
Learning without Coding

Samuel E. Moelius III1 and Sandra Zilles2

1 IDA Center for Computing Sciences
17100 Science Drive, Bowie, MD 20715-4300

semoeli@super.org
2 Department of Computer Science

University of Regina
Regina, Saskatchewan, Canada S4S 0A2

zilles@cs.uregina.ca

Abstract. Iterative learning is a model of language learning from posi-
tive data, due to Wiehagen. When compared to a learner in Gold’s orig-
inal model of language learning from positive data, an iterative learner
can be thought of as memory-limited . However, an iterative learner can
memorize some input elements by coding them into the syntax of its
hypotheses. A main concern of this paper is: to what extent are such
coding tricks necessary?

One means of preventing some such coding tricks is to require that
the hypothesis space used be free of redundancy, i.e., that it be 1-1. By
extending a result of Lange & Zeugmann, we show that many interesting
and non-trivial classes of languages can be iteratively identified in this
manner. On the other hand, we show that there exists a class of languages
that cannot be iteratively identified using any 1-1 effective numbering as
the hypothesis space.

We also consider an iterative-like learning model in which the com-
putational component of the learner is modeled as an enumeration op-
erator , as opposed to a partial computable function. In this new model,
there are no hypotheses, and, thus, no syntax in which the learner can
encode what elements it has or has not yet seen. We show that there
exists a class of languages that can be identified under this new model,
but that cannot be iteratively identified. On the other hand, we show
that there exists a class of languages that cannot be identified under
this new model, but that can be iteratively identified using a Friedberg
numbering as the hypothesis space.

Keywords: coding tricks, inductive inference, iterative learning.

1 Introduction

Iterative learning (It-learning, Definition 1(a)) is a model of language learning
from positive data, due to Wiehagen [Wie76]. Like many models based on posi-
tive data, the It-learning model involves a learner that is repeatedly fed elements
drawn from {#} and from some unknown target language L ⊆ N, where N is

the set of natural numbers, {0, 1, 2, ...}.3 After being fed each such element, the
learner outputs a hypothesis (provided that the learner does not diverge). The
learner is said to identify the target language L iff there is some point from
whence on the learner outputs only one hypothesis, and that hypothesis corre-
sponds to L. Furthermore, the learner is said to identify a class of languages L
iff the learner identifies each L ∈ L when fed the elements of L (and possibly
#).

In the It-learning model, the learner itself is modeled as a triple.

– The first element of the triple is a two-place partial computable function,
whose arguments are, respectively, the learner’s most recently output hy-
pothesis, and the next input element.

– The second element of the triple is a preliminary hypothesis, i.e., the hy-
pothesis output by the learner before being fed any input.

– The third element of the triple is a hypothesis space. The hypothesis space
determines the language that corresponds to each of the learner’s hypotheses.
Formally, a hypothesis space is a numbering (Xj)j∈N of some collection of
subsets of N, and that is effective in the sense that the two-place predicate
λj, x [x ∈ Xj] is partial computable.4

It-learning is a special case of Gold’s original model of language learning from
positive data [Gol67]. In Gold’s original model, the learner is provided access
to all previously seen input elements, in addition to the next input element.
In this sense, a learner in Gold’s model can be thought of as memorizing all
previously seen input elements. When compared to learners in Gold’s model,
iterative learners are restricted in terms of the classes of languages that they can
identify.5 In this sense, the memory-limited aspect of iterative learners is a true
restriction, and not a mere superficial difference in definitions.

This does not however mean that iterative learners are memory-less. In par-
ticular, an iterative learner can memorize some input elements by employing
coding tricks, which we define (informally) as follows.

– A coding trick is any use by an iterative learner of the syntax of a hypothesis
to determine what elements that learner has or has not yet seen.

The following is an example. Suppose that an iterative learner (M,p, (Xj)j∈N)
identifies a class of languages L. Further suppose that one desires a learner that
identifies the class L ′, where

L ′ = L ∪ {L ∪ {0} | L ∈ L}. (1)

Such a learner (M ′, p′, (Yk)k∈N) may be obtained as follows. Let (Yk)k∈N be such
that, for each j:

3 The symbol ‘#’ is pronounced “pause”. The inclusion of # in the model allows the
target language L to be empty, i.e., in such a case, the learner is repeatedly fed #.

4 Not-necessarily-effective hypothesis spaces have also been considered [dBY10]. How-
ever, such hypothesis spaces are not needed herein. For the remainder, we use the
terms hypothesis space and effective numbering interchangeably.

5 Many variants of the It-learning model have been considered, and have also been
shown to be restricted in this sense [LZ96,CCJS07,JLMZ10].

2

Y2j = Xj ; Y2j+1 = Xj ∪ {0}.

Then, let M ′ be such that, for each x ∈ (N ∪ {#})− {0}:

M ′(2j, x) = 2M(j, x);

M ′(2j + 1, x) = 2M(j, x) + 1;

M ′(2j, 0) = 2M(j, 0) + 1;

M ′(2j + 1, 0) = 2M(j, 0) + 1.

It is easily seen that (M ′, 2p, (Yk)k∈N) iteratively identifies L ′. Intuitively, M ′

simulates M , while using the least-significant bit of each hypothesis to encode
whether or not M ′ has seen a 0 (e.g., M ′ switches from an even to an odd hy-
pothesis when it sees a 0). Further note that, if L already contains languages for
which 0 is a member, then there is redundancy in the hypothesis space (Yk)k∈N. In
particular, if 0 ∈ Xj , then Y2j = Y2j+1. For such hypotheses, the least-significant
bit affects only their syntax, and not their semantics.

This example demonstrates how coding tricks can at least facilitate the iden-
tification of a class of languages. A main concern of this paper is: to what extent
are such coding tricks necessary?

One approach to preventing some such coding tricks is to require that the hy-
pothesis space be free of redundancy, i.e., that it be 1-1. One means of doing this
is to require that the hypothesis space be a Friedberg numbering [Fri58,Kum90].
A Friedberg numbering is a 1-1 effective numbering of all computably enumer-
able (ce) subsets of N. The use of such numberings as hypothesis spaces was
considered by Jain & Stephan [JS08].6 They observed, for example, that Fin ,
the collection of all finite subsets of N, cannot be iteratively identified using a
Friedberg numbering as the hypothesis space [JS08, Remark 28]. For the remain-
der, to FrIt-identify a class of languages L shall mean to iteratively identify L
using a Friedberg numbering as the hypothesis space (see Definition 1(b)).

Our first main result is to show that, despite this observation of Jain &
Stephan, many interesting and non-trivial classes can be FrIt-identified. More
specifically, we extend a result of Lange & Zeugmann [LZ96, Theorem 12] by
showing that, for each class L, if there exists a single hypothesis space wit-
nessing that L is both uniformly decidable and computably finitely thick (see
Definition 3 below), then L can be FrIt-identified (Theorem 6). By comparison,
Lange & Zeugmann showed that such a class can be It-identified. One significant
application of this result is the following. A pattern language [Ang80] is a type of
language with applications to molecular biology (see, e.g., [SSS+94]). Further-
more, the pattern languages naturally form classes that are It-identifiable by
Lange & Zeugmann’s result,7 and, thus, are FrIt-identifiable, by ours.

As the reader may have already noticed, if one’s intent is simply to eliminate
redundancy in the hypothesis space, then to require that the hypothesis space
be a Friedberg numbering is really overkill. That is because to require that
the hypothesis space be a Friedberg numbering is to require that it be free of
redundancy and that it represent all of the ce sets.

6 Freivalds, et al. [FKW82] considered the use of Friedberg numberings as hypothesis
spaces in the context of function learning.

7 The pattern languages were first shown to be It-identifiable by Lange & Wieha-
gen [LW91].

3

Thus, we consider a milder variant of FrIt-learning, which we call injective
iterative learning (InjIt-learning, Definition 1(c)). In this variant, the hypothesis
space is required to be free of redundancy (i.e., be 1-1), but need not represent
all of the ce sets.8 Clearly, for each class L, if L can be FrIt-identified, then L can
be InjIt-identified. On the other hand, Fin can be InjIt-identified, but, as per
Jain & Stephan’s observation mentioned above, Fin cannot be FrIt-identified.

Going further, if one’s intent is to prevent coding tricks, then to require that
the hypothesis space be free of redundancy may still be overkill. In particular,
one might allow that there be redundancy in the hypothesis space, but require
that the learner not benefit from this redundancy. This idea is captured in our
next model, which is called extensional iterative learning (ExtIt-learning, Def-
inition 1(d)).

For a learner to ExtIt-identify a class of languages, it is required that, when
presented with equivalent hypotheses and identical input elements, the learner
must produce equivalent hypotheses. More formally: suppose that L is a class of
languages, that σ0 and σ1 are two non-empty sequences of elements drawn from
{#} and from two (possibly distinct) languages in L, and that the following
conditions are satisfied.

– When fed all but the last elements of σ0 and σ1, the learner outputs hypothe-
ses for the same language (though those hypotheses may differ syntactically).

– The last elements of σ0 and σ1 are identical.

Then, for the learner to ExtIt-identify L, it is required that:

– When fed all of σ0 and σ1, the learner outputs hypotheses for the same
language (though those hypotheses may differ syntactically).

Clearly, if a learner identifies a class of languages using a 1-1 hypothesis space,
then that learner satisfies the just above requirement. Thus, every class of lan-
guages that can be InjIt-identified can be ExtIt-identified. On the other hand,
we show that there exists a class of languages that can be ExtIt-identified, but
that cannot be InjIt-identified (Theorem 9).

Before introducing our final model, let us recall the definition of an enumer-
ation operator [Rog67, §9.7].9 Let P(N) be the powerset of N, i.e., the collection
of all subsets of N. Let 〈·, ·〉 be any pairing function, i.e., a computable, 1-1, onto

function of type N2 → N [Rog67, page 64]. Let #̂ = 0, and, for each x ∈ N, let
x̂ = x+ 1. Let (Dj)j∈N be any canonical enumeration of Fin .

An enumeration operator of type P(N) × (N ∪ {#}) → P(N) is a mapping
that is algorithmic in the following precise sense. To each enumeration operator
Θ (of the given type), there corresponds a ce set H, such that, for each X ⊆ N
and x ∈ N ∪ {#},

Θ(X,x) =
{
y |
〈
j, 〈x̂, y〉

〉
∈ H ∧ Dj ⊆ X

}
. (2)

8 The use of 1-1 hypothesis spaces was also considered in [BBCJS10] in the context of
learning certain specific classes of languages.

9 Herein, we focus on the enumeration operators of a particular type. A more general
definition can be found in [MZ10].

4

Thus, given an enumeration of X, and given x, one can enumerate Θ(X,x) in
the following manner.

– Enumerate H. For each element of the form
〈
j, 〈x̂, y〉

〉
∈ H, if ever the finite

set Dj appears in the enumeration of X, then list y into Θ(X,x).

Enumeration operators exhibit certain notable properties, including mono-
tonicity [Rog67, Theorem 9-XXI]: for each enumeration operator M of type
P(N)× (N ∪ {#})→ P(N), each X,Y ⊆ N, and each x ∈ N ∪ {#},

X ⊆ Y ⇒ M (X,x) ⊆ M (Y, x). (3)

Intuitively, this means that an enumeration operator can tell from its set argu-
ment X what elements are in X, but it cannot tell from X what elements are
in the complement of X.

The final model that we consider is called iterative learning by enumeration
operator (EOIt-learning, Definition 1(e)). As the name suggests, the compu-
tational component of the learner is modeled as an enumeration operator, as
opposed to a partial computable function. Specifically, the learner is modeled as
a pair , where:

– The first element of the pair is an enumeration operator of type P(N) ×
(N ∪ {#}) → P(N), whose arguments are, respectively, the learner’s most
recently output language, and the next input element.

– The second element of the pair is the learner’s preliminarily output language,
i.e., the language output by the learner before being fed any input. (We
require that this preliminary language be ce.)

Thus, there are no hypotheses in this model. Since there are no hypotheses, there
is no syntax in which the learner can encode what elements it has or has not yet
seen.

The expulsion of hypotheses from the model has an additional consequence,
and that is that the success criterion has to be adjusted. Specifically, we say
that a learner in this model identifies a language L iff when fed the elements
of L (and possibly #), there is some point from whence on the learner outputs
only the language L. The success criterion for identifying a class of languages
is adjusted similarly. This more liberal approach to language identification, in
some sense, gives an advantage to learners in this model. In particular, there
exists a class of languages that can be EOIt-identified, but that cannot be
It-identified (Corollary 13).

Interestingly, there also exists a class of languages that cannot be EOIt-
identified, but that can be FrIt-identified (Theorem 14). To help to see why,
consider the following two scenarios. First, suppose that (M , X) is a learner in
the enumeration operator model, and that Y is its most recently output language.
Then, since M is an enumeration operator, M can tell from Y what elements
are in Y , but it cannot tell from Y what elements are in the complement of Y .
Next, consider the analogous situation for a conventional iterative learner. That
is, suppose that (M,p, (Xj)j∈N) is such a learner, and that j is its most recently

5

L0

FrIt ExtIt It

L3

Pat Fin L1
?

L2

InjIt

EOIt

Fig. 1. A summary of main results and open problems. PatΣ is the collection of all
pattern languages over Σ, where Σ is an arbitrary alphabet. Fin is the collection of all
finite subsets of N. The classes L0, L1, and L2 are defined in the proofs of Theorems 7, 9,
and 14, respectively. The existence of the class L3 was shown by Jain (see Theorem 10).

output hypothesis. Then, in many cases, M can tell from j what elements are in
the complement of Xj . In this sense, one could say that a hypothesis implicitly
encodes negative information about the language that it represents. (In fact,
this phenomenon can clearly be seen in the full proof of Theorem 14. See [MZ10,
Theorem 20].)

A question to then ask is: is this a coding trick , i.e., is it the case that every
learner that operates on hypotheses (as opposed to languages) is employing
coding tricks? At present, we do not see a clear answer to this question. Thus,
we leave it as a subject for further study.

The main points of the preceding paragraphs are summarized in Figure 1.
The remainder of this paper is organized as follows. Section 2 covers prelimi-
naries. Section 3 presents our results concerning uniformly decidable and com-
putably finitely thick classes of languages. Section 4 presents our results con-
cerning Friedberg, injective, and extensional iterative learning (FrIt, InjIt, and
ExtIt-learning, respectively). Section 5 presents our results concerning iterative
learning by enumeration operator (EOIt-learning).

Due to space constraints, only partial proofs are given. Complete proofs of
all of our results can be found in the associated tech-report [MZ10].

2 Preliminaries

Computability-theoretic concepts not covered below are treated in [Rog67].
Lowercase math-italic letters (e.g., a, j, x), with or without decorations,

range over elements of N, unless stated otherwise. Uppercase italicized letters
(e.g., A, J , X), with or without decorations, range over subsets of N, unless
stated otherwise. For each non-empty X, minX denotes the minimum element
of X. min ∅ def= ∞. For each non-empty, finite X, maxX denotes the maximum
element of X. max ∅ def= −1. The symbol L, with or without decorations, ranges
over subsets of P(N), unless stated otherwise.

6

For each x, 〈x〉 def= x. For each x0, ..., xn−1, where n > 2, 〈x0, ..., xn−1〉 def=〈
x0, 〈x1, ..., xn−1〉

〉
.

N#
def= N ∪ {#}. A text is a total function of type N → N#. For each text

t and i ∈ N, t[i] denotes the initial segment of t of length i. For each text t,
content(t) def= {t(i) | i ∈ N} − {#}. For each text t and L ⊆ N, t is a text for L
def⇔ content(t) = L.

Seq denotes the set of all initial segments of texts. Lowercase Greek letters
(e.g., ρ, σ, τ), with or without decorations, range over elements of Seq, unless
stated otherwise. λ denotes the empty initial segment (equivalently, the every-
where divergent function). For each σ, |σ| denotes the length of σ (equivalently,
the size of the domain of σ). For each σ and i ≤ |σ|, σ[i] denotes the initial
segment of σ of length i. For each σ, content(σ) def= {σ(i) | i < |σ|} − {#}. For
each σ and τ , σ ·τ denotes the concatenation of σ and τ . For each σ ∈ Seq−{λ}:

σ− def= σ[|σ| − 1]; last(σ) def= σ(|σ| − 1).

For each L and L, Txt(L), Txt(L), Seq(L), and Seq(L) are defined as follows.

Txt(L) = { t | t is a text for L}.
Txt(L) = { t | (∃L ∈ L)[t ∈ Txt(L)]}.

Seq(L) = {σ | content(σ) ⊆ L}.
Seq(L) = {σ | (∃L ∈ L)[σ ∈ Seq(L)]}.

For each one-argument partial function ψ and x ∈ N, ψ(x)↓ denotes that
ψ(x) converges; ψ(x)↑ denotes that ψ(x) diverges. We use ↑ to denote the value
of a divergent computation.

EN denotes the collection of all effective numberings. CE denotes the collec-
tion of all computably enumerable (ce) subsets of N. For each m and n, PCm,n
denotes the collection of partial computable functions mapping Nm × Nn# to N.
We shall be concerned primarily with PC1,0 and PC1,1. (ϕp)p∈N denotes any fixed,

acceptable numbering of PC1,0. For each i, Wi
def= {x | ϕi(x)↓}. Thus, (Wi)i∈N is

an effective numbering of CE .

Iter def= PC1,1 × N× EN . For each M ∈ PC1,1 and p, the partial function M∗p
is such that, for each σ ∈ Seq and x ∈ N#:

M∗p (λ) = p; M∗p (σ · x) =

{
M
(
M∗p (σ), x

)
, if M∗p (σ)↓;

↑, otherwise.

EO1,1 denotes the collection of all enumeration operators of type P(N) ×
N# → P(N). For each M ∈ EO1,1 and X, the function M ∗X : Seq→ P(N) is such
that, for each σ ∈ Seq and x ∈ N#:

M ∗X(λ) = X; M ∗X(σ · x) = M
(

M ∗X(σ), x
)
.

The following are the formal definitions of the learning models described
in Section 1. The symbols Fr, Inj, Ext, and EO are mnemonic for Friedberg ,
injective, extensional , and enumeration operator , respectively.

Definition 1 For each L, (a)-(e) below. In parts (a)-(d), (M,p, (Xj)j∈N) ∈ Iter .
In part (e), (M , X) ∈ EO1,1 × CE .

7

(a) (Wiehagen [Wie76]) (M,p, (Xj)j∈N) It-identifies L ⇔ for each t ∈
Txt(L), there exists i0 ∈ N such that XM∗p (t[i0])

= content(t), and, for each

i ≥ i0,
[
M∗p (t[i]) = M∗p (t[i0])

]
.

(b) (Jain & Stephan [JS08]) (M,p, (Xj)j∈N) FrIt-identifies L ⇔ (M,p,
(Xj)j∈N) It-identifies L, and (Xj)j∈N is a Friedberg numbering.

(c) (M,p, (Xj)j∈N) InjIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and
(Xj)j∈N is 1-1.

(d) (M,p, (Xj)j∈N) ExtIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and,
for each σ0, σ1 ∈ Seq(L)− {λ},

[XM∗p (σ
−
0) = XM∗p (σ

−
1) ∧ last(σ0) = last(σ1)] ⇒ XM∗p (σ0) = XM∗p (σ1). (4)

(e) (M , X) EOIt-identifies L ⇔ for each t ∈ Txt(L), there exists i0 ∈ N such
that (∀i ≥ i0)

[
M ∗X(t[i]) = content(t)

]
.

Definition 2 Let It be as follows.

It =
{

L |
(
∃(M,p, (Xj)j∈N) ∈ Iter

)
[(M,p, (Xj)j∈N) It-identifies L]

}
. (5)

Let FrIt, InjIt, ExtIt, and EOIt be defined similarly.

3 Uniform Decidability and Computable Finite Thickness

In this section, we extend a result of Lange & Zeugmann by showing that,
for each class L, if there exists a single hypothesis space witnessing that L is
both uniformly decidable and computably finitely thick, then L can be FrIt-
identified (Theorem 6). We also show that there exists a class of languages that
is uniformly decidable and computably finitely thick, but that is not in It, let
alone FrIt (Theorem 7). Thus, one could not arrive at the conclusion of the just
mentioned Theorem 6 if one were to merely require that: there exists a uniformly
decidable effective numbering of L, and a possibly distinct computably finitely
thick effective numbering of L.

The following are the formal definitions of the terms uniformly decidable and
computably finitely thick . For additional background, see [LZZ08].

Definition 3

(a) An effective numbering (Xj)j∈N is uniformly decidable ⇔ the predicate
λj, x [x ∈ Xj] is decidable.

(b) A class of languages L is uniformly decidable ⇔ there exists a uniformly
decidable effective numbering of L.

(c) An effective numbering (Xj)j∈N is computably finitely thick ⇔ there exists
a computable function f : N→ N such that, for each x,

{Xj | j ∈ Df(x)} = {L | x ∈ L ∧ (∃j)[Xj = L]}. (6)

8

(d) (Lange & Zeugmann [LZ96, Definition 9]) A class of languages L is
computably finitely thick ⇔ there exists a computably finitely thick effective
numbering of L.

N.B. In part (c) just above, the function f need not satisfy Df(x) = {j | x ∈ Xj}.
However, see the proof of Theorem 6 below.

Example 4

(a) Fin is uniformly decidable, but is not computably finitely thick.
(b) CE is neither uniformly decidable nor computably finitely thick.
(c) The class

{
{e}, {e} ∪ (We + e+ 1) | e ∈ N

}
is not uniformly decidable, but

is computably finitely thick.10

(d) The class {N + e | e ∈ N} is both uniformly decidable and computably
finitely thick. Moreover, there exists a single effective numbering witness-
ing both properties simultaneously.

(e) Let L be as follows.

L =
{
{e} | e ∈ N

}
∪
{
{e, ϕe(0) + e+ 1} | e ∈ N ∧ ϕe(0)↓

}
. (7)

Then, L is both uniformly decidable and computably finitely thick,11 but
there is no effective numbering of L witnessing both properties simultane-
ously. In fact, no such numbering exists for any class containing L.

The following result, due to Lange & Zeugmann, gives a sufficient condition for
a class of languages to be It-identifiable.

Theorem 5 (Lange & Zeugmann [LZ96, Theorem 12]). For each L, if
there exists an effective numbering of L that is both uniformly decidable and
computably finitely thick, then L ∈ It.12

The following result strengthens Theorem 5 (Lange & Zeugmann) just above.

Theorem 6. For each L, if there exists an effective numbering of L that is both
uniformly decidable and computably finitely thick, then L ∈ FrIt.

Proof (Sketch). Suppose that L satisfies the conditions of the theorem. Then
it can be shown that there exists an effective numbering (Xj)j∈N of L and a
computable function f : N→ N such that, for each x,

Df(x) = {j | x ∈ Xj}. (8)

For each x and J , say that x narrows J ⇔ by letting J ′ = {j ∈ J | x ∈ Xj},

∅ 6= J ′ ⊂ J ∧ {w ∈ (
⋂
j∈J′Xj) | w < x} = {w ∈ (

⋂
j∈JXj) | w < x}. (9)

10 One can construct computably finitely thick effective numberings of the classes given
in parts (c) and (e) of Example 4 using a technique similar to that used in Figure 3(b)
below.

11 See footnote 10.
12 In [LZ96], Theorem 12 is not stated exactly as Theorem 5 is stated here. However,

based on the proof of this result, we believe that what is stated here is what is meant.

9

List ∅ into (Z`)`∈N exactly once. Then, for each x, run survey(x).

survey(x): Act according the following conditions.

– Cond. (a) [Df(x) = ∅ ∨ min(
⋂
j∈Df(x)

Xj) 6= x]. For each k, list {x}∪ (Yk +x+ 1)

into (Z`)`∈N exactly once.

– Cond. (b) [Df(x) 6= ∅ ∧ min(
⋂
j∈Df(x)

Xj) = x]. List (
⋂
j∈Df(x)

Xj) into (Z`)`∈N

exactly once, set ζ(Df(x)) to the index used to list this set, and run
descend(Df(x), x+ 1).

descend(J, x): Let J ′, x0, and A be such that:

J ′ = {j ∈ J | x ∈ Xj}; x0 = min(
⋂
j∈JXj); A = {w ∈ (

⋂
j∈JXj) | w < x}.

Act according to the following conditions.

– Cond. (i)
[
J ′ = J

]
. For each k, list A ∪ (Yk + x + 1) into (Z`)`∈N exactly once,

and run descend(J, x+ 1).

– Cond. (ii)
[
x ≤ x0 ∨ [J ′ ⊂ J ∧ x does not narrow J]

]
. For each k, list A∪{x}∪

(Yk + x+ 1) into (Z`)`∈N exactly once, and run descend(J, x+ 1).

– Cond. (iii)
[
x > x0 ∧ x narrows J

]
. List (

⋂
j∈J′Xj) into (Z`)`∈N exactly once,

set ζ(J ′) to the index used to list this set, and run both descend(J, x + 1) and
descend(J ′, x+ 1).

Fig. 2. The construction of (Z`)`∈N in the proof of Theorem 6.

Let (Yk)k∈N be any Friedberg numbering.

An effective numbering (Z`)`∈N is constructed in Figure 2. The construction
makes use of two procedures: survey and descend. The procedure survey takes
one argument: an element of N. The procedure descend takes two arguments: a
finite subset of N, and an element of N.

In conjunction with (Z`)`∈N, a partial computable function ζ from Fin to
N is constructed. It is clear from the construction that ζ is 1-1, i.e., for each
J, J ′ ∈ Fin , [ζ(J)↓ = ζ(J ′) ⇒ J = J ′].

It can be shown that (Z`)`∈N is a Friedberg numbering. For ease of presen-
tation, suppose that Z0 = ∅. Let M be such that, for each ` > 0 and x:

M(0,#) = 0; M(0, x) =

{
ζ(Df(x)), if ζ(Df(x))↓;
↑, otherwise;

M(`,#) = `; M(`, x) =


ζ(J ′), where J and J ′ are such that ζ(J) = ` and

J ′ = {j ∈ J | x ∈ Xj}, if such a J exists
and ζ(J ′)↓;

↑, otherwise.

It can be shown that (M, 0, (Z`)`∈N) FrIt-identifies L. ≈ � (Theorem 6)

10

(a) For each i, execute stage 0 below.

– Stage 0. For each i, include (N + i) and {i} in L0. Go to stage 1.

– Stage 1. Let (M,p) be the ith pair in ((M,p)i)i∈N. Search for a k ≥ i such
that

M∗p
(
(i · · · · · k) · (k + 1)

)
↓ = M∗p

(
(i · · · · · k) · k

)
= M∗p (i · · · · · k).

If such a k is found, then include {i, ..., k} and {i, ..., k+1} in L0, and terminate
the construction (for i). If no such k is found, then search indefinitely.

(b) For each i, execute stage 0 below.

– Stage 0. Set Xstart(i) = N+i, and, for each j ∈ {start(i)+1, ..., start(i+1)−1},
set Xj = {i}. Go to stage 1.

– Stage 1. In a dovetailing manner, monitor and act according to the following
conditions.

• Cond. [in the construction of L0 above, a k is found for i].
Set Xstart(i)+2 = {i, ..., k} and Xstart(i)+3 = {i, ..., k + 1}.

• Cond. [i ∈ Xj , where j < start(i)]. Set Xstart(i)+j+4 = Xj .

Fig. 3. (a) The construction of L0 in the proof of Theorem 7. (b) The construction of
(Xj)j∈N in the proof of Theorem 7. The function start is defined in (10).

The proof of Theorem 7 below exhibits a class of languages L0 that is uni-
formly decidable and computably finitely thick, but L0 6∈ It. Thus, one could not
arrive at the conclusion of Theorem 6 if one were to merely require that: there
exists a uniformly decidable effective numbering of L, and a possibly distinct
computably finitely thick effective numbering of L.

Theorem 7. There exists a class of languages L0 that is uniformly decidable
and computably finitely thick, but L0 6∈ It.

Proof (Sketch). Let ((M,p)i)i∈N be an algorithmic enumeration of all pairs of
type PC1,1 × N. Let start : N→ N be such that, for each i,

start(i) = 2i+1 − 4. (10)

Note that, for each i, start(i + 1) − start(i) = start(i) + 4. The class L0 is
constructed in Figure 3(a). An effective numbering (Xj)j∈N, which is easily seen
to be of L0, is constructed in Figure 3(b). Let f : N→ N be such that, for each i,

Df(i) = {start(i), ..., start(i+ 1)− 1}, (11)

It can be shown that (Xj)j∈N and f witness that L0 is computably finitely thick.
It is straightforward to construct an effective numbering witnessing that L0 is
uniformly decidable. Finally, it can be shown that L0 6∈ It. ≈ � (Theorem 7)

11

4 Friedberg, Injective, and Extensional Iterative Learning

This section examines the Friedberg, injective, and extensional iterative learn-
ing models (FrIt, InjIt, and ExtIt, respectively). In terms of the classes of
languages learnable by these models and by It, they are clearly related as fol-
lows.

FrIt ⊆ InjIt ⊆ ExtIt ⊆ It. (12)

In this section we establish that InjIt 6⊆ FrIt (Proposition 8), and that ExtIt 6⊆
InjIt (Theorem 9). The fact that It 6⊆ ExtIt is due to Jain (Theorem 10).

Proposition 8 just below establishes that InjIt 6⊆ FrIt.

Proposition 8 InjIt 6⊆ FrIt.

Proof. Recall that Fin is the collection of all finite subsets of N. Jain & Stephan
observed that Fin 6∈ FrIt [JS08, Remark 28]. However, it is easily seen that
Fin ∈ InjIt. � (Proposition 8)

Theorem 9 just below establishes that ExtIt 6⊆ InjIt.

Theorem 9. ExtIt 6⊆ InjIt.

Proof (Sketch). Let L1 be as follows.

L1 =
{

2N
}
∪
{
{0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We,
{0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2X | e ∈ N ∧ (a)-(c) below

}
.

(a) (∀e′ ∈ X)[We′ = X].
(b) If We = X, then We and X are finite.
(c) If We 6= X, then 2We ⊆ {0, 2, ..., 2e} and X is infinite.

It can be shown that L1 ∈ ExtIt. To complete the sketch of the proof: by way of
contradiction, suppose that L1 ∈ InjIt, as witnessed by (M,p, (Xj)j∈N) ∈ Iter .
Then, there exists a k0 such that

(∀e ≥ k0)[M∗p (0 · 2 · · · · · 2k0 · 2e)↓ = M∗p (0 · 2 · · · · · 2k0)]. (13)

By Case’s 1-1 Operator Recursion Theorem [Cas74,Cas94],13 there exists a com-
putably enumerable sequence of pairwise-distinct ϕ-programs (ei)i∈N such that
(∀i)[ei ≥ k0], and such that the behavior of (ei)i∈N is as in Figure 4. It can be
shown that {We0 ,We1} ⊆ L1, but that (M,p, (Xj)j∈N) does not InjIt-identify
at least one of We0 and We1 (a contradiction). ≈ � (Theorem 9)

As mentioned above, the fact that It 6⊆ ExtIt is due to Jain.

Theorem 10 (Jain [Jai10]). It 6⊆ ExtIt.

We conclude this section with the following remark.

13 Intuitively, the 1-1 Operator Recursion Theorem allows one to construct a com-
putably enumerable sequence of pairwise-distinct ϕ-programs (ei)i∈N such that each
program ei knows all programs in the sequence and its own index i.

12

– Stage 0. Search for an m ≥ 1 such that

M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m+1)↓ = M∗p

(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m

)
.

If such an m is found, then set σ1 = (0 · 2 · · · · · 2e0) · (2e0 + 1)m, and go to stage 1.
If no such m is found, then search indefinitely.

– Stage 1. For larger and larger values of n, make it the case that We1 = · · · =
Wen = {e1, ..., en}. Simultaneously, search for an i ∈ {1, ..., n} such that

M∗p (σ1 · 2ei)↓ 6= M∗p (σ1).

If such i and n are found, then make it the case that We0 = {e1, ..., en}, and
terminate the construction. If no such i and n are found, then search indefinitely,
while making it the case that (∀i ≥ 1)[Wei = {ei | i ≥ 1}].

Fig. 4. The construction of (ei)i∈N in the proof of Theorem 9.

Remark 11 The fact It 6⊆ InjIt (as opposed to It 6⊆ ExtIt or ExtIt 6⊆ InjIt)
can be shown directly using either of the next two pre-existing results.

– There exists a class of languages that can be It-identified, but that cannot
be so identified order-independently (in the sense of [BB75,Ful90]).14

– There exists a class of languages that can be It-identified, but that
cannot be so identified strongly non-U-shapedly [CK10, Theorem 5.4] (see
also [Bei84,Wie91,CM08]).

5 Iterative Learning by Enumeration Operator

This section examines the iterative learning by enumeration operator model
(EOIt). Recall that EOIt is similar to It, except that the computational com-
ponent of the learner is modeled as an enumeration operator, as opposed to a
partial computable function. Our main results of this section are the following.

– Every computably finitely thick class of languages (see Definition 3) can be
EOIt-identified (Theorem 12).

– EOIt 6⊆ It (Corollary 13).
– FrIt 6⊆ EOIt (Theorem 14).

An open problem that remains is whether It ∩ EOIt ⊆ ExtIt, i.e., whether
every class of languages that can be It-identified and EOIt-identified can be
ExtIt-identified (Problem 15).

Recall that Fin ∈ InjIt− FrIt (Proposition 8). Further recall that the class
L1 from the proof Theorem 9 satisfies: L1 ∈ ExtIt− InjIt. It is straightforward
to show that {Fin ,L1} ⊆ EOIt.

Theorem 12 just below is our first main result of this section.

14 An anonymous referee attributes this result to Liepe & Wiehagen.

13

Theorem 12. Suppose that L is computably finitely thick. Then, L ∈ EOIt.

Proof (Sketch). Suppose that L is computably finitely thick. Let ψ : Fin → CE
be such that, for each A ∈ Fin − {∅}:

ψ(∅) = ∅; ψ(A) =
⋂
{L ∈ L | A ⊆ L}.

Let M : P(N)× N# → P(N) be such that, for each X ⊆ N and x:

M (X,#) = X; M (X,x) =
⋃{

ψ(A) | A is finite ∧ A ⊆ X ∪ {x}
}
.

It can be shown that (M , ∅) EOIt-identifies L. ≈ � (Theorem 12)

Recall that the proof of Theorem 7 exhibited a computably finitely thick class
of languages L0 6∈ It. By Theorem 12, L0 ∈ EOIt. Thus, one has the following.

Corollary 13 (of Theorems 7 and 12) EOIt 6⊆ It.

The proof of Theorem 14 below exhibits a class L2 ∈ FrIt−EOIt.

Theorem 14. FrIt 6⊆ EOIt.

Proof (Sketch). It is straightforward to construct a Friedberg numbering
(Xj)j∈N satisfying:

(∀j)[1 ≤ |Dj | ≤ 3 ⇒ Xj = Dj]. (14)

Let (Yk)k∈N be any Friedberg numbering satisfying: Y0 = ∅. Let (Z`)`∈N be such
that, for each j and k, Z〈j,k〉 = (2Xj) ∪ (2Yk + 1). It is straightforward to show
that (Z`)`∈N is a Friedberg numbering. Let L2 be the following class of languages.

L2 = {Z〈j,maxDj〉 | 1 ≤ |Dj | ≤ 3}. (15)

Note that, for each j such that 1 ≤ |Dj | ≤ 3,

Z〈j,maxDj〉 = (2Xj) ∪ (2YmaxDj
+ 1) = (2Dj) ∪ (2YmaxDj

+ 1). (16)

It is straightforward to show that L2 ∈ FrIt (e.g., using (Z`)`∈N as the hypothesis
space). On the other hand, it can be shown that L2 6∈ EOIt. ≈ � (Theorem 14)

As mentioned above, the following problem remains open.

Problem 15 Is it the case that It ∩EOIt ⊆ ExtIt?

References

[Ang80] D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst.
Sci., 21(1):46–62, 1980.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive infer-
ence. Inform. Control, 28(2):125–155, 1975.

[BBCJS10] L. Becerra-Bonache, J. Case, S. Jain, and F. Stephan. Iterative learning
of simple external contextual languages. Theor. Comput. Sci., 411(29–
30):2741–2756, 2010.

14

[Bei84] H-R. Beick. Induktive Inferenz mit höchster Konvergenzgeschwindigkeit.
PhD thesis, Sektion Mathematik, Humboldt-Universität Berlin, 1984.

[Cas74] J. Case. Periodicity in generations of automata. Math. Syst. Theory,
8(1):15–32, 1974.

[Cas94] J. Case. Infinitary self-reference in learning theory. J. Exp. Theor. Artif.
In., 6(1):3–16, 1994.

[CCJS07] L. Carlucci, J. Case, S. Jain, and F. Stephan. Results on memory-limited
U-shaped learning. Inform. Comput., 205(10):1551–1573, 2007.

[CK10] J. Case and T. Kötzing. Strongly non-U-shaped learning results by general
techniques. In Proc. of COLT’2010, pages 181–193, 2010.

[CM08] J. Case and S. Moelius. Optimal language learning. In Proc. of ALT’2008,
volume 5254 of LNAI, pages 419–433, 2008.

[dBY10] M. de Brecht and A. Yamamoto. Topological properties of concept spaces
(full version). Inform. Comput., 208(4):327–340, 2010.

[FKW82] R. Freivalds, E. Kinber, and R. Wiehagen. Inductive inference and com-
putable one-one numberings. Z. Math. Logik, 28(27):463–479, 1982.

[Fri58] R. Friedberg. Three theorems on recursive enumeration. I. Decomposition.
II. Maximal set. III. Enumeration without duplication. J. Symbolic Logic,
23(3):309–316, 1958.

[Ful90] M. Fulk. Prudence and other conditions on formal language learning. In-
form. Comput., 85(1):1–11, 1990.

[Gol67] E. Mark Gold. Language identification in the limit. Inform. Control,
10(5):447–474, 1967.

[Jai10] S. Jain. Private communcation, 2010.
[JLMZ10] S. Jain, S. Lange, S. Moelius, and S. Zilles. Incremental learning with

temporary memory. Theor. Comput. Sci., 411(29–30):2757–2772, 2010.
[JS08] S. Jain and F. Stephan. Learning in Friedberg numberings. Inform. Com-

put., 206(6):776–790, 2008.
[Kum90] M. Kummer. An easy priority-free proof of a theorem of Friedberg. Theor.

Comput. Sci., 74(2):249–251, 1990.
[LW91] S. Lange and R. Wiehagen. Polynomial time inference of arbitrary pattern

languages. New Generat. Comput., 8(4):361–370, 1991.
[LZ96] S. Lange and T. Zeugmann. Incremental learning from positive data. J.

Comput. Syst. Sci., 53(1):88–103, 1996.
[LZZ08] S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive

languages from positive data: A survey. Theor. Comput. Sci., 397(1–3):194–
232, 2008.

[MZ10] S. Moelius and S. Zilles. Learning without coding. Technical report, 2010.
http://www2.cs.uregina.ca/~zilles/moeliusZ10TR.pdf .

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw Hill, 1967. Reprinted, MIT Press, 1987.

[SSS+94] S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, and
S. Arikawa. Knowledge acquisition from amino acid sequences by machine
learning system BONSAI. Trans. Inform. Process. Soc. Jpn., 35(10):2009–
2018, 1994.

[Wie76] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien. J. Inform. Process. Cybern. (EIK), 12(1/2):93–99, 1976.

[Wie91] R. Wiehagen. A thesis in inductive inference. In Proc. of 1st International
Workshop on Nonmonotonic and Inductive Logic (1990), volume 543 of
LNAI, pages 184–207, 1991.

