
Learning without Coding

Samuel E. Moelius III1 and Sandra Zilles2

1 IDA Center for Computing Sciences
17100 Science Drive, Bowie, MD 20715-4300

semoeli@super.org
2 Department of Computer Science

University of Regina
Regina, Saskatchewan, Canada S4S 0A2

zilles@cs.uregina.ca

June 30, 2010

Abstract. Iterative learning is a model of language learning from posi-
tive data, due to Wiehagen. When compared to a learner in Gold’s orig-
inal model of language learning from positive data, an iterative learner
can be thought of as memory-limited . However, an iterative learner can
memorize some input elements by coding them into the syntax of its
hypotheses. A main concern of this paper is: to what extent are such
coding tricks necessary?

One means of preventing some such coding tricks is to require that
the hypothesis space used be free of redundancy, i.e., that it be 1-1. In
this context, we make the following contributions. By extending a result
of Lange & Zeugmann, we show that many interesting and non-trivial
classes of languages can be iteratively identified using a Friedberg num-
bering as the hypothesis space. (Recall that a Friedberg numbering is a
1-1 effective numbering of all computably enumerable sets.) An exam-
ple of such a class is the pattern languages over an arbitrary alphabet.
On the other hand, we show that there exists a class of languages that
cannot be iteratively identified using any 1-1 effective numbering as the
hypothesis space.

We also consider an iterative-like learning model in which the com-
putational component of the learner is modeled as an enumeration op-
erator , as opposed to a partial computable function. In this new model,
there are no hypotheses, and, thus, no syntax in which the learner can
encode what elements it has or has not yet seen. We show that there
exists a class of languages that can be identified under this new model,
but that cannot be iteratively identified. On the other hand, we show
that there exists a class of languages that cannot be identified under
this new model, but that can be iteratively identified using a Friedberg
numbering as the hypothesis space.

Keywords: coding tricks, inductive inference, iterative learning.

1 Introduction

Iterative learning (It-learning, Definition 1(a)) is a model of language learning
from positive data, due to Wiehagen [Wie76]. Like many models based on posi-
tive data, the It-learning model involves a learner that is repeatedly fed elements
drawn from {#} and from some unknown target language L ⊆ N, where N is
the set of natural numbers, {0, 1, 2, ...}.3 After being fed each such element, the
learner outputs a hypothesis (provided that the learner does not diverge). The
learner is said to identify the target language L iff there is some point from
whence on the learner outputs only one hypothesis, and that hypothesis corre-
sponds to L. Furthermore, the learner is said to identify a class of languages L
iff the learner identifies each L ∈ L when fed the elements of L (and possibly
#).

In the It-learning model, the learner itself is modeled as a triple.

– The first element of the triple is a two-place partial computable function,
whose arguments are, respectively, the learner’s most recently output hy-
pothesis, and the next input element.

– The second element of the triple is a preliminary hypothesis, i.e., the hy-
pothesis output by the learner before being fed any input.

– The third element of the triple is a hypothesis space. The hypothesis space
determines the language that corresponds to each of the learner’s hypotheses.
Formally, a hypothesis space is a numbering (Xj)j∈N of some collection of
subsets of N, and that is effective in the sense that the two-place predicate
λj, x [x ∈ Xj] is partial computable.4

It-learning is a special case of Gold’s original model of language learning from
positive data [Gol67]. In Gold’s original model, the learner is provided access
to all previously seen input elements, in addition to the next input element.
In this sense, a learner in Gold’s model can be thought of as memorizing all
previously seen input elements. When compared to learners in Gold’s model,
iterative learners are restricted in terms of the classes of languages that they can
identify.5 In this sense, the memory-limited aspect of iterative learners is a true
restriction, and not a mere superficial difference in definitions.

This does not however mean that iterative learners are memory-less. In par-
ticular, an iterative learner can memorize some input elements by employing
coding tricks, which we define (informally) as follows.

– A coding trick is any use by an iterative learner of the syntax of a hypothesis
to determine what elements that learner has or has not yet seen.

3 The symbol ‘#’ is pronounced “pause”. The inclusion of # in the model allows the
target language L to be empty, i.e., in such a case, the learner is repeatedly fed #.

4 Not-necessarily-effective hypothesis spaces have also been considered [dBY10]. How-
ever, such hypothesis spaces are not needed herein. For the remainder, we use the
terms hypothesis space and effective numbering interchangeably.

5 Many variants of the It-learning model have been considered, and have also been
shown to be restricted in this sense [LZ96,CCJS07,JLMZ10].

2

The following is an example. Suppose that an iterative learner (M,p, (Xj)j∈N)
identifies a class of languages L. Further suppose that one desires a learner that
identifies the class L ′, where

L ′ = L ∪ {L ∪ {0} | L ∈ L}. (1)

Such a learner (M ′, p′, (Yk)k∈N) may be obtained as follows. Let (Yk)k∈N be such
that, for each j:

Y2j = Xj ; Y2j+1 = Xj ∪ {0}. (2)

Then, let M ′ be such that, for each x ∈ (N ∪ {#})− {0}:

M ′(2j, x) = 2M(j, x);
M ′(2j + 1, x) = 2M(j, x) + 1;

M ′(2j, 0) = 2M(j, 0) + 1;
M ′(2j + 1, 0) = 2M(j, 0) + 1.

(3)

It is easily seen that (M ′, 2p, (Yk)k∈N) iteratively identifies L ′. Intuitively, M ′

simulates M , while using the least-significant-bit of each hypothesis to encode
whether or not M ′ has seen a 0. (Note the switch from even to odd hypotheses
in the upper-right of (3).) Further note that, if L already contains languages for
which 0 is a member, then there is redundancy in the hypothesis space (Yk)k∈N. In
particular, if 0 ∈ Xj , then Y2j = Y2j+1. For such hypotheses, the least-significant
bit affects only their syntax, and not their semantics.

This example demonstrates how coding tricks can at least facilitate the iden-
tification of a class of languages. A main concern of this paper is: to what extent
are such coding tricks necessary?

One approach to preventing some such coding tricks is to require that the hy-
pothesis space be free of redundancy, i.e., that it be 1-1. One means of doing this
is to require that the hypothesis space be a Friedberg numbering [Fri58,Kum90].
A Friedberg numbering is a 1-1 effective numbering of all computably enumer-
able (ce) subsets of N. The use of such numberings as hypothesis spaces was
considered by Jain & Stephan [JS08].6 They observed, for example, that Fin ,
the collection of all finite subsets of N, cannot be iteratively identified using a
Friedberg numbering as the hypothesis space [JS08, Remark 28]. For the remain-
der, to FrIt-identify a class of languages L shall mean to iteratively identify L
using a Friedberg numbering as the hypothesis space (see Definition 1(b)).

Our first main result is to show that, despite this observation of Jain &
Stephan, many interesting and non-trivial classes can be FrIt-identified. More
specifically, we extend a result of Lange & Zeugmann [LZ96, Theorem 12] by
showing that, for each class L, if there exists a single hypothesis space witnessing
that L is both uniformly decidable and computably finitely thick, then L can be
FrIt-identified (Theorem 6). By comparison, Lange & Zeugmann showed that
such a class can be It-identified.

We delay the definitions of the terms uniformly decidable and computably
finitely thick to Section 3. In the meantime, however, we mention one significant

6 Freivalds, et al. [FKW82] considered the use of Friedberg numberings as hypothesis
spaces in the context of function learning.

3

application of our result. A pattern language [Ang80] is a type of language with
applications to molecular biology (see, e.g., [SSS+94]). Furthermore, the pattern
languages naturally form classes that are It-identifiable by Lange & Zeugmann’s
result,7 and, thus, are FrIt-identifiable, by ours.

We briefly recall the definition of a pattern language. Suppose that Σ is an
alphabet, i.e., a non-empty, finite set of symbols. A pattern over Σ is a finite
string whose symbols are drawn from Σ, and from some infinite collection of
variables. The language determined by a pattern p (over Σ) is the set of all strings
that result by substituting some non-empty string (over Σ) for each variable in
p. A pattern language over Σ is any language determined by a pattern over Σ.
PatΣ denotes the collection of all pattern languages over Σ.

For example, suppose that Σ = {0, 1}, and that p is the patten x0x1y, where
x and y are variables. Then, PatΣ includes the language determined by p, which,
in turn, includes the following strings. (To lessen the burden upon the reader,
we have underlined in each string a 0 and 1 that may be regarded as part of the
original pattern.)

0000010
0000011
0001000
0001001

0001010
0001011
0001100
0001101

0001110
0001111
0100110
0100111

1001010
1001011
1011000
1011001

1011010
1011011
1011100
1011101

1011110
1011111
1101110
1101111

On the other hand, the language determined by p includes no other strings of
length 7.

As the reader may have already noticed, if one’s intent is simply to eliminate
redundancy in the hypothesis space, then to require that the hypothesis space
be a Friedberg numbering is really overkill. That is because to require that
the hypothesis space be a Friedberg numbering is to require that it be free of
redundancy and that it represent all of the ce sets.

Thus, we consider a milder variant of FrIt-learning, which we call injective
iterative learning (InjIt-learning, Definition 1(c)). In this variant, the hypothesis
space is required to be free of redundancy (i.e., be 1-1), but need not represent
all of the ce sets.8 Clearly, for each class L, if L can be FrIt-identified, then L can
be InjIt-identified. On the other hand, Fin can be InjIt-identified, but, as per
Jain & Stephan’s observation mentioned above, Fin cannot be FrIt-identified.

Going further, if one’s intent is to prevent coding tricks, then to require that
the hypothesis space be free of redundancy may still be overkill. In particular,
one might allow that there be redundancy in the hypothesis space, but require
that the learner not benefit from this redundancy. This idea is captured in our
next model, which is called extensional iterative learning (ExtIt-learning, Def-
inition 1(d)).

7 The pattern languages were first shown to be It-identifiable by Lange & Wieha-
gen [LW91].

8 The use of 1-1 hypothesis spaces was also considered in [BBCJS10] in the context of
learning certain specific classes of languages.

4

For a learner to ExtIt-identify a class of languages, it is required that, when
presented with equivalent hypotheses and identical input elements, the learner
must produce equivalent hypotheses. More formally: suppose that L is a class of
languages, that σ0 and σ1 are two non-empty sequences of elements drawn from
{#} and from two (possibly distinct) languages in L, and that the following
conditions are satisfied.

– When fed all but the last elements of σ0 and σ1, the learner outputs hypothe-
ses for the same language (though those hypotheses may differ syntactically).

– The last elements of σ0 and σ1 are identical.

Then, for the learner to ExtIt-identify L, it is required that:

– When fed all of σ0 and σ1, the learner outputs hypotheses for the same
language (though those hypotheses may differ syntactically).

Clearly, if a learner identifies a class of languages using a 1-1 hypothesis space,
then that learner satisfies the just above requirement. Thus, every class of lan-
guages that can be InjIt-identified can be ExtIt-identified. On the other hand,
we show that there exists a class of languages that can be ExtIt-identified, but
that cannot be InjIt-identified (Theorem 11).

Before introducing our final model, let us recall the definition of an enumer-
ation operator [Rog67, §9.7]. For now, we focus on enumeration operators of a
particular type. A more general definition is given in Section 2.1.

Let P(N) be the powerset of N, i.e., the collection of all subsets of N. Let
〈·, ·〉 be any pairing function, i.e., a computable, 1-1, onto function of type N2 →
N [Rog67, page 64]. Let #̂ = 0, and, for each x ∈ N, let x̂ = x+ 1. Let (Dj)j∈N
be any canonical enumeration of Fin .

An enumeration operator of type P(N) × (N ∪ {#}) → P(N) is a mapping
that is algorithmic in the following precise sense. To each enumeration operator
Θ (of the given type), there corresponds a ce set H, such that, for each X ⊆ N
and x ∈ N ∪ {#},

Θ(X,x) =
{
y |
〈
j, 〈x̂, y〉

〉
∈ H ∧ Dj ⊆ X

}
. (4)

Thus, given an enumeration of X, and given x, one can enumerate Θ(X,x) in
the following manner.

– Enumerate H. For each element of the form
〈
j, 〈x̂, y〉

〉
∈ H, if ever the finite

set Dj appears in the enumeration of X, then list y into Θ(X,x).

Enumeration operators exhibit certain notable properties, including monotonic-
ity . Intuitively, this means that an enumeration operator can tell from its set
argument X what elements are in X, but it cannot tell from X what elements
are in the complement of X. More is said about the properties of enumeration
operators in Section 2.1.

The final model that we consider is called iterative learning by enumeration
operator (EOIt-learning, Definition 1(e)). As the name suggests, the compu-
tational component of the learner is modeled as an enumeration operator, as

5

opposed to a partial computable function. Specifically, the learner is modeled as
a pair , where:

– The first element of the pair is an enumeration operator of type P(N) ×
(N ∪ {#}) → P(N), whose arguments are, respectively, the learner’s most
recently output language, and the next input element.

– The second element of the pair is the learner’s preliminarily output language,
i.e., the language output by the learner before being fed any input. (We
require that this preliminary language be ce.)

Thus, there are no hypotheses in this model. Since there are no hypotheses, there
is no syntax in which the learner can encode what elements it has or has not yet
seen.

The expulsion of hypotheses from the model has an additional consequence,
and that is that the success criterion has to be adjusted. Specifically, we say
that a learner in this model identifies a language L iff when fed the elements
of L (and possibly #), there is some point from whence on the learner outputs
only the language L. The success criterion for identifying a class of languages
is adjusted similarly. This more liberal approach to language identification, in
some sense, gives an advantage to learners in this model. In particular, there
exists a class of languages that can be EOIt-identified, but that cannot be
It-identified (Corollary 15).

Interestingly, there also exists a class of languages that cannot be EOIt-
identified, but that can be FrIt-identified (Theorem 20). To help to see why,
consider the following two scenarios. First, suppose that (M , X) is a learner in
the enumeration operator model, and that Y is its most recently output language.
Then, since M is an enumeration operator, M can tell from Y what elements
are in Y , but it cannot tell from Y what elements are in the complement of Y .
Next, consider the analogous situation for a conventional iterative learner. That
is, suppose that (M,p, (Xj)j∈N) is such a learner, and that j is its most recently
output hypothesis. Then, in many cases, M can tell from j what elements are in
the complement of Xj . In this sense, one could say that a hypothesis implicitly
encodes negative information about the language that it represents. (In fact, this
phenomenon can clearly be seen in the proof of Theorem 20 below.)

A question to then ask is: is this a coding trick , i.e., is it the case that every
learner that operates on hypotheses (as opposed to languages) is employing
coding tricks? At present, we do not see a clear answer to this question. Thus,
we leave it as a subject for further study.

The main points of the preceding paragraphs are summarized in Figure 1.
The remainder of this paper is organized as follows. Section 2 covers prelimi-
naries. Section 3 presents our results concerning uniformly decidable and com-
putably finitely thick classes of languages. Section 4 presents our results con-
cerning Friedberg, injective, and extensional iterative learning (FrIt, InjIt, and
ExtIt-learning, respectively). Section 5 presents our results concerning iterative
learning by enumeration operator (EOIt-learning).

6

L0

FrIt ExtIt It

?
Pat Fin L1

?
L2

InjIt

EOIt

Fig. 1. A summary of main results and open problems. PatΣ is the collection of all
pattern languages over Σ, where Σ is an arbitrary alphabet. Fin is the collection of all
finite subsets of N. The classes L0, L1, and L2 are defined in the proofs of Theorems 9, 11,
and 20, respectively. The existence of the class L3 was shown by Jain (see Theorem 12).

2 Preliminaries

Computability-theoretic concepts not covered below are treated in [Rog67].
N denotes the set of natural numbers, {0, 1, 2, . . .}. Lowercase math-italic

letters (e.g., a, j, x), with or without decorations, range over elements of N,
unless stated otherwise. Uppercase italicized letters (e.g., A, J , X), with or
without decorations, range over subsets of N, unless stated otherwise. For each
non-empty X, minX denotes the minimum element of X. min ∅ def= ∞. For each
non-empty, finite X, maxX denotes the maximum element of X. max ∅ def= −1.
For each X and Y , X 4 Y denotes the symmetric difference of X and Y , i.e.,
{X − Y } ∪ {Y −X}.
P(N) denotes the powerset of N, i.e., the collection of all subsets of N. P(N)m

denotes the collection of all tuples of length m whose elements are drawn from
P(N). Uppercase calligraphic letters (e.g., L, X), with or without decorations,
range over subsets of P(N), unless stated otherwise. Fin denotes the collection
of all finite subsets of N. (Dj)j∈N denotes a canonical enumeration of Fin .
〈·, ·〉 denotes any fixed pairing function, i.e., a computable, 1-1, onto function

of type N2 → N [Rog67, page 64]. For each x, 〈x〉 def= x. For each x0, ..., xn−1,
where n > 2, 〈x0, ..., xn−1〉 def=

〈
x0, 〈x1, ..., xn−1〉

〉
.

N#
def= N ∪ {#}. A text is a total function of type N → N#. For each text

t and i ∈ N, t[i] denotes the initial segment of t of length i. For each text t,
content(t) def= {t(i) | i ∈ N} − {#}. For each text t and L ⊆ N, t is a text for L
def⇔ content(t) = L.

Seq denotes the set of all initial segments of texts. Lowercase Greek letters
(e.g., ρ, σ, τ), with or without decorations, range over elements of Seq, unless
stated otherwise. λ denotes the empty initial segment (equivalently, the every-
where divergent function). For each σ, |σ| denotes the length of σ (equivalently,
the size of the domain of σ). For each σ and i ≤ |σ|, σ[i] denotes the initial
segment of σ of length i. For each σ, content(σ) def= {σ(i) | i < |σ|} − {#}. For

7

each σ and τ , σ ·τ denotes the concatenation of σ and τ . For each σ ∈ Seq−{λ}:

σ− def= σ[|σ| − 1]; (5)
last(σ) def= σ(|σ| − 1). (6)

For each L and L, Txt(L), Txt(L), Seq(L), and Seq(L) are defined as follows.

Txt(L) = { t | t is a text for L}. (7)
Txt(L) = { t | (∃L ∈ L)[t ∈ Txt(L)]}. (8)
Seq(L) = {σ | content(σ) ⊆ L}. (9)
Seq(L) = {σ | (∃L ∈ L)[σ ∈ Seq(L)]}. (10)

For each one-argument partial function ψ and x ∈ N, ψ(x)↓ denotes that
ψ(x) converges; ψ(x)↑ denotes that ψ(x) diverges. We use ↑ to denote the value
of a divergent computation.

For each X , a numbering of X is an onto function of type N→ X . A numbering
(Xj)j∈N is effective def⇔ the predicate λj, x [x ∈ Xj] is partial computable. EN
denotes the collection of all effective numberings.

CE denotes the collection of all computably enumerable (ce) subsets of N.
For each m and n, PCm,n denotes the collection of partial computable functions
mapping Nm ×Nn# to N. We shall be concerned primarily with PC1,0 and PC1,1.
(ϕp)p∈N denotes any fixed, acceptable numbering of PC1,0. For each i, Wi

def= {x |
ϕi(x)↓}. Thus, (Wi)i∈N is an effective numbering of CE .

For each M ∈ PC1,1 and p, the partial function M∗p is such that, for each
σ ∈ Seq and x ∈ N#:

M∗p (λ) = p; (11)

M∗p (σ · x) =
{
M
(
M∗p (σ), x

)
, if M∗p (σ)↓;

↑, otherwise. (12)

2.1 Enumeration Operators

An enumeration operator is a mapping of type P(N)m×Nn# → P(N), for some m
and n, and that is algorithmic in the following precise sense. To each enumeration
operator Θ : P(N)m ×Nn# → P(N), there corresponds a ce set H, such that, for
each X0, ..., Xm−1 and x0, ..., xn−1,

Θ(X0, ..., Xm−1, x0, ..., xn−1)
= {y | 〈j0, ..., jm−1, x0, ..., xn−1, y〉 ∈ H ∧ (∀i < m)[Dji ⊆ Xi]}.

(13)

A strategy for enumerating Θ(X0, ..., Xm−1, x0, ..., xn−1), given X0, ..., Xm−1

and x0, ..., xn−1, can easily be generalized from that given for enumeration op-
erators of type P(N)× N# → P(N) in Section 1.

For each m,n ∈ N, EOm,n denotes the collection of all enumeration operators
of type P(N)m × Nn# → P(N). We shall be concerned primarily with EO1,0 and
EO1,1.

Enumeration operators exhibit monotonicity and continuity proper-
ties [Rog67, Theorem 9-XXI], described below for EO1,1.

8

– Monotonicity : for each M ∈ EO1,1, X,Y ⊆ N, and x ∈ N#,

X ⊆ Y ⇒ M (X,x) ⊆ M (Y, x). (14)

– Continuity : for each M ∈ EO1,1, X ⊆ N, x ∈ N#, and y ∈ N,

y ∈ M (X,x) ⇒ (∃A ∈ Fin)[A ⊆ X ∧ y ∈ M (A, x)]. (15)

For each M ∈ EO1,1 and X, the function M ∗X : Seq→ P(N) is such that, for
each σ ∈ Seq and x ∈ N#:

M ∗X(λ) = X; (16)
M ∗X(σ · x) = M

(
M ∗X(σ), x

)
. (17)

2.2 Iterative and Iterative-like Learning Models

The following are the formal definitions of the learning models described in
Section 1. The symbols Fr, Inj, Ext, and EO are mnemonic for Friedberg ,
injective, extensional , and enumeration operator , respectively.

Definition 1 For each L, (a)-(e) below. In parts (a)-(d), (M,p, (Xj)j∈N) ∈
PC1,1 × N× EN . In part (e), (M , X) ∈ EO1,1 × CE .

(a) (Wiehagen [Wie76]) (M,p, (Xj)j∈N) It-identifies L ⇔ for each t ∈
Txt(L), there exists i0 ∈ N such that XM∗p (t[i0]) = content(t), and (∀i ≥
i0)
[
M∗p (t[i]) = M∗p (t[i0])

]
.

(b) (Jain & Stephan [JS08]) (M,p, (Xj)j∈N) FrIt-identifies L ⇔ (M,p,
(Xj)j∈N) It-identifies L, and (Xj)j∈N is a Friedberg numbering.

(c) (M,p, (Xj)j∈N) InjIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and
(Xj)j∈N is 1-1.

(d) (M,p, (Xj)j∈N) ExtIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and,
for each σ0, σ1 ∈ Seq(L)− {λ},

[XM∗p (σ−0) = XM∗p (σ−1) ∧ last(σ0) = last(σ1)] ⇒ XM∗p (σ0) = XM∗p (σ1). (18)

(e) (M , X) EOIt-identifies L ⇔ for each t ∈ Txt(L), there exists i0 ∈ N such
that (∀i ≥ i0)

[
M ∗X(t[i]) = content(t)

]
.

Definition 2 Let It be as follows.

It =
{

L |
(
∃(M,p, (Xj)j∈N) ∈ PC1,1 × N× EN

)
[(M,p, (Xj)j∈N) It-identifies L]

}
.

Let FrIt, InjIt, ExtIt, and EOIt be defined similarly.

9

3 Uniform Decidability and Computable Finite Thickness

In this section, we extend a result of Lange & Zeugmann by showing that,
for each class L, if there exists a single hypothesis space witnessing that L is
both uniformly decidable and computably finitely thick, then L can be FrIt-
identified (Theorem 6). We also show that there exists a class of languages that
is uniformly decidable and computably finitely thick, but that is not in It, let
alone FrIt (Theorem 9). Thus, one could not arrive at the conclusion of the just
mentioned Theorem 6 if one were to merely require that: there exists a uniformly
decidable effective numbering of L, and a possibly distinct computably finitely
thick effective numbering of L.

The following are the formal definitions of the terms uniformly decidable and
computably finitely thick . For additional background, see [LZZ08].

Definition 3

(a) An effective numbering (Xj)j∈N is uniformly decidable ⇔ the predicate
λj, x [x ∈ Xj] is decidable.

(b) A class of languages L is uniformly decidable ⇔ there exists a uniformly
decidable effective numbering of L.

(c) An effective numbering (Xj)j∈N is computably finitely thick ⇔ there exists
a computable function f : N→ N such that, for each x,

{Xj | j ∈ Df(x)} = {L | x ∈ L ∧ (∃j)[Xj = L]}. (19)

(d) (Lange & Zeugmann [LZ96, Definition 9]) A class of languages L is
computably finitely thick ⇔ there exists a computably finitely thick effective
numbering of L.

N.B. In part (c) just above, the function f need not satisfy Df(x) = {j | x ∈ Xj}.
However, see Lemma 7 below.

Example 4

(a) Fin is uniformly decidable, but is not computably finitely thick.
(b) CE is neither uniformly decidable nor computably finitely thick.
(c) The class

{
{e}, {e} ∪ (We + e+ 1) | e ∈ N

}
is not uniformly decidable, but

is computably finitely thick.9

(d) The class {N + e | e ∈ N} is both uniformly decidable and computably
finitely thick. Moreover, there exists a single effective numbering witness-
ing both properties simultaneously.

(e) Let L be as follows.

L =
{
{e} | e ∈ N

}
∪
{
{e, ϕe(0) + e+ 1} | e ∈ N ∧ ϕe(0)↓

}
. (20)

9 The classes given in parts (c) and (e) of Example 4 can be shown to be computably
finitely thick using a technique similar to that used in the proof of Theorem 9 below
(see Figure 3(b), specifically).

10

Then, L is both uniformly decidable and computably finitely thick,10 but
there is no effective numbering of L witnessing both properties simultane-
ously. In fact, no such numbering exists for any class containing L.

The following result, due to Lange & Zeugmann, gives a sufficient condition for
a class of languages to be It-identifiable.

Theorem 5 (Lange & Zeugmann [LZ96, Theorem 12]). For each L, if
there exists an effective numbering of L that is both uniformly decidable and
computably finitely thick, then L ∈ It.11

The following result strengthens Theorem 5 (Lange & Zeugmann) just above.

Theorem 6. For each L, if there exists an effective numbering of L that is both
uniformly decidable and computably finitely thick, then L ∈ FrIt.

The proof of Theorem 6 relies on the following lemma.

Lemma 7 For each L, if there exists an effective numbering of L that is both
uniformly decidable and computably finitely thick, then there exists an effective
numbering (X ′j)j∈N of L satisfying (i) and (ii) below.

(i) (X ′j)j∈N is uniformly decidable.
(ii) (X ′j)j∈N satisfies the following strong form of computable finite thickness.

There exists a computable function f ′ : N→ N such that, for each x,

Df ′(x) = {j | x ∈ X ′j}. (21)

Proof. Suppose that L satisfies the conditions of the lemma, as witnessed by
(Xj)j∈N and f : N→ N. The proof is straightforward in the case when L is finite.
So, suppose that L is infinite. Construct (X ′j)j∈N and f ′ : N → N by executing
stages s = 0, 1, ... successively as follows.

– Stage s = 0. If ∅ ∈ L, then list ∅ into (X ′j)j∈N.
– Stage s = 2x+ 1. For each j ∈ Df(x) such that minXj = x, list Xj into

(X ′j)j∈N.
– Stage s = 2x+ 2. If no sets have yet been listed into (X ′j)j∈N, then let
jmax = −1; otherwise, let jmax be the largest index into (X ′j)j∈N used thus
far. Set Df ′(x) = {j ≤ jmax | x ∈ X ′j}.

Clearly, (X ′j)j∈N is a numbering of L. Furthermore, it is straightforward to show
that (X ′j)j∈N satisfies (i) in the statement of the lemma. To show that (X ′j)j∈N
satisfies (ii): let x be fixed. Note that any set listed into (X ′j)j∈N subsequent to
stage 2x + 2 will have a minimum element larger than x. Thus, if jmax is as in
stage 2x+ 2, then

(∀j)[x ∈ X ′j ⇒ j ≤ jmax]. (22)

10 See footnote 9.
11 In [LZ96], Theorem 12 is not stated exactly as Theorem 5 is stated here. However,

based on the proof of this result, we believe that what is stated here is what is meant.

11

Clearly, then, f ′ satisfies (21). � (Lemma 7)

Proof of Theorem 6. Suppose that L satisfies the conditions of the theorem, as
witnessed by (Xj)j∈N. Without loss of generality, suppose that (Xj)j∈N satisfies
the strong form of computable finite thickness of Lemma 7(ii). Let f : N → N
be the function witnessing this strong from of computable finite thickness.

For each x and J , say that x narrows J ⇔ by letting J ′ = {j ∈ J | x ∈ Xj},

∅ 6= J ′ ⊂ J ∧ {w ∈ (
⋂
j∈J′Xj) | w < x} = {w ∈ (

⋂
j∈JXj) | w < x}. (23)

Let (Yk)k∈N be any Friedberg numbering.
An effective numbering (Z`)`∈N is constructed in Figure 2. The construction

makes use of two procedures: survey and descend. The procedure survey takes
one argument: an element of N. The procedure descend takes two arguments: a
finite subset of N, and an element of N.

In conjunction with (Z`)`∈N, a partial computable function ζ from Fin to
N is constructed. It is clear from the construction that ζ is 1-1, i.e., (∀J, J ′ ∈
Fin)[ζ(J)↓ = ζ(J ′) ⇒ J = J ′].

The construction of (Z`)`∈N is also annotated with several facts. For the pur-
pose of these facts, and for the claims below, the following notation is adopted,
for each S, J , and x. (Where relevant, let J ′ and A be defined in the obvious
way.)

– S is listed 0-indirectly by descend(J, x) ⇔
• cond. (i) applies in descend(J, x), and S is of the form A ∪ (Yk + x+ 1);
• cond. (ii) applies in descend(J, x), and S is of the form A ∪ {x} ∪ (Yk +
x+ 1); or

• cond. (iii) applies in descend(J, x), and S = (
⋂
j∈J′Xj).

– S is listed (n+ 1)-indirectly by descend(J, x) ⇔
• cond. (i) or (ii) applies in descend(J, x), and S is listed n-indirectly by

descend(J, x+ 1); or
• cond. (iii) applies in descend(J, x), and S is listed n-indirectly by either

descend(J, x+ 1) or descend(J ′, x+ 1).

– S is listed directly by descend(J, x)⇔ S is listed 0-indirectly by descend(J, x).

– S is listed indirectly by descend(J, x) ⇔ there exists n such that S is listed
(n+ 1)-indirectly by descend(J, x).

– S is listed by descend(J, x) ⇔ S is listed directly or indirectly by
descend(J, x).

– S is listed directly by survey(x) ⇔
• cond. (a) applies in survey(x), and S is of the form {x}∪ (Yk +x+ 1); or
• cond. (b) applies in survey(x), and S = (

⋂
j∈Df(x)

Xj).

– S is listed indirectly by survey(x) ⇔ cond. (b) applies in survey(x), and S is
listed by descend(Df(x), x+ 1).

– S is listed by survey(x) ⇔ S is listed directly or indirectly by survey(x).

12

List ∅ into (Z`)`∈N exactly once. Then, for each x, run survey(x).

survey(x): Act according the following conditions.

– Cond. (a) [Df(x) = ∅ ∨ min(
T
j∈Df(x)

Xj) 6= x]. For each k, list {x}∪ (Yk +x+ 1)

into (Z`)`∈N exactly once.

(Fact: For each set S listed, minS = x.)

– Cond. (b) [Df(x) 6= ∅ ∧ min(
T
j∈Df(x)

Xj) = x]. List (
T
j∈Df(x)

Xj) into (Z`)`∈N

exactly once, set ζ(Df(x)) to the index used to list this set, and run
descend(Df(x), x+ 1).

(Fact: For each set S listed, minS = x.)

descend(J, x): Let J ′, x0, and A be such that:

J ′ = {j ∈ J | x ∈ Xj}; x0 = min(
T
j∈JXj); A = {w ∈ (

T
j∈JXj) | w < x}.

Act according to the following conditions.

– Cond. (i)
ˆ
J ′ = J

˜
. For each k, list A ∪ (Yk + x + 1) into (Z`)`∈N exactly once,

and run descend(J, x+ 1).

(Fact: For each set S listed, {w ∈ S | w < x} = A. For each set S listed directly,
x ∈ (

T
j∈JXj)− S.)

– Cond. (ii)
ˆ
x ≤ x0 ∨ [J ′ ⊂ J ∧ x does not narrow J]

˜
. For each k, list A∪{x}∪

(Yk + x+ 1) into (Z`)`∈N exactly once, and run descend(J, x+ 1).

(Fact: For each set S listed, {w ∈ S | w < x} = A. For each set S listed directly,
x ∈ S − (

T
j∈JXj).)

– Cond. (iii)
ˆ
x > x0 ∧ x narrows J

˜
. List (

T
j∈J′Xj) into (Z`)`∈N exactly once,

set ζ(J ′) to the index used to list this set, and run both descend(J, x + 1) and
descend(J ′, x+ 1).

(Fact: For each set S listed, {w ∈ S | w < x} = A. For each set S listed directly
(i.e., S = (

T
j∈J′Xj)), x ∈ S − (

T
j∈JXj).)

Fig. 2. The construction of (Z`)`∈N in the proof of Theorem 6.

The facts annotating the construction of (Z`)`∈N are shown by a straightforward
induction, the details of which are omitted.

That (Z`)`∈N is a Friedberg numbering is established by Claims 6.3 and 6.5
below.

Claim 6.1. (a)-(e) below.

(a) For each x, ∅ is not listed by survey(x).
(b) For each x0 and x1, if x0 6= x1, then

{S | S is listed by survey(x0)} ∩ {S | S is listed by survey(x1)} = ∅. (24)

(c) Suppose that x is such that cond. (b) applies in survey(x). Then,
(
⋂
j∈Df(x)

Xj) is not listed by descend(Df(x), x+ 1).

13

(d) Suppose that J and x are such that cond. (i) or (ii) applies in descend(J, x).
Then, for each set S listed directly by descend(J, x), S is not listed by
descend(J, x+ 1).

(e) Suppose that J and x are such that cond. (iii) applies in descend(J, x). Let
J ′ = {j ∈ J | x ∈ Xj}. Then, (i)-(iii) below.
(i) (

⋂
j∈J′Xj) is not listed by descend(J, x+ 1).

(ii) (
⋂
j∈J′Xj) is not listed by descend(J ′, x+ 1).

(iii) {S | S is listed by descend(J, x+ 1)}
∩ {S | S is listed by descend(J ′, x+ 1)} = ∅.

Proof of Claim. Straightforward, given the facts annotating the construction
of (Z`)`∈N. � (Claim 6.1)

Claim 6.2. For each n, S, J , and x, if S is listed n-indirectly by descend(J, x),
then S is listed at most once by descend(J, x).
Proof of Claim. The proof is by induction on n. For the case when n = 0,
suppose that S, J , and x are such that S is listed directly by descend(J, x).
Then, it follows from parts (d), (e)(i), and (e)(ii) of Claim 6.1 that S is listed at
most once by descend(J, x).

Next, suppose inductively that the claim holds for n, and that S, J , and
x are such that S is listed (n + 1)-indirectly by descend(J, x). Thus, cond. (iii)
applies in descend(J, x), and S is listed n-indirectly by either descend(J, x + 1)
or descend(J ′, x + 1). By the induction hypothesis, S is listed at most once
by descend(J, x + 1), and at most once by descend(J ′, x + 1). Clearly, then, by
Claim 6.1(e)(iii), S is listed at most once by descend(J, x). � (Claim 6.2)

Claim 6.3. (Z`)`∈N is 1-1.
Proof of Claim. To show the claim, it suffices to show that, for each S ∈ CE ,
S is listed at most once during the construction of (Z`)`∈N. So, let S ∈ CE
be fixed. If S = ∅, then it follows from Claim 6.1(a) that S is listed at most
once. So, suppose that S 6= ∅. By Claim 6.1(b), it suffices to show that, for
each x, S is listed at most once by survey(x). So, suppose that x is such that
S is listed at least once by survey(x). If cond. (a) applies in survey(x), then S
list clearly listed at most once by survey(x). So, suppose cond. (b) applies in
survey(x). If S is listed directly by survey(x), then it follows from Claim 6.1(c)
that S is listed at most once by survey(x). So, suppose that S is listed indirectly
by survey(x), i.e., S is listed by descend(Df(x), x + 1). Let n be such that S is
listed n-indirectly descend(Df(x), x+ 1). Then, by Claim 6.2, S is listed at most
once by descend(Df(x), x+ 1). � (Claim 6.3)

Claim 6.4. Let S ∈ CE − {∅} be fixed, let x0 = minS, and let J0 = Df(x0).
Suppose that [J0 6= ∅ ∧ min(

⋂
j∈J0

Xj) = x0]. Then, there exists an n and two
sequences, x1, ..., xn and J1, ..., Jn, satisfying (a)-(g) below.

(a) For each i < n, xi+1 > xi.
(b) For each i < n, xi+1 narrows Ji.
(c) For each i < n, Ji+1 = {j ∈ Ji | xi+1 ∈ Xj}.

14

(d) For each i ≤ n, {w ∈ (
⋂
j∈Ji

Xj) | w ≤ xi} = {w ∈ S | w ≤ xi}.
(e) For each i ≤ n, (

⋂
j∈Ji

Xj) is listed into (Z`)`∈N.
(f) For each i ≤ n, descend(Ji, xi + 1) is run.
(g) One of (i)-(iii) below holds.

(i) (
⋂
j∈Jn

Xj) = S.
(ii) There exists x′ > xn such that x′ ∈ (

⋂
j∈Jn

Xj)− S.
(iii) There exists x′ > xn such that x′ ∈ S − (

⋂
j∈Jn

Xj) and x′ does not nar-
row Jn.

Proof of Claim. Suppose that S, x0, and J0 are as stated. We show that:

– parts (a)-(f) hold for 0;
– if parts (a)-(f) hold for n, and part (g) fails for n, then parts (a)-(f) hold for
n+ 1.

By part (b), this process cannot continue indefinitely, i.e., there must exist some
n for which parts (a)-(g) hold.

For the case when n = 0, clearly, parts (a)-(d) hold. Furthermore, when
survey(x0) is run, (

⋂
j∈J0

Xj) is listed into (Z`)`∈N, and descend(J0, x0 + 1) is
run.

Next, suppose inductively that parts (a)-(f) hold for n, and that part (g) fails
for n, i.e., (i)-(iii) below.

(i) (
⋂
j∈Jn

Xj) 6= S.
(ii) For each x′ > xn, if x′ ∈ (

⋂
j∈Jn

Xj)− S, then x′ ∈ S.
(iii) For each x′ > xn, if x′ ∈ S − (

⋂
j∈Jn

Xj), then x′ narrows Jn.

By (i), there exists a least xn+1 > xn such that xn+1 ∈ (
⋂
j∈Jn

Xj) 4 S. If
xn+1 ∈ (

⋂
j∈Jn

Xj)−S, then, by (ii), xn+1 ∈ S — a contradiction. Thus, it must
be the case that xn+1 ∈ S − (

⋂
j∈Jn

Xj). By the choice of xn+1, xn+1 > xn.
By (iii), xn+1 narrows Jn. Let Jn+1 = {j ∈ Jn | xn+1 ∈ Xj}.

To show part (d) for n+ 1: by part (d) for n,

{w ∈ (
⋂
j∈Jn

Xj) | w ≤ xn} = {w ∈ S | w ≤ xn}. (25)

Since xn+1 is least such that xn+1 > xn and xn+1 ∈ (
⋂
j∈Jn

Xj) 4 S,

{w ∈ (
⋂
j∈Jn

Xj) | xn < w < xn+1} = {w ∈ S | xn < w < xn+1}. (26)

Since xn+1 narrows Jn,

{w ∈ (
⋂
j∈Jn+1

Xj) | w < xn+1} = {w ∈ (
⋂
j∈Jn

Xj) | w < xn+1}. (27)

Clearly, xn+1 is in both (
⋂
j∈Jn+1

Xj) and S. Combining this fact with (25)-(27)
yields:

{w ∈ (
⋂
j∈Jn+1

Xj) | w ≤ xn+1} = {w ∈ S | w ≤ xn+1}. (28)

To show parts (e) and (f) for n+1: by part (f) for n, descend(J, xn+1) is run.
Clearly, then, descend(J, xn+1) is run, and cond. (iii) applies in descend(Jn, xn+1).

15

Thus, (
⋂
j∈Jn+1

Xj) is listed into (Z`)`∈N, and descend(Jn+1, xn+1 + 1) is
run. � (Claim 6.4)

Claim 6.5. (Z`)`∈N is a numbering of CE .
Proof of Claim. Let S ∈ CE be fixed. If S ∈ ∅, then S is listed into (Z`)`∈N
at the beginning of the construction of (Z`)`∈N. So suppose that S 6= ∅. Let
x0 = minS and let J0 = Df(x0). If [J0 = ∅ ∨ min(

⋂
j∈J0

Xj) 6= x0], then
S is clearly listed into (Z`)`∈N when survey(x0) is run. So suppose that [J0 6=
∅ ∧ min(

⋂
j∈J0

Xj) = x0]. Then, there exist n, x1, ..., xn, and J1, ..., Jn as in
Claim 6.4 for S. Consider the following cases based on part (g) of Claim 6.4.

Case [part (g)(i) of Claim 6.4 holds for S]. Then, by part (e) for n of Claim 6.4,
S is listed into (Z`)`∈N.

Case [part (g)(ii) of Claim 6.4 holds for S]. Let x′ be as asserted to exist by
part (g)(ii) of Claim 6.4 for S. By part (f) for n, descend(J, xn + 1) is run.
Clearly, then, descend(J, x′) is run, cond. (i) applies in descend(Jn, x′), and S is
listed into (Z`)`∈N.

Case [part (g)(iii) of Claim 6.4 holds for S]. Let x′ be as asserted to exist by
part (g)(iii) of Claim 6.4 for S. By part (f) for n, descend(J, xn + 1) is run.
Clearly, then, descend(J, x′) is run, cond. (ii) applies in descend(Jn, x′), and S is
listed into (Z`)`∈N. � (Claim 6.5)

To complete the proof of the theorem, it suffices to show that L can be
It-identified using (Z`)`∈N as the hypothesis space. For ease of presentation,
suppose that Z0 = ∅. Let M ∈ PC1,1 be such that, for each ` > 0 and x:

M(0,#) = 0; (29)

M(0, x) =
{
ζ(Df(x)), if ζ(Df(x))↓;
↑, otherwise; (30)

M(`,#) = `; (31)

M(`, x) =

ζ(J ′), where J and J ′ are such that ζ(J) = ` and

J ′ = {j ∈ J | x ∈ Xj}, if such a J exists
and ζ(J ′)↓;

↑, otherwise.

(32)

Clearly, (M, 0, (Z`)`∈N) identifies ∅. Furthermore, it is straightforward to show
that, for each τ ,

(∀σ ⊆ τ)[content(σ) 6= ∅ ⇒ ζ({j | content(σ) ⊆ Xj})↓] ⇒
M∗0 (τ) = ζ({j | content(τ) ⊆ Xj}),

(33)

and that, for each finite J ,

ζ(J)↓ ⇒ Zζ(J) = (
⋂
j∈JXj). (34)

Thus, if it can be shown that(
∀σ ∈ Seq(L)

)
[content(σ) 6= ∅ ⇒ ζ({j | content(σ) ⊆ Xj})↓], (35)

16

then the fact that (M, 0, (Z`)`∈N) exhibits the correct behavior follows easily.
Claim 6.8 below establishes (35).

Claim 6.6. Suppose that J is finite and non-empty. Let x0 = min(
⋂
j∈JXj).

Then, (a) and (b) below.

(a) Df(x0) ⊇ J .
(b) min(

⋂
j∈Df(x0)

Xj) = x0.

Proof of Claim. Suppose that J and x0 are as stated. Since x0 ∈ (
⋂
j∈JXj),

it is immediate that J ⊆ {j | x0 ∈ Xj}. Furthermore, since f witnesses that
(Xj)j∈N satisfies the strong form of computable finite thickness of Lemma 7(ii),
Df(x0) = {j | x0 ∈ Xj}. Thus, Df(x0) ⊇ J .

To show part (b): clearly, x0 ∈ (
⋂
j∈Df(x0)

Xj). Furthermore, by
part (a), (

⋂
j∈Df(x0)

Xj) ⊆ (
⋂
j∈JXj). Thus, since there is nothing

smaller than x0 in (
⋂
j∈JXj), there can be nothing smaller than x0 in

(
⋂
j∈Df(x0)

Xj). � (Claim 6.6)

Claim 6.7. Suppose that J is finite and non-empty. let x0 = (min
⋂
j∈JXj),

and let J0 = Df(x0). Then, there exists an n and two sequences, x1, ..., xn and
J1, ..., Jn, satisfying (a)-(h) below.

(a) For each i < n, xi+1 > xi.
(b) For each i < n, xi+1 narrows Ji.
(c) For each i < n, Ji+1 = {j ∈ Ji | xi+1 ∈ Xj}.
(d) For each i ≤ n, {w ∈ (

⋂
j∈Ji

Xj) | w ≤ xi} = {w ∈ (
⋂
j∈JXj) | w ≤ xi}.

(e) For each i ≤ n, Ji ⊇ J .
(f) For each i ≤ n, ζ(Ji)↓.
(g) For each i ≤ n, descend(Ji, xi + 1) is run.
(h) There is no x′ > xn such that x′ narrows Jn and {j ∈ Jn | x′ ∈ Xj} ⊇ J .

Proof of Claim. Suppose that J , x0, and J0 are as stated. Much like in the
proof of Claim 6.4, we show that:

– parts (a)-(g) hold for 0;
– if parts (a)-(g) hold for n, and part (h) fails for n, then parts (a)-(g) hold

for n+ 1.

Again, by part (b), this process cannot continue indefinitely, i.e., there must
exist some n for which parts (a)-(h) hold.

For the case when n = 0, clearly, parts (a)-(d) hold. Note that, by Claim 6.6,

J0 = Df(x0) ⊇ J (6= ∅) ∧ min(
⋂
j∈Df(x0)

Xj) = x0. (36)

It follows that ζ(J0) is set when survey(x0) is run, and that descend(J0, x0 + 1)
is run.

Next, suppose inductively that parts (a)-(g) hold for n, and that part (h)
fails for n. Let xn+1 be least such that xn+1 > xn, xn+1 narrows Jn, and
{j ∈ Jn | xn+1 ∈ Xj} ⊇ J . Let Jn+1 = {j ∈ Jn | xn+1 ∈ Xj}.

17

To show part (d) for n+ 1: by way of contradiction, let x′ be least such that
x′ ∈ (

⋂
j∈Jn+1

Xj) 4 (
⋂
j∈JXj). By part (d) for n,

{w ∈ (
⋂
j∈Jn

Xj) | w ≤ xn} = {w ∈ (
⋂
j∈JXj) | w ≤ xn}. (37)

Since xn+1 narrows Jn,

{w ∈ (
⋂
j∈Jn+1

Xj) | w < xn+1} = {w ∈ (
⋂
j∈Jn

Xj) | w < xn+1}. (38)

Combining (37), (38), and the fact that xn < xn+1 yields:

{w ∈ (
⋂
j∈Jn+1

Xj) | w ≤ xn} = {w ∈ (
⋂
j∈JXj) | w ≤ xn}. (39)

Thus, it must be the case that x′ > xn. Since Jn+1 ⊇ J , (
⋂
j∈Jn+1

Xj) ⊆
(
⋂
j∈JXj). Thus, x′ ∈ (

⋂
j∈JXj) − (

⋂
j∈Jn+1

Xj). Clearly, xn+1 ∈ (
⋂
j∈Jn+1

Xj).
Thus, it must be the case that x′ < xn+1. Given these conditions, it is easily
seen that x′ narrows Jn. Furthermore, since Jn ⊇ J ,

{j ∈ Jn | x′ ∈ Xj} ⊇ {j ∈ J | x′ ∈ Xj} = J. (40)

But since x′ < xn+1, the existence of x′ contradicts the minimality of xn+1.
To show parts (f) and (g) for n+1: by part (g) for n, descend(Jn, xn+1) is run.

Clearly, then, descend(J, xn+1) is run, and cond. (iii) applies in descend(Jn, xn+1).
Thus, ζ(Jn+1) is set, and, and descend(Jn+1, xn+1 + 1) is run. � (Claim 6.7)

Claim 6.8. Suppose that σ ∈ Seq(L) is such that content(σ) 6= ∅. Let J = {j |
content(σ) ⊆ Xj}. Then, ζ(J)↓.
Proof of Claim. Suppose that σ and J are as stated. Since σ ∈ Seq(L), J 6= ∅.
Thus, there exist n, x1, ..., xn, and J1, ..., Jn as in Claim 6.7 for J . By part (f)
for n, ζ(Jn)↓. Thus, to show the claim, it suffices to show that Jn = J .

By part (e) for n of Claim 6.7, Jn ⊇ J . So, by way of contradiction, suppose
that Jn ⊃ J . Thus, there exists j ∈ Jn such that content(σ) 6⊆ Xj . It follows that
(
⋂
j∈Jn

Xj) ⊂ (
⋂
j∈JXj). Let x′ be least such that x′ ∈ (

⋂
j∈JXj)− (

⋂
j∈Jn

Xj).
Thus,

{w ∈ (
⋂
j∈Jn

Xj) | w < x′} = {w ∈ (
⋂
j∈JXj) | w < x′}. (41)

By part (d) for n of Claim 6.7,

{w ∈ (
⋂
j∈Jn

Xj) | w ≤ xn} = {w ∈ (
⋂
j∈JXj) | w ≤ xn}. (42)

Thus, it must be the case that x′ > xn. Clearly, x′ narrows Jn. Furthermore,
since Jn ⊇ J ,

{j ∈ Jn | x′ ∈ Xj} ⊇ {j ∈ J | x′ ∈ Xj} = J. (43)

But then the existence of x′ contradicts part (h) for n of Claim 6.7.
� (Claim 6.8)

� (Theorem 6)
Recall that PatΣ is the collection of all pattern languages over Σ, where Σ is

an arbitrary alphabet. It is straightforward to show that, for each Σ, there exists
an effective numbering of PatΣ that is both uniformly decidable and computably
finitely thick. Thus, one has the following corollary of Theorem 6.

18

(a) For each i, execute stage 0 below.

– Stage 0. For each i, include (N + i) and {i} in L0. Go to stage 1.

– Stage 1. Let (M,p) be the ith pair in ((M,p)i)i∈N. Search for a k ≥ i such
that

M∗p
`
(i · · · · · k) · (k + 1)

´
↓ = M∗p

`
(i · · · · · k) · k

´
= M∗p (i · · · · · k).

If such a k is found, then include {i, ..., k} and {i, ..., k+1} in L0, and terminate
the construction (for i). If no such k is found, then search indefinitely.

(b) For each i, execute stage 0 below.

– Stage 0. Set Xstart(i) = N+i, and, for each j ∈ {start(i)+1, ..., start(i+1)−1},
set Xj = {i}. Go to stage 1.

– Stage 1. In a dovetailing manner, monitor and act according to the following
conditions.

• Cond. [in the construction of L0 above, a k is found for i].
Set Xstart(i)+2 = {i, ..., k} and Xstart(i)+3 = {i, ..., k + 1}.

• Cond. [i ∈ Xj , where j < start(i)]. Set Xstart(i)+j+4 = Xj .

Fig. 3. (a) The construction of L0 in the proof of Theorem 9. (b) The construction of
(Xj)j∈N in the proof of Theorem 9. The function start is defined in (44).

Corollary 8 (of Theorem 6) For each alphabet Σ, PatΣ is FrIt-identifiable.

The proof of Theorem 9 below exhibits a class of languages L0 that is uni-
formly decidable and computably finitely thick, but L0 6∈ It. Thus, one could not
arrive at the conclusion of Theorem 6 if one were to merely require that: there
exists a uniformly decidable effective numbering of L, and a possibly distinct
computably finitely thick effective numbering of L.

Theorem 9. There exists a class of languages L0 that is uniformly decidable
and computably finitely thick, but L0 6∈ It.

Proof. Let ((M,p)i)i∈N be an algorithmic enumeration of all pairs of type
PC1,1 × N. Let start : N→ N be such that, for each i,

start(i) = 2i+1 − 4. (44)

Note that, for each i,

start(i+ 1)− start(i) = start(i) + 4. (45)

The class L0 is constructed in Figure 3(a). An effective numbering (Xj)j∈N, which
is easily seen to be of L0, is constructed in Figure 3(b). This effective numbering
(Xj)j∈N is used to show that L0 is computably finitely thick. It is straightforward
to construct an effective numbering witnessing that L0 is uniformly decidable.

The following are easily verifiable from the construction of (Xj)j∈N.

19

– For each L ∈ L0 and i ∈ L, there exists j < start(i) + 4 such that Xj = L.
– For each i and j < start(i), if i ∈ Xj , then there exists j′ ∈ {start(i) + 4, ...,

start(i+ 1)− 1} such that Xj′ = Xj .
– For each j ∈ {start(i), ..., start(i+ 1)− 1}, i ∈ Xj .

Given these facts, if one lets f : N→ N be such that, for each i,

Df(i) = {start(i), ..., start(i+ 1)− 1}, (46)

then f clearly witnesses that (Xj)j∈N is computably finitely thick.
It remains to show that L0 6∈ It. By way of contradiction, suppose otherwise,

as witnessed by (M,p, (Xj)j∈N), where (M,p) is the ith pair in ((M,p)i)i∈N.
Then, since (N + i) ∈ L0, there exists a least k0 ≥ i such that

(∀k ≥ k0)
[
M∗p
(
(i · · · · · k0) · k

)
↓ = M∗p (i · · · · · k0)

]
. (47)

It follows that some k1 ≥ k0 is discovered in stage 1 of the construction of L0

(for i), and that {i, ..., k1} and {i, ..., k1 + 1} are in L0. Note that

t0 = (i · · · · · k1) · k∞1 ; (48)
t1 = (i · · · · · k1) · (k1 + 1)∞ (49)

are, respectively, texts for {i, ..., k1} and {i, ..., k1 + 1}. But, by (47),
(M,p, (Xj)j∈N) cannot distinguish the languages contained in these texts —
a contradiction. � (Theorem 9)

4 Friedberg, Injective, and Extensional Iterative Learning

This section examines the Friedberg, injective, and extensional iterative learn-
ing models (FrIt, InjIt, and ExtIt, respectively). Recall that, for each
(M,p, (Xj)j∈N) ∈ PC1,1 × N× EN and L:

– (M,p, (Xj)j∈N) FrIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and
(Xj)j∈N is a Friedberg numbering;

– (M,p, (Xj)j∈N) InjIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and
(Xj)j∈N is 1-1;

– (M,p, (Xj)j∈N) ExtIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and,
for each σ0, σ1 ∈ Seq(L)− {λ},

[XM∗p (σ−0) = XM∗p (σ−1) ∧ last(σ0) = last(σ1)] ⇒ XM∗p (σ0) = XM∗p (σ1). (50)

In terms of the classes of languages learnable by these models and by It, they
are clearly related as follows.

FrIt ⊆ InjIt ⊆ ExtIt ⊆ It. (51)

In this section we establish that InjIt 6⊆ FrIt (Proposition 10), and that ExtIt 6⊆
InjIt (Theorem 11). The fact that It 6⊆ ExtIt is due to Jain (Theorem 12).

Proposition 10 just below establishes that InjIt 6⊆ FrIt.

20

Proposition 10 InjIt 6⊆ FrIt.

Proof. Recall that Fin is the collection of all finite subsets of N. Jain & Stephan
observed that Fin 6∈ FrIt [JS08, Remark 28]. However, it is easily seen that
Fin ∈ InjIt. � (Proposition 10)

Theorem 11 just below establishes that ExtIt 6⊆ InjIt.

Theorem 11. ExtIt 6⊆ InjIt.

Proof. Let L1 be as follows.

L1 =
{

2N
}

∪
{
{0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We,
{0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2X | e ∈ N ∧ (a)-(c) below

}
.

(a) (∀e′ ∈ X)[We′ = X].
(b) If We = X, then We and X are finite.
(c) If We 6= X, then 2We ⊆ {0, 2, ..., 2e} and X is infinite.

(52)

First, we show that L1 ∈ ExtIt. Let f : N2 → N be a computable, 1-1 function
such that, for each e and e′,

Wf(0, 0) = 2N; (53)
Wf(e+1, 0) = {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We; (54)
Wf(e+1, e′+1) = {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We′ . (55)

(It does not matter what Wf(·,·) is for the remaining pairs.) For each e, e′ ∈ N
and x ∈ N#, let M̃ be as follows. We use “unchanged” as a synonym for M̃ ’s
first argument.

M̃
(
f(0, 0), x

)
=
{
f(e+ 1, 0), where x = 2e+ 1;
unchanged, otherwise; (56)

M̃
(
f(e+ 1, 0), x

)
=

f(e+ 1, e′ + 1), where x = 2e′

and 2e′ > 2e+ 1;
unchanged, otherwise;

(57)

M̃
(
f(e+ 1, e′ + 1), x

)
= unchanged. (58)

It is straightforward to show that (M̃, f(0, 0)) It-identifies L1. That (M̃, f(0, 0))
ExtIt-identifies L1 follows from Claim 11.1 just below.

Claim 11.1. (M̃, f(0, 0)) is extensional with respect to L1, in the sense of Def-
inition 1(d).

Proof of Claim. Suppose that σ0, σ1 ∈ Seq(L)− {λ} are such that

WM̃∗p (σ−0) = WM̃∗p (σ−1) ∧ last(σ0) = last(σ1). (59)

21

It must be shown that WM̃∗p (σ0)
= WM̃∗p (σ1)

. If M̃∗p (σ−0) = M̃∗p (σ−1), then

WM̃∗p (σ0)
= WM̃∗p (σ1)

follows immediately. So, suppose that M̃∗p (σ−0) 6= M̃∗p (σ−1).
Clearly, the only way that this can occur is if, for some e and e′ with 2e′ > 2e+1,

M̃∗p (σ−0) = f(e+ 1, e′ + 1) ∧ M̃∗p (σ−1) = f(e+ 1, 0), (60)

or (60) with σ0 and σ1 reversed. If σ0 and σ1 are reversed, then the proof is
symmetric. So, suppose (60). By (60) and the first conjunct of (59),

{0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We′ = {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We. (61)

Furthermore, it follows from the first conjunct of (60) that

{2e+ 1, 2e′} ⊆ content(σ−0). (62)

Let L ∈ L be such that σ0 ∈ Seq(L). Given (61) and (62), a straightforward
analysis of (52) reveals that L must be a language for which We = X. Thus,

L = {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We, (63)

and
(∀e′′ ∈We)[We′′ = We]. (64)

Note that, regardless of last(σ0), M̃∗p (σ0) = M̃∗p (σ−0). Thus, to complete the proof
of the claim, it suffices to show that WM̃∗p (σ1)

= WM̃∗p (σ−1). If M̃∗p (σ1) = M̃∗p (σ−1),

then WM̃∗p (σ1)
= WM̃∗p (σ−1) follows immediately. So, suppose that M̃∗p (σ1) 6=

M̃∗p (σ−1). Then, it must be the case that last(σ1) = 2e′′, for some 2e′′ > 2e+ 1.
Thus,

M̃∗p (σ1) = f(e+ 1, e′′ + 1). (65)

It follows from the second conjunct of (60) that

2e+ 1 ∈ content(σ−1). (66)

Thus, σ1 ∈ Seq(L), and, by (63), e′′ ∈We. Furthermore, by (64),

We′′ = We. (67)

Finally,
WM̃∗p (σ1)

= Wf(e+1,e′′+1) {by (65)}
= {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We′′ {by (55)}
= {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We {by (67)}
= Wf(e+1,0) {by (54)}
= WM̃∗p (σ−1) {by (60)}.

� (Claim 11.1)

22

– Stage 0. Search for an m ≥ 1 such that

M∗p
`
(0 · 2 · · · · · 2e0) · (2e0 + 1)m+1´↓ = M∗p

`
(0 · 2 · · · · · 2e0) · (2e0 + 1)m

´
.

If such an m is found, then set σ1 = (0 · 2 · · · · · 2e0) · (2e0 + 1)m, and go to stage 1.
If no such m is found, then search indefinitely.

– Stage 1. For larger and larger values of n, make it the case that

We1 = · · · = Wen = {e1, ..., en}.

Simultaneously, search for an i ∈ {1, ..., n} such that

M∗p (σ1 · 2ei)↓ 6= M∗p (σ1).

If such i and n are found, then make it the case that

We0 = {e1, ..., en},

and terminate the construction. If no such i and n are found, then search indefi-
nitely, while making it the case that (∀i ≥ 1)[Wei = {ei | i ≥ 1}].

Fig. 4. The construction of (ei)i∈N in the proof of Theorem 11.

It remains to show that L1 6∈ InjIt. By way of contradiction, suppose other-
wise, as witnessed by (M,p, (Xj)j∈N) ∈ PC1,1×N×EN . Then, there exists a k0

such that

(∀e ≥ k0)[M∗p (0 · 2 · · · · · 2k0 · 2e)↓ = M∗p (0 · 2 · · · · · 2k0)]. (68)

By Case’s 1-1 Operator Recursion Theorem [Cas74,Cas94],12 there exists a com-
putably enumerable sequence of pairwise-distinct ϕ-programs (ei)i∈N such that

(∀i)[ei ≥ k0], (69)

and such that the behavior of (ei)i∈N is as in Figure 4.

Claim 11.2. Stage 0 is exited.
Proof of Claim. By way of contradiction, suppose that stage 0 is not exited.
Then, We0 = ∅. Let L be as follows.

L = {0, 2, ..., 2e0} ∪ {2e0 + 1}. (70)

Note that L is a language in L1. Furthermore,

t = (0 · 2 · · · · · 2e0) · (2e0 + 1)∞ (71)

12 Intuitively, the 1-1 Operator Recursion Theorem allows one to construct a com-
putably enumerable sequence of pairwise-distinct ϕ-programs (ei)i∈N such that each
program ei knows all programs in the sequence and its own index i.

23

is a text for L. But, since stage 0 is not exited, (M,p, (Xj)j∈N) does not converge
to a single hypothesis on this text — a contradiction. � (Claim 11.2)
For the remainder of the proof of the theorem, let m0 be the m discovered in
stage 0. By Claim 11.2, such an m0 exists. Let σ1 be as it would be set in stage 0,
i.e.,

σ1 = (0 · 2 · · · · · 2e0) · (2e0 + 1)m0 . (72)

Consider the following cases.

Case [stage 1 is not exited]. Then, We0 = ∅ and (∀i ≥ 1)[Wei
= {ei | i ≥ 1}].

Furthermore, for each i ≥ 1,

[M∗p
(
σ1 · 2ei) = M∗p

(
σ1)] ∨ [M∗p

(
σ1 · 2ei)↑]. (73)

Let L0 and L1 be as follows.

L0 = {0, 2, ..., 2e0} ∪ {2e0 + 1}. (74)
L1 = {0, 2, ..., 2e0} ∪ {2e0 + 1} ∪ {2ei | i ≥ 1}. (75)

Note that each of L0 and L1 is a language in L1. Furthermore,

t0 = (0 · 2 · · · · · 2e0) · (2e0 + 1)∞; (76)
t1 = (0 · 2 · · · · · 2e0) · (2e0 + 1)m0 · 2e1 · 2e2 · · · · (77)

are, respectively, texts for L0 and L1. But, by (73), either (M,p, (Xj)j∈N) cannot
distinguish L0 and L1 on these texts, or (M,p, (Xj)j∈N) diverges on t1. Either
way, (M,p, (Xj)j∈N) does not InjIt-identify L1 — a contradiction.

Case [stage 1 is exited]. Then, for some n0, (∀i ≤ n0)[Wei = {e1, ..., en0}]. Fur-
thermore, for some i0 ∈ {1, ..., n0},

M∗p
(
σ1 · 2ei0)↓ 6= M∗p

(
σ1). (78)

Let L be as follows.

L = {0, 2, ..., 2e0} ∪ {2e0 + 1} ∪ {e1, ..., en0}. (79)

Note that L is a language in L1. Furthermore,

t0 = (0 · 2 · · · · · 2e0) · (2e1 · 2e2 · · · · · 2en0) · (2e0 + 1)∞; (80)
t1 = (0 · 2 · · · · · 2e0) · (2e1 · 2e2 · · · · · 2en0) · (2e0 + 1)m0 · (2ei0)∞ (81)

are each texts for L. Let j0 be such that

M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m0

)
= j0. (82)

Note that, for each m ≥ m0,

M∗p
(
(0 · 2 · · · · · 2e0) · (2e1 · 2e2 · · · · · 2en0) · (2e0 + 1)m

)
= M∗p

(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m

)
{by (68) and (69)}

= M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m0

)
{by the choice of m0}

= j0 {by (82)}.

24

Thus, on t0, (M,p, (Xj)j∈N) converges to j0. Let j1 be the hypothesis to which
(M,p, (Xj)j∈N) converges on t1. Note that

M(j0, 2ei0)
= M

(
M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m0

)
, 2ei0

)
{by (82)}

= M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m0 · 2ei0

)
{immediate}

↓6= M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m0

)
{by (78)}

= j0 {by (82)}.

Thus, it must be the case that j0 6= j1. But then this contradicts the fact that
(M,p, (Xj)j∈N) InjIt-identifies L. � (Theorem 11)

As mentioned above, the fact that It 6⊆ ExtIt is due to Jain.

Theorem 12 (Jain [Jai10]). It 6⊆ ExtIt.

We conclude this section with the following remark.

Remark 13 The fact It 6⊆ InjIt (as opposed to It 6⊆ ExtIt or ExtIt 6⊆ InjIt)
can be shown directly using either of the next two pre-existing results.

– There exists a class of languages that can be It-identified, but that cannot
be so identified order-independently (in the sense of [BB75,Ful90]).13

– There exists a class of languages that can be It-identified, but that
cannot be so identified strongly non-U-shapedly [CK10, Theorem 5.4] (see
also [Bei84,Wie91,CM08]).

5 Iterative Learning by Enumeration Operator

This section examines the iterative learning by enumeration operator model
(EOIt). Recall that EOIt is similar to It, except that the computational com-
ponent of the learner is modeled as an enumeration operator, as opposed to a
partial computable function. Our main results of this section are the following.

– Every computably finitely thick class of languages can be EOIt-identified
(Theorem 14). (Recall that computable finite thickness was covered in Defi-
nition 3.)

– EOIt 6⊆ It (Corollary 15).
– FrIt 6⊆ EOIt (Theorem 20).

This section also includes other results (Propositions 16 and 17) whose main
purpose is to fulfill the diagram in Figure 1. An open problem that remains is
whether It ∩ EOIt ⊆ ExtIt, i.e., whether every class of languages that can be
It-identified and EOIt-identified can be ExtIt-identified (Problem 21).

Theorem 14 just below is our first main result of this section.

Theorem 14. Suppose that L is computably finitely thick. Then, L ∈ EOIt.
13 An anonymous referee attributes this result to Liepe & Wiehagen.

25

Proof. Suppose that L is computably finitely thick. Let ψ : Fin → CE be such
that, for each A ∈ Fin − {∅}:

ψ(∅) = ∅; (83)

ψ(A) =
⋂
{L ∈ L | A ⊆ L}. (84)

Claim 14.1.

(a) For each finite A, A ⊆ ψ(A).
(b) For each L ∈ L, and each finite A ⊆ L, ψ(A) ⊆ L.

Proof of Claim. Straightforward. � (Claim 14.1)
Let Ψ : P(N)→ P(N) be such that, for each X ⊆ N,

Ψ(X) =
⋃
{ψ(A) | A is finite ∧ A ⊆ X}. (85)

Let M : P(N)× N# → P(N) be such that, for each X ⊆ N and x:

M (X,#) = X; (86)
M (X, x) = Ψ(X ∪ {x}). (87)

Claim 14.2.

(a) M ∈ EO1,1.
(b) For each σ, Ψ

(
content(σ)

)
⊆ M ∗∅ (σ).

(c) For each L ∈ L, and each σ ∈ Seq(L), M ∗∅ (σ) ⊆ L.

Proof of Claim. Part (a) follows from the fact that L is computably finitely
thick. (In particular, the fact that L is computably finitely thick implies that ψ is
algorithmic.) Part (b) is shown by a straightforward induction using essentially
Claim 14.1(a). For part (c): let L ∈ L be fixed. Note that M ∗∅ (λ) = ∅ ⊆ L. So,
suppose inductively that σ 6= λ, and that M ∗∅ (σ−) ⊆ L. If last(σ) = #, then
M ∗∅ (σ) = M ∗∅ (σ−) ⊆ L. So, suppose that last(σ) 6= #. Let x = last(σ). Then,

M ∗∅ (σ)
= M

(
M ∗∅ (σ−), x

)
{immediate}

= Ψ
(

M ∗∅ (σ−) ∪ {x}
)

{by (87)}
=
⋃{

ψ(A) | A is finite ∧ A ⊆
(

M ∗∅ (σ−) ∪ {x}
)}
{by (85)}

⊆
⋃{

ψ(A) | A is finite ∧ A ⊆ L ∪ {x}
}

{by the i.h.}
=
⋃{

ψ(A) | A is finite ∧ A ⊆ L
}

{because x ∈ L}
⊆ L {by Claim 14.1(b)}.

� (Claim 14.2)
To show that (M , ∅) witnesses L ∈ EOIt: let L ∈ L be fixed. Clearly, if

L = ∅, then (M , ∅) identifies L. So, suppose that L 6= ∅. Let x0 ∈ L be fixed.

26

Since L is computably finitely thick, there exist only finitely many L′ ∈ L such
that x0 ∈ L′. Thus, there exists a finite set A0 ⊇ {x0} such that

A0 ⊆ L ∧ (∀L′ ∈ L)[A0 ⊆ L′ ⇒ L ⊆ L′]. (88)

By (88), it is clearly the case that

ψ(A0) =
⋂
{L′ ∈ L | A0 ⊆ L′} ⊇ L. (89)

Let t be any text for L. Let i0 be such that A0 ⊆ content(t[i0]). By Claim 14.2(c),
for each i, M ∗∅ (t[i]) ⊆ L. Furthermore,

M ∗∅ (t[i]) ⊇ Ψ
(
content(t[i])

)
{by Claim 14.2(b)}

⊇ Ψ
(
content(t[i0])

)
{by the monotonicity of Ψ}

⊇ Ψ(A0) {by the monotonicity of Ψ}
⊇ ψ(A0) {by (85)}
⊇ L {by (89)}.

� (Theorem 14)
Recall that the proof of Theorem 9 exhibited a computably finitely thick class

of languages L0 6∈ It. By Theorem 14, L0 ∈ EOIt. Thus, one has the following.

Corollary 15 (of Theorems 9 and 14) EOIt 6⊆ It.

Recall that Fin is the collection of all finite subsets of N. Proposition 16 just
below establishes that Fin ∈ EOIt.

Proposition 16 Fin ∈ EOIt.

Proof. Straightforward. � (Proposition 16)
Recall that the class L1 from the proof Theorem 11 was used to show that

ExtIt 6⊆ InjIt. Proposition 17 just below establishes that L1 ∈ EOIt.

Proposition 17 Let L1 be as in the proof of Theorem 11. Then, L1 ∈ EOIt.

Proof. Let Ψ : P(N)→ P(N) be such that, for each X ⊆ N,

Ψ(X) = X ∪
⋃
{2We | 2e+ 1 ∈ X}

∪
⋃
{2We′ | 2e′ ∈ X ∧ (∃e)[2e+ 1 ∈ X ∧ 2e+ 1 < 2e′]}. (90)

Clearly, Ψ ∈ EO1,0. Let M : P(N) × N# → P(N) be such that, for each X ⊆ N
and e ∈ N,

M (X,#) = X; (91)
M (X, 2e) = Ψ(X ∪ {2e}); (92)

M (X, 2e+ 1) = Ψ({0, 2, ..., 2e} ∪ {2e+ 1}) ∪
{
X, if 2e+ 1 ∈ X;
∅, otherwise. (93)

Clearly, M ∈ EO1,1. Furthermore, it is straightforward to show that (M , 2N)
EOIt-identifies L1. � (Proposition 17)

The proof of Theorem 20 below exhibits a class L2 ∈ FrIt−EOIt. The proof
of Theorem 20 makes use of the next two lemmas.

27

Lemma 18 There exists a Friedberg numbering (Xj)j∈N satisfying

(∀j)[1 ≤ |Dj | ≤ 3 ⇒ Xj = Dj]. (94)

Proof. Straightforward. � (Lemma 18)

Lemma 19 For each (M , X) ∈ EO1,1 × CE , and each ρ, σ, τ ∈ Seq,

M ∗X(ρ) ⊆ M ∗X(σ) ⇒ M ∗X(ρ · τ) ⊆ M ∗X(σ · τ). (95)

Proof. A straightforward induction using essentially the monotonicity of M .
� (Lemma 19)

Theorem 20. FrIt 6⊆ EOIt.

Proof. Let (Xj)j∈N be a Friedberg numbering as asserted to exist by Lemma 18,
and let (Yk)k∈N be any Friedberg numbering satisfying: Y0 = ∅. Let (Z`)`∈N be
such that, for each j and k, Z〈j,k〉 = (2Xj) ∪ (2Yk + 1). It is straightforward
to show that (Z`)`∈N is a Friedberg numbering. Let L2 be the following class of
languages.

L2 = {Z〈j,maxDj〉 | 1 ≤ |Dj | ≤ 3}. (96)

Note that, for each j such that 1 ≤ |Dj | ≤ 3,

Z〈j,maxDj〉 = (2Xj) ∪ (2YmaxDj + 1)
= (2Dj) ∪ (2YmaxDj

+ 1). (97)

It is straightforward to show that L2 ∈ FrIt (e.g., using (Z`)`∈N as the hypothesis
space). It remains to show that L2 6∈ EOIt. By way of contradiction, suppose
otherwise, as witnessed by (M , L0) ∈ EO1,1×CE . Recall that Y0 = ∅. Let k0 = 0,
and let L0 = {2k0}. Note that L0 ∈ L2. It follows that there exists an m0 such
that

M ∗L0

(
(2k0)m0

)
= L0. (98)

Let k1 be such that Yk1 = N, and let L1 = {2k0, 2k1} ∪ (2N + 1). Note that
L1 ∈ L2. It follows that there exists an n0 such that

(∀n ≥ n0)
[
M ∗L0

(
(2k0)m0 · 2k1 · 1 · 3 · · · · · 2n+ 1

)
= L1

]
. (99)

Let k2 and n1 be such that (a)-(c) below.

(a) k1 < k2.
(b) n0 ≤ n1.
(c) Yk2 = {0, ..., n1}.

Clearly, such k2 and n1 exist. Let L2 = {2k0, 2k1, 2k2} ∪ {1, 3, ..., 2n1 + 1}. Note
that L2 ∈ L2, and that L1 6⊆ L2. Let σ = 2k1 · 1 · 3 · · · · · 2n1 + 1, let t be any
text for L2, and let t′ be such that

t′ = σ · t(0) · σ · t(1) · · · · . (100)

28

Note that t′ is a text for L2. It follows that there exists an i0 such that

(∀i ≥ i0)[M ∗L0
(t[i]) = L2]. (101)

Without loss of generality, suppose that i0 is divisible by |σ| + 1. By (98)
and (101),

M ∗L0

(
(2k0)m0) = L0 ⊆ L2 = M ∗L0

(
t[i0]). (102)

Furthermore, by (99) and the fact that n0 ≤ n1,

L1 ⊆ M ∗L0

(
(2k0)m0 · σ

)
. (103)

From (102), (103), and Lemma 19, it follows that

L1 ⊆ M ∗L0

(
t[i0] · σ

)
= M ∗L0

(
t[i0 + |σ|]

)
. (104)

But since L1 6⊆ L2, (101) and (104) are contradictory. � (Theorem 20)
As mentioned above, the following problem remains open.

Problem 21 Is it the case that It ∩EOIt ⊆ ExtIt?

References

[Ang80] D. Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21(1):46–62, 1980.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive infer-
ence. Information and Control, 28(2):125–155, 1975.

[BBCJS10] L. Becerra-Bonache, J. Case, S. Jain, and F. Stephan. Iterative learning
of simple external contextual languages. Theoretical Computer Science,
411(29–30):2741–2756, 2010.

[Bei84] H-R. Beick. Induktive Inferenz mit höchster Konvergenzgeschwindigkeit.
PhD thesis, Sektion Mathematik, Humboldt-Universität Berlin, 1984.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems
Theory, 8(1):15–32, 1974.

[Cas94] J. Case. Infinitary self-reference in learning theory. Journal of Experimental
and Theoretical Artificial Intelligence, 6(1):3–16, 1994.

[CCJS07] L. Carlucci, J. Case, S. Jain, and F. Stephan. Results on memory-limited U-
shaped learning. Information and Computation, 205(10):1551–1573, 2007.

[CK10] J. Case and T. Kötzing. Strongly non-U-shaped learning results by general
techniques. In Proc. of the 23rd Conference on Learning Theory, pages
181–193. Omnipress, 2010.

[CM08] J. Case and S. Moelius. Optimal language learning. In Proc. of the 19th
Annual Conference on Algorithmic Learning Theory (ALT’2008), volume
5254 of Lecture Notes in Artificial Intelligence, pages 419–433. Springer,
2008.

[dBY10] M. de Brecht and A. Yamamoto. Topological properties of concept spaces
(full version). Information and Computation, 208(4):327–340, 2010.

[FKW82] R. Freivalds, E. Kinber, and R. Wiehagen. Inductive inference and com-
putable one-one numberings. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 28(27):463–479, 1982.

29

[Fri58] R. Friedberg. Three theorems on recursive enumeration. I. Decomposition.
II. Maximal set. III. Enumeration without duplication. Journal of Symbolic
Logic, 23(3):309–316, 1958.

[Ful90] M. Fulk. Prudence and other conditions on formal language learning. In-
formation and Computation, 85(1):1–11, 1990.

[Gol67] E. Mark Gold. Language identification in the limit. Information and Con-
trol, 10(5):447–474, 1967.

[Jai10] S. Jain. Private communcation, 2010.
[JLMZ10] S. Jain, S. Lange, S. Moelius, and S. Zilles. Incremental learning with

temporary memory. Theoretical Computer Science, 411(29–30):2757–2772,
2010.

[JS08] S. Jain and F. Stephan. Learning in Friedberg numberings. Information
and Computation, 206(6):776–790, 2008.

[Kum90] M. Kummer. An easy priority-free proof of a theorem of Friedberg. Theo-
retical Computer Science, 74(2):249–251, 1990.

[LW91] S. Lange and R. Wiehagen. Polynomial time inference of arbitrary pattern
languages. New Generation Computing, 8(4):361–370, 1991.

[LZ96] S. Lange and T. Zeugmann. Incremental learning from positive data. Jour-
nal of Computer and System Sciences, 53(1):88–103, 1996.

[LZZ08] S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive
languages from positive data: A survey. Theoretical Computer Science,
397(1–3):194–232, 2008.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw Hill, 1967. Reprinted, MIT Press, 1987.

[SSS+94] S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, and
S. Arikawa. Knowledge acquisition from amino acid sequences by machine
learning system BONSAI. Transactions of the Information Processing So-
ciety of Japan, 35(10):2009–2018, 1994.

[Wie76] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien. Elektronische Informationsverarbeitung und Kybernetik,
12(1/2):93–99, 1976.

[Wie91] R. Wiehagen. A thesis in inductive inference. In Proc. of the 1st Interna-
tional Workshop on Nonmonotonic and Inductive Logic (1990), volume 543
of Lecture Notes in Artificial Intelligence, pages 184–207. Springer, 1991.

