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Abstract. This paper establishes an upper bound on the size of a con-
cept class with given recursive teaching dimension (RTD, a teaching com-
plexity parameter.) The upper bound coincides with Sauer’s well-known
bound on classes with a fixed VC-dimension. Our result thus supports
the recently emerging conjecture that the combinatorics of VC-dimension
and those of teaching complexity are intrinsically interlinked.
We further introduce and study RTD-maximum classes (whose size meets
the upper bound) and RTD-maximal classes (whose RTD increases if a
concept is added to them), showing similarities but also differences to
the corresponding notions for VC-dimension.
Another contribution is a set of new results on maximal classes of a given
VC-dimension.
Methodologically, our contribution is the successful application of alge-
braic techniques, which we use to obtain a purely algebraic characteri-
zation of teaching sets (sample sets that uniquely identify a concept in a
given concept class) and to prove our analog of Sauer’s bound for RTD.

Keywords: VC-dimension, teaching, Sauer’s bound, maximum classes

1 Introduction

An important combinatorial result, proven by Sauer [7] and independently by
Shelah [8], states that the size of any concept class of Vapnik-Chervonenkis

dimension (VC-dimension, [11]) d is at most
∑d

i=0

(
m
i

)
, where m is the number

of instances the concept class is defined over.
In Computational Learning Theory, this bound (typically called Sauer’s

bound) has proven helpful—if not essential—for a variety of studies, most no-
tably for the definition and analysis of maximum classes. A concept class of
VC-dimension d over a finite instance space X is maximum, if its size meets
Sauer’s bound.1 Maximum classes exhibit a number of interesting structural
properties, e.g., their complements as well as their restrictions to subsets of the
instance space are maximum [6, 12]. These structural properties have remark-
able implications. For example, maximum classes form one of the few general
cases of concept classes known to have labeled and unlabeled sample compression

1 In this paper, we restrict ourselves to finite instance spaces.



schemes of the size of their VC-dimension [3, 5]. Moreover, the recursive teaching
dimension (RTD, a complexity parameter of the recently introduced recursive
teaching model [13]) of any maximum class equals its VC-dimension [2].

Recent work [2] indicates connections between the VC-dimension and the
RTD; besides maximum classes, several other types of concept classes are shown
to have an RTD upper-bounded by their VC-dimension. An open question is
whether or not the RTD has an upper bound linear in the VC-dimension. Thus
recursive teaching is the only model known so far that could potentially establish
a close connection between the complexity of learning from a teacher and the
complexity of learning from randomly chosen examples (the VC-dimension being
an essential complexity parameter for the latter).

This paper establishes a further connection between RTD and VC-dimension:
its main result is an analog of Sauer’s bound for RTD. We prove that the size
of any concept class of RTD r is at most

∑r
i=0

(
m
i

)
, where m is the size of the

instance space. This new evidence of a strong connection between learning from
a teacher and learning from randomly chosen examples suggests that the study
of the recursive teaching dimension deserves more attention. Our result is proven
using algebraic methods, which first provide us with a purely algebraic charac-
terization of teaching sets. A teaching set for a concept c in a concept class C
is a set of labeled examples that is consistent with c but with no other concept
in C; thus it uniquely identifies c in C. Our algebraic characterization of teach-
ing sets, a second highlight of this paper, is the main ingredient of our proof of
Sauer’s bound for RTD, but it may be of independent interest. In particular,
the algebraic techniques applied here may provide new proof ideas for combina-
torial studies in Computational Learning Theory, e.g., we give an example for
an alternative proof to Kuzmin and Warmuth’s result that maximum classes are
shortest-path-closed [5]. Previously, methods from algebra yielded an alternative
proof of Sauer’s bound for the VC-dimension [10].

Our Sauer-type bound for RTD naturally allows us to define and study the
concept of RTD-maximum classes—classes whose size meets the upper bound.
To distinguish RTD-maximum classes from maximum classes in the original
sense, we refer to the latter as VCD-maximum classes. Although every VCD-
maximum class is shown to be RTD-maximum, RTD-maximum classes turn
out to exhibit slightly different properties. For example, their complements are
not necessarily RTD-maximum. We further study RTD-maximal classes—classes
whose RTD increases if any new concept is added to them. Such classes are not
necessarily RTD-maximum.

In studying RTD-maximum and RTD-maximal classes, we discover some new
interesting properties of VCD-maximal classes. In particular, we provide bounds
on the size of VCD-maximal classes, shown in the appendix.

2 Preliminaries

Let X be a finite set, called instance space. Elements of X are called instances.
A concept on X is a subset of X. Each concept c is identified with a function



c(x) defined as follows: c(x) = 1 if x ∈ c and c(x) = 0 if x /∈ c. For ` ∈ {0, 1}, ¯̀

is defined as ¯̀= 1− `.
A concept class C on X is a set of concepts on X, that is, C ⊆ 2X . C

denotes the complement of C. For Y ⊆ X, let C|Y denote the restriction of C
to Y , that is, C|Y = {c ∩ Y : c ∈ C}. Similarly, c|Y means c ∩ Y . To simplify
notation, the restriction C|X\{x} will be also denoted as C − x, and c|X\{x} will
be denoted as c−x. The reduction of C to Y is defined as CY = {c ⊆ Y : c∪c′ ∈
C for all c′ ⊆ X\Y }. In other words, c ∈ CY if and only if all possible extensions
of the concept c from Y to X belong to C. If X1 and X2 are two disjoint instance
spaces, C1 ⊆ 2X1 and C2 ⊆ 2X2 , then the direct product of C1 and C2 is a concept
class on X1 ∪X2 defined as C1 × C2 = {c1 ∪ c2 : c1 ∈ C1 and c2 ∈ C2}. If the
class C1 contains only a single concept and C2 = 2X2 , then the class C1 ×C2 is
called a cube. If |X2| = d, then such a cube is called a d-dimensional cube (or
d-cube for short).

A set S ⊆ X is shattered by the class C if C|S = 2S . The VC-dimension
of a class C is defined as VCD(C) = max{|S| : S is shattered by C} [11]. Let

Φd(m) =
∑d

i=0

(
m
i

)
. Sauer’s lemma states that if VCD(C) = d, then |C| ≤

Φd(|X|) [7, 8]. Let VCD(C) = d; then C is called VCD-maximum if |C| =
Φd(|X|), that is, if the size of C matches the upper bound from Sauer’s lemma
(cf. [12]). A class is called maximal with respect to VC-dimension (or VCD-
maximal) if adding any new concept to the class increases its VC-dimension.

A labeled example is a pair (x, `), where x ∈ X and ` ∈ {0, 1}. For a set S of
labeled examples, X(S) denotes X(S) = {x ∈ X : (x, `) ∈ S for some `}. A set
S of labeled examples is a teaching set for a concept c in a class C, if c is the
only concept from C which is consistent with S. For simplicity, we then also call
X(S) a teaching set since the labels of examples from S are uniquely determined
by X(S) and c. The collection of all teaching sets for c in C is denoted TS(c, C).

The teaching dimension of c in C is TD(c, C) = min{|S| : S ∈ TS(c, C)}. The
teaching dimension of C is defined as TD(C) = maxc∈C TD(c, C) [4, 9]. We will
also refer to the minimal teaching dimension TDmin(C) = minc∈C TD(c, C).

The following definitions are based on [2, 13]. A teaching plan for a concept
class C is a sequence P = ((c1, S1), . . . , (cn, Sn)), where C = {c1, . . . , cn} and
Si ∈ TS(ci, {ci, . . . , cn}) for all i = 1, . . . , n. The order of the teaching plan P is
ord(P ) = maxi=1,...,n |Si|. The recursive teaching dimension of C is

RTD(C) = min{ord(P ) : P is a teaching plan for C}.

For a teaching plan P = ((c1, S1), . . . , (cn, Sn)) of C whose order is equal to
RTD(C), the set Si is called a recursive teaching set for ci in C with respect
to the plan P , and |Si| is called the recursive teaching dimension of ci in C
with respect to the plan P , denoted RTD(ci, C). The words “with respect to the
plan P” may be omitted if there is no ambiguity. We will also use the notation
RTD∗(C) = maxX′⊆X RTD(C|X′).

The RTD has the following properties [2, 13]:

– RTD is monotonic, i.e, RTD(C ′) ≤ RTD(C) whenever C ′ ⊆ C.



– RTD equals the order of any canonical teaching plan, i.e., a teaching plan
((c1, S1), . . . , (cn, Sn)) with |Si| = TDmin({ci, . . . , cn}) for all i = 1, . . . , n.

– RTD(C) = maxC′⊆C TDmin(C ′).

3 Algebraic characterization of teaching sets

In this section we give an algebraic characterization of the teaching sets for a
concept c in a concept class C. Let X = {x1, . . . , xm} be a finite instance space,
and let C = {c1, . . . , cn} be a concept class on X. Consider a vector space Fn

2 of
dimension n over the field F2 (i.e., the field consisting of 2 elements). For each
polynomial f(x1, . . . , xm) with variables from X and coefficients from F2, we
define a vector f = (f1, . . . , fn) from Fn

2 as follows

fi = f(ci(x1), . . . , ci(xm)) for i = 1, . . . , n.

Note that we use the same notation for a polynomial and a vector. We also asso-
ciate each concept ci ∈ C with the ith standard basis vector ci = (0, . . . , 1, . . . , 0)
of Fn

2 . Again, we are using the same notation for a concept and a vector. This
should not cause confusion as the exact meaning of such notation will be clear
from the context. For instance, by “the vector x1x2” we mean the vector in Fn

2

that corresponds to the polynomial x1x2. Similarly, an equality like c = f(x1, x2)
should be interpreted as the equality between two vectors, the one corresponding
to the concept c and the one corresponding to the polynomial f(x1, x2).

To illustrate these notations, let us consider the following concept class:

x1 x2 x3
c1 0 1 0
c2 1 0 1
c3 0 1 1

In this class, x1 = (0, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1), 0 = (0, 0, 0) and 1 =
(1, 1, 1). In our notations, c1 = (1, 0, 0), c2 = (0, 1, 0) and c3 = (0, 0, 1). So we
have x1 + x2 = 1, x1x2 = 0, c1 = x3 + 1, x2x3 = (0, 0, 1) and hence c3 = x2x3.

The following theorem provides an algebraic description of teaching sets.

Theorem 1. Let C = {c1, . . . , cn} ⊆ 2X . A set of instances {z1, . . . , zk} ⊆ X
is a teaching set for a concept ci if and only if ci = f(z1, . . . , zk) for some
polynomial f over F2.

Proof. Suppose {z1, . . . , zk} is a teaching set for ci. It is not hard to see that in
this case ci = p1 · · · pk, where pt = zt if ci(zt) = 1 and pt = zt + 1 if ci(zt) = 0.

To prove the other implication, consider ci ∈ C and assume that ci =
f(z1, . . . , zk) but {z1, . . . , zk} is not a teaching set for ci. Hence there is an-
other concept cj 6= ci from C which coincides with ci on {z1, . . . , zk}, that is,
ci(zt) = cj(zt) for all t = 1, . . . , k. Thus the following equalities hold

fi = f(ci(z1), . . . , ci(zk)) = f(cj(z1), . . . , cj(zk)) = fj .



So, the ith and jth coordinates of the vector f(z1, . . . , zk) are equal. By defini-
tion, ci corresponds to the standard basis vector (0, . . . , 1, . . . , 0) which has only
one coordinate equal to 1, namely, the ith coordinate. Since we assumed that
ci = f(z1, . . . , zk) and showed that fi = fj , the vector f(z1, . . . , zk) must have
at least two coordinates equal to 1, namely, the ith and jth coordinates. This
contradicts the assumption that ci = f(z1, . . . , zk). ut

4 RTD-maximum classes

The next theorem is the main result of our paper. It provides a Sauer-type bound
on the size of a concept class with a given RTD.

Theorem 2. Let C ⊆ 2X and |X| = m. If RTD(C) = r then |C| ≤ Φr(m).

Proof. Let P r
m be the collection of monomials over F2 of the form xi1 · · ·xik ,

where 0 ≤ k ≤ r and 1 ≤ i1 < · · · < ik ≤ m. In case when k = 0 we let the
corresponding monomial be equal to the constant 1. Note that |P r

m| = Φr(m).
Let c1, c2, . . . , cn be all the concepts from C listed in the same order as

they appear in some teaching plan for C of order r. In particular, for every
s = 1, . . . , n, we have TD(cs, {cs, . . . , cn}) ≤ r.

We will show that the vector space Fn
2 is spanned by the vectors that corre-

spond to the monomials from P r
m. The theorem then follows from a well-known

linear algebra fact that the size of a spanning set cannot be smaller than the
dimension of the vector space.

We will show by induction that each cs lies in the span of P r
m. Since TD(c1, C)

≤ r, by Theorem 1, c1 is equal to a polynomial of the form pi1 · · · pik for some
k ≤ r, where each pt is equal to xt or xt+1. It is not hard to see that the product
pi1 · · · pik lies in the span of P r

m, e.g., (x1 + 1)(x2 + 1) = x1x2 + x1 + x2 + 1, etc.
Now suppose that c1, . . . , cs are in the span of P r

m. Let Fs,0
2 be the subspace of

Fn
2 consisting of the vectors whose the last n−s coordinates are zeros. Similarly,

let F0,n−s
2 be the subspace of Fn

2 consisting of the vectors whose the first s
coordinates are zeros. Also, let (v)s,0 and (v)0,n−s be the projections of a vector

v ∈ Fn
2 to the subspaces Fs,0

2 and F0,n−s
2 , respectively. In particular, we have

v = (v)s,0 + (v)0,n−s.
Since TD(cs+1, {cs+1, . . . , cn}) ≤ r, applying Theorem 1 to {cs+1, . . . , cn}

and cs+1 yields that (cs+1)0,n−s = (pi1 · · · pik)0,n−s for some k ≤ r and some
i1, · · · , ik, where each pt is equal to xt or xt + 1. In other words, (cs+1 −
pi1 · · · pik)0,n−s = 0, which means that cs+1 − pi1 · · · pik belongs to the sub-

space Fs,0
2 . As before, the product pi1 · · · pik lies in the span of P r

m. Moreover,
by the induction hypothesis, the vectors c1, . . . , cs are in the span of P r

m, and
hence the subspace Fs,0

2 is contained in the span of P r
m. Hence cs+1 lies in the

span of P r
m. ut

The Sauer-type bound in Theorem 2 is tight for any r and m, in particular,
it is met by all VCD-maximum classes of VC-dimension r. This suggests the
following definition.



Definition 1. Let C ⊆ 2X , |X| = m, and RTD(C) = r. C is called RTD-
maximum if |C| = Φr(m), and C is called RTD-maximal if RTD(C ∪ {c}) > r
for any concept c /∈ C.

RTD-maximum classes have the following properties.

Proposition 1. (i) Every VCD-maximum class C is also RTD-maximum with
RTD(C) = VCD(C).

(ii) There are RTD-maximum classes that are not VCD-maximum.
(iii) There is a class C for which both C and C are RTD-maximum, but

neither C nor C is VCD-maximum.
(iv) There are RTD-maximum classes whose restrictions are not RTD-max-

imum. Furthermore, there is an RTD-maximum class C that has an RTD-
maximum restriction C ′ such that RTD(C ′) > RTD(C).

Proof. (i) For every VCD-maximum class C, RTD(C) = VCD(C) [2]. It follows
from Theorem 2 and Definition 1 that C is RTD-maximum.

(ii) If an RTD-maximum class C is not VCD-maximum, then RTD(C) <
VCD(C). Table 1 shows an RTD-maximum class C1 with RTD(C1) = 2 and
VCD(C1) = 3.

(iii) C1 in Table 1 is RTD-maximum with RTD(C1) = 2, and C1 is RTD-
maximum with RTD(C1) = 1. As VCD(C1) = 3 and VCD(C1) = 2, neither C1

nor C1 is VCD-maximum.
(iv) C2 in Table 1 is RTD-maximum and RTD(C2) = 1, however, RTD(C2−

x4) = 2 and C2 − x4 is not RTD-maximum. Furthermore, consider the RTD-
maximum class C1 in Table 1. Clearly, C1−x4 is RTD-maximum and RTD(C1) =
2 < RTD(C1 − x4) = 3. ut

A consequence of the proof of Theorem 2 is that, for RTD-maximum classes, all
instance sets of size RTD(C) are used as recursive teaching sets.

ci ∈ C1 x1 x2 x3 x4

c1 0 0 0 0

c2 1 0 0 0

c3 0 1 0 0

c4 0 0 1 0

c5 0 0 0 1

c6 1 1 0 0

c7 1 0 1 0

c8 0 1 1 0

c9 0 1 0 1

c10 0 0 1 1

c11 1 1 1 1

ci ∈ C1 x1 x2 x3 x4

c1 1 0 0 1

c2 1 1 1 0

c3 1 1 0 1

c4 1 0 1 1

c5 0 1 1 1

ci ∈ C2 x1 x2 x3 x4

c1 0 0 0 0

c2 1 0 0 0

c3 0 1 0 0

c4 0 0 1 0

c5 0 1 1 1

Table 1. C1 and C1 are RTD-maximum but neither C1 nor C1 is VCD-maximum.
C2 is RTD-maximum but C2 − x4 is not.



Corollary 1. Let C ⊆ 2X be RTD-maximum, |X| = m, and RTD(C) = r. Let
X ′ ⊆ X be any subset of size r. Then for any teaching plan P for C of order r,
there is a concept c ∈ C and a recursive teaching set S for c with respect to P ,
such that X(S) = X ′.

Proof. Let X ′ = {xi1 , . . . , xir}, and P be a teaching plan for C of order r such
that c1, c2, . . . , cn are all concepts from C listed in the same order as they appear
in P . Assume that X ′ does not appear as a recursive teaching set in the plan
P . Then, in the proof of Theorem 2 we can always represent the concept cs+1

inside the class {cs+1, . . . , cn} as a polynomial f(z1, . . . , zr) over F2 such that
{z1, . . . , zr} 6= {xi1 , . . . , xir}. (This follows from Theorem 1 and the fact that X ′

is not used as a recursive teaching set.) As a consequence, we can span Fn
2 without

using the monomial xi1 · · ·xir , which implies that |C| = dim(Fn
2 ) ≤ Φr(m)− 1.

Hence C is not RTD-maximum. This is a contradiction. ut

Another corollary of Theorem 2 is that for an RTD-maximum class, teaching
sets of size 1 cannot be used too early in any teaching plan.

Corollary 2. Let C ⊆ 2X be RTD-maximum, |X| = m, and RTD(C) = r.
For an arbitrary teaching plan for C, let (c1, c2, . . . , cn) be the sequence of all
concepts of C listed in the plan. Then for any positive integer i < Φr−1(m− 1),
we have TD(ci, {ci, . . . , cn}) > 1.

Proof. Assume there is a teaching plan for C such that TD(ci, {ci, . . . , cn}) = 1
for some i < Φr−1(m − 1). Let (x, `) ∈ TS(ci, {ci, . . . , cn}) for some x ∈ X and
` ∈ {0, 1}. Then for any c ∈ {ci+1, . . . , cn}, c(x) = ¯̀. So, |{ci+1, . . . , cn}| =
|{ci+1, . . . , cn}|X\{x}|. Consequently,

|C| = |{c1, . . . , ci}|+ |{ci+1, . . . , cn}| = i+ |{ci+1, . . . , cn}|
= i+ |{ci+1, . . . , cn}|X\{x}| ≤ i+ Φr(m− 1), by Theorem 2

< Φr−1(m− 1) + Φr(m− 1) = Φr(m).

Thus C is not RTD-maximum. This is a contradiction. ut

As mentioned in Section 1, the complement of any VCD-maximum class is VCD-
maximum. RTD-maximum classes do not possess this property.

Proposition 2. There is an RTD-maximum class whose complement is not
RTD-maximum.

Proof. Consider the RTD-maximum class C with RTD(C) = 3 in Table 2. C is
not RTD-maximum because RTD(C) = 2 and 6 < Φ2(5). ut

Still, the complement of an RTD-maximum class of RTD 1 is RTD-maximum.

Proposition 3. Let C be an RTD-maximum class over X with |X| ≥ 2. If
RTD(C) = 1, then C is RTD-maximum and RTD(C) = |X| − 2.



ci ∈ C x1 x2 x3 x4 x5

c1 1 1 1 1 1

c2 1 1 0 1 1

c3 1 1 0 1 0

c4 1 1 0 0 1

c5 0 1 1 1 1

c6 1 0 1 1 1

c7 0 0 1 1 1

c8 1 1 0 0 0

c9 1 0 1 0 1

c10 1 0 0 0 1

c11 0 1 1 1 0

c12 0 1 0 1 0

c13 0 1 1 0 1

ci ∈ C x1 x2 x3 x4 x5

c14 0 1 0 0 1

c15 1 0 1 1 0

c16 1 0 0 1 0

c17 0 1 1 0 0

c18 0 1 0 0 0

c19 0 0 1 1 0

c20 0 0 0 1 0

c21 1 0 1 0 0

c22 1 0 0 0 0

c23 0 0 1 0 1

c24 0 0 1 0 0

c25 0 0 0 0 1

c26 0 0 0 0 0

ci ∈ C x1 x2 x3 x4 x5

c1 0 0 0 1 1

c2 0 1 0 1 1

c3 1 0 0 1 1

c4 1 1 1 0 0

c5 1 1 1 0 1

c6 1 1 1 1 0

Table 2. C is RTD-maximum (recursive teaching sets are underlined), but C is not.

Proof. By induction on |X|. For |X| = 2 the proof is trivial. Suppose that for
|X| < m the statement of the theorem is true. Now consider the case |X| = m >
2. Let c1 ∈ C with TD(c1, C) = 1, and w.l.o.g., let {(x1, 1)} be a teaching set
for c1 in C. Then we can write C as a disjoint union of {c1} and {0}×C1, where
C1 = (C \ {c1})− x1 is a maximum class of RTD(C1) = 1 on X \ {x1}. So, the
complement of C is equal to the disjoint union C = ({0} × C1) ∪ ({1} × C2),
where C2 = 2X\{x1} \ {c1 − x1} is a class of size 2m−1 − 1 on X \ {x1}.

By the induction hypothesis, there is a teaching plan of order m− 3 for C1.
Take such a plan and extend every recursive teaching set S from this plan to
S ∪{(x1, 0)}. As a result, we obtain a teaching plan for {0}×C1 of order m− 2,
which we call P1. Note that C2 is a VCD-maximum class with VCD(C2) = |X \
{x1}|−1 = m−2, and hence RTD(C2) = m−2. Since RTD({1}×C2) = RTD(C2),
there is a teaching plan of order m− 2 for {1} × C2, which we call P2.

Every recursive teaching set from P1 contains (x1, 0), which distinguishes the
concepts in {0} × C1 from those in {1} × C2. So, P1 and P2 can be merged to
a teaching plan for C of order m − 2. Thus RTD(C) ≤ m − 2. Further, |C| =
2m − |C| = 2m − (m+ 1) = Φm−2(m). Hence, by Theorem 2, RTD(C) = m− 2,
and C is RTD-maximum. ut

The RTD-maximum class C in the proof of Proposition 2 fulfills RTD(C) +
RTD(C) = |X|. In contrast to this, note that a class C is VCD-maximum if and
only if VCD(C) + VCD(C) = |X| − 1. Necessity of the condition was proven
by Rubinstein et al. [6]. Sufficiency is easy to see, as was pointed out by an
anonymous reviewer of this paper: Suppose C with VCD(C) = d is not VCD-
maximum. Then |C| < Φd(|X|) and thus |C| > 2|X|−Φd(|X|) = Φ|X|−d−1(|X|),
which implies VCD(C) > |X| − d − 1. The same reasoning implies that the
condition is sufficient as well when VCD is replaced by RTD throughout.

Proposition 4. Let C ⊆ 2X and |X| = m. If RTD(C) + RTD(C) = m − 1,
then C is RTD-maximum.



Recall that RTD∗(C) = maxX′⊆X RTD(C|X′). We obtain the following property.

Proposition 5. Let C ⊆ 2X and |X| = m. If RTD∗(C) ≤ r, then |C| ≤ Φr(m).
The inverse statement is not true in general.

Proof. Since RTD∗(C) ≤ r, RTD(C) ≤ r and by Theorem 2, |C| ≤ Φr(m). An
example2 for a class C with |C| ≤ Φr(m) and RTD∗(C) > RTD(C) = r is the
class C = {∅, {x2, x3}, {x1, x3}, {x1, x2, x3}}, for which |C| = 4, RTD(C) = 1
and RTD∗(C) = 2. ut

5 RTD-maximal classes

In this section we present some properties of RTD-maximal classes. We first show
that an RTD-maximal class shatters each subset of the instance space whose size
is equal to RTD.

Proposition 6. Let C ⊆ 2X be RTD-maximal with RTD(C) = r. Then, for
any subset X ′ ⊆ X with |X ′| = r, C shatters X ′.

Proof. Assume that X ′ is not shattered by C. Then |C|X′ | < 2|X
′| and we can

add a new concept cnew to C such that cnew|X′ /∈ C|X′ . Thus, TD(cnew, C ∪
{cnew}) ≤ r. Since RTD(C) = r, C has a teaching plan of order r. So, C∪{cnew}
also has a teaching plan of order r, which starts with cnew and then continues
with any teaching plan for C of order r. Therefore, RTD(C ∪ {cnew}) ≤ r and
C is not RTD-maximal. ut

As a corollary we obtain that for an RTD-maximal class, the minimal and the
recursive teaching dimensions coincide.

Corollary 3. For any RTD-maximal class C ⊆ 2X , TDmin(C) = RTD(C).

Proof. TDmin(C) ≤ RTD(C) is easy to see. Assume TDmin(C) < RTD(C).
Then, there is a concept c ∈ C for which {xi1 , . . . , xik} is a teaching set, for
some k < RTD(C). Consider any subset X ′ ⊆ X such that |X ′| = RTD(C)
and {xi1 , . . . , xik} ⊂ X ′. Then C does not shatter X ′, since otherwise there
would exist at least one more concept c′ ∈ C with c′|{xi1 ,...,xik

} = c|{xi1 ,...,xik
}.

This is impossible because {xi1 , . . . , xik} is a teaching set for c in C. Hence, by
Proposition 6, C cannot be RTD-maximal. This is a contradiction. ut

It is not hard to see that VCD-maximal classes of VC-dimension 1 are VCD-
maximum. We now show that the same holds for RTD-maximal classes.

Proposition 7. Let C ⊆ 2X be RTD-maximal. If RTD(C) = 1, then C is RTD-
maximum.

2 This example also provides a simpler proof of the second part of Proposition 1(iv).
The latter in turn implies that the inverse of Proposition 5 is not true in general.



Proof. By induction on the size of X. For |X| = 1 there is only one RTD-
maximal class with two concepts which is clearly RTD-maximum. Suppose that
the theorem holds when |X| = m. Now we consider the case that |X| = m+1 and
C is an RTD-maximal class on X with RTD(C) = 1. Since RTD(C) = 1, there is
a concept c ∈ C such that TD(c, C) = 1. Let (x, `) be a teaching set for c. Then,
for any c′ ∈ C \{c}, (x, `) /∈ c′ or equivalently, (x, ¯̀) ∈ c′, which implies that
|C\{c}| = |(C\{c})−x|. Clearly, (C\{c})−x is RTD-maximal, otherwise C would
not be RTD-maximal. So, by the induction hypothesis, |(C\{c})− x| = Φ1(m).
Therefore, |C| = Φ1(m) + 1 = Φ1(m+ 1) and C is RTD-maximum. ut

Surprisingly, not all RTD-maximal classes are RTD-maximum.

Proposition 8. (Doliwa [1]) There is an RTD-maximal class that is not RTD-
maximum.

Proof. Consider the RTD-maximal class C in Table 3. Since RTD(C) = 3 and
|C| = 40 < Φ3(6), C is not RTD-maximum. ut

ci x1 x2 x3 x4 x5 x6 ci x1 x2 x3 x4 x5 x6 ci x1 x2 x3 x4 x5 x6 ci x1 x2 x3 x4 x5 x6

c1 0 1 0 1 1 0 c11 1 0 1 1 1 1 c21 0 1 0 0 1 0 c31 0 0 0 0 0 0
c2 0 1 1 1 0 1 c12 0 0 1 0 0 0 c22 1 1 0 1 1 0 c32 1 1 0 1 0 1
c3 1 0 0 0 0 0 c13 1 1 1 0 0 1 c23 1 0 0 0 1 0 c33 0 0 0 1 0 0
c4 1 0 0 1 1 1 c14 0 1 1 0 1 0 c24 1 1 0 1 1 1 c34 0 0 0 0 1 0
c5 0 0 1 1 0 0 c15 1 0 1 0 1 1 c25 1 1 0 0 1 1 c35 1 1 0 0 0 0
c6 1 0 0 1 1 0 c16 0 0 1 1 0 1 c26 0 1 0 0 0 0 c36 1 0 1 0 1 0
c7 0 0 1 0 1 1 c17 1 1 1 1 0 0 c27 1 0 0 0 0 1 c37 0 1 0 0 0 1
c8 1 1 1 0 1 0 c18 1 1 1 0 1 1 c28 0 1 0 1 0 1 c38 1 1 1 1 1 0
c9 0 1 1 0 0 1 c19 0 0 1 1 1 0 c29 0 1 1 1 1 0 c39 1 1 1 1 0 1
c10 1 0 1 0 0 0 c20 1 1 1 1 1 1 c30 1 1 0 0 1 0 c40 0 1 1 0 0 0

Table 3. RTD-maximal class that is not RTD-maximum.

6 Algebraic Proof of Shortest-Path-Closedness of
VCD-Maximum Classes

In this section, we give an example of how the algebraic techniques applied to
obtain our main result can also yield more elegant and insightful proofs for
already known results. Our example is the proof showing that VCD-maximum
classes are shortest-path-closed.

A shortest-path-closed class is a class C in which any two concepts c, c′ are
Hamming-connected, i.e., there are pairwise distinct instances x1, . . . , xk and
c1, . . . , ck−1 ∈ C such that, with c0 = c and ck = c′, the concepts ci−1 and ci
differ only in xi, for 1 ≤ i ≤ k. It is known that VCD-maximum classes are
shortest-path-closed [5], but algebraic methods provide an elegant alternative
proof.

For Z ⊆ X = {x1, . . . , xm} and t ≤ m, let P t
m(Z) be the collection of

monomials over F2 of the form xi1 · · ·xik such that 0 ≤ k ≤ t, 1 ≤ i1 < · · · <
ik ≤ m and {xi1 , . . . , xik} ⊆ Z.



Lemma 1. Let |X| = m, C ⊆ 2X , and VCD(C) = d. A set of instances Z ⊆ X
is a teaching set for c ∈ C if and only if c is in the span of P d

m(Z).

Proof. Suppose Z ⊆ X is a teaching set for c ∈ C. Then, by Theorem 1, c = f
for some polynomial f over F2 whose variables are in the set Z. Each such
polynomial is equal to a linear combination of monomials from P t

m(Z), where
t = |Z|. For instance, (x1 + 1)(x2 + 1)x3 = x1x2x3 + x1x3 + x2x3 + x3, etc.

We show that, for every t ≤ m and Z ⊆ X, the monomials from P t
m(Z) are

in the span of P d
m(Z). This in turn implies that f is in the span of P d

m(Z).
As in [10], we use induction on t: If t ≤ d, there is nothing to prove. Suppose

t > d and every monomial from P t−1
m (Z) is in the span of P d

m(Z). Consider
a monomial xi1 · · ·xit from P t

m(Z). Since t > d, the set {xi1 , . . . , xit} is not
shattered by C. Let (a1, . . . , at) be a concept that is not in C|{xi1

,...,xit} and
consider a polynomial p(xi1 , . . . , xit) = (xi1 +a1+1)(xi2 +a2+1) · · · (xit +at+1).

As a vector in F
|C|
2 , p has zero coordinates because p(c(xi1), . . . , c(xit)) = 0

for all c ∈ C as at least one of the factors of p will be zero. Hence p = 0
and xi1 · · ·xit can be expressed as a linear combination of monomials of smaller
degree with coefficients from {xi1 , . . . , xit} ⊆ Z, that is, the ones from P t−1

m (Z).
To see this, consider, e.g., (x1 + 1)(x2 + 1)x3 = 0; then we have x1x2x3 =
x1x3 +x2x3 +x3. By the inductive hypothesis, P t−1

m (Z) is in the span of P d
m(Z),

and hence xi1 · · ·xit is in the span of P d
m(Z). So P t

m(Z) is in the span of P d
m(Z).

The implication in the other direction follows from Theorem 1. ut
Theorem 3. If C is a VCD-maximum class, then C is shortest-path-closed.

Proof. In this proof, we use the symbol 4 to denote symmetric difference.
Let C ⊆ 2X be a VCD-maximum class with |X| = m and VCD(C) = d, and

let I(c) denote the set {x ∈ X | there exists a c′ ∈ C such that c4c′ = {x}}. We
first show that, for every c ∈ C, I(c) is a teaching set for c. By Theorem 1, the

monomials from P d
m(X) span the vector space F

|C|
2 . Since |P d

m(X)| = Φd(m) =

|C|, the set P d
m(X) is a basis for F

|C|
2 .

Let c ∈ C and let S ⊆ X be a minimal teaching set for c in the sense that no
proper subset of S is a teaching set for c. Suppose I(c) 6= S and let x ∈ S \ I(c).
By Lemma 1, there is a linear combination f1 of monomials from P d

m(S) such
that c = f1. Note that X \ {x} is also a teaching set for c, since otherwise
x ∈ I(c). Thus, there is a linear combination f2 of monomials from P d

m(X \ {x})
with c = f2. Since P d

m(X) is a basis for F
|C|
2 , we have f1 = f2. As f2 does not

depend on x, f1 does not depend on x either. Thus f1 depends only on variables
from S \ {x}. By Lemma 1, S \ {x} is a teaching set for c, which contradicts the
minimality of S. Therefore S = I(c), and thus I(c) is a teaching set for c.

Finally, we prove that any two concepts c1 and c2 in C are Hamming-
connected, by induction on |c14c2|. For |c14c2| = 1 the proof is obvious. Sup-
pose |c14c2| = n and any two concepts c, c′ with |c4c′| < n are Hamming-
connected. Since I(c1) is a teaching set for c1, it cannot be disjoint from c14c2.
Hence there is an x ∈ I(c1) ∩ (c14c2). Let c′ be the concept from C such that
c14c′ = {x}. Then |c′4c2| = n − 1 and by the inductive hypothesis c′ and c2
are Hamming-connected. Therefore, c1 and c2 are Hamming-connected. ut



7 Conclusions

Our analog of Sauer’s bound for RTD establishes a new connection between
teaching complexity and VC-dimension. A main contribution besides obtaining
this result is the successful application of algebraic proof techniques. The charac-
terization of teaching sets obtained this way is of potential use for future studies
not only in the context of the combinatorial questions we asked in this paper.

Our results on RTD-maximum and RTD-maximal classes provide deep in-
sights into structural properties that affect the complexity of teaching a con-
cept class. As a byproduct of our studies, we proved several new results on
VCD-maximal classes. Altogether, our results might be helpful in solving the
long-standing sample compression conjecture [3] and in establishing further con-
nections between learning from a teacher and learning from randomly chosen
examples. In particular, we hope that methods from algebra will turn out to be
of further use in these contexts.
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Appendix: VCD-maximal classes

This appendix contains some new interesting properties of VCD-maximal classes.
For instance, the next theorem provides a way of constructing an infinite series
of equal-sized maximal classes starting from a given maximal class.

Theorem 4. Let C be a class of VC-dimension d on a set of m instances X =
{x1, . . . , xm}.

(1) If C is a maximal class and for some instance x ∈ X we have |C−x| = |C|,
then C + x is also maximal, where

C + x = {c ∈ 2X∪{xm+1} : c ∩X ∈ C and c(xm+1) = c(x)}.

This process can be continued to obtain a series of maximal classes C + x,
(C + x) + x, ((C + x) + x) + x, etc.

(2) If |C − x| < |C|, then C + x is not a maximal class.

Proof. (1) Note that VCD(C) = VCD((C+x)−x) and VCD(C) = VCD(C+x).
These equalities follow from the fact that C is equivalent to (C + x) − x, and
that if C + x shatters a set S, then S cannot contain both x and xm+1.

Suppose C is maximal and |C − x| = |C| for some x ∈ X. Consider any
c ∈ 2X∪{xm+1} such that c /∈ C + x and let c− xm+1 = c ∩X. We need to show
that VCD(C+x∪{c}) > VCD(C+x). First, suppose c−xm+1 /∈ C. Then, since C
is maximal, VCD(C+x∪{c}) ≥ VCD(C∪{c−xm+1}) > VCD(C) = VCD(C+x).

Now suppose c − xm+1 ∈ C. In this case c(x) 6= c(xm+1) since otherwise
c ∈ C + x. Also note that the concept c − x = c ∩ (X ∪ {xm+1} − x) does not
belong to (C + x) − x. Indeed, suppose c − x ∈ (C + x) − x and let c′ ∈ C be
the image of c− x under the equivalence transformation from (C + x)− x to C.
We then have that C contains two concepts, namely c−xm+1 and c′, that differ
only on x since (c− xm+1)(x) = c(x) 6= c(xm+1) = (c− x)(xm+1) = c′(x). This
contradicts the assumption that |C−x| = |C|. Therefore, c−x /∈ (C+x)−x and
we have that VCD(C+x∪{c}) ≥ VCD((C+x)−x∪{c−x}) > VCD((C+x)−x) =
VCD(C) = VCD(C + x). Hence C + x is a maximal class.

(2) If |C − x| < |C| then there are two concepts c1 and c2 in C that differ
only in x. Consider a concept c /∈ C + x defined as c = c1 ∪ {(xm+1, `)} where
` is chosen so that c(x) 6= c(xm+1). Since c coincides with c1 on X, we have
(C + x ∪ {c})− xm+1 = C. Furthermore, c coincides with the extension of c2 in
C+x on the instances from (X∪{xm+1})−x. Hence (C+x∪{c})−x = (C+x)−x,
which is, of course, equivalent to C.

Let VCD(C + x) = d and suppose that C + x ∪ {c} shatters a set S of size
d + 1. Note that S cannot contain both x and xm+1 since the restriction of
C+x∪{c} to these two instances can contain only one of the two concepts (0, 1)
and (1, 0). If S does not contain xm+1, then we have VCD(C + x) = VCD(C) =
VCD((C + x ∪ {c})− xm+1) ≥ d+ 1. On the other hand, if S does not contain
x, we have VCD(C+x) = VCD((C+x)−x) = VCD((C+x∪{c})−x) ≥ d+ 1.
These contradictions show that in fact VCD(C + x ∪ {c}) = VCD(C + x), and
hence C + x is not a maximal class. ut



The following proposition by Rubinstein et al. [6] follows immediately from the
definition of VC-dimension.

Proposition 9. VCD(C) ≤ d if and only if C contains at least one (m−d−1)-

cube for each subset of (m− d− 1) instances, i.e., C
S 6= ∅ for every subset S of

m− d− 1 instances.

We now establish a non-trivial lower bound for the size of VCD-maximal
classes and show that this bound can be met when both VCD and |X| are large.

Theorem 5. Let C ⊆ 2X be a VCD-maximal class over a set X with |X| = m.
If VCD(C) = d, then

|C| ≥ 2m − 2m−d−1
(
m

d+ 1

)
.

Equivalently, if VCD(C) = m− d, then

|C| ≥ 2m − 2d−1
(
m

d− 1

)
.

This lower bound can be met when m� d, that is, when |X|−VCD(C) is small
compared to |X|.

Proof. We prove the second inequality. Suppose VCD(C) = m − d and |C| <
2m−2d−1

(
m

d−1
)
. In this case, we have that |C| > 2d−1

(
m

d−1
)
. By Proposition 9, C

must contain at least one (d−1)-cube for each subset of d−1 instances. Consider a
union of (d−1)-cubes from C taking exactly one cube for each subset of instances
of size d − 1. Then the size of this union will be at most 2d−1

(
m

d−1
)
. Therefore,

C must contain at least one concept c that does not belong to the above union
of (d− 1)-cubes. Hence, due to Proposition 9, we can add this concept c to the
class C without increasing its VC-dimension, which contradicts the fact that C
is maximal.

To show that the lower bound is exact for large m, we need to construct a
disjoint union of (d−1)-cubes which consists of exactly one cube for each choice
of d − 1 instances; then the complement of such union will be a maximal class
C with VCD(C) = m − d and |C| = 2m − 2d−1

(
m

d−1
)
. To do this, let us split

the instance space X into disjoint blocks of size 2d and let {c1, . . . , cN} be the
concepts that are equal to unions of such blocks. Note that N = 2bm/2dc and
|ci4cj | ≥ 2d for i 6= j. Now to each subset S ⊆ X of size d − 1, we assign a
concept cS from the above list such that cS 6= cS′ for S 6= S′. This can be done
since for m � d, N = 2bm/2dc is greater than

(
m

d−1
)
, the number of all subsets

of size d− 1.
For each S ⊆ X of size d − 1, define a (d − 1)-cube C(S) based on cS , that

is, C(S) = 2S × {cS |X\S}. Note that for S 6= S′, the cubes C(S) and C(S′) are
disjoint because, by construction, |cS4cS′ | ≥ 2d. Therefore, the class C, defined
as

C = 2X \
⋃

S⊆X: |S|=d−1

C(S),

is a maximal class of VC-dimension m− d and size 2m − 2d−1
(

m
d−1
)
. ut



As a corollary we obtain that for a maximal class C with VCD(C) = |X|−O(1),
the sum VCD(C) + VCD(C) is bounded by |X|+O(log2 |X|).

Theorem 6. Let |X| = m. If C ⊆ 2X is a maximal class and VCD(C) = m−d,
then

VCD(C) + VCD(C) ≤ m− 1 + (d− 1) log2m.

Proof. Since C is maximal, we have, by Theorem 5, that |C| ≥ 2m − 2d−1
(

m
d−1
)
.

Therefore, |C| ≤ 2d−1
(

m
d−1
)

and hence VCD(C) ≤ log2 |C| ≤ d− 1 + log2

(
m

d−1
)
.

Taking into account that
(

m
d−1
)
≤ md−1, we obtain VCD(C) ≤ d− 1 + (d −

1) log2m. Since VCD(C) = m − d, it follows that VCD(C) + VCD(C) ≤ m −
1 + (d− 1) log2m. ut

Another property of VCD-maximal classes is that they are indecomposable
in the sense that they cannot be formed by a direct product of non-trivial smaller
classes.

Theorem 7. Let C0 ⊆ 2X0 and C1 ⊆ 2X1 be nonempty concept classes with

(a) VCD(C0) > 0 or VCD(C1) > 0 and
(b) C0 × C1 6= 2X0∪X1 .

Then C0 × C1 is not a maximal class.

We will need to prove the following lemma first.

Lemma 2. Let C0 ⊆ 2X0 and C1 ⊆ 2X1 be nonempty concept classes and let
c0 ∈ 2X0 and c1 ∈ 2X1 be any two concepts with the property that for each
i ∈ {0, 1}, if VCD(Ci) = 0 then VCD(C1−i ∪ {c1−i}) = VCD(C1−i). Then
VCD((C0 × C1) ∪ {c0c1}) = VCD(C0 × C1) = VCD(C0) + VCD(C1).

Proof. Let di = VCD(Ci), for i ∈ {0, 1}, and suppose that (C0 × C1) ∪ {c0c1}
shatters a set S ⊆ X0∪X1 of size d0+d1+1. Let Si = S∩Xi and assume w.l.o.g.
that |S0| = d0+1 and |S1| = d1. Therefore, VCD(C0∪{c0}) = d0+1 > VCD(C0),
and by the assumption we have that d1 > 0. So, on the one hand, we have that
(C0×C1)∪{c0c1} must contain at least 2d1 > 1 concepts that extend c0|S0 . But,
on the other hand, (C0 × C1) ∪ {c0c1} contains only one such concept, namely
c0c1, since c0|S0

/∈ C0|S0
. This contradiction proves the lemma. ut

Proof (of Theorem 7). If VCD(C0) > 0 and VCD(C1) > 0, then by Lemma 2
for any concept c /∈ C0 × C1 (which exists by our assumption), we have that
VCD((C0 × C1) ∪ {c}) = VCD(C0 × C1). Hence C0 × C1 is not maximal.

Consider the case VCD(C0) = 0 and VCD(C1) > 0 (the other case is similar).
Let c0 /∈ C0 and c1 ∈ 2X1 be such that VCD(C1 ∪ {c1}) = VCD(C1) (e.g., any
c1 ∈ C1). By Lemma 2, we have that VCD((C0×C1)∪{c0c1}) = VCD(C0×C1).
Since c0c1 /∈ C0 × C1, this proves that the class C0 × C1 is not maximal. ut


