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Abstract

A classical learning problem in inductive inference consists of identify-
ing each function of a given class of recursive functions from a finite number
of its output values. Uniform learning is concerned with the design of sin-
gle programs solving infinitely many classical learning problems. For that
purpose the program reads a description of an identification problem and
is supposed to construct a technique for solving the particular problem.

As can be proved, uniform solvability of collections of solvable identi-
fication problems is rather influenced by the description of the problems
than by the particular problems themselves. When prescribing a specific
inference criterion (for example learning in the limit), a clever choice of
descriptions allows uniform solvability of all solvable problems, whereas
even the most simple classes of recursive functions are not learnable uni-
formly without restricting the set of possible descriptions. Furthermore
the influence of the hypothesis spaces on uniform learnability is analysed.

Some more technical results are concerned with transferring well-known
characterizations of inference criteria from the classical scenario to the
context of uniform learning.
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1 Introduction

Consider a scenario consisting of a learner and an object unknown to the learner;
for example the learner might be you and the object might be an infinite sequence
of nonnegative integers. In your daily newspaper you have found a page with some
brainteasers containing the following exercise:

Exercise: Find out the next three numbers in the row

1,2,3,3,1,6,4,7,3,9,10,9,15,. . .

Now if you can solve this exercise and additionally state a rule for computing
further numbers, you have found a description of the unknown object (i.e. of the
whole infinite sequence of numbers), although the information you had about
the object was incomplete. Of course, the more information you get about the
sequence of numbers, the better are your chances for solving the given problem. If
you only saw the first three numbers 1,2,3, perhaps you would rather expect that
the sequence consists exactly of all positive integers, listed in ascending order, but
the information of the fourth number in the row tells you that such a guess must
be wrong. As soon as your guesses have become correct and stay correct, you
have ”learned” the full unknown object from just a finite amount of information.

Inductive Inference is concerned with similar learning processes considered
in a more recursion-theoretic environment. Here the objects to be learned are
total recursive functions and the learner is a partial-recursive function. The
growing sequence of information about an object f corresponds to the sequence
f(0), f(1), f(2), . . . of its output values. In the n-th step of the learning process
the learner reads the values f(0), . . . , f(n) and generates a hypothesis. That
hypothesis is a nonnegative integer and shall be interpreted as an index of a
function enumerated by a partial-recursive numbering. Thus the semantics of
the hypotheses depend on the choice of the hypothesis space, i.e. on the choice of
a partial-recursive numbering. In the initial approach of identification in the limit
introduced by Gold in [Go67] the learner is supposed to generate a sequence of
hypotheses converging to a correct index of the unknown function. Several further
identification criteria have been introduced and analysed in [Ba74a], [Ba74b] and
[CS83]. In general, a learning problem is given by

• a class U of recursive functions,

• a hypothesis space ψ and

• an identification criterion I.

The aim is to find a single learner identifying each function in the class U with
respect to the hypothesis space ψ in a manner satisfying the conditions of the
criterion I.

Now imagine you have accumulated lists of infinitely many learning problems
solvable according to a given criterion. Uniform Inductive Inference is concerned
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with the question, whether there exists a single program which – given a descrip-
tion of a special learning problem of your collection – synthesizes an appropriate
learner solving the actual problem. Such a program may be interpreted as a
very ”intelligent” learner able to simulate infinitely many learners of the classical
type. Instead of tackling each problem in a specific way we want to use a kind of
uniform strategy coping with the whole accumulation of problems.

Jantke’s work [Ja79] is concerned with the uniform identification of classes
of recursive functions in the limit, particularly for the case that in each learning
step the intermediate hypothesis generated by the learner is consistent with the
information received up to the actual time of the learning process. Jantke proved
that his model of uniform identification does not allow the synthesis of a program
learning a class consisting of just a single recursive function, as long as the syn-
thesizer is supposed to cope with any possible description of such a class. Results
on uniform identification of classes of languages can be found in [OSW88], [KB92]
and [BCJ96]. The work of Osherson, Stob and Weinstein additionally deals with
several possibilities for the description of learning problems.

The present paper provides its own definition of uniform identifiability with
the special feature that any of the learning problems described may be solved with
respect to any appropriate hypothesis space without requiring the synthesis of the
particular hypothesis spaces. The first result in Section 4 shows the existence of a
special set of descriptions accumulating all learning problems solvable according
to a given criterion I, such that synthesizing learners successful with respect to I is
possible. The trick is to encode programs for the learners within the descriptions.
Of course in general such tricks should be avoided, for example by fixing the set
of descriptions in advance. But then it is still possible to use tricks by a clever
choice of the hypothesis spaces. The results in Section 5 show that such tricks
provide a uniform strategy for behaviourally correct identification1 of any class
learnable according to that criterion, even coping with any description of such
a class. Nevertheless the free choice of the hypothesis spaces does not trivialize
uniform learning with respect to other inference criteria. It is proved that the
collection of all descriptions of classes consisting of just two recursive functions is
not suitable for uniform identification in the limit, i.e. there is no uniform strategy
constructing a successful program for learning in the limit from such a description.
Unfortunately, those results are rather negative: either uniform learnability is
achieved by tricks and thus becomes trivial or it cannot be achieved at all. When
fixing the hypothesis spaces in advance, our situation gets even worse. In Section
6 Jantke’s result is strengthened by proving that there is no uniform learner
for behaviourally correct identification with respect to an acceptable numbering
coping with all descriptions of sets of just one recursive function. The same
collection of learning problems becomes unsolvable even for behaviourally correct
identification with anomalies, if we further tighten our demands concerning the

1for the definitions of inference criteria mentioned here see Section 2.2
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hypothesis spaces.
But on the other hand this paper also contains some quite positive results.

For example, if the descriptions of learning problems fulfill some special topologi-
cal conditions, one can uniformly construct strategies learning the corresponding
classes in the limit – even with total and consistent intermediate hypotheses2.
These positive results at least seem to justify some further research on uniform
identifiability. Therefore Section 5 additionally provides some results concerning
the suitability of unions of description sets; simple results on the learning power
of special ”natural” uniform strategies are presented in Section 7. Furthermore
Wiehagen’s characterizations of several inference criteria in [Wie78] – based on
numbering theory – are transferred to the context of uniform identification. In
general, Section 2 provides preliminary notions and definitions and Section 3
deals with the notion of uniform identification. General results are presented in
Section 4, followed by results on particular description sets in Section 5. Section
6 is concerned with the influence of the choice of the hypothesis spaces and finally
Section 7 mentions some typical identification techniques.

I thank Prof. Wiehagen, Jochen Nessel and Martin Memmel for their advice.

2see Section 2.2 for definitions
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2 Preliminaries

First of all we will fix important notions to be used in this paper. All definitions
and theorems in the context of recursion theory not explicitly introduced here
can be found in the common literature such as for example [Ro87].

2.1 Notation

We denote the set of nonnegative integers by N and write N∗ for the set of all
finite tuples of elements of N. Instead of ”nonnegative integer” we simply write
”integer” or ”number”. If n is any integer, we refer to the set of all n-tuples
of integers by Nn. The length function λα.|α| : N∗ → N assigns the number
of components to any finite tuple of integers (i.e. |α| = n for all α ∈ Nn with
n ∈ N). Here – and throughout this paper – we use the common λ-notation for
functions. For any tuples α, β ∈ N∗ we use the notion α v β, whenever there
exists a tuple γ ∈ N∗ such that the concatenation αγ equals β. If in addition
γ is not the empty tuple, we may also write α @ β. The notion α v f , where
f : N → N is a function, means that α = (f(0), . . . , f(|α| − 1)). By means of a
bijective and computable mapping λx1. . . . λxn.〈x1, . . . , xn〉 from Nn onto N we
can identify n-tuples of integers with elements in N. Between N∗ and N we also
choose a bijective, computable mapping and denote it by cod : N∗ → N. For con-
venience we sometimes use the simple notion α to refer to cod(α), where α ∈ N∗.
Let ∅ be a symbol for the empty set. The quantifiers ∀ and ∃ are used in the
common way. Quantifying an expression with ∀∞n indicates that the expression
is true for all but finitely many n ∈ N.

For any pair of sets X and Y the notation X ⊂ Y expresses a proper inclusion
of X in Y . As long as we do not want to exclude the absolute equality of the
given sets, we denote this by X ⊆ Y . As a symbol for the incomparability of
sets we use #. card X serves as a notation for the cardinality of a set X, and we
write card X = ∞, whenever X is an infinite set. The set of all subsets of X is
referred to by ℘X. If V and W are sets of sets, we will write V � W if and only
if for all X ∈ V there exists a set Y ∈ W such that X ⊆ Y .

Pn denotes the class of all partial-recursive functions of n variables. Its sub-
class of total functions is denoted by Rn. Whenever n = 1 or the number of
arguments is of no special interest, we omit the note for the number of argu-
ments and simply write P or R. We use the phrase ”recursive function” to mean
total partial-recursive function. For any function f ∈ P and any integer n the
notation f [n] refers to the coding cod(f(0), . . . , f(n)) of the initial segment of
length n + 1 of f , as long as the values f(0), . . . , f(n) are all defined. If f is a
partial-recursive function and x is any integer, we write

• f(x)↓, if f is defined for the argument x,
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• f(x)↑, if f is not defined for the argument x.

For the comparison of two functions f, g ∈ P with respect to their initial
segments of length n+ 1 (with n ∈ N) we also agree on a special notation. In the
case

{(x, f(x)) | x ≤ n and f(x)↓} = {(x, g(x)) | x ≤ n and g(x)↓}

we write f =n g, otherwise f 6=n g. If the set of arguments on which the functions
f, g ∈ P disagree is finite, i.e. if

∀∞n [[f(n)↑ ∧g(n)↑] or [f(n)↓ ∧g(n)↓ ∧f(n) = g(n)]],

we write f =∗ g.

If we identify two functions f, g with the corresponding sets of input-output
tuples, the notion f ⊆ g means that

{(x, f(x)) | x ∈ N, f(x)↓} ⊆ {(x, g(x)) | x ∈ N, g(x)↓}.

A partial-recursive function f may also be identified with the sequence (f(n))n∈N
of its values. That explains the use of notations like for example f = 0k+1↑∞ for
the function

f(x) =

{
0 x ≤ k

↑ x > k
for x ∈ N,

or g = 0k+112∞ for the function

g(x) =


0 x ≤ k

1 x = k + 1

2 x > k + 1

for x ∈ N.

If ψ ∈ Pn+1 for a number n ≥ 1, we regard ψ as a numbering for the set
Pψ := {ψi | i ∈ N} by means of the definition

ψi(x) := ψ(i, x) for all i ∈ N, x ∈ Nn.

The index i ∈ N is also called ψ-number of the function ψi.

If we choose an acceptable numbering ϕ, we can assign a ”computing-time
function” Φi to any function ϕi (i ∈ N) by a uniform procedure. Informally we
identify ϕi with a Turing-program executed by a Turing-machine Mi. With the
value Φi(x) we associate the number of computational steps made by Mi on the
input x (if the computation does not stop, then Φi(x) is undefined).3 For any
i, x, n ∈ N we introduce the following notations:

3compare with a Blum complexity measure in [Bl67]
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• ϕi(x)↓≤n means that the computation of ϕi(x) terminates within n steps;

• ϕi(x)↑≤n means that the computation of ϕi(x) does not terminate within
n steps.

If ψ ∈ Pn+2 (n ∈ N) is a computable function, every integer b ∈ N ”describes”
a numbering of partial-recursive functions which we will denote by ψb. We set

ψb(i, x) := ψ(b, i, x)

for all i ∈ N, x ∈ Nn and thus write by analogy with the notations above:

ψbi (x) := ψb(i, x) for all i ∈ N, x ∈ Nn.

If a function ψ ∈ Pn+1 (n ≥ 1) is given, we are often particularly interested in
the recursive functions in Pψ. In their entirety they will be called the ”recursive
core” or ”R-core” of Pψ (abbreviated by Rψ). Hence

Rψ = R∩ Pψ.

2.2 Inductive Inference Criteria

2.2.1 Identification in the Limit – the Inference Criterion EX

Identification in the limit provides the fundamentals for learning models examined
in the field of inductive inference and has first been analysed by Gold in [Go67].
Since identification in the limit is often called ”explanatory correct” identification,
we use the notation EX to refer to that criterion. Definition 2.1 provides a formal
notation.

Definition 2.1 (Identification in the Limit) Let U ⊆ R, ψ ∈ P2. The class
U is called identifiable in the limit with respect to ψ if and only if there is a
function S ∈ P such that for any f ∈ U :

1. ∀n ∈ N [S(f [n])↓] (S(f [n]) is called hypothesis on f [n]),

2. ∃j ∈ N [ψj = f and ∀∞n [S(f [n]) = j]].

We also write: U ∈ EXψ(S).

EXψ := {U | U is identifiable in the limit with respect to ψ}.
EX :=

⋃
ψ∈P2 EXψ.

If {f} ⊂ R is identified in the limit by a strategy S, there must be a minimal
”time” n0 ∈ N, such that the sequence (S(fn))n∈N of hypotheses remains constant
from that time on. That time is referred to by conv(S, f). Formally we define:

conv(S, f) := min{n0 ∈ N | S(fn) = S(fn0) for all n ≥ n0}
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for any S ∈ P , f ∈ R, provided (S(fn))n∈N converges.

Wiehagen’s work [Wie78] supplies a characterization of the classes learnable
in the limit (see Theorem 2.1). Since characterizations of inference criteria will
be very useful for the proofs in this paper, we present the corresponding results
here.

Theorem 2.1 Let U ⊆ R. U is identifiable in the limit, if and only if there is a
numbering ψ ∈ P2 and a function d ∈ R2 satisfying

1. U ⊆ Pψ,

2. ∀i, j ∈ N [i 6= j ⇒ ψi 6=d(i,j) ψj].

2.2.2 Identification with a Bounded Number of Mind Changes – the
Inference Criteria EXm, m ∈ N

The sequence of hypotheses produced by an EX-strategy on any of the functions
it identifies will converge. Imagine a user reading the strategy’s output up to a
certain time. Though he knows that the sequence will converge, he cannot decide
whether the time of convergence is already reached. Thus he cannot rely on the
latest hypothesis produced by the strategy, i.e. even if the strategy has reached
its final correct hypothesis, the user will not know that the actual hypothesis is
correct. He simply cannot be sure that the strategy will never change its ”mind”
again. If on the other hand we introduce a bound m ∈ N and our strategy
identifies functions without changing its hypothesis for more than m times, the
user can rely on the correctness of the output at least when the strategy has
already changed its mind exactly m times. Case and Smith have first studied the
learning power of strategies working with a bounded number of mind changes in
[CS83].

Definition 2.2 (Identification in the Limit with a Bounded Number of
Mind Changes)
Assume U ⊆ R, ψ ∈ P2 and m ∈ N. U is called identifiable in the limit with no
more than m mind changes4 wrt ψ, if and only if there exists a function S ∈ P
satisfying

1. U ∈ EXψ(S) (where S is additionally permitted to put out the sign ”?”),

2. for all f ∈ U there is an nf ∈ N satisfying

• ∀x < nf [S(f [x]) =?],

• ∀x ≥ nf [S(f [x]) ∈ N],

4we often abbreviate this formulation with ”identifiable with no more than m mind changes”
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3. ∀f ∈ U [ card{n ∈ N | ? 6= S(f [n]) 6= S(f [n+ 1])} ≤ m ].

We also write: U ∈ (EXm)ψ(S).

(EXm)ψ := {U | U is identifiable in the limit with no more than
m mind changes wrt ψ}.

EXm :=
⋃
ψ∈P2(EXm)ψ.

A class U ⊆ R is identifiable with a bounded number of mind changes if and only
if there exists a number m ∈ N such that U ∈ EXm.

The meaningless hypothesis ”?” put out in the beginning of the learning pro-
cess allows our strategy to read some more values of the function to be learned
before putting out its first hypothesis. Thus it may ”save” one of its precious
mind changes.
A special case of identification with a bounded number of mind changes often
analysed is finite identification. Its usual definition is equivalent to the definition
of identification with (no more than) 0 mind changes. Therefore we often refer
to the EX0-criterion with ”finite identifiability”5.

Again we are interested in characterizing the classes identifiable with a bounded
number of mind changes. The proof of Theorem 2.2 proceeds similarly to the
proof of Theorem 2.1. For a complete proof see [Zi99].

Theorem 2.2 Let U ⊆ R and m ∈ N. U is identifiable with no more than m
mind changes if and only if there exist a numbering ψ ∈ P2 and a function d ∈ R
satisfying

1. U ⊆ Pψ,

2. ∀j ∈ N [card {i 6= j | ψi =d(i) ψj} ≤ m],

3. ∀i, j ∈ N [i 6= j ⇒ ψi 6=max{d(i),d(j)} ψj].

As a special case of Theorem 2.2 we can formulate a characterization of finite
identifiability, which can also be found in [Wie78].

Corollary 2.3 Let U ⊆ R. U is finitely identifiable if and only if there exist a
numbering ψ ∈ P2 and a function d ∈ R satisfying

1. U ⊆ Pψ,

2. ∀i, j ∈ N [i 6= j ⇒ ψi 6=d(i) ψj].

5some authors use the notation FIN instead of EX0
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2.2.3 Identification in the Limit with Special Intermediate Hypothe-
ses – the Inference Criteria CONS, TOTAL and CONS-TOTAL

A very natural learning behaviour is to construct only consistent intermediate
hypotheses, i.e. hypotheses agreeing with the information received so far. The
resulting inference criterion was first studied in [Ba74b].

Definition 2.3 (Consistent Identification) Assume U ⊆ R, ψ ∈ P2. U is
called identifiable consistently with respect to ψ if and only if there exists an S ∈ P
satisfying

1. U ∈ EXψ(S),

2. ∀f ∈ U ∀n ∈ N [ψS(f [n]) =n f ]
(we say that S(f [n]) is a consistent hypothesis for f [n] wrt ψ).

We also write: U ∈ CONSψ(S).

CONSψ := {U | U is identifiable consistently wrt ψ}.
CONS :=

⋃
ψ∈P2 CONSψ.

The following characterization of consistent identifiability is again taken from
[Wie78].

Theorem 2.4 Let U ⊆ R. U is identifiable consistently if and only if there exist
a numbering ψ ∈ P2 and a predicate d ∈ R3 satisfying

1. U ⊆ Pψ,

2. ∀i, j, n ∈ N [ψi =n ψj ⇐⇒ d(i, j, n) = 1].

Whenever a hypothesis put out by a learning strategy is a number of a non-
total function in the given hypothesis space, our strategy must be wrong, because
the functions to be learned are all taken from R. Thus it is quite reasonable to
demand just total functions to be described by the intermediate hypotheses.

Definition 2.4 (Identification with Total Intermediate Hypotheses)
Assume U ⊆ R, ψ ∈ P2. U is called identifiable wrt ψ with total intermediate
hypotheses if and only if there exists an S ∈ P satisfying

1. U ∈ EXψ(S),

2. ∀f ∈ U ∀n ∈ N [ψS(f [n]) ∈ R].

We also write: U ∈ TOTALψ(S).
TOTALψ and TOTAL are defined by analogy with Definition 2.3.
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More information about the TOTAL-criterion can be found in [JB81]. For
the proof of the corresponding characterization theorem see [Wie78].

Theorem 2.5 Let U ⊆ R. U is identifiable with total intermediate hypotheses
if and only if there exist a numbering ψ ∈ P2 and a function d ∈ R satisfying

1. U ⊆ Pψ,

2. ∀f ∈ U ∀i ∈ N [ψi =d(i) f ⇒ ψi ∈ R].

Since both properties – consistency and totality – restricting the set of per-
mitted intermediate hypotheses seem quite natural, one might also combine these
criteria. The resulting inference criterion is defined below.

Definition 2.5 (Identification with Consistent and Total Hypotheses)
Let U ⊆ R, ψ ∈ P2. U is called identifiable wrt ψ with consistent and total in-
termediate hypotheses if and only if there exists an S ∈ P satisfying

1. U ∈ CONSψ(S) and

2. U ∈ TOTALψ(S).

We also write: U ∈ CONS-TOTALψ(S).
CONS-TOTALψ and CONS-TOTAL are defined as usual.

It is not hard to prove that in the case of learning with respect to acceptable
numberings consistency can easily be fulfilled whenever the condition of totality
is satisfied. The reason is the effective decidability of consistency of total inter-
mediate hypotheses. If the consistency test for a hypothesis put out by a suitable
TOTAL-strategy turns out negative, one may put out any consistent and total
intermediate hypothesis instead. For more details see [JB81].

Proposition 2.6 TOTAL = CONS-TOTAL.

Though TOTAL = CONS-TOTAL, we will study learning problems for which
consistency might not be achieved from TOTAL-strategies in such an easy way
(or perhaps might not be achieved at all).

2.2.4 Behaviourally Correct Identification – the Inference Criteria
BC and BC∗

For an arbitrary learning process the mere existence of a certain time, after which
all hypotheses are correct, is not sufficient for explanatory correct identification,
because the EX-criterion also demands convergence to a single hypothesis. If that
additional demand is omitted, we talk of ”behaviourally correct” identification.
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Definition 2.6 (Behaviourally Correct Identification) Let U ⊆ R, ψ ∈
P2. U is called BC-identifiable wrt ψ if and only if there exists an S ∈ P, such
that for all f ∈ U the following conditions are fulfilled:

1. ∀n ∈ N [S(f [n])↓],

2. ∀∞n [ψS(f [n]) = f ].

We also write U ∈ BCψ(S) and define BCψ and BC as usual.

Behaviourally correct identifiability has also been characterized by Wiehagen
in [Wie78]. But for our purpose the following characterization proved in [Oy98]
is more useful.

Theorem 2.7 Let U ⊆ R. U is BC-identifiable if and only if there exist ψ ∈ P2

and d ∈ R2 satisfying the following properties:

1. U ⊆ Pψ,

2. ∀i, j ∈ N [ψi = ψj ⇐⇒ ψi =d(i,j) ψj].

Though behaviourally correct identification provides more learning power
than explanatory correct identification – a proof can be found in [Ba74a] – there
are still classes of recursive functions which are not BC-identifiable. In [CS83] we
find a variation of BC-identification, which allows learnability of the whole class
R.

Definition 2.7 (BC-Identification with Finitely Many Anomalies)
Let U ⊆ R, ψ ∈ P2. U is called BC-identifiable wrt ψ with finitely many
anomalies if and only if there exists an S ∈ P, such that for all f ∈ U the
following conditions are fulfilled:

1. ∀n ∈ N [S(f [n])↓],

2. ∀∞n [ψS(f [n]) =∗ f ].

We also write U ∈ BC ∗ψ(S) and use the notations BC ∗ψ and BC ∗ by analogy with
the previous definitions.

A proof of Theorem 2.8 can be found in [CS83].

Theorem 2.8 R ∈ BC ∗.

Thus we do not need a characterization of BC∗ by means of partial-recursive
numberings ψ ∈ P2.
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2.2.5 Comparison of Identification Criteria

For the inference criteria introduced in the previous sections the following com-
parison results have been proved:

Theorem 2.9

1. EX0 ⊂ TOTAL = CONS-TOTAL ⊂ CONS ⊂ EX ⊂ BC ⊂ BC ∗ = ℘R.

2. ∀m ≥ 1 [EXm#CONS ∧ EXm#TOTAL] (see [Zi99]).

3. ∀m ∈ N [EXm ⊂ EXm+1 ⊂ EX ] (see [CS83]).

The proof of ”EX0 ⊂ TOTAL = CONS-TOTAL” is straightforward and a
verification of TOTAL ⊂ CONS can be found in [JB81]. For a proof of CONS ⊂
EX see [Ba74b]. Citations for the other results have already been given above.
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3 Definition of Uniform Learnability

Throughout this paper let ϕ ∈ P3 be a fixed acceptable numbering of P2. If
we choose a number b ∈ N we may interpret it as an index for the partial-
recursive numbering ϕb ∈ P2 which assigns the value ϕ(b, x, y) to each pair (x, y)
of integers. Thus we can regard b as a description of a class of recursive functions,
namely the recursive core of Pϕb . For convenience we will denote this class by
Rb, i.e.

Rb := Rϕb = R∩ Pϕb for b ∈ N.

Note that the definition of Rb always depends on our fixed acceptable numbering
ϕ.
Similarly each subset B ⊆ N describes a set RB := {Rb | b ∈ B} of classes of
recursive functions.
From now on let I denote the set of all previously declared inference criteria:

I := {EX,CONS,TOTAL,CONS-TOTAL,BC,BC∗} ∪ {EXm | m ∈ N}

3.1 The Learning Model

Definition 3.1 (Uniform Learnability) Let I, I ′ be elements of I satisfying
I ⊆ I ′. A set J ⊆ ℘R of sets of recursive functions is said to be uniformly
learnable with respect to I and I ′ if and only if there exists a set B ⊆ N such that
the following conditions are fulfilled:

1. J � RB.

2. RB ⊆ I.

3. ∃S ∈ P2 ∀b ∈ B ∃ψ ∈ P2 [Rb ∈ I ′ψ(λx.S(b, x))].

We refer to this definition by J ∈ uni(I, I ′). The partial-recursive function S in
our third condition will be called a uniform strategy for J wrt I and I ′; B is called
description set for J, I and I ′.

Thus uni(I, I ′) represents the set of all subsets of ℘R which are uniformly
learnable with respect to I and I ′.
In order to prove the uniform learnability of a subset J ⊆ ℘R wrt I, I ′ ∈ I we
have to specify the following parameters:

• the set B ⊆ N describing the classes to be learned,

• the (possibly distinct) numberings ψ ∈ P2 serving as hypothesis spaces for
the particular classes Rb (b ∈ B),

• the strategy S ∈ P2 designed to do the actual ”learning job”.
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Starting from this point of view two main questions arise:

1. Which classes J ⊆ ℘R are uniformly learnable wrt given inference criteria
I and I ′ at all?

2. Which classes J ⊆ ℘R remain learnable in the sense of uni(I, I ′), if we
specify in advance one of the parameters mentioned above?

Of course these questions are much too general to be answered exhaustively
in this paper. One part of the work presented here deals with the first question,
which turns out to be less difficult than the second. Furthermore we regard lots
of special cases of our second problem, where we concentrate our interest on the
parameters ”description set B” and ”hypothesis spaces ψ”. For the purpose of
clear arrangement in our propositions and argumentations we have to agree on
some more notations first.

3.1.1 The Description Set B

Definition 3.2 (Uniform Learning from Special Description Sets)
Let I, I ′ ∈ I, I ⊆ I ′ and a fixed set B ⊆ N be given. A set J ⊆ ℘R will
be called uniformly learnable wrt I and I ′ from description set B if and only if
J ∈ uni(I, I ′) and the description set for J, I, I ′ used according to Definition 3.1
equals B. We will write J ∈ uniB(I, I ′) for short.

uniB(I, I ′) thus contains exactly those subsets of ℘R, which can be learned
uniformly with respect to I and I ′ provided that our parameter ”description set”
is specified by the set B ⊆ N. On condition that J ∈ uniB(I, I ′) we can obviously
conclude RB ∈ uniB(I, I ′). Considering the fact that all classes in I are closed
under inclusion furthermore allows a reverse argumentation: RB ∈ uniB(I, I ′)
implies J ∈ uniB(I, I ′) for all J � RB. Therefore the sets J ∈ uni(I, I ′) are
characterized by those sets B ⊆ N which are suitable description sets for uniform
learning of some set J ′ ⊆ ℘R in the sense of Definition 3.2:

Lemma 3.1 Assume I, I ′ ∈ I, J ⊆ ℘R. Then J ∈ uni(I, I ′) if and only if there
exists a set B ⊆ N satisfying

1. RB ∈ uniB(I, I ′) and

2. J � RB.

For that reason the appropriate description sets for uniform learning are of
particular interest for our further research.
Now consider a set RB of recursive cores described by a set B ⊆ N. The mere
statement that RB ∈ uni(I, I ′) for some I, I ′ ∈ I does not imply the uniform
learnability of RB wrt I, I ′ from B. It is quite conceivable that RB might be
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uniformly learnable from a description set B′ ⊆ N, but not from the description
set B. This would as well involve that no set J ⊆ ℘R were uniformly learnable
wrt I, I ′ from description set B at all. Under these circumstances we may consider
the description set B to be unsuitable for uniform learning with respect to I and
I ′. Let us agree on some notation to express the suitability of a description set
B:

Definition 3.3 (Suitable Description Sets) Let I, I ′ ∈ I, B ⊆ N. The de-
scription set B is said to be suitable for uniform learning with respect to I and
I ′ if RB ∈ uniB(I, I ′). The class of all description sets suitable in that sense will
be denoted by suit(I, I ′).

These considerations raise the question, whether there are certain specific
properties characterizing our appropriate description sets B ∈ suit(I, I ′). What
kinds of ”natural properties” of the sets B ⊆ N are necessary or sufficient for
their suitability? Which properties seem to be unsuitable and for what reason?
Interesting special cases might be:

• B is finite.

• B describes numberings the recursive cores of which consist of just one
element, exclusively, i.e. ∀b ∈ B [card Rb = 1].

• B describes numberings with finite recursive cores, exclusively.

• B describes recursive numberings, exclusively, i.e. ∀b ∈ B [ϕb ∈ R2].

• B represents the whole class I, i.e. ∀U ∈ I ∃b ∈ B [U ⊆ Rb].

3.1.2 The Hypothesis Spaces ψ

Definition 3.4 (Uniform Learning in Special Hypothesis Spaces)
Let I, I ′ ∈ I be given. Let h : N → N denote any function. A set J ⊆ ℘R is
called uniformly learnable with respect to I and I ′ by interpretation function h,
if and only if there exists a set B ⊆ N which fulfills the following conditions:

1. J � RB.

2. RB ⊆ I.

3. ∃S ∈ P2 ∀b ∈ B [Rb ∈ I ′ϕh(b)(λx.S(b, x))].

We abbreviate this formulation by J ∈ uni[h](I, I
′). If additionally there is a

numbering τ ∈ P2 satisfying ϕh(b) = τ for all b ∈ N, we will write J ∈ uniτ (I, I
′)

instead.
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Note that the interpretation function h in our definition is not necessarily
computable or total. Of course it might happen, that we want to fix both our
hypothesis spaces by means of an interpretation function h and our description
set B in advance. In that case we use the notations J ∈ uniB,[h](I, I

′) as well as
J ∈ uniB,τ (I, I

′) by analogy.

Via the function h each description b ∈ B obtains an associated hypothesis
space ϕh(b), by means of which we can interprete the hypotheses produced by
the strategy λx.S(b, x). We may come up with several quite obvious possibilities
concerning the choice of h:

• h is computable; i.e. the hypothesis spaces required or appropriate for the
learnability of Rb (b ∈ B ⊆ N) in the sense of I ′ can be computed uniformly
from b.

• h(b) = b for all b ∈ N; i.e. the hypotheses produced by λx.S(b, x) on initial
segments of functions in Rb (b ∈ N) should be interpreted as numbers in
the hypothesis space ϕb given by b.

• h(b) = j for a fixed j ∈ N and all b ∈ N; i.e. the hypotheses produced by
S are always interpreted with respect to the same chosen hypothesis space
ϕj. We are particularly interested in the case that ϕj is an acceptable
numbering.

Regarding the aspect of applications of our theoretical model it seems quite
practical to choose one of those possibilities for the specification of our function
h: in the Definition 3.1 of uniform learning we require for each b in the description
set B the mere existence of a hypothesis space appropriate for learning Rb in the
sense of I ′. But whenever there is no computable function assigning an index for
that hypothesis space to b, the user cannot associate particular functions with the
hypotheses generated by λx.S(b, x), because he doesn’t know, which hypothesis
space he should interpret them in. Thus in contrast to learning with respect to
a known hypothesis space there is no straightforward way to assign a specific
function to a given index. On the other hand, if the user knows a computable
interpretation function h, he can determine the value h(b) from b as an index
for the hypothesis space ϕh(b). Afterwards a hypothesis S(b, x) = i ∈ N can be

interpreted unambiguously as an index for the function λy.ϕh(b)(i, y) = ϕ
h(b)
i .

For our purpose it is interesting, to what extent the class of all subsets J ⊆ ℘R
uniformly learnable with respect to given criteria I, I ′ ∈ I is restricted by a fixed
mapping chosen according to the possibilities listed above. In particular we want
to know, which sets J remain learnable and whether they can be classified by
means of specific properties.
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3.1.3 The Uniform Strategy S

For the purpose of solving inductive learning problems we often find certain
procedures, which we intuitively regard as quite promising. A straightforward
example is a strategy searching for objects in the hypothesis space, that ”match”
(i.e. are consistent with) the information read about the target object so far.
As these procedures in some ways appear ”natural” or ”reasonable in content”
to us, we often try to model them in the working method of our computable
learning strategies. A typical product of this kind is Gold’s ”Identification by
Enumeration” introduced in [Go67]. Obviously, similar techniques can also be
used as approaches for solving several learning problems of the classical type by
a uniform strategy. For our further studies it may be useful to model a strategy
with certain properties in order to analyse its learning power, i.e. to examine
what classes J ⊆ ℘R are uniformly learnable with the given strategy. Therefore
we introduce the following notation for uniform identification of a set J ⊆ ℘R
by a fixed strategy S ∈ P2.

Definition 3.5 (Uniform Learning with Special Strategies)
Let I, I ′ ∈ I, S ∈ P2. Then uni(I, I ′)(S) will denote the set of all classes
J ⊆ ℘R, for which S is a uniform strategy wrt I and I ′ in the sense of Definition
3.1.

Thus uni(I, I ′)(S) contains exactly those subsets of ℘R, which can be learned
uniformly with respect to I and I ′ providing a specification of the parameter
”learning strategy” by the function S. By analogy with the definitions above
we use the notations uniB(I, I ′)(S), uni[h](I, I

′)(S) as well as uniB,[h](I, I
′)(S)

(respectively with τ instead of [h] in the case of a constant interpretation function
h).

3.2 Basic Results

Our agreement on notations and definitions provided so far now allows us to
formulate some basic results on uniform learning. Although the corresponding
proofs are quite simple, those results will be useful for our further examinations.
First we state a necessary condition for uniform learnability of a subset of ℘R.
For the proof of Proposition 3.2 note that all classes I ∈ I are closed with respect
to the inclusion of sets.

Proposition 3.2 Let I, I ′ ∈ I, I ⊆ I ′, J ⊆ ℘R. From J ∈ uni(I, I ′) we can
conclude J ⊆ I.

Proof: Let J ∈ uni(I, I ′). Then there exists a set B ⊆ N which fulfills J ∈
uniB(I, I ′).
⇒ RB ⊆ I and J � RB.
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⇒ ∀U ∈ J ∃b ∈ B [U ⊆ Rb ∈ I ].
⇒ ∀U ∈ J [U ∈ I ], because I is closed with respect to the inclusion of sets.
⇒ J ⊆ I.

qed Proposition 3.2

As a direct conclusion from Proposition 3.2 and the definition of uniform
learning we state:

Corollary 3.3 Let I, I ′ ∈ I, I ⊆ I ′. Then uni(I, I ) ⊆ uni(I, I ′) ⊆ ℘I.

Except for the case of consistent learning, any strategy identifying a given
class U ⊆ R with respect to some inference criterion I ∈ I can be replaced
by a total recursive strategy without loss of learning power. This new strategy
is defined by computing the values of the old strategy for a bounded number
of steps and a bounded number of input examples. This bound is increased
whenever a new input example is exposed to the new strategy. As long as there
is no hypothesis found, some temporary hypothesis is produced. Afterwards the
hypotheses of the former strategy are put out ”with delay”. Whereas in the case
of I ∈ {EX,BC,BC∗} ∪ {EXm | m ∈ N} the temporary hypothesis can be fixed
deliberately from the hypothesis space, we have to find a temporary hypothesis
representing a total function if the given criterion is TOTAL. Now we transfer
these observations to the level of uniform learning.

Proposition 3.4 Let I, I ′ ∈ I\{CONS,CONS-TOTAL}, B ⊆ N and let h :
N → N be any function. Assume RB ∈ uniB,[h](I, I

′). Then there exist a total
recursive function S ∈ R2 and a function g recursive in h satisfying RB ∈
uniB,[g](I, I

′)(S).

Remark If we assume I ′ ∈ {EX,BC,BC∗} ∪ {EXm | m ∈ N}, then Proposition
3.4 remains valid with g = h.

The proof of Proposition 3.4 is arranged exactly as explained above. The
reason why in general we cannot keep the numberings ϕh(b) (b ∈ B) as hypothesis
spaces is that the temporary hypotheses needed in the case of learning with
respect to TOTAL cannot be computed uniformly from b, but just from h(b).

Proposition 3.5 Let I ∈ I, h : N→ N. If B ⊆ N is a finite set with Rb ∈ Iϕh(b)

for all b ∈ B, then RB ∈ uniB,[h](I, I
′).

The proof is obvious: a finite number of strategies – each learning one of the
given recursive cores with respect to I ′ – can be merged to a single computable
uniform strategy.
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4 Uniform Learning without Specification of the

Model Parameters

First we deal with uniform learning according to Definition 3.1 without specifying
the description set B, the hypothesis spaces ψ or the learning strategy S in
advance. We just choose two inference criteria I, I ′ ∈ I satisfying I ⊆ I ′ and try
to characterize the subsets J ⊆ ℘R contained in uni(I, I ′). By uni(I, I ′) ⊆ ℘I
we have already found a necessary condition for the uniform learnability of a set
J ⊆ ℘R. In our next theorem the necessary condition supplied by Corollary 3.3
additionally turns out to be sufficient.

Theorem 4.1 Assume I, I ′ ∈ I, I ⊆ I ′. Then uni(I, I ′) = ℘I.
Especially we have uni(I, I ) = ℘I.

For the proof of Theorem 4.1 we need the following lemma, which tells us that
any class of functions learnable with respect to a given criterion is contained in
some recursive core learnable with respect to the same criterion.

Lemma 4.2 Let I ∈ I. For each U ∈ I there exists a numbering ψ ∈ P2 such
that

1. U ⊆ Pψ,

2. Rψ ∈ I.

Proof of Lemma 4.2: The idea is to make use of the numberings supplied by
the characterization theorems 2.1 up to 2.7.

Case 1: I = EX.

Assume U ∈ EX. Theorem 2.1 provides a numbering ψ ∈ P2 and a function
d ∈ R satisfying

1. U ⊆ Pψ,

2. ∀i, j ∈ N [i 6= j ⇒ ψi 6=d(i,j) ψj].

This trivially implies

1. Rψ ⊆ Pψ,

2. ∀i, j ∈ N [i 6= j ⇒ ψi 6=d(i,j) ψj].

According to Theorem 2.1 this statement is again sufficient for the learnability
of Rψ with respect to the inference criterion EX; thus we conclude Rψ ∈ EX.
This proves the claim of Lemma 4.2 for the case I = EX.

Case 2: I ∈ {BC,CONS } ∪ {EXm | m ∈ N}.
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The argumentation in our first case can be applied by analogy.

Case 3: I = TOTAL.

Assume U ∈ TOTAL. Let τ be an acceptable numbering and S ∈ P2 a strategy
such that U ∈ TOTALτ (S). The construction of the demanded numbering ψ
proceeds in a way similar to the proofs in [Wie78]:

We define a set M by

M := {(z, n) ∈ N2 | for all x ≤ n [τz(x) is defined] and S(τz[n]) = z}.

The set M describes all initial segments of functions on which the strategy S
produces a correct hypothesis. Obviously M is recursively enumerable, so that
we can make use of a function e ∈ R, which enumerates M . If the pair (z, n)
is the i-th element in the enumeration of e (i.e. e(i) = (z, n)), we define the i-th
function of our numbering ψ by the following instructions:

ψi(x) :=


τz(x) x ≤ n or

x > n and ∀y,m ≤ x [τS(τz [y])(m)↓]
and ∀y ∈ {n, . . . , x} [τz(y)↓ and S(τz[y]) = z]

↑ otherwise

for all x ∈ N.

It is easy to verify that ψ is a computable numbering of partial-recursive functions.
It remains to prove the following claims:

Claim 1 U ⊆ Pψ,

Claim 2 Rψ ∈ TOTAL.

Proof of Claim 1:

Let f ∈ U . As f is identified by S with total intermediate hypotheses with respect
to τ , there exist numbers z, n ∈ N such that τz = f, S(τz[x]) = z for all x ≥ n
as well as τS(τz [y]) ∈ R for all y ∈ N. Since τz = f and S(τz[n]) = z we know
that (z, n) is an element of M . Thus choose i ∈ N with e(i) = (z, n). Since
furthermore S(τz[x]) = z for all x ≥ n and τS(τz [y]) ∈ R for all y ∈ N, the values
of ψi must be defined for all arguments. We conclude ψi = τz = f , and therefore
f ∈ Pψ.

qed Claim 1

Proof of Claim 2:

Let i ∈ N be an index with ψi ∈ R, (z, n) := e(i).

Claim 2’: {ψi} ∈ TOTALτ (S).
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Proof: We know that ψi = τz and S(τz[x]) = z for all x ≥ n as well as
τS(τz [y]) ∈ R for all y ∈ N, because the computation of ψi terminates
for all arguments.
⇒ τz ∈ TOTALτ (S).
⇒ ψi ∈ TOTALτ (S).

In summary we obtain Rψ ∈ TOTALτ (S).

qed Claim 2

This proves the claim of Lemma 4.2 for the case I = TOTAL.

Case 4: I = CONS-TOTAL.
Here we can use Case 3 and the fact TOTAL = CONS-TOTAL.

Case 5: I = BC ∗.
Since R ∈ BC∗, the proof is straightforward in this last case.

Summarizing our five cases we see that we have verified the statement of Lemma
4.2.

qed Lemma 4.2

These preparations now enable us to prove Theorem 4.1.

Proof of Theorem 4.1: Assume I, I ′ ∈ I, I ⊆ I ′. The claim is uni(I, I ′) = ℘I.
Applying Corollary 3.3 we only have to show

℘I ⊆ uni(I, I ′).

Assume J ∈ ℘I and choose a fixed acceptable numbering τ ∈ P2 of P . We have
to verify J ∈ uni(I, I ′).
For each U ∈ J Lemma 4.2 supplies a numbering ψ ∈ P2 such that U ⊆ Pψ and
Rψ ∈ I. Since ϕ is an acceptable numbering, for each of these numberings ψ
there is an index c ∈ N with ϕc = ψ. We obtain:

∃C ⊆ N [RC ⊆ I and ∀U ∈ J ∃c ∈ C [U ⊆ Rϕc ]].

Of course for each c ∈ C there is a strategy Sc ∈ P identifying Rϕc in the sense
of I. On the other hand, each strategy Sc possesses an index kc in τ (i.e. τkc = Sc
for all c ∈ C). We can conclude

∀c ∈ C [Rϕc ∈ I(τkc)].

These τ -indices can now be coded within our hypothesis spaces ϕc by simply
integrating the function kc↑∞ into the numberings. Thus we achieve that our
new numberings obtain two very useful properties:
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• Their recursive cores are learnable with respect to the criterion I (because
we do not change the recursive cores by integrating functions of the shape
kc↑∞).

• They contain encodings of τ -indices for strategies identifying their recursive
cores according to I.

Now a uniform learner for the target class J just has to read the indices of
the particular strategies and afterwards simulate their jobs with the help of the
functions associated by τ . More formally:

For each c ∈ C let the numbering η[c] ∈ P2 be defined by

η
[c]
0 := kc↑∞, η[c]

n+1 := λx.ϕcn(x) for n ∈ N.

The numberings η[c] ∈ P2 again have indices in ϕ, which we collect in the set
B ⊆ N:

B := {b ∈ N | ∃c ∈ C [η[c] = ϕb]}.
In order to make our uniform strategy work according to the informal description
above, we set:

S(b, fn) := τϕb
0(0)(f

n) for b ∈ N, fn ∈ N.
Now the proof of J ∈ uniB(I, I )(S) is straightforward. Since uni(I, I ) ⊆ uni(I, I ′)
by definition, we obtain J ∈ uni(I, I ′) as has been demanded.

qed Theorem 4.1

Note that for any acceptable numbering τ we can prove uniτ (I, I
′)=uni(I, I ′)=

℘I by analogy. Now we can easily compare the power of uniform learning criteria
resulting in the choice of particular criteria I, I ′ ∈ I:

Corollary 4.3 Let I, I ′ ∈ I, I ⊂ I ′. Then

uni(I, I ) = uni(I, I ′) ⊂ uni(I ′, I ′).

Proof: By Theorem 4.1 we know uni(I, I ) = uni(I, I ′). Since uni(I, I ′) ⊆
uni(I ′, I ′), it remains to prove that uni(I ′, I ′) is not a subset of uni(I, I ′). For
this purpose we simply choose any class U ∈ I ′\I and obtain a class J ∈
uni(I ′, I ′)\uni(I, I ′) by defining J := {U}.

qed Corollary 4.3

Of course our uniform strategy defined in the proof of Theorem 4.1 does not
really learn anything. Since the programs for learning the described classes are
coded within the described numberings in advance, it just has to look up these
programs and simulate them on its second input argument. In the following
sections we will see some more examples for such easy ”tricks” simplifying the
work of uniform strategies. But as we will see later, there are also non-trivial
sets of classes of recursive functions uniformly learnable by really ”labouring”
strategies.
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5 Uniform Learning from Special Description

Sets

5.1 Characterizations of Suitability

In this section we investigate the suitability of a given description set B, i.e. its
influence upon the uniform learnability of RB from B with respect to some in-
ference criteria I, I ′ ∈ I. We start with a simple, but useful observation.

Proposition 5.1 Let I, I ′ ∈ I and B ⊆ N satisfy the following properties:

1. ∀b ∈ B [Rb ∈ I ],

2.
⋃
b∈BRb ∈ I ′.

Then B ∈ suit(I, I ′).

The proof of Proposition 5.1 is straightforward from the definitions. As a
direct consequence we obtain a simple characterization of the description sets
suitable for uniform learning with BC∗-strategies:

Theorem 5.2 suit(I,BC ∗) = {B ⊆ N | RB ⊆ I } for all I ∈ I. In particular
suit(BC ∗,BC ∗) = ℘N.

Proof: Choose I ∈ I. Obviously suit(I,BC∗) ⊆ {B ⊆ N | RB ⊆ I }. Now let
B ⊆ N fulfill RB ⊆ I. Then B satisfies the following properties:

1. ∀b ∈ B [Rb ∈ I ],

2.
⋃
b∈BRb ⊆ R ∈ BC∗.

From Proposition 5.1 we conclude B ∈ suit(I,BC∗). Altogether we obtain
suit(I,BC∗) = {B ⊆ N | RB ⊆ I}. In particular suit(BC∗,BC∗) = {B ⊆
N | RB ⊆ BC∗} = ℘N, because R ∈ BC∗.

qed Theorem 5.2

For any criterion I ∈ I\{BC∗} we obtain a similar characterization. Since
BC is not closed with respect to the union of sets, we cannot use Proposition 5.1
for the corresponding proofs. Instead we choose special hypothesis spaces which
simplify the work of a uniform strategy. Again – as in the proof of Theorem
4.1 – we make use of special ”tricks”, such that the resulting strategy does not
really have to do any labour. Although our strategy produces its hypotheses in a
very ”stupid” way, we can always rely on the existence of appropriate hypothesis
spaces such that the conditions of uniform learning are fulfilled.
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Theorem 5.3 Set B := {b ∈ N | Rb ∈ BC}. Then B ∈ suit(BC,BC ).

Proof: Fix an acceptable numbering τ ∈ P2. Since each class of recursive
functions learnable in the sense of BC can be identified with respect to any
acceptable numbering by a recursive strategy, we conclude:

∀b ∈ B ∃Sb ∈ R [Rb ∈ BCτ (Sb)].

Given any element b ∈ B we can now list all hypotheses produced by Sb on
all initial segments of recursive functions in a computable way. If we interpret
these hypotheses as τ -indices, we obtain a numbering of all candidate functions
suggested by Sb.

More formally: for each b ∈ B we define a numbering ψ[b] ∈ P2 by

ψ
[b]
i (x) := τSb(i)(x) for any i, x ∈ N.

If f ∈ R, n ∈ N, then the index f [n] via ψ[b] represents exactly the function
”suggested” by Sb on input f [n]. This property can obviously be used by a
uniform BC-strategy: for all b, n ∈ N and f ∈ R we define

S(b, f [n]) := f [n]

and try to verify Rb ∈ BCψ[b](λx.S(b, x)) for each b ∈ B. Our argumentation
proceeds as follows:

Let b ∈ B.
⇒ ∀f ∈ Rb ∀∞n [ τSb(f [n]) = f ], because Rb ∈ BCτ (Sb).

⇒ ∀f ∈ Rb ∀∞n [ ψ
[b]
f [n] = f ] from the definition of ψ[b].

⇒ ∀f ∈ Rb ∀∞n [ ψ
[b]
S(b,f [n]) = f ] because of the definition of S.

⇒ Rb ∈ BCψ[b](λx.S(b, x)).

Thus we know a strategy S ∈ P2 satisfying Rb ∈ BCψ[b](λx.S(b, x)) for all b ∈ B.
This implies B ∈ suit(BC,BC).

qed Theorem 5.3

Hence we obtain the desired characterization of sets suitable for uniform be-
haviourally correct identification:

Corollary 5.4 suit(I,BC ) = {B ⊆ N | RB ⊆ I} for all I ∈ I\{BC∗}.

Proof: Assume I ∈ I\{BC∗}.

• If B ∈ suit(I,BC) and b ∈ B we have Rb ∈ I. Thus RB ⊆ I.
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• Let B be a set of integers satisfying RB ⊆ I. Then RB ⊆ BC and further-
more B ⊆ {b ∈ N | Rb ∈ BC} ∈ suit(BC,BC). Since suit(BC,BC) is closed
under inclusion, we conclude B ∈ suit(BC,BC).

This proves Corollary 5.4.

qed Corollary 5.4

As we have seen, the trick of encoding much information within the description
sets (see Theorem 4.1) or within the hypothesis spaces (see Theorem 5.3) often
supplies quite simple uniform strategies with a huge learning power. If for any
given pair of criteria from I such tricks were successful, uniform learnability with
respect to those criteria would be trivial. But nevertheless, our following results
will make sure that uniform learning procedures cannot always be simplified to
such a trivial level. On the one hand we can easily find a trick to design a strategy
identifying any recursive core consisting of just a single element finitely from its
description, but on the other hand there is no uniform strategy identifying all
recursive cores consisting of two elements in the limit from their descriptions. In
view of classical learning problems any classes consisting of just two elements are
not much more complex than classes consisting of one element (both kinds are
finitely identifiable), whereas their complexity is very different regarding uniform
learning problems. Proposition 5.5 concerns the suitability of the set describing
all recursive cores consisting of just one element.

Proposition 5.5 {b ∈ N | card Rb = 1} ∈ suit(EX0,EX0).

Proof: Let B := {b ∈ N | card Rb = 1}. Then of course Rb ∈ EX0 for all b ∈ B,
i.e. RB ⊆ EX0. Since for all f ∈ R there exists a numbering ψ ∈ P2 with ψ0 = f ,
the strategy S defined by

S(b, f [n]) := 0 for any f ∈ R, b, n ∈ N

is appropriate for the purpose of learning RB uniformly from B with respect to
EX0 and EX0.

qed Theorem 5.5

Now, in contrast to Proposition 5.5 we can prove that no kind of trick can help
a strategy to uniformly identify all recursive cores consisting of up to two elements
from their descriptions. In particular we observe that there are collections of
quite simple identification problems, which even cannot be solved uniformly by
encoding information within the hypotheses spaces.

Theorem 5.6 Let B := {b ∈ N | card {i ∈ N | ϕbi ∈ R} ≤ 2}. Then B /∈
suit(EX,EX ).
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Proof: Assume B ∈ suit(EX,EX). Then there exists an S ∈ R2 satisfying
Rb ∈ EX(λx.S(b, x)) for all b ∈ B. We will prove the existence of an index b0 ∈ B
describing a recursive core which cannot be identified in the limit by the strategy
λx.S(b0, x). This strategy will fail for at least one function f ∈ Rb0 by either
changing its hypotheses infinitely often or by producing incorrect hypotheses in
infinitely many learning steps. That means that the sequence (S(f [n]))n∈N of
hypotheses will either converge to an incorrect hypothesis or not converge at all.
To achieve this we define a function ψ ∈ P3 according to the following algorithm:

Algorithm for the definition of λx.λy.ψ(b, x, y) for b ∈ N:

First we omit the definition of λy.ψ(b, 0, y). In general step n, n ∈ N is used for
the definition of λy.ψ(b, 2n+1, y) and λy.ψ(b, 2n+2, y). The function λy.ψ(b, 0, y)
will be defined afterwards.

Set α0 := 0.

Step 0:

ψ(b, 1, 0) := 0, ψ(b, 2, 0) := 0, ψ(b, 2, 1) := 1,

h0 := S(b, 0), y := 1.

As long as S(b, 0y+1)(= S(b, α00
y)) = h0 and S(b, 010y)(= S(b, α010y)) = h0, set

{ ψ(b, 1, y) := 0; ψ(b, 2, y + 1) := 0; y := y + 1; }

Afterwards we define k0 := y and

α1 :=

{
0k0+1 S(b, 0k0+1) 6= h0

010k0 S(b, 0k0+1) = h0 and S(b, 010k0) 6= h0

Altogether we have defined up to now:

λy.ψ(b, 1, y) =

{
0k0+1↑∞ k0↓
0∞ k0↑

as well as λy.ψ(b, 2, y) =

{
010k0↑∞ k0↓
010∞ k0↑

End Step 0

Step n for n > 0:

(ψ(b, 2n+ 1, 0), . . . , ψ(b, 2n+ 1, |αn| − 1)) := αn,

(ψ(b, 2n+ 2, 0), . . . , ψ(b, 2n+ 2, |αn|)) := αn1.

hn := S(b, αn), y := 1.

As long as S(b, αn0y) = hn and S(b, αn10y) = hn, set

{ ψ(b, 2n+ 1, |αn| − 1 + y) := 0; ψ(b, 2, |αn|+ y) := 0; y := y + 1; }

Afterwards we define kn := y and

αn+1 :=

{
αn0kn S(b, αn0kn) 6= hn

αn10kn S(b, αn0kn) = hn and S(b, αn10kn) 6= hn
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Of course all these values shall only be defined if the analogous values in Step
n− 1 are also defined. We can summarize:

λy.ψ(b, 2n+ 1, y) =


↑∞ n > 0 ∧ [k0↑ ∨ . . . ∨ kn−1↑]
αn0kn↑∞ k0↓ ∧ . . . ∧ kn↓
αn0∞ [k0↓ ∧ . . . ∧ kn−1↓] ∧ kn↑

as well as

λy.ψ(b, 2n+ 2, y) =


↑∞ n > 0 ∧ [k0↑ ∨ . . . ∨ kn−1↑]
αn10kn↑∞ k0↓ ∧ . . . ∧ kn↓
αn10∞ [k0↓ ∧ . . . ∧ kn−1↓] ∧ kn↑

End Step n

Finally we define the function λy.ψ(b, 0, y) by means of the sequence of the tuples
αn, n ∈ N of growing length, i.e. λy.ψ(b, 0, y) = limn→∞(αn). In particular
λy.ψ(b, 0, y) is initial if and only if kn↑ for an n ∈ N.

This completes the definition of ψ. Now let b0 be an integer satisfying

λx.λy.ψ(b0, x, y) = ϕb0 .

Our contradiction requested to finish the proof will be achieved by verification of
the following claims:

Claim 1 b0 ∈ B.

Claim 2 Rb0 /∈ EX(λx.S(b0, x)).

Proof of Claim 1:

1st case: kn↓ for all n ∈ N
⇒ λy.ψ(b0, 0, y) ∈ R and λy.ψ(b0, x, y) initial for all x > 0.
⇒ {i ∈ N | ϕb0i ∈ R} = {0} ⇒ b0 ∈ B.

2nd case: n ∈ N is the least number satisfying kn↑.
⇒ λy.ψ(b0, 2n+ 1, y) = αn0∞ and λy.ψ(b0, 2n+ 2, y) = αn10∞.
Obviously λy.ψ(b0,m, y) is initial for m ∈ N\{2n+ 1, 2n+ 2}.
⇒ {i ∈ N | ϕb0i ∈ R} = {2n+ 1, 2n+ 2} ⇒ b0 ∈ B.

qed Claim 1

Proof of Claim 2:

1st case: ϕb00 ∈ R.
⇒ kn↓ for all n ∈ N.
⇒ αn+1↓ and S(b0, αn+1) 6= S(b0, αn+2) for all n ∈ N.
Thus, when trying to identify ϕb00 , the strategy
λx.S(b0, x) changes its hypotheses infinitely often.
⇒ Rb0 /∈ EX(λx.S(b0, x)).
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2nd case: There exists a number n ∈ N with Rb0 = {ϕb02n+1, ϕ
b0
2n+2}.

⇒ ϕb02n+1 = αn0∞, ϕb02n+2 = αn10∞.
Considering the definition of Step n we observe that
S(b0, αn0y) = S(b0, αn10y) = hn = S(b0, αn) for all y ∈ N.
Thus limy→∞(S(b0, ϕ

b0
2n+1[y])) = limy→∞(S(b0, ϕ

b0
2n+2[y])),

though ϕb02n+1 6= ϕb02n+2.
⇒ Rb0 /∈ EX(λx.S(b0, x)).

As we have already observed in the proof of Claim 1, further cases cannot occur.

qed Claim 2

So the index b0 ∈ B describes a recursive core, which cannot be learned in the
sense of the EX-criterion by our uniform strategy S, despite its knowledge of the
description b0. Hence, contrary to our assumption we conclude B /∈ suit(EX,EX).

qed Theorem 5.6

Corollary 5.7 {b ∈ N | Rb is finite} /∈ suit(EX,EX ).

Proof: This corollary is a direct consequence of Theorem 5.6.

qed Corollary 5.7

Corollary 5.8 ∀I ∈ I\{BC,BC ∗} [suit(EX0, I ) ⊂ suit(EX0,BC )].

Proof: Choose I ∈ I\{BC,BC∗}. Obviously suit(EX0, I) ⊆ suit(EX0,BC).
From Theorem 5.3 and Corollary 5.7 we conclude {b ∈ N | Rb is finite} ∈
suit(EX0,BC)\suit(EX0, I).

qed Corollary 5.8

Theorem 5.9 is a summary of our main results in this section.

Theorem 5.9 Let I ∈ I be an inference criterion. Then the following three
conditions are equivalent:

1. suit(I, I ) = {B ⊆ N | RB ⊆ I },

2. suit(EX0, I ) = {B ⊆ N | RB ⊆ EX0},

3. I ∈ {BC,BC ∗}.

Since we cannot characterize the classes suit(I, I ′) for I, I ′ ∈ I and I ⊆ I ′ ⊂
BC in such an easy way as for the case I ′ ∈ {BC,BC∗}, we use the theory of
numberings to achieve results in the style of Theorem 2.1. In our proofs we
will use arguments similar to those presented in [Wie78]. As further results are
obtained in the same manner, we will only prove our characterization for the
case of uniform EX-identification. Note the similarity of our properties to the
characteristic condition for identification of languages in the limit from text,
introduced in [An80].
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Theorem 5.10 Assume I ∈ I, I ⊆ EX. Let B ⊆ N fulfill RB ⊆ I. Then
B ∈ suit(I,EX ) ⇐⇒ ∃d ∈ R2 ∀b ∈ B ∃ψ ∈ P2

1. Rb ⊆ Pψ,

2. ∀i ∈ N [d(b, i) v ψi],

3. ∀i, j ∈ N [d(b, i) v d(b, j) v ψi ⇒ i = j].

Proof: Let B ⊆ N, I ∈ I with RB ⊆ I ⊆ EX be given.

Necessity:
Assume B ∈ suit(I,EX). Choose S ∈ R2 such that RB ∈ uniB(I,EX)(S).

⇒ ∀b ∈ B ∃η[b] ∈ P2 [Rb ∈ EXη[b](λx.S(b, x))].

For any b ∈ N let the set Mb consist of all segments α ∈ N∗ satisfying

∃z, n ∈ N • ∀x ≤ n [ϕbz(x)↓],
• (ϕbz(0), . . . , ϕbz(n)) = α,

• n = 0 ∨ S(b, ϕbz[n]) 6= S(b, ϕbz[n− 1]).

Thus Mb is the set of all initial segments of functions in Pϕb forcing the strategy
λx.S(b, x) to change its mind. Obviously the sets Mb are uniformly r.e. in b.
Without loss of generality we can assume that the definition of S yields just
infinite sets Mb, b ∈ N. Hence define d ∈ R2 such that for arbitrary b ∈ N the
function λi.d(b, i) enumerates the set Mb without repetitions.
Now fix b ∈ N. We still have to define a function ψ ∈ P2 with the desired
properties.

Let i ∈ N. Assume d(b, i) = α = (α0, . . . , αn) ∈ Nn+1. For arbitrary x ∈ N we
define

ψi(x) :=


αx x ≤ n

η
[b]
S(b,α)(x) x > n ∧ ∀y ∈ {n, . . . , x} :

[η
[b]
S(b,α)(y)↓ ∧ S(b, η

[b]
S(b,α)[y]) = S(b, α)]

↑ otherwise

Note that ψ is computable, but not uniformly computable in b, since in general
there is no algorithm which – on input b ∈ N – produces a program for η[b].

Provided b ∈ B, it remains to prove the properties 1, 2 and 3 from Theorem 5.10
for our fixed (but arbitrary) index b.

1. Rb ⊆ Pψ:
Choose f ∈ Rb. Then there exist z, n ∈ N such that ϕbz = f and n =
conv(λx.S(b, x), f). Therefore the segment α := (f(0), . . . , f(n)) must be
an element of Mb and is thus enumerated by λk.d(b, k). Assume i ∈ N
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fulfills d(b, i) = α. Since the hypothesis S(b, α) is correct for f with respect
to η[b] and will never be changed, we conclude f = ψi from the definition of
ψ. Thus f ∈ Pψ.

2. ∀i ∈ N [d(b, i) v ψi]:
Straightforward from the definition of ψ.

3. ∀i, j ∈ N [d(b, i) v d(b, j) v ψi ⇒ i = j]:
Assume i 6= j and d(b, i) v d(b, j) v ψi. Since λk.d(b, k) enumerates Mb

without repetitions, we obtain d(b, i) @ d(b, j) and in particular |d(b, i)| <
|d(b, j)|. From the definition of Mb we know that d(b, j) forces the strategy
λx.S(b, x) to change its mind. Therefore ψi(|d(b, j)| − 1) is undefined and
hence d(b, j) 6v ψi in contradiction to our assumption.

Sufficiency:
Let the conditions on the right-hand side of Theorem 5.10 be fulfilled. On input
b ∈ N and gradually growing information about a function f ∈ R the strategy S
works according to the following instructions:

”Goto Step 0.
Step i (i ∈ N) : Put out i until either statement A or statement B
is proved to be valid.

A : d(b, i) 6v f.
B : ∃j ∈ N [i 6= j ∧ d(b, i) v d(b, j) v f ].

In case of validity of one of the two statements goto Step i+ 1.”

Now by the same argumentation as in [Wie78] we observe

Rb ∈ EXψ(λx.S(b, x))

for all b ∈ B. Therefore B ∈ suit(I,EX).

qed Theorem 5.10

Theorem 5.11 Assume m ∈ N, I ∈ I, I ⊆ EXm. Let B ⊆ N fulfill RB ⊆ I.
Then B ∈ suit(I,EXm) ⇐⇒ ∃d ∈ R2 ∀b ∈ B ∃ψ ∈ P2

1. Rb ⊆ Pψ,

2. ∀i ∈ N [d(b, i) v ψi],

3. ∀i ∈ N [card {j 6= i | d(b, j) v ψi} ≤ m],

4. ∀i, j ∈ N [d(b, i) v d(b, j) v ψi ⇒ i = j].

Corollary 5.12 Assume B ⊆ N fulfills RB ⊆ EX0.
Then B ∈ suit(EX0,EX0) ⇐⇒ ∃d ∈ R2 ∀b ∈ B ∃ψ ∈ P2
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1. Rb ⊆ Pψ,

2. ∀i, j ∈ N [i 6= j ⇒ d(b, j) 6v ψi].

Together with the results in Theorem 5.2 and Corollary 5.4 we now have found
characterizations for description sets suitable for uniform learning in the sense
of the inference criteria BC∗, BC, EX and EXm for any m ∈ N. When trying
to apply our argumentation to the case of identification with consistent and/or
total intermediate hypotheses, we are confronted with a new problem. In order
to achieve sufficiency of the right-hand side statement a condition in the style of

∀i, j ∈ N [d(b, i) v d(b, j) v ψi ⇒ i = j]

seems indispensable. In the proofs of Theorem 5.10 and Theorem 5.11 we con-
struct numberings ψ providing that property without violating the required con-
ditions concerning the convergence of the sequence of hypotheses. Now observe
that the inference classes CONS and TOTAL are not characterized by means
of specific convergence criteria but by means of specific properties concerning
the intermediate hypotheses. Exactly those specific properties are violated as
a consequence of constructing the numberings ψ by analogy with the proofs of
Theorem 5.10 and Theorem 5.11. Therefore we cannot state any corresponding
theorems for the case of CONS- and TOTAL-identification as yet.

5.2 Unions of Suitable Description Sets

Assume we are given two inference criteria in I and two description sets suitable
for uniform learning with respect to the given criteria. We are often interested
in the question, whether the union of the two description sets is still suitable for
uniform learning with respect to the given criteria or not. This subsection does
not provide a general answer to that question, but is concerned with its solution
for just a few special cases. The first result is a direct consequence of Theorem
5.3 and Theorem 5.2.

Proposition 5.13

1. suit(I,BC ) is closed under union for any I ∈ I\{BC ∗}.

2. suit(I,BC ∗) is closed under union for any I ∈ I.

The following result concerns some special description sets suitable for uniform
identification in the limit.

Theorem 5.14 Assume B,C ∈ suit(I,EX ) for an inference criterion I ∈ I, I ⊆
EX. If B is recursively enumerable or B\C is recursively enumerable, then
B ∪ C ∈ suit(I,EX ).
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Proof: Choose I ∈ I, B, C ⊆ N and SB, SC ∈ P2 such that I ⊆ EX and

• RB ∈ uniB(I,EX)(SB),

• RC ∈ uniC(I,EX)(SC).

Let π ∈ P be a function the domain of which is

• B, for the case ”B r.e.”;

• B\C, for the case ”B\C r.e.”.

For any a, n ∈ N, f ∈ R define

S(a, fn) :=


SB(a, fn) π(a)↓≤n or the computation of π(a)

stops before the computation of SC(a, fn)

SC(a, fn) otherwise

Now the proof of RB∪C ∈ uniB∪C(I,EX)(S) is straightforward.

qed Theorem 5.14

Next we consider uniform learning with a bounded number of mind changes.
Here we again use a ”trick” to simplify learning from unions of suitable description
sets.

Theorem 5.15 Let k, l,m, n be any integers such that m ≥ k.
Assume B ∈ suit(EXk,EXl) as well as C ∈ suit(EXm,EXn). Then B ∪ C ∈
suit(EXm,EXl+n+1).

Proof: From the given conditions we deduce the existence of two total recursive
strategies SB, SC ∈ R with the following properties:

1. RB ∈ uniB(EXk,EXl)(S
B) as well as RC ∈ uniC(EXm,EXn)(SC).

2. ∀f ∈ R [ card {x | ? 6= SB(fx) 6= SB(fx+1)} ≤ l ] and
[ card {x | ? 6= SC(fx) 6= SC(fx+1)} ≤ n ].

The first property allows some further conclusions:

1. ∀b ∈ B ∃ψ(b) ∈ P2 [Rb ∈ (EXl)ψ(b)(λx.SB(b, x))].

2. ∀c ∈ C ∃ψ(c) ∈ P2 [Rc ∈ (EXn)ψ(c)(λx.SC(c, x))].

3. ∀a ∈ B ∪ C [Ra ∈ EXm] (because m ≥ k).
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If we now set
η

(b)
〈i,j〉 := ψ

(b)
i for b ∈ B, i, j ∈ N;

η
(c)
〈i,j〉 := ψ

(c)
j for c ∈ C\B, i, j ∈ N,

we can easily define a uniform strategy forB∪C in the sense of uni(EXm,EXl+n+1).
For a, x ∈ N and f ∈ R set

S(a, fx) :=


? SB(a, fx) = SC(a, fx) =?

〈i, 0〉 SB(a, fx) = i ∈ N ∧ SC(a, fx) =?

〈0, j〉 SB(a, fx) =? ∧ SC(a, fx) = j ∈ N
〈i, j〉 SB(a, fx) = i ∈ N ∧ SC(a, fx) = j ∈ N

Since SB changes its hypotheses at most l times on any input sequence and SC
changes its hypotheses at most n times on any input sequence, we observe for
any a ∈ B ∪ C

Ra ∈ (EXl+n+1)η(a)(λx.S(a, x))

and therefore B ∪ C ∈ suit(EXm,EXl+n+1).

qed Theorem 5.15
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6 Uniform Learning with Respect to Special Hy-

pothesis Spaces

6.1 Bounds of Uniform Behaviourally Correct Identifica-
tion

As we have seen in the previous section, the trick of encoding useful information
within the particular hypothesis spaces supplies a simple and rather ”stupid”
strategy uniformly identifying all BC-identifiable recursive cores from their cor-
responding descriptions (see Theorem 5.3). Such tricks are possible, because the
definition of uniform learnability does not demand identification with respect to
specific numberings, i.e. the free choice of hypothesis spaces allows special coding
tricks. What influence does the choice of hypothesis spaces have on the uniform
learnability? Does the learning power decrease if we avoid the encoding of any
precious information within the hypothesis spaces, e.g. by demanding learnability
with respect to a given acceptable numbering? The following result answers that
question for the case of BC-identification. From Jantke’s work [Ja79] we already
know that the set of descriptions of recursive cores consisting of just a single func-
tion is not suitable for uniform learning with respect to the EX-criterion, if we
demand the hypotheses to be correct with respect to an acceptable numbering.
Here we tighten Jantke’s result by proving that for the same set of descriptions
even behaviourally correct identification is not strong enough.

Theorem 6.1 Assume B := {b ∈ N | card {i ∈ N|ϕbi ∈ R} = 1} and let τ ∈ P2

be an acceptable numbering. Then RB /∈ uniB,τ (BC,BC ).

Proof: Let us assume RB ∈ uniB,τ (BC,BC). This implies the existence of a
recursive strategy S ∈ R2 satisfying Rb ∈ BCτ (λx.S(b, x)) for all b ∈ B. In
contradiction to this statement we will construct an index b0 ∈ B, such that
our strategy λx.S(b0, x) trying to identify the only function in Rb0 must produce
infinitely many hypotheses incorrect with respect to the hypothesis space τ . For
this purpose we define a function ψ ∈ P3 by means of the following instructions:

Let b ∈ N be given. For all integers n ∈ N the function λx.ψ(b, n, x) will be
initial or recursive. The initial function segments generated intermediately will
be denoted by αm (m ∈ N).

Definition of λx.ψ(b, 1, x) and α1:

Set ψ(b, 1, 0) := 0 and x := 1. Then define further values of the function
λx.ψ(b, 1, x) in the following way:

36



M1: Compute τS(b,0)(1), . . . , τS(b,0x)(x) for x steps each.

ψ(b, 1, x) :=


0 ψ(b, 1, x− 1)↓ and

∀y ∈ {1, . . . , x} [τS(b,0y)(y)↓≤x ⇒ τS(b,0y)(y) 6= 0]

↑ otherwise

Now if ψ(b, 1, x− 1) = 0 and ψ(b, 1, x)↑
(this question can be answered effectively), then set
k0 := min{ y ∈ {1, . . . , x} | τS(b,0y)(y)↓≤x and τS(b,0y)(y) = 0 }
and leave ψ(b, 1, x′) undefined for all x′ > x.
Otherwise increase x by 1 and go to the mark M1 again.

Finally we define

α1 :=

{
0k01 k0↓
↑ k0↑

Note that λx.ψ(b, 1, x) =

{
0∞ α1↑
0k0+m↑∞ (for some m ∈ N) α1↓

Definition of λx.ψ(b, n+ 1, x) and αn+1 for n ≥ 1:

If αn↓ and x ≤ k0 + · · ·+ kn−1 + n− 1 (= |αn| − 1), we define

ψ(b, n+ 1, x) :=

{
ψ(b, n, x) x < k0 + · · ·+ kn−1 + n− 1

1 x = k0 + · · ·+ kn−1 + n− 1

For the definition of further values of the function λx.ψ(b, n + 1, x) we set x :=
k0 + · · ·+ kn−1 + n; z := 1 and proceed in the following way:

Mn+1: Compute τS(b,αn0)(|αn|+ 1), . . . , τS(b,αn0z)(|αn|+ z)
for x steps each.

ψ(b, n+ 1, x) :=


0 ψ(b, n+ 1, x− 1)↓ and

∀y ∈ {1, . . . , z} [τS(b,αn0y)(|αn|+ y)↓≤x ⇒
τS(b,αn0y)(|αn|+ y) 6= 0]

↑ otherwise

Now if ψ(b, n+ 1, x− 1)↓ and ψ(b, n+ 1, x)↑
(these questions can be answered effectively), then set
kn := min{ y ∈ {1, . . . , z} | τS(b,αn0y)(|αn|+ y)↓≤x and

τS(b,αn0y)(|αn|+ y) = 0 }
and leave ψ(b, n+ 1, x′) undefined for all x′ > x.
Otherwise increase x and z by 1 and go to the mark Mn+1 again.

The new initial function segment αn+1 is then defined by

αn+1 :=

{
αn0kn1 kn↓
↑ kn↑
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Note λx.ψ(b, n+ 1, x) =


↑∞ αn↑
αn0∞ αn↓ ∧αn+1↑
αn0kn+m↑∞ (for some m ∈ N) αn↓ ∧αn+1↓

Thus it remains to fix the values of ψ for the case that the second argument is 0.

Definition of λx.ψ(b, 0, x):

We agree on

ψ(b, 0, x) :=

{
ψ(b, x+ 1, x) kx↓
↑ kx↑

for all x ∈ N. That means, λx.ψ(b, 0, x) is defined by the sequence of the seg-
ments αn, n ≥ 1 of gradually growing length.

Altogether we hence get a computable function ψ ∈ P3. From that function
we wish to construct an index in B in order to derive a contradiction to our
assumption proposed above. From the s-m-n- and recursion theorem we deduce
the existence of an index b0 ∈ N which provides

ϕb0n (x) = ψ(b0, n, x) for all n, x ∈ N.

Furthermore we want to prove that b0 is an element of B and describes a recursive
core Rb0 which can not be identified by λx.S(b0, x) in a behaviourally correct
manner with respect to τ . Thus we propose two claims:

Claim 1 b0 ∈ B.

Claim 2 Rb0 /∈ BCτ (λx.S(b0, x)).

For the proof of these two claims let kn and αn be the values defined in the
construction of λy.λx.ψ(b0, y, x) for all n ∈ N (corresponding to those defined
above).

Proof of Claim 1:

1st case: During the construction of λx.λy.ψ(b0, x, y)
the values kn are defined for all n ∈ N.

⇒ ϕb00 ∈ R; ∀n ∈ N [ϕb0n+1 initial].

⇒ {i ∈ N | ϕb0i ∈ R} = {0}.
⇒ b0 ∈ B.

2nd case: During the construction of λx.λy.ψ(b0, x, y)
the number n is the minimal index satisfying kn↑.
⇒ ϕb0n+1 ∈ R; ∀m ∈ N\{n+ 1} [ϕb0m initial].

⇒ {i ∈ N | ϕb0i ∈ R} = {n+ 1}.
⇒ b0 ∈ B.

qed Claim 1
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Proof of Claim 2:

1st case: ϕb00 ∈ R.
⇒ kn↓ for all n ∈ N.
According to the definition of kn and λx.ψ(b0, 0, x) we obtain:
τS(b0,αn0kn )(|αn0kn|) = 0 6= 1 = ψ(b0, 0, |αn0kn|) for all n ∈ N.
Regarding |αn+1| > |αn| for all n ∈ N we finally conclude:
λx.S(b0, x) produces infinitely many incorrect hypotheses (wrt τ)

for the function ϕb00 .
⇒ Rb0 /∈ BCτ (λx.S(b0, x)).

2nd case: There exists an n ∈ N with ϕb0n+1 ∈ R.
⇒ kn↑, αm↓ for all m ∈ {1, . . . , n}.
The definition of ψ implies ψ(b0,n+1) = αn0∞ and for any y ∈ N :

τS(b0,αn0y)(|αn0y|) 6= 0, hence τS(b0,αn0y) 6= αn0∞ = ϕb0n+1.
⇒ Rb0 /∈ BCτ (λx.S(b0, x)).

qed Claim 2

Summarizing these results we achieve the desired statementRB /∈ uniB,τ (BC,BC).

qed Theorem 6.1

Let B be the description set defined in Theorem 6.1. Since we know that
R ∈ BC∗τ for any acceptable numbering τ ∈ P , we conclude that

RB ∈ uniB,τ (EX0,BC∗)\uniB,τ (EX0,BC).

Hence the question arises, whether we can find a uniform learning problem not
solvable by means of BC∗-identification. By slight changes of the construction in
the proof of Theorem 6.1 we obtain that our set B is not suitable for uniform
BC∗-identification with respect to the hypothesis spaces ϕb, b ∈ B given a priori.

Corollary 6.2 Let B := {b ∈ N | card {i ∈ N|ϕbi ∈ R} = 1}.
Then RB /∈ uniB,[id](EX0,BC ∗).

Proof: Assume RB ∈ uniB,[id](EX0,BC∗). Hence there exists a strategy S ∈
R2 which provides Rb ∈ BC∗ϕb(λx.S(b, x)) for all b ∈ B. Furthermore, for all
acceptable numberings τ ∈ P2 one may define a strategy T ∈ P2 satisfying
Rb ∈ EXτ (λx.T (b, x)) for all b ∈ B. For that purpose we simply choose a
function g ∈ R, such that

ϕ
g(b)
i (j) :=

{
ϕbi(j) ∀x ≤ j [ϕbi(x)↓]
↑ otherwise

for all b, i, j ∈ N.
Let τ ∈ P2 be an acceptable numbering and choose c ∈ R2 such that τc(b,i) = ϕ

g(b)
i

for all b, i ∈ N.
Provided b ∈ B we observe the following properties for the index g(b):
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1. g(b) ∈ B.

2. ∃nb ∈ N ∀i ∈ N\{nb} [ϕ
g(b)
i initial].

Let fb denote the only function in Rg(b), b ∈ B.
Since Rg(b) ∈ BC∗ϕg(b)(λx.S(g(b), x)), we conclude S(g(b), fb[n]) = nb for all but

finitely many n ∈ N. This can be explained by the fact that ϕ
g(b)
i is initial and

thus ϕ
g(b)
i 6=∗ fb for all i 6= nb. Therefore

Rg(b) ∈ EXϕg(b)(λx.S(g(b), x)).

If we define
T (b, fn) := c(b, S(g(b), fn)),

for all b, n ∈ N, f ∈ R, we get for b ∈ B :

Rb ∈ EXτ (λx.T (b, x)).

Though Theorem 6.1 tells us that RB /∈ uniB,τ (EX0,BC), we now obtain RB ∈
uniB,τ (EX0,EX). Therefore our first assumption in this proof must have been
wrong. Hence we conclude RB /∈ uniB,[id](EX0,BC∗), as has been asserted.

qed Corollary 6.2

One might reason that uniform learning from the description set B and with
respect to the hypothesis spaces ϕb given above is so hard, because in each num-
bering ϕb the element of the recursive core possesses only one index. Perhaps
if the only recursive function in Pϕb were repeated within the numbering more
often, it might be easier for our strategy to find a correct index for the element of
the recursive core. But even if we allow infinitely many ϕb-numbers for the func-
tions to be learned, our situation does not improve. The verification of Corollary
6.3 is done by reduction with the help of Corollary 6.2.

Corollary 6.3 Let C := {b ∈ N | card Rb = 1 and card {i | ϕbi ∈ R} =∞}.
Then RC /∈ uniC,[id](EX0,BC ∗).

Proof: We will use Corollary 6.2.
For this purpose we assume RC ∈ uniC,[id](EX0,BC∗)(S) for some appropriate
strategy S ∈ R2. Then we construct a uniform BC∗-strategy for our class RB,
where B denotes the description set defined in Corollary 6.2.

There is a function g ∈ R satisfying

ϕ
g(b)
0 = ϕb0, ϕ

g(b)
1 = ϕb1,

ϕ
g(b)
2 = ϕb0, ϕ

g(b)
3 = ϕb1, ϕ

g(b)
4 = ϕb2,

ϕ
g(b)
5 = ϕb0, ϕ

g(b)
6 = ϕb1, ϕ

g(b)
7 = ϕb2, ϕ

g(b)
8 = ϕb3, . . .

for all b ∈ N. The following properties can be verified easily:
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1. ∀b ∈ N [Rg(b) = Rb].

2. ∀b ∈ N ∀f ∈ Pϕg(b) [card {i ∈ N | ϕg(b)i = f} = ∞], i.e. each function in

Pϕg(b) possesses infinitely many ϕg(b)-indices.

3. ∃e ∈ R ∀b ∈ N ∀i ∈ N [ϕ
g(b)
i = ϕbe(i)], i.e. ϕg(b)-indices can be translated

effectively into ϕb-indices with a uniform method.

Considering our problem we observe the following connection:

b ∈ B ⇒ g(b) ∈ C

Therefore T (b, x) := e(S(g(b), x)) (for b, x ∈ N) yields a computable strategy
satisfying RB ∈ uniB,[id](EX0,BC∗)(T ). That contradiction to Corollary 6.2 now
makes us reject our assumption. This implies RC /∈ uniC,[id](EX0,BC∗).

qed Corollary 6.3

Of course, repetitions of our single function for all but finitely many indices
makes the description set suitable for uniform BC∗- and even BC-identification
with respect to the hypothesis spaces given a priori.

Proposition 6.4 If D := {b ∈ N | card Rb = 1 and ∀∞i [ϕbi ∈ R]}, then RD ∈
uniD,[id](EX0,BC ).

Proof: An appropriate uniform strategy S ∈ R2 may be defined by

S(b, f [n]) := n

for all b, n ∈ N and f ∈ R.

qed Proposition 6.4

6.2 Characterizations of Uniform Identification with Re-
spect to Acceptable Numberings

As for the characterizations of suitable description sets in the previous section
we are also interested in transferring the characterization results in the style of
Theorem 2.1 to our situation. In the case of demanding learnability with respect
to an acceptable numbering we can simply copy the proofs given in [Wie78] for
the ”uniform dimension”. We obtain the results listed below. Since all the proofs
proceed in a way analogous to those of the corresponding theorems mentioned
in Section 2, we only give an outline of the proof of Theorem 6.5 and omit the
verification of the other results listed below.
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Theorem 6.5 Fix I ∈ I with I ⊆ EX. Let B ⊆ N fulfill Rb ∈ I for all b ∈ B.
Furthermore, let τ ∈ P2 be an acceptable numbering.
Then RB ∈ uniB,τ (I,EX ) ⇐⇒ ∃ψ ∈ P3 ∃d ∈ R3 ∀b ∈ B

1. Rb ⊆ Pψb.

2. ∀i, j ∈ N [i 6= j ⇒ ψbi 6=d(b,i,j) ψ
b
j ].

Proof: Fix I ∈ I, I ⊆ EX, B ⊆ N, such that Rb ∈ I for all b ∈ B, let τ ∈ P2

be acceptable.

Necessity: Assume RB ∈ uniB,τ (I,EX). From the definitions and Proposition 3.4
we conclude that there exists an S ∈ R2 satisfying

Rb ∈ EXτ (λx.S(b, x)) for all b ∈ B.

For any integer b ∈ N define

Mb := {(z, n) | n > 0 ∧ ∀x ≤ n [τz(x)↓] ∧ S(b, τz[n]) = z 6= S(b, τz[n− 1])}.

Without loss of generality we can assume that the definition of S yields just
infinite sets Mb, b ∈ N. Since the sets Mb can be enumerated uniformly in b,
there exists a recursive function e ∈ R2 such that for any b ∈ N:

• {e(b, i) | i ∈ N} = Mb,

• ∀i, j ∈ N [e(b, i) = e(b, j) ⇐⇒ i = j].

Now fix b, i, j ∈ N. If e(b, i) = (z, n) and e(b, j) = (w,m), then set

d(b, i, j) = max{n,m} and

ψ(b, i, x) :=


τz(x) x ≤ n or

x > n and ∀y ∈ {x, . . . , n} [τz(y)↓ ∧S(b, τz[y]) = z]

↑ otherwise

for all x ∈ N.

The properties

1. Rb ⊆ Pψb .

2. ∀i, j ∈ N [i 6= j ⇒ ψbi 6=d(b,i,j) ψ
b
j ].

can be verified for all b ∈ B as in the proof of Theorem 2.1 in [Wie78].

Sufficiency: Fix ψ ∈ P3, d ∈ R3 with our two characteristic properties. Let
c ∈ R2 be a compiler satisfying

τc(b,i) = ψbi for all b, i ∈ N.
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On input sequence (b, f [n])n∈N the program of a successful uniform strategy can
be explained in the following way:

S begins in step 0.

In step i (i ∈ N) the output of S is c(b, i). Then S looks for an
integer j 6= i satisfying ψbj =d(b,i,j) f . As soon as such an integer j
is found, S goes to step i+ 1.

Further details of this proof are obtained as in [Wie78].

qed Theorem 6.5

Below we list the corresponding results for the other inference criteria.

Theorem 6.6 Fix m ∈ N and I ∈ I with I ⊆ EXm. Let B ⊆ N fulfill Rb ∈ I
for all b ∈ B. Furthermore, let τ ∈ P2 be an acceptable numbering.
Then RB ∈ uniB,τ (I,EXm) ⇐⇒ ∃ψ ∈ P3 ∃d ∈ R2 ∀b ∈ B

1. Rb ⊆ Pψb.

2. ∀j ∈ N [card {i 6= j | ψbi =d(b,i) ψ
b
j} ≤ m].

3. ∀i, j ∈ N [i 6= j ⇒ ψbi 6=max{d(b,i),d(b,j)} ψ
b
j ].

Corollary 6.7 Let B ⊆ N fulfill Rb ∈ EX0 for all b ∈ B. Furthermore, let
τ ∈ P2 be an acceptable numbering.
Then RB ∈ uniB,τ (EX0,EX0) ⇐⇒ ∃ψ ∈ P3 ∃d ∈ R2 ∀b ∈ B

1. Rb ⊆ Pψb.

2. ∀i, j ∈ N [i 6= j ⇒ ψbi 6=d(b,i) ψ
b
j ].

Theorem 6.8 Fix I ∈ I with I ⊆ CONS. Let B ⊆ N fulfill Rb ∈ I for all
b ∈ B. Furthermore, let τ ∈ P2 be an acceptable numbering.
Then RB ∈ uniB,τ (I,CONS) ⇐⇒ ∃ψ ∈ P3 ∃d ∈ R4

0,1 ∀b ∈ B

1. Rb ⊆ Pψb.

2. ∀i, j, n ∈ N [d(b, i, j, n) = 1 ⇐⇒ ψbi =n ψ
b
j ].

Theorem 6.9 Fix I ∈ I with I ⊆ TOTAL. Let B ⊆ N fulfill Rb ∈ I for all
b ∈ B. Furthermore, let τ ∈ P2 be an acceptable numbering.
Then RB ∈ uniB,τ (I,TOTAL) ⇐⇒ ∃ψ ∈ P3 ∃d ∈ R2 ∀b ∈ B:

1. Rb ⊆ Pψb.

2. ∀f ∈ Rb ∀i ∈ N [ψbi =d(b,i) f ⇒ ψbi ∈ R].
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Of course, uniform learning with total intermediate hypotheses with respect
to an acceptable numbering τ is equivalent to uniform learning with total and
consistent intermediate hypotheses with respect to τ . The proof is analogous to
the proof of Proposition 2.6.

Proposition 6.10 Fix I ∈ I with I ⊆ TOTAL. Let B ⊆ N fulfill Rb ∈ I for all
b ∈ B. Furthermore, let τ ∈ P2 be an acceptable numbering.
Then RB ∈ uniB,τ (I,CONS-TOTAL) ⇐⇒ RB ∈ uniB,τ (I,TOTAL).

Theorem 6.11 Fix I ∈ I with I ⊆ BC. Let B ⊆ N fulfill Rb ∈ I for all b ∈ B.
Furthermore, let τ ∈ P2 be an acceptable numbering.
Then RB ∈ uniB,τ (I,BC ) ⇐⇒ ∃ψ ∈ P3 ∃d ∈ R2 ∀b ∈ B:

1. Rb ⊆ Pψb.

2. ∀i, j ∈ N [ψbi =max{d(b,i),d(b,j)} ψ
b
j ⇐⇒ ψbi = ψbj ].

SinceR ∈ BC∗τ for any acceptable numbering τ , we can use the same reasoning
as in Proposition 5.1 to prove our characterization in Theorem 6.12.

Theorem 6.12 Fix I ∈ I and B ⊆ N. Furthermore, let τ ∈ P2 be an acceptable
numbering. Then RB ∈ uniB,τ (I,BC ∗) ⇐⇒ [Rb ∈ I for all b ∈ B].

6.3 Some Topological Structures Enabling Uniform Iden-
tification

For uniform learning with respect to ”meaningful” hypothesis spaces, i.e. in such
a way, that all hypotheses produced by the strategy can be ”interpreted” by
the user, most of our results have been negative. Even very ”simple” classes
yield bad results. Thus to convince the reader, that there is still a sense in
the definition of uniform learning, we present some intuitively more complex
description sets suitable for uniform learning in the limit – even with consistent
and total intermediate hypotheses – with respect to any acceptable numbering.

Definition 6.1 (Discrete Sets of Functions) A subset D ⊆ P will be called
discrete if and only if for any f ∈ D there exists a number n ∈ N, such that all
functions g ∈ D fulfill the condition

f 6= g ⇒ f 6=n g.

The integer n will then be called discreteness point for f with respect to D.

Theorem 6.13 Let τ ∈ P2 be an acceptable numbering, B ⊆ N. Assume that
Pϕb is discrete for all b ∈ B.
Then RB ∈ uniB,τ (CONS-TOTAL,CONS-TOTAL).
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Proof: Provided that B fulfills the conditions requested above we first construct
appropriate hypothesis spaces uniformly in b ∈ B. Of course their indices may
then be transformed to equivalent programs in τ effectively. For that purpose we
will fix b ∈ B and collect all initial segments of functions in Pϕb in order to use
them as initial segments for the functions in our new hypothesis space. We will
try to extend these initial segments to computable functions, such that finally
all functions of the recursive core Rb have indices in our constructed numbering.
The uniform strategy defined afterwards works iteratively. It always starts with
a consistent hypothesis and in each following inference step it tests, whether its
previous hypothesis is still consistent with the new information received or not.
In the first case the previous hypothesis is maintained, otherwise a new consistent
hypothesis is constructed.

For the definition of our new hypothesis spaces ψb, b ∈ B we need a function
extend ∈ P which helps us to find suitable extensions of initial function segments.
For all b, n, x, k ∈ N and f ∈ R define

extend(b, f [n], x, k) :=


1 ϕbk(0)↓, . . . , ϕbk(x)↓ and

ϕbk[n] = f [n]

↑ otherwise

Thus extend(b, f [n], x, k) is defined if and only if ϕbk[x] is an ”extension” of f [n].

Definition of ψ ∈ P3 with Rb ∈ CONS-TOTALψb for all b ∈ B:

Let b, n, x ∈ N, f ∈ R. We define

ψ(b, f [n], x) :=


f(x) x ≤ n

ϕbk(x) x > n and k ∈ N may be found,

such that extend(b, f [n], x, k) = 1

↑ otherwise

Obviously ψ is a computable function. For any b ∈ B we observe the following
properties:

Claim 1 If f ∈ Rb is any element of the R-core Rb and n ∈ N is any integer,
then ψbf [n] ∈ R.

Claim 2 If f ∈ Rb and nf is a discreteness point of f with respect to Pϕb , then
ψbf [nf ] = f .

Claim 3 Rb ⊆ Pψb .

Proof of Claim 1:
Fix n ∈ N. Since there is an integer i ∈ N such that ϕbi = f , we know that for all
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x ∈ N there exists a suitable ”extension” of f [n], i.e.

∀x ∈ N ∃k ∈ N [extend(b, f [n], x, k) = 1].

As there is an extension, it may also be found within a finite amount of time.
The definition of ψ then implies that for all n ∈ N the function ψbf [n] is total and
thus recursive.

qed Claim 1

Proof of Claim 2:
For all arguments less than or equal to nf the values of ψbf [n] and f must agree,

because those arguments match the first case in the definition of ψb. For all
arguments greater than nf the existence of an ”extension” of f [nf ] is checked.
As f ∈ R, we observe that that check will always stop with a positive answer.
Since nf is a discreteness point for f wrt Pϕb , the only function in Pϕb extending
f [nf ] is ϕbi . Hence ψbf [nf ] = ϕbi .

qed Claim 2

Proof of Claim 3:
Let f ∈ Rb and let nf be a discreteness point of f with respect to Pϕb . The
discreteness of Pϕb guarantees the existence of nf . From Claim 2 we now conclude
ψbf [nf ] = f , hence f ∈ Pψb .

qed Claim 3

Now let c ∈ R2 be a computable function satisfying

τc(b,y) = ψby for all b, y ∈ N.

Definition of a strategy S ∈ P2 with Rb ∈ CONS-TOTALτ (λx.S(b, x))
for all b ∈ B:
Let f ∈ R, b, n ∈ N. We define a uniform strategy in the following way:

S(b, f [0]) := c(b, f [0])

S(b, f [n+ 1]) :=

{
S(b, f [n]) τS(b,f [n]) =n+1 f

c(b, f [n+ 1]) otherwise

It remains to prove that for all b ∈ B and all initial segments of functions inRb our
strategy puts out consistent indices of total functions. Furthermore we will show
that the sequence of hypotheses put out for any function in Rb must converge.
Together with the consistency of all hypotheses we thus obtain convergence to a
correct index. Formally, we have to prove:

(i) ∀b ∈ B ∀f ∈ Rb ∀n ∈ N [S(b, f [n])↓].
(ii) ∀b ∈ B ∀f ∈ Rb ∀n ∈ N [τ(b,S(b,f [n])) =n f ].
(iii) ∀b ∈ B ∀f ∈ Rb ∀n ∈ N [τ(b,S(b,f [n])) ∈ R].
(iv) ∀b ∈ B ∀f ∈ Rb ∃n0 ∈ N ∀n ≥ n0 [S(b, f [n]) = S(b, f [n0])].
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Proof of (i),(ii) and (iii):
Let b ∈ B, f ∈ Rb. We use induction on n.
At first assume n = 0. Obviously S(b, f [0]) = c(b, f [0]) is defined. Furthermore,
from the definitions of S, extend, ψ and c we observe that τS(b,f [0]) = τc(b,f [0]) =
ψbf [0] =0 f . This proves the consistency of the hypothesis S(b, f [0]). Furthermore,
since f ∈ Rb, we observe from Claim 1 with n = 0, that τS(b,f [0]) = τc(b,f [0]) =
ψbf [0] ∈ R.

Assume for a fixed n ∈ N, that S(b, f [n]) is defined, consistent for f [n] and a
τ -index of a total function. From this situation we want to deduce that also
S(b, f [n+ 1]) is defined, consistent for f [n+ 1] and a τ -index of a total function.
Since τS(b,f [n]) is total, we can test effectively, whether τS(b,f [n]) =n+1 f or not. If
the first case occurs, the hypothesis is maintained. Then the new hypothesis is
still defined, consistent and an index of a total function. On the other hand, if the
second case occurs, our previous hypothesis must have been wrong. We obtain
τS(b,f [n+1]) = τc(b,f [n+1]) = ψbf [n+1] =n+1 f . Therefore S(b, f [n + 1]) is consistent

for f [n + 1]. Claim 1 now confirms the statement τS(b,f [n+1]) ∈ R. Anyway the
hypothesis produced by S fulfills the conditions (i), (ii) and (iii).

qed (i),(ii),(iii)

Proof of (iv):
Again assume b ∈ B, f ∈ Rb. If there exists an n0 ∈ N, such that for all n ≥ n0

the first case in the definition of S(b, f [n]) occurs, the hypothesis S(b, f [n0]) will
never be changed and the sequence of hypotheses converges. Provided, such an
n0 does not exist, we can deduce a contradiction in the following way:
Since Pϕb is discrete, there exists an nf ∈ N satisfying

ϕbi =nf
f ⇐⇒ ϕbi = f

for all i ∈ N.
From (ii) we already know τS(b,f [nf ]) =nf

f . Since according to our assumption
there exists a number n > nf , such that the second case in the definition of
S(b, f [n]) occurs, the hypothesis put out by S on input (b, f [n]) equals c(b, f [n]).
Since n > nf , the number n is a discreteness point of f wrt Pϕb . Claim 2 now
implies f = ψbf [n] = τc(b,f [n]) = τS(b,f [n]). Thus S has found a correct hypothesis.
But correct hypotheses must be consistent for all further inputs; therefore the
first case in the definition of S will occur for all following input segments. Hence
we reach the desired contradiction. This implies (iv).

qed (iv)

From the conditions (i),(ii) and (iv) we conclude, that the output of our uniform
strategy converges to a correct hypothesis for all ”interesting” input sequences.
Together with condition (iii) we finally obtain Rb ∈ CONS-TOTALψb(λx.S(b, x))
for all b ∈ B. This completes the proof of Theorem 6.13.

qed Theorem 6.13

47



By comparison of Theorem 6.13 with some of our further negative results we
conclude that the way the recursive cores are described have much more influ-
ence upon their uniform learnability than the R-cores themselves. We know from
Theorem 4.1 that there are even suitable sets describing the entirety of all classes
of recursive functions learnable with respect to a given criterion. That result re-
mains valid for uniform learning with respect to any fixed acceptable numbering.
With Theorem 6.13 we also have a positive result for uniform learnability with
respect to a given numbering. If we set

Bdiscrete := {b ∈ N | Pϕb is discrete},

we know that Bdiscrete is suitable for uniform learning with respect to the criterion
CONS-TOTAL and with respect to any acceptable numbering. On the other
hand, there are sets describing finite – and thus very ”simple” – recursive cores
which are not suitable for uniform learning with respect to EX at all, even if
we allow free choice of the hypothesis spaces. The reason for the failure of all
uniform strategies is that the numberings described correspond to a non-discrete
set of partial-recursive functions. Not the recursive functions to be identified but
the non-recursive functions in Pϕb described by b ∈ N trouble our strategy.

An example for a set describing only discrete sets Pϕb is the set of all indices
of ”EX0-characteristic” numberings like those in Corollary 2.3. Hence, with the
definition

BEX0 := {b ∈ N | ϕb is an EX0-characteristic numbering}

we obtain

RBEX0
∈ uniBEX0

,τ (CONS-TOTAL,CONS-TOTAL)

for any acceptable numbering τ ∈ P2. We observe that BEX0 does not only
describe discrete sets Pϕb , but also functions ϕb enumerating those sets without
repetitions. As we will see, such description sets are even suitable for uniform
learning with respect to the hypothesis spaces ϕb given a priori. Unfortunately, to
prove that result we will abandon our demand for total intermediate hypotheses.

Definition 6.2 (Absolutely Discrete Numberings) A function ψ ∈ P2 is
called an absolutely discrete numbering :⇐⇒

1. Pψ is discrete,

2. ∀i, j ∈ N [i 6= j ⇒ ψi 6= ψj].

Theorem 6.14 Fix B ⊆ N. Assume that ϕb is an absolutely discrete numbering
for all b ∈ B. Then RB ∈ uniB,[id](CONS-TOTAL,CONS ).
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Proof: From the previous theorem we know that Rb ∈ CONS-TOTAL for all
b ∈ B. Thus it remains to prove the existence of a strategy S ∈ P2 satisfying

Rb ∈ CONSϕb(λx.S(b, x))

for all b ∈ B. For arbitrary f ∈ R, n, b ∈ N we simply define S(b, f [n]) by the
following instructions:

”Look for a number i ∈ N with ϕbi =n f ;
Return i;”

Since Rb ⊆ Pϕb , we conclude

• ∀f ∈ Rb ∀n ∈ N [S(b, f [n])↓],

• ∀f ∈ Rb ∀n ∈ N [ϕbS(b,f [n]) =n f ]

for all b ∈ B. Thus – for arbitrary b ∈ B – we obtain Rb ∈ CONSϕb(λx.S(b, x)),
because ϕb is an absolutely discrete numbering.

qed Theorem 6.14
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7 Uniform Learning with Special Strategies

A very natural way to learn a set of recursive functions is ”Identification by
Enumeration” introduced by Gold in [Go67]. The idea is to search for the first
element in the hypothesis space consistent with the information received so far.
Of course such a strategy will not work in any arbitrarily chosen hypothesis space.
If our hypothesis space ψ is a recursive function itself, then all functions in Pψ
can be identified in the limit by means of Identification by Enumeration.

Definition 7.1 (Identification by Enumeration) A class U ⊆ R is said to
be identifiable by enumeration wrt ψ ∈ P2, if and only if

U ∈ CONSψ(Enumψ),

where the strategy Enumψ is defined by

Enumψ(f [n]) :=


minX X := {i ∈ N | ψi =n f} 6= ∅ and

∀j < minX [ψj(0)↓, . . . , ψj(n)↓]
↑ otherwise

for all f ∈ R, n ∈ N.

Proposition 7.1 Fix ψ ∈ R2. Then any subclass of the set Pψ is identifiable
by enumeration with respect to ψ. Additionally, the Enumψ-strategy identifies Pψ
with total intermediate hypotheses.

Now we want to investigate the use of Enum-strategies for the purpose of
uniform learning. Since the definition of Identification by Enumeration depends
on a fixed numbering ψ ∈ P2, we first have to define a kind of ”uniform Enum-
strategy”.

Definition 7.2 (Uniform Enum-Strategy) Define a uniform strategy Enum
by

Enum(b, f [n]) := Enumϕb(f [n])

for all f ∈ R, b, n ∈ N.

It is easy to see that Proposition 7.1 remains valid in a ”uniform version”, as
has also been proved in [OSW88]:

Theorem 7.2 Let B ⊆ N. Assume ϕb ∈ R2 for all b ∈ B. Then

RB ∈ uniB,[id](CONS-TOTAL,CONS-TOTAL)(Enum).
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Though Identification by Enumeration is based on a very natural learning
behaviour, the possibility to use it is most often restricted to numberings ψ
providing computability of the predicate d defined by

d(i, x, y) :=

{
1 ψi(x) = y

0 ψi(x) 6= y
for i, x, y ∈ N.

Therefore we consider a variation of our Enum-strategy. Instead of searching the
minimal consistent hypothesis, a ”temporarily conform” strategy looks for the
minimal index of a function with values not contradicting the information received
so far within a certain amount of computing time. For further information see
[FKW95].

Definition 7.3 (Temporarily Conform Identification) A class U ⊆ R is
called temporarily conformly identifiable wrt ψ ∈ P2, if and only if

U ∈ EXψ(TCψ),

where the strategy TCψ is defined by

TCψ(f [n]) :=

{
minX X := {i ∈ N | ∀x ≤ n [ϕi(x)↓≤n⇒ ϕi(x) = f(x)]} 6= ∅
↑ otherwise

for all f ∈ R, n ∈ N.

In [FKW95] Freivalds, Kinber and Wiehagen have proved the following quite
easy characterization of temporarily conform identifiability.

Theorem 7.3 Fix ψ ∈ R2 and U ⊆ R. U is temporarily conformly identifiable
with respect to ψ ⇐⇒

1. U ⊆ Pψ,

2. ∀f ∈ U ∀i < minψ f [ψi 6⊂ f ].

By analogy with the definition of a uniform Enum-strategy we also obtain a
uniform TC-strategy.

Definition 7.4 (Uniform TC-Strategy) Define a uniform strategy TC by

TC(b, f [n]) := TCϕb(f [n])

for all f ∈ R, b, n ∈ N.

Now the result in [FKW95] can easily be transferred to the case of uniform
learning.
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Theorem 7.4 Let B ⊆ N. RB ∈ uniB,[id](EX,EX )(TC ) ⇐⇒
∀b ∈ B ∀f ∈ Rb ∀i < minϕb f [ϕbi 6⊂ f ].

The results on uniform learning with special strategies presented here are
rather trivial. Still they might raise the question, whether there are more collec-
tions of learning problems uniformly solvable by a strategy similar to our uniform
Enum- and TC-strategies.
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