.7558
56 0.0003 0.7569 0.0082 0.7257 27.6587 28.1076
57 0.0001 0.7915 0.0079 0.7667 23.4482 23.8874

15-pancake puzzle
r = 1 r = 2 r = 4

d L-CDP CDP L-CDP CDP L-CDP CDP

11 0.0001 0.0121 0.0003 0.0106 0.0037 0.0087
12 0.0000 0.0278 0.0006 0.0257 0.0109 0.0261
13 0.0001 0.0574 0.0005 0.0555 0.0279 0.0665
14 0.0001 0.1019 0.0007 0.1006 0.0563 0.1358
15 0.0001 0.1587 0.0008 0.1578 0.0872 0.2241

Rubik’s Cube
r = 2 r = 3 r = 4

d L-CDP CDP L-CDP CDP L-CDP CDP

9 0.0012 0.0107 0.0090 0.0156 0.0319 0.0344
10 0.0014 0.0287 0.0174 0.0415 0.1240 0.1328
11 0.0013 0.0549 0.0182 0.0695 0.2393 0.2645
12 0.0014 0.0843 0.0180 0.0992 0.2536 0.3065

Table 12: L-CDP and CDP runtime (seconds).

problem with a stratification of the search tree through a type system (or stratifier)
to reduce the variance of the probing process.

We are interested in using SS to predict the number of nodes expanded by
IDA* with parent pruning. Like CDP, when IDA* uses parent pruning, SS makes
more accurate predictions if using type systems that account for the information
of the parent of a node. Thus, here we also use type systems that account for the
information about the parent of node s when computing s’s type.

SS can be used to approximate any function of the form

ϕ(s∗) =
∑

s∈S(s∗)

z(s) ,

where z is any function assigning a numerical value to a node, and, as above,
S(s∗) is the set of nodes of a search tree rooted at s∗. ϕ(s∗) represents a numer-
ical property of the search tree rooted at s∗. For instance, if z(s) is the cost of
processing node s, then ϕ(s∗) is the cost of traversing the tree. If z(s) = 1 for all
s ∈ S(s∗), then ϕ(s∗) is the size of the tree.

32

Instead of traversing the entire tree and summing all z-values, SS assumes that
subtrees rooted at nodes of the same type will have equal values of ϕ and so only
one node of each type, chosen randomly, is expanded. This is the key to SS’s
efficiency since the search trees of practical interest have far too many nodes to be
examined exhaustively.

Given a node s∗ and a type system T , SS estimates ϕ(s∗) as follows. First,
it samples the tree rooted at s∗ and returns a set A of representative-weight pairs,
with one such pair for every unique type seen during sampling. In the pair 〈s, w〉
inA for type t ∈ T , s is the unique node of type t that was expanded during search
and w is an estimate of the number of nodes of type t in the search tree rooted at
s∗. ϕ(s∗) is then approximated by ϕ̂(s∗, T), defined as

ϕ̂(s∗, T) =
∑
〈s,w〉∈A

w · z(s) .

One run of SS is called a probe. Each probe generates a possibly different
value of ϕ̂(s∗, T); averaging the ϕ̂(s∗, T) value of different probes improves pre-
diction accuracy. In fact, Chen proved that the expected value of ϕ̂(s∗, T) con-
verges to ϕ(s∗) in the limit as the number of probes goes to infinity.

Algorithm 1 describes SS in detail. For convenience, the set A is divided
into subsets, one for every layer in the search tree; hence A[i] is the set of types
encountered at level i. In SS the types are required to be partially ordered: a node’s
type must be strictly greater than the type of its parent. Chen suggests that this can
be guaranteed by adding the depth of a node to the type system and then sorting
the types lexicographically. In our implementation of SS, due to the division of
A into the A[i], if the same type occurs on different levels the occurrences will
be treated as though they were different types – the depth of search is implicitly
added to any type system used in our SS implementation.

A[1] is initialized to contain the children of s∗ (Line 3). A[1] contains only
one child s for each type. We initialize the weight in a representative-weight pair
to be equal to the number of children of s∗ of the same type. For example, if
s∗ generates children s1, s2, and s3, with T (s1) = T (s2) 6= T (s3), then A[1] will
contain either s1 or s2 (chosen at random) with a weight of 2, and s3 with a weight
of 1.

The nodes in A[i] are expanded to get the nodes of A[i + 1] as follows. In
each iteration (Lines 6 through 17), all nodes in A[i] are expanded. The children
of each node in A[i] are considered for inclusion in A[i + 1]. If a child c of
node s has a type t that is already represented in A[i + 1] by another node s′,

33

Algorithm 1 Stratified Sampling
1: input: root s∗ of a tree, a type system T , and a cost bound d.
2: output: an array of sets A, where A[i] is the set of pairs 〈s, w〉 for the nodes
s expanded at level i.

3: initialize A[1] // see text
4: i← 1
5: while stopping condition is false do
6: for each element 〈s, w〉 in A[i] do
7: for each child c of s do
8: if h(c) + g(c) ≤ d then
9: if A[i+ 1] contains an element 〈s′, w′〉 with T (s′) = T (c) then

10: w′ ← w′ + w
11: with probability w/w′, replace 〈s′, w′〉 in A[i+ 1] by 〈c, w′〉
12: else
13: insert new element 〈c, w〉 in A[i+ 1]
14: end if
15: end if
16: end for
17: end for
18: i← i+ 1
19: end while

then a merge action on c and s′ is performed. In a merge action we increase the
weight in the corresponding representative-weight pair of type t by the weight
w(c). c will replace s′ according to the probability shown in Line 11. Chen [17]
proved that this probability reduces the variance of the estimation. Once all the
nodes in A[i] are expanded, we move to the next iteration. In the original SS, the
process continued untilA[i] was empty; Chen was assuming the tree was naturally
bounded.

Chen used SS’s approximation of the number of nodes in a search tree whose
f -value did not exceed the cost bound d as an approximation of the number of
nodes expanded by IDA* with cost bound d. However, when an inconsistent
heuristic is used, there can be nodes in the search tree whose f -values do not
exceed the cost bound d but are never expanded by IDA* as one of their ancestors
had an f -value that exceeded d. Predictions made by SS as described by Chen [17]
will overestimate the number of nodes expanded by IDA* when an inconsistent
heuristic is used. We modify SS to produce more accurate predictions when an

34

inconsistent heuristic is employed by adding Line 8 in Algorithm 1. Now a node
is considered by SS only if all its ancestors are expanded. Another positive effect
of Line 8 in Algorithm 1 is that the tree becomes bounded by d.

9. Better Type Systems for SS

The prediction accuracy of SS, like that of CDP, depends on the type system
used to guide its sampling [10]. Chen suggests a type system that counts the
number of children a node generates as a general type system to be used with
SS. We now extend Chen’s general type system to include information about the
parent of the node so it makes more accurate predictions when parent pruning
is considered. We define it as Tnc(s) = nc(s), where nc(s) is the number of
children a node s generates accounting for parent-pruning. Recall that in our
implementation of SS the depth of search is implicitly considered in any type
system.

Like CDP, it is easy to see that SS using a pure type system (i.e., a type sys-
tem that groups together nodes that root subtrees of the same size) makes perfect
predictions. However, as we stated before, pure type systems that substantially
compress the original state space are often hard to design. Thus, we must employ
type systems that reduce the variance (not necessarily to zero as a pure type sys-
tem does) of the size of subtrees rooted at nodes of the same type, but that at the
same time substantially compress the state space.

In order to reduce the variance of the size of subtrees rooted at nodes of the
same type it is useful to include the heuristic value of the node in the type system.
Intuitively, search trees rooted at nodes with higher heuristic value are expected
to have fewer nodes when compared to trees rooted at nodes with lower heuristic
value as IDA* prunes nodes with higher heuristic value “more quickly”.

We now show empirically that using a type system that accounts for the infor-
mation provided by a heuristic function instead of Chen’s substantially improves
SS’s predictions.

9.1. Comparison of SS with Different Type Systems
We say that a prediction system V dominates another prediction system V ′ if

V is able to produce more accurate predictions in equal or less time than V ′; we
also say that V dominates V ′ if V is able to produce equally or more accurate pre-
dictions in less time than V ′. In our tables of results we highlight the runtime and
error of a prediction system if it dominates its competitor. The results presented in
this section experimentally show that SS employing type systems that account for

35

the heuristic value dominates SS employing the general type system introduced
by Chen on the domains tested.

In this section prediction accuracy is measured in terms of the Relative Un-
signed Error. In this experiment we also aim to show that SS produces accurate
predictions when an inconsistent heuristic is employed. We show results for SS
using Tnc, which does not account for any heuristic value, and another type sys-
tem (Th, Tc, or Tgc) that accounts for at least the heuristic value of the node and
its parent. The results were averaged over 1,000 random start states. The number
of probes used in each experiment is shown in parentheses after the name of the
type system used.

The results for the 15-puzzle when using the inconsistent heuristic created by
Zahavi et al. [7] and defined in Section 6.1 are presented in the upper part of
Table 13. We chose the number of probes so that we could show the dominance
of Th over Tnc. For Th we used 50 probes in each prediction, while for Tnc we
used 5,000. Given the same number of probes as Th (50), Tnc was faster than
Th, but produced predictions with error approximately three times higher than Th.
When the number of probes was increased to improve accuracy, Tnc eventually
became slower than Th before its accuracy equalled Th’s. In Table 13 we see
that when employing a type system that considers the information provided by a
heuristic function SS produces more accurate predictions in less time than when
employing Tnc. The dominance of SS employing the type systems that account
for the heuristic values over Tnc is also observed in experiments run on the 15-
pancake puzzle and on Rubik’s Cube. For both 15-pancake puzzle and Rubik’s
Cube we used the consistent heuristics defined in Section 6. Improvements over
Tnc were observed not only when using Th or Tc, but also when using Tgc, in all
three domains.

10. Comparison Between the Enhanced Versions of CDP and SS

In this section we make an empirical comparison of our enhanced versions of
CDP and SS: L-CDP with ε-truncation and SS using CDP’s type systems. We an-
alyze two scenarios. In both scenarios we assume the user is interested in making
predictions for a large number of problem instances, so that the preprocessing time
of CDP is amortized. In the first scenario, after preprocessing, we are interested in
making predictions very quickly. In the second scenario, we allow the prediction
algorithms more computation time, expecting to get more accurate predictions.
Here we run experiments on the 15-puzzle, 15-pancake puzzle and Rubik’s Cube
with the consistent heuristics described in Section 6.

36

15-puzzle
Runtime (s) Error

d IDA* Tnc (5,000) Th (50) Tnc (5,000) Th (50)
50 562,708.5 1.9816 0.3559 0.31 0.20
51 965,792.6 2.0834 0.4118 0.27 0.18
52 1,438,694.0 2.1905 0.4579 0.27 0.18
53 2,368,940.3 2.3058 0.5260 0.33 0.20
54 3,749,519.9 2.4465 0.5685 0.29 0.19
55 7,360,297.6 2.5575 0.6927 0.33 0.21
56 12,267,171.0 2.6160 0.6923 0.30 0.18
57 23,517,650.8 2.8032 0.8150 0.36 0.23

15-pancake puzzle
Runtime (s) Error

d IDA* Tnc (1,000) Tc (1) Tnc (1,000) Tc (1)
11 44,771.2 0.1134 0.0067 0.19 0.13
12 346,324.5 0.1310 0.0181 0.31 0.14
13 2,408,281.6 0.1536 0.0426 0.40 0.15
14 20,168,716.0 0.1768 0.0850 0.43 0.18
15 127,411,357.4 0.1974 0.1401 0.49 0.19

Rubik’s Cube
Runtime (s) Error

d IDA* Tnc (40) Th (10) Tnc (40) Th (10)
9 119,506.2 0.0061 0.0027 0.31 0.15

10 1,626,583.9 0.0071 0.0032 0.37 0.15
11 21,985,207.8 0.0086 0.0057 0.40 0.16
12 295,893,415.9 0.0099 0.0064 0.27 0.14

Table 13: SS employing different type systems.

10.1. Fast Predictions
We start with fast predictions. The results are shown in Table 14. The value in

parentheses after the algorithm’s name indicates the value of r for L-CDP and the
number of probes for SS. L-CDP is able to make almost instantaneous predictions
even when using a large type system. On the other hand, SS does the sampling for
each problem instance separately during prediction. Thus, in order to make fast
predictions with SS we must use a smaller type system. We used Th for SS in all
three domains. For L-CDP we used Tgc in the experiment on the 15-puzzle, and
Tc on the 15-pancake puzzle and Rubik’s Cube. Given the same type system as
L-CDP, SS was in some cases even more accurate than L-CDP but always about
1,000 times slower; when it was speeded up (by being given the Th type system) to
be within an order of magnitude or two of L-CDP, its predictions were far worse.
In all three domains L-CDP dominates SS.

37

15-puzzle
Runtime (s) Error

d IDA* L-CDP (5) SS (5) L-CDP (5) SS (5)
50 8,909,564.5 0.0001 0.0151 0.62 0.93
51 15,427,786.9 0.0002 0.0167 0.60 0.99
52 28,308,808.8 0.0001 0.0188 0.60 0.84
53 45,086,452.6 0.0002 0.0192 0.57 0.98
54 85,024,463.5 0.0002 0.0215 0.58 0.87
55 123,478,361.5 0.0000 0.0223 0.58 1.11
56 261,945,964.0 0.0003 0.0243 0.56 0.73
57 218,593,372.3 0.0001 0.0241 0.63 0.74

15-pancake puzzle
Runtime (s) Error

d IDA* L-CDP (2) SS (5) L-CDP (2) SS (5)
11 44,771.2 0.0003 0.0012 0.22 0.36
12 346,324.5 0.0006 0.0017 0.22 0.38
13 2,408,281.6 0.0005 0.0029 0.22 0.44
14 20,168,716.0 0.0007 0.0041 0.21 0.34
15 127,411,357.4 0.0008 0.0057 0.22 0.47

Rubik’s Cube
Runtime (s) Error

d IDA* L-CDP (2) SS (10) L-CDP (2) SS (10)
9 119,506.2 0.0012 0.0027 0.05 0.15
10 1,626,583.9 0.0014 0.0032 0.05 0.15
11 21,985,207.8 0.0013 0.0057 0.05 0.16
12 295,893,415.9 0.0014 0.0064 0.04 0.14

Table 14: Fast predictions. L-CDP and SS.

10.2. Accurate Predictions
The results for accurate predictions are shown in Table 15. For these exper-

iments, we used more informed type systems for both CDP and SS, namely Tgc
for the 15-puzzle and Tc for the 15-pancake puzzle and Rubik’s Cube. We also
increased the value of r used by L-CDP to increase its prediction accuracy.

As observed in the results shown in Section 6, often the error of the CDP
predictions increases as we increase the cost bound. For instance, the CDP error
shown in Table 15 for the 15-puzzle is 0.05 for d = 50, and it grows to 0.26 for
d = 57. SS’s error increased only by 0.01 for the same cost bounds. Recall that
CDP samples the state space in a preprocessing step to approximate the values
of p(t|u) and bu, and that these values might be different from the actual values
of p(t|u) and bu of the search tree. CDP is domain-specific, instead of instance-
specific. We conjecture that noisy values of p(t|u) and bu used by CDP insert
errors in early stages of the prediction that compound as the depth increases. SS
on the other hand is instance-specific and only nodes that are part of the search

38

tree for the given instance are considered for sampling. SS has a similar error
when predicting the size of shallow and deep search trees. For the 15-puzzle and
15-pancake puzzle SS dominates CDP for larger cost bounds and it is no worse
than CDP for lower cost bounds. Rubik’s Cube turned out to be an easy domain in
which to make predictions. Both CDP and SS make almost perfect predictions in
this domain.

15-puzzle
Runtime (s) Error

d IDA* L-CDP (25) SS (5) L-CDP (25) SS (5)
50 8,909,564.5 3.0207 0.8765 0.05 0.09
51 15,427,786.9 4.3697 0.9715 0.07 0.08
52 28,308,808.8 6.9573 1.1107 0.09 0.09
53 45,086,452.6 9.1959 1.1767 0.11 0.09
54 85,024,463.5 14.5368 1.3577 0.15 0.10
55 123,478,361.5 17.4313 1.3940 0.17 0.10
56 261,945,964.0 27.6587 1.6438 0.21 0.10
57 218,593,372.3 23.4482 1.5258 0.26 0.10

15-pancake puzzle
Runtime (s) Error

d IDA* L-CDP (5) SS (3) L-CDP (5) SS (3)
11 44,771.2 0.0095 0.0180 0.09 0.07
12 346,324.5 0.0341 0.0500 0.10 0.09
13 2,408,281.6 0.1084 0.1176 0.11 0.09
14 20,168,716.0 0.2898 0.2321 0.13 0.10
15 127,411,357.4 0.6071 0.3813 0.16 0.11

Rubik’s Cube
Runtime (s) Error

d IDA* L-CDP (5) SS (20) L-CDP (5) SS (20)
9 119,506.2 0.0802 0.2668 0.01 0.02
10 1,626,583.9 0.4217 0.7231 0.01 0.01
11 21,985,207.8 1.6155 1.5098 0.01 0.01
12 295,893,415.9 3.1221 2.5269 0.01 0.01

Table 15: Accurate predictions. L-CDP and SS.

10.3. Experiments on Larger State Spaces
In this section we evaluate both CDP with ε-truncation and SS on larger state

spaces, namely the 24-puzzle and the 60-pancake puzzle.
In the experiments in this section we do not use L-CDP. This is because we

use a relatively large value of r in order to produce accurate predictions. Recall
that L-CDP and CDP take approximately the same amount of time to produce
predictions for larger values of r (see Table 12 in Section 7.1).

39

10.3.1. 24-puzzle
For the 24-puzzle we used the 6-6-6-6 disjoint PDBs [18]. One single random

instance was used to compute the ε-values. We used a value of r of 25 and it took
about 36 hours to sample one billion states for CDP. SS used 50 probes. Finally,
for both CDP and SS we used the Tgc type system. Table 16 shows the predic-
tion results for the number of nodes generated during IDA* searches on 200 start
states. The trend that was observed in the experiment on the 15-puzzle shown in
Table 15 is also observed here: as the search gets deeper, CDP’s prediction accu-
racy worsens. SS, on the other hand, makes accurate predictions across different
cost bounds. For instance, for a cost bound of 110 SS has an average absolute
error of only 0.10.

This experiment also shows that the prediction methods studied in this paper
can be substantially faster than IDA* performing the actual search. For instance,
IDA* takes approximately 90 hours on average to execute an iteration with cost
bound of 110. SS takes only 37 seconds on average to make predictions with the
same cost bound — a speedup of more than 8,700 times compared to the runtime
of the actual IDA* search. CDP is not as fast as SS but it is still substantially
faster than the actual IDA* search as CDP takes only little more than one hour on
average to make predictions with the cost bound of 110.

24-puzzle
Runtime (s) Error

d IDA* CDP (25) SS (50) CDP (25) SS (50)
90 164,814,526.6 30.9482 7.5034 0.20 0.03
92 368,992,103.4 66.6174 8.9480 0.34 0.03
94 1,985,011,441.3 178.7885 12.5902 0.65 0.04
96 4,874,007,803.3 277.2403 16.2077 1.07 0.03
98 11,015,303,521.6 455.4678 20.2952 1.68 0.04
100 11,976,556,484.1 684.3925 22.7853 2.48 0.04
102 27,500,453,677.2 1,058.3840 26.0549 3.76 0.05
104 108,902,222,694.8 1,643.4890 30.8277 5.68 0.05
106 204,754,382,723.4 2,055.6937 33.7998 8.15 0.06
108 277,502,287,352.6 2,335.7943 33.6668 11.47 0.08
110 1,954,871,642,630.4 4,161.4029 36.8365 20.39 0.10

Table 16: CDP and SS on the 24-puzzle using the 6-6-6-6 PDB.

10.3.2. 60-pancake puzzle
For the 60-pancake puzzle we used the GAP heuristic [19]. SS tends to per-

form better on the 60-pancake puzzle when using the Th type system rather than
when using the Tc or the Tgc type systems. This is because the 60-pancake puzzle

40

has a relatively large branching factor, namely 59. The larger branching factor
slows down the Tc and Tgc type computation due to the lookahead these type sys-
tems perform. The Tc and Tgc type computation is also slower for CDP on the
60-pancake puzzle. However, in CDP, most of the expensive type computations
are done as a preprocessing step, during sampling. Therefore, we use Tc for CDP
and Th for SS. CDP sampled 10 million start states in 94 hours. As in the other
experiments in this paper, we assume that the time required for sampling is amor-
tized over a large number of predictions. For CDP we used 5 problem instances to
compute the ε-values and an r-value of 8. For SS we used 400 probes.

60-pancake puzzle
Runtime (s) Error

d IDA* CDP (8) SS (400) CDP (8) SS (400)
55 4,661,209.3 0.0407 0.1193 0.21 0.20
56 21,878,193.1 0.0970 0.1506 0.21 0.20
57 40,279,688.4 0.1435 0.1726 0.22 0.22
58 82,790,542.6 0.1575 0.1860 0.21 0.21
59 242,822,659.9 0.2599 0.2325 0.19 0.21

Table 17: CDP and SS on the 60-pancake puzzle using the GAP heuristic.

The results shown in Table 17 are averages over 340 start states. Both CDP
and SS are able to quickly make accurate predictions on the 60-pancake puzzle
— the absolute error is at most 0.22 and the runtime is at most 0.26 seconds for
both algorithms. IDA* using the GAP heuristic takes approximately 30 seconds
on average to solve a random instance of the 60-pancake puzzle. CDP and SS take
less than a quarter of a second to predict the number of nodes expanded in a given
iteration of IDA* in most of the cases. Thus they produce accurate predictions
much more quickly than IDA* can solve the problem. The prediction methods are
even faster if we compare the time required for IDA* to finish a complete iteration
for a given cost bound — recall that IDA* finishes an iteration as soon as a goal is
found. For instance, for a cost bound of 59, IDA* takes approximately 37 minutes
to finish a complete iteration, ignoring the goal if one is found. Both CDP and
SS make predictions for the same cost bound in about a quarter of a second — a
speedup of more than 9,000 times over the runtime of IDA*.

11. Discussion

We showed empirically that by carefully ignoring rare events ε-truncation can
substantially improve the accuracy of CDP’s predictions. We conjecture that these

41

harmful rare events come from noisy values of p(t|u): the values of p(t|u) rep-
resent the type transition probability averaged across the state space, which can
be different from the type transition probability averaged across the search tree
for a particular start state. Chen [17] was able to prove that the expected value of
an SS prediction is the actual number of nodes expanded i.e., SS is an unbiased
estimator, because SS samples the search tree being approximated. The same can
not be said about CDP. We observed empirical evidence that ε-truncation mini-
mizes the error inserted by noisy p(t|u)-values, but it does not guarantee unbiased
predictions. On the other hand, being domain-specific allows CDP to store the pre-
diction results in a lookup table as a preprocessing step and produce predictions
much more quickly than SS. To the best of our knowledge there is no general
and efficient way of preprocessing SS’s predictions without making it a domain-
specific method. In fact, any preprocessing done for SS before knowing the start
state would make SS quite similar to CDP.

We also showed that both CDP and SS can be used to make predictions on
larger state spaces. We observed that CDP and SS can produce predictions much
more quickly than IDA* can solve problem instances on the 24-puzzle and on
the 60-pancake puzzle. For instance, SS is approximately 8,700 times faster than
IDA* on the 24-puzzle using the 6-6-6-6 disjoint PDBs as heuristic function. As
long as the time required for sampling the state space by CDP can be amortized,
both CDP and SS can produce predictions much more quickly than IDA* can
solve problem instances.

12. Related Work

The approach taken by Chen [17], Korf et al. [2], and Zahavi et al. [7] of pre-
dicting the number of nodes expanded on an iteration of IDA* is in contrast with
the approach to search complexity analysis, which focused on “big-O” complexity
typically parameterized by the accuracy of the heuristic [3, 4, 5, 6, 20].

Many other algorithms were developed based on Knuth’s ideas. For instance,
Kilby et al. [21] introduced an online estimator of the size of backtrack search
trees of branch-and-bound search algorithms. Later Haim and Walsh [22] used
Kilby et al.’s method as a feature for their machine-learned online algorithm for
estimating the runtime of SAT solvers. Allen and Minton [23] adapted Knuth’s
algorithm for constraint satisfaction problems; Lobjois and Lemaı̂tre [24] used
Knuth’s algorithm to select the most promising branch-and-bound algorithm for a
given problem; Bresina et al. [25] used Knuth’s algorithm to measure the expected
solution quality of a scheduling problem. All these algorithms could potentially

42

benefit from the idea of using a heuristic function (or some other source of infor-
mation) to define type systems to reduce the variance of random probing.

Haslum et al. [26] used KRE to evaluate different PDB heuristics for domain-
independent planning. They posed the problem of selecting good abstractions to
construct pattern databases as an optimization problem. A hill climbing search
algorithm is then employed and KRE is used as an evaluation function. Other
prediction methods such as CDP and SS could also be used for this purpose.

Breyer and Korf [27] showed how to use KRE to make accurate predictions
of the number of nodes expanded on average for the special case of consistent
heuristics by the A* algorithm for the 15-puzzle. In order to make predictions of
the number of nodes expanded by A*, due to the transposition detection the algo-
rithm does, one needs to know the number of nodes at a level i in the brute-force
search graph [27]. For domains in which the search graph cannot be enumer-
ated, accurately predicting the number of nodes expanded by A* remains an open
problem.

Burns and Ruml [28] presented IM, a prediction method that works in domains
with real-valued edge costs. IM was developed to make estimations of the number
of nodes expanded by IDA* as the algorithm searches. Burns and Ruml’s goal was
to avoid the poor performance of IDA* in domains with real-valued edge costs by
setting a cost bound d that would expand an exponentially larger number of nodes
in each iteration. IM works by learning the variation of the f -value (where, for
node n, f(n) = g(n) + h(n)) between a node and its children. Like CDP, this
is done based on a type system, i.e., IM learns the value ∆ by which the f -value
changes when a node of type u generates a node of type t. In fact, CDP can be
seen as a special case of IM, when the edges have unitary cost. The difference
between CDP and IM is that IM implicitly incorporates the cost to generate a child
in its type system, while CDP assumes in its formulas that the cost is always one.
Not surprisingly, Burns and Ruml verified empirically that in domains with unit
edge-costs IM and CDP produce predictions with indistinguishable accuracy. Like
CDP, IM could also benefit from ε-truncation.

13. Conclusion

In this paper we advanced two lines of research, namely, we improved the run-
time and prediction accuracy of CDP and SS, two algorithms that were developed
independently of each other for predicting the number of nodes expanded on an
iteration of a backtrack search algorithm such as IDA*.

43

As for the CDP algorithm, we have identified a source of prediction error that
had previously been overlooked, namely, that low probability events can degrade
predictions in certain circumstances. We call this the discretization effect. This
insight led us to the ε-truncation method for altering the probability distribution
used for making predictions at level i of the search tree by setting to zero all
probabilities smaller than εi, an automatically derived threshold for level i. Our
experimental results showed that more informed type systems for prediction of-
ten suffer more from the discretization effect than less informed ones, sometimes
leading to the pathological situation that predictions based on the more informed
system are actually worse than those based on the less informed system. In our
experiments ε-truncation rarely degraded predictions; in the vast majority of cases
it improved predictions, often substantially. In addition, we presented L-CDP, a
variant of CDP that can be orders of magnitude faster than CDP and is guaranteed
to make the same predictions as CDP.

As for the SS algorithm, we showed that type systems employed by CDP can
also be used as stratifiers for the SS algorithm. Our empirical results showed that
SS employing CDP’s type systems substantially improves the predictions pro-
duced by SS as presented by Chen.

Finally, we made an empirical comparison between our enhanced versions of
CDP and SS. Our experimental results point out that if CDP’s preprocessing time
is acceptable or can be amortized, it is suitable for applications that require less
accurate but very fast predictions, while SS is suitable for applications that require
more accurate predictions but allow more computation time.

14. Acknowledgements

This work was supported by the Laboratory for Computational Discovery at
the University of Regina. The authors gratefully acknowledge the research support
provided by Alberta Innovates - Technology Futures, the Alberta Ingenuity Centre
for Machine Learning (AICML), and Canada’s Natural Sciences and Engineering
Research Council (NSERC).

The authors would like to thank Ariel Felner for his helpful comments on an
earlier draft of this paper. We also would like to thank Rong Zhou for providing
the number of nodes generated for the instances of the 24-puzzle used in our
experiments.

[1] R. E. Korf, Depth-first iterative-deepening: An optimal admissible tree
search, Artif. Intell. 27 (1) (1985) 97–109.

44

[2] R. E. Korf, M. Reid, S. Edelkamp, Time complexity of Iterative-Deepening-
A∗, Artif. Intell. 129 (1-2) (2001) 199–218.

[3] H. T. Dinh, A. Russell, Y. Su, On the value of good advice: The complexity
of A* search with accurate heuristics, in: Proceedings of the 22nd Confer-
ence on Artificial Intelligence (AAAI 2007), 2007, pp. 1140–1145.

[4] J. Gaschnig, Performance measurement and analysis of certain search algo-
rithms, Ph.D. thesis, Carnegie-Mellon University (1979).

[5] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Addison & Wesley, 1984.

[6] I. Pohl, Practical and theoretical considerations in heuristic search algo-
rithms, Mach. Intell. 8 (1977) 55–72.

[7] U. Zahavi, A. Felner, N. Burch, R. C. Holte, Predicting the performance of
IDA* using conditional distributions, Journal of Artificial Intelligence Re-
search 37 (2010) 41–83.

[8] J. C. Culberson, J. Schaeffer, Searching with pattern databases, in: Proceed-
ings of the 11th Canadian Conference on Artificial Intelligence, Vol. 1081
of Lecture Notes in Computer Science, Springer, 1996, pp. 402–416.

[9] D. E. Knuth, Estimating the efficiency of backtrack programs, Math. Comp.
29 (1975) 121–136.

[10] P.-C. Chen, Heuristic sampling on backtrack trees, Ph.D. thesis, Stanford
University (1989).

[11] L. Lelis, S. Zilles, R. C. Holte, Improved prediction of IDA*’s performance
via ε-truncation, in: Proceedings of the 4th Annual Symposium on Combi-
natorial Search (SoCS 2011), 2011, pp. 108–116.

[12] L. H. S. Lelis, S. Zilles, R. C. Holte, Fast and accurate predictions of IDA*’s
performance, in: Proceedings of the 26th Conference on Artificial Intelli-
gence (AAAI 2012), 2012, pp. 514–520.

[13] J. Slocum, D. Sonneveld, The 15 Puzzle, Slocum Puzzle Foundation, 2006.

[14] A. F. Archer, A modern treatment of the 15-puzzle, American Mathematical
Monthly 106 (1999) 793–799.

45

[15] H. Dweighter, Problem E2569, American Mathematical Monthly 82 (1975)
1010.

[16] R. E. Korf, Finding optimal solutions to Rubik’s Cube using pattern
databases, in: Proceedings of the 14th Conference on Artificial Intelligence
(AAAI 1997) and the 9th Conference on Innovative Applications of Artifi-
cial Intelligence (IAAI 1997), 1997, pp. 700–705.

[17] P.-C. Chen, Heuristic sampling: A method for predicting the performance of
tree searching programs, SIAM Journal on Computing 21 (1992) 295–315.

[18] R. E. Korf, A. Felner, Disjoint pattern database heuristics, Artificial Intelli-
gence 134 (1-2) (2002) 9–22.

[19] M. Helmert, Landmark heuristics for the pancake problem, in: A. Felner,
N. R. Sturtevant (Eds.), Proceedings of the Third Annual Symposium on
Combinatorial Search, AAAI Press, 2010.

[20] S. V. Chenoweth, H. W. Davis, High-performance A* search using rapidly
growing heuristics, in: Proceedings of the 12th International Joint Confer-
ence on Artificial Intelligence (IJCAI 1991), 1991, pp. 198–203.

[21] P. Kilby, J. K. Slaney, S. Thiébaux, T. Walsh, Estimating search tree size, in:
Proceedings of the 21st Conference on Artificial Intelligence (AAAI 2006),
2006, pp. 1014–1019.

[22] S. Haim, T. Walsh, Online estimation of SAT solving runtime, in: Pro-
ceedings of the 11th International Conference on Theory and Applications
of Satisfiability Testing, Vol. 4996 of Lecture Notes in Computer Science,
Springer, 2008, pp. 133–138.

[23] J. A. Allen, S. Minton, Selecting the right heuristic algorithm: Runtime
performance predictors, in: Proceedings of the 11th Canadian Conference
on Artificial Intelligence, Vol. 1081 of Lecture Notes in Computer Science,
Springer, 1996, pp. 41–53.

[24] L. Lobjois, M. Lemaı̂tre, Branch and bound algorithm selection by perfor-
mance prediction, in: Proceedings of the 15th National Conference on Ar-
tificial Intelligence (AAAI 1998) and of the 10th Conference on Innovative
Applications of Artificial Intelligence (IAAI 1998), 1998, pp. 353–358.

46

[25] J. L. Bresina, M. Drummond, K. Swanson, Expected solution quality, in:
Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence (IJCAI 1995), 1995, pp. 1583–1591.

[26] P. Haslum, A. Botea, M. Helmert, B. Bonet, S. Koenig, Domain-independent
construction of pattern database heuristics for cost-optimal planning, in: Pro-
ceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007),
2007, pp. 1007–1012.

[27] T. Breyer, R. Korf, Recent results in analyzing the performance of heuristic
search, in: In Proceedings of the First International Workshop on Search in
Artificial Intelligence and Robotics (held in conjunction with AAAI), 2008,
p. 2431.

[28] E. Burns, W. Ruml, Iterative-deepening search with on-line tree size predic-
tion, in: Proceedings of the Sixth International Conference on Learning and
Intelligent Optimization (LION 2012), 2012, pp. 1–15.

47

