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Abstract. The fundamental learning model considered here is identifi-
cation of recursive functions in the limit as introduced by Gold [8], but
the concept is investigated on a meta-level. A set of classes of recursive
functions is uniformly learnable under an inference criterion I, if there
is a single learner, which synthesizes a learner for each of these classes
from a corresponding description of the class. The particular question
discussed here is how unions of uniformly learnable sets of such classes
can still be identified uniformly. Especially unions of classes leading to
strong separations of inference criteria in the uniform model are consid-
ered. The main result is that for any pair (I,I') of different inference
criteria considered here there exists a fixed set of descriptions of learn-
ing problems from I, such that its union with any uniformly I-learnable
collection is uniformly I'-learnable, but no longer uniformly I-learnable.

1 Introduction

Inductive Inference is concerned with algorithmic learning of programs for recur-
sive functions. In the fundamental model of identification in the limit, cf. [8], a
learner successful for a class of recursive functions must eventually find a single
correct program for any function in the class from a gradually growing sequence
of its values. By modification of the constraints the learner has to satisfy several
inference criteria have been defined and compared with respect to the resulting
learning power, see for example [2,6,7].

It is a quite natural thought to search for properties that learners in the given
abstract model have in common and thus try to find uniform learning methods
adequate for the solution of not only one but perhaps infinitely many learning
problems. An example for a uniform method is identification by enumeration
(cf. [8]). Though this principle does not yield strategies for all learnable classes
of recursive functions, it is appropriate for the identification of any recursively
enumerable class of recursive functions, if a corresponding enumeration is known.
That means, from each enumeration of a set of total recursive functions a pro-
gram of a learner for the set of functions enumerated can be derived. Another
uniform learning method successful in some special hypothesis spaces is tem-
porarily conform identification as defined in [7]. In general uniform learning can



be explained as some kind of meta-learning. Instead of considering special strate-
gies each solving a specific learning problem, the aim is to find meta-strategies,
which synthesize these special learners from a description of the corresponding
learning problem. Such meta-learners reveal a common method for learning the
classes of functions and thus a common structure in these classes. They might
be helpful in explaining the nature of inductive learning, because they represent
some kind of general identification method. For literature on uniform learning
the reader is especially referred to [1,9,11,10].

In [9] it is verified, that there are classes of rather simple sets of recursive
functions which do not allow the synthesis of identification strategies. Also modi-
fications of identification in the limit are considered. Further results of this nature
— moreover concerning language learning — can be found in [11] and [10]. Various
modifications of uniform language identification in the limit are presented and
compared in [1]. They lead to several separations and nice characterizations and
thus give insight into general methods of language learning.

The uniform learning model considered here is equivalent to the one defined
in [9], but is investigated in three slightly different variants in order to express the
specific difficulties in uniform learning in connection with the choice of hypothesis
spaces. The scope now is to investigate unions of collections of learning problems.
Given two collections which can be identified uniformly under some inference
criterion, is the union still uniformly identifiable? If not, is it identifiable with
respect to some weaker inference criterion? What properties of learning problems
enable the uniform learnability of unions of such classes? Questions of this style
are the main concern throughout the following pages. But why are such questions
interesting? The idea is the following: suppose you are given a learnable class.
If you want to understand the nature of learning and the structure of learnable
classes, it seems quite natural to add more and more objects to the class, until
you observe that the resulting class can no longer be identified by a single learner.
That means you form the union of two classes and try to find out what unions are
still learnable and what unions are not. For example the set of classes identifiable
in the limit is not closed under union, as has been verified in [2]. Now the
same idea is considered in the uniform learning model. A particular issue in the
investigation of learnability of unions is the strong separation of learning classes
(see below). On the one hand, some simple properties enabling the uniform
learnability of the union of two learnable collections are presented here; on the
other hand examples are given to show that many collections of very “simple”
learning problems do not allow learnability in the union with other collections.

As in the non-uniform inductive inference model, different inference classes
have been compared with respect to their learning power also in the context of
meta-learning. Most of the hierarchies verified in the classical model (see [2,6,
7]) are maintained in the uniform model, see [14]. Hence it might be reasonable
to give up certain constraints in the learning model in order to increase the
learning power. But still, these separations of inference criteria do not explain,
whether any collection of learning problems uniformly identifiable with respect
to a criterion I can be increased to a superset learnable with respect to some



other criterion, but no longer learnable with respect to I. In particular it might
give more insight into the structure of inference criteria in uniform learning
to find examples of such supersets. Thus an aim might be to transfer strong
separation results like those in [5] to the meta-learning model. In [5] a strong
separation of two inference classes I and I’ means that for any object class
U € I there exists some object class V' € I' such that UUV € I'\ I (note
that this is not a direct consequence of the “weak” separation I C I'). Still,
in the meta-learning model, there might exist a collection of learning problems
which is uniformly I-learnable, but no superclass of this collection witnesses to
a separation of uniform I’'-learning from uniform I-learning. If it were for some
reason important to learn at least this collection, then loosening the I-constraints
would no longer increase the learning power. Now a strong separation of I and
I' ensures that this cannot happen, that means for any collection of learning
problems uniformly learnable under the criterion I there exists some collection,
such that the union of both is identifiable under I’ but not under I. Indeed, such
strong separations can be presented for several identification criteria — and even
more: for any pair (I,1') of strongly separated criteria there is a fized collection
of learning problems which — added to an arbitrary collection uniformly learnable
under I - yields a collection appropriate for uniform I’-learning but no longer
appropriate for uniform I-learning. Note that this result is much stronger than
required before. The proofs of the strong separations moreover provide a method
for changing a uniform I-learner into an I'-learner making use of the possible
increase of learning power, cf. [5] for similar methods in the non-uniform model.

2 Preliminaries

For notions used here without explicit definition the reader is referred to [12]. N
is used to denote the set of non-negative integers. C and C stand for inclusion
and proper inclusion of sets. The cardinality of a set X is denoted by card X . Via
some bijective total computable function finite tuples a of integers are identified
with elements of N. Given any variable n ranging over N the quantifier Y*°n
expresses that the statement quantified is true for all but finitely many n € N.
Any total or partial function maps elements of N again to elements of N.
Recursion theory in general concentrates on partial-recursive functions, the set
of which is denoted by P. Often the subclass R of all total functions — called
recursive functions — is studied. Both notions may also occur with a superscript
indicating the number of input values of the functions considered. Pp; stands
for the set of partial-recursive functions returning only values from {0, 1}. Given
f € P and n € N, the notion f(n) | expresses that f is defined on input n, the
opposite is denoted by f(n) 1. Furthermore f[n] is an abbreviation for the tuple
(f(0),..., f(n)),if all these values are defined. If f,g € Pand n € N, then f =, ¢
means that {(, f()) | # < nand f(z) 4} = {(@,9(r)) | = < n and gla) L}.
f =* g expresses that for all but finitely many n € N either f(n) and g(n)
are both undefined or f(n) = g(n). As functions f, g can be identified with the
sequences of their output values, simplified notions might occur, like f = 0> for



the function constantly zero or g = 0° 1> for the function which equals zero for
all inputs less than 5 and is undefined otherwise. If a, 8 are tuples of integers,
a C f (a C B) expresses that « is an initial segment of the function f (of 5 resp.),
and «a 1°° is called an initial function. If n € N, then 7 = 1 in case n = 0 and
7 = 0 otherwise. If ¢ € P? and i € N, then ; is the function achieved by fixing
the first input parameter of ¢ by i. Thus ¢ enumerates the set {¢; | i € N} C P.
From now on ¢ € P? and 7 € P? denote fixed acceptable numberings. Defining
©b(z,y) := @(b,x,y) for all b,z,y € N yields an enumeration (¢?)pen of all
two-place partial-recursive functions — concomitant with an enumeration of sets
Py = {¢! | i € N}. Given b € N, the subset R; := P, N'R of recursive functions
is called the recursive core of ¢©°. Assume for example that, for some fixed b € N
and all z,y € N, p(b,z,y) =0if x =0 or y < z, ¢(b,x,y) T, otherwise. Then
Py = {0°} U {0" 1°| i > 1} and R, = {0>°}. A Blum complexity measure as
in [4] suggests the notion f(n) |<, to indicate that the computation of f(n)
terminates within up to z steps (for f € P, n,z € N). If the computation does
not terminate or takes more than x steps, then f(n) t<,.

The basic learning criterion investigated here is identification in the limit,
which has first been studied in [8].

Definition 1. A set U C R of recursive functions is called identifiable in the
limit iff there is some ¢ € P? and a function S € P such that for any f € U:

1. S(f[n]) is defined for all n € N (S(f[n]) is called hypothesis on f[n]),
2. there is some j € N such that ¢; = f and S(f[n]) = j for all but finitely
many n € N.

EX is the class of all sets U identifiable in the limit. The notion U € EXy(S)
shall indicate that S and 1 are known to fulfil the conditions above.

Weakening the constraints concerning convergence yields the model of be-
haviourally correct learning as defined in [2]. Here the learner may change its
output infinitely often, as long as eventually the hypotheses are correct.

Definition 2. A set U C R is BC-identifiable iff there is some 1 € P? and
some S € P such that any f € U fulfils Ys(sn)) = f for all but finitely many
n; furthermore S(f[n]) is defined for all f € U and n € N. BC and BCy(S) are
notions used as explained in Definition 1.

Defining several learning models always calls for a comparison of the result-
ing identification power. In [2] EX is proved to be a proper subclass of BC,
i.e. there are classes of recursive functions which are BC-identifiable but not
EX-identifiable. Case and Smith [6] propose a variant of BC-learning, called
BC-learning with finitely many anomalies, in which correct hypotheses are no
longer required. The only restriction here is, that eventually all functions sug-
gested by the learner must have an “almost” correct input-output-behaviour.

Definition 3. A set U C R is BC*-identifiable iff, for some ) € P> and some
S € P, any f € U satisfies Ys(pn)) =" f for all but finitely many n; additionally
S(f[n]) is defined for all f € U and n € N. BC* and BC,(S) are defined as
usual.



[6] gives a proof for BC C BC* as well as the verification of R € BC*
(proposed by L. Harrington). In any learning process according to the criteria
EX, BC, BC* there is a certain time, after which all hypotheses returned must
fulfil certain conditions. But there are no further constraints as to when this
time is reached. A restricted learning model with bounds on the number of mind
changes is introduced in [6]. In this model the learner is allowed only a certain
number of changes in its sequence of hypotheses; in particular, whenever this
capacity of mind changes is exhausted, the actual hypothesis must be correct.

Definition 4. Let m € N. A set U C R is EX,,-learnable iff some 1) € P? and
some S € P fulfil the following conditions.

1. U € EXy(S) (where S is additionally permitted to return the sign “?”),
2. for all f € U there is an ny € N such that S(f[z]) =7 iff x < ny,
3. card{n € N |? # S(f[n]) # S(fin+1])} <m for all f € U.

The sets (EXy,)y(S) and EX,, are defined as usual. U is identifiable with a
bounded number of mind changes iff there is an m € N such that U € EX,,,.

By returning “?” in the initial phase the strategy signals its being hesitant in
order not to waste a mind change. For all bounds m the inclusion EX,,, C EX,, 11
is verified in [6]. Of course in the study of learning processes not only the mind
change complexity is interesting, but also whether the quality of the intermediate
hypotheses can be improved in some sense. A quite natural motivation is to
demand that any hypothesis returned by the learner has to be consistent with
the data seen so far, i. e. it should agree with the known part of the input-output-
behaviour of the function to be learned, see for example [8,3, 13].

Definition 5. A class U C R is CONS-identifiable iff it is in EXy(S) for some
Y € P? and some S € P satisfying Ys(frm)) =n [ for all f € U and n € N. The
corresponding classes CONS and CONSy(S) are defined in the usual way.

The demand for consistency results in a loss of learning power, that means
CONS C EX, cf. [3]. Moreover EXy C CONS, but EX,,, and CONS are incompa-
rable for all m > 1 (partly verified in [7], the rest follows with similar methods).
Note that for all inference criteria defined here — except for CONS — identifiabil-
ity implies identifiability by a total learner, i. e. whenever there exists a strategy
for a class to be learned, then there also exists a strategy S € R learning the
class. Here consistent learning is an exception, as has been verified in [13].

Throughout the following sections Z denotes the set of inference classes de-
fined above; Z = {EX,BC,BC*, CONS} U {EX,,, | m € N}. Moreover, if n € N,
let J":={U C R |cardU < n}. Obviously J” € I for all n € N and all I € 7.

3 The Uniform Learning Model

Uniform learning is concerned with methods for deriving successful learners from
a description of a learning problem, which first of all requires a tool for describing



learning problems. A quite simple way to describe a class U of recursive functions
to be identified is to present some index b of a partial-recursive numbering the
recursive core of which equals U. Thus any integer b € N corresponds to the
class Ry = {p? | i € N} N'R of recursive functions, which is interpreted as a
class of objects to be learned. Furthermore any set B of integers corresponds to
a collection of classes U C R to be learned — each one described by some b € B.

Definition 6. Let [ € 7, J C I. A set B C N is suitable for uniform learning
with respect to (J,I) iff

1. Ry € J for allb € B,
2. there is a learner S € P? such that for any description b € B there emists
some ¢ € P? satisfying Ry € Iy(Az.S(b, z)).

suit(J, I) denotes the set of all sets B suitable in that sense. The notion B €
suit(J, I)(S) is used to indicate that S is a learner witnessing to B € suit(J, I).

So a set of descriptions is identified uniformly by S under (J,I), if each
recursive core described by some b € B belongs to the class J and is identified
by the learner A\z.S(b, z) synthesized by S from b. This definition involves some
lack of practicability, because only the synthesis of learners but not the synthesis
of adequate hypothesis spaces is required. Taking account of this deficiency it is
advisable also to consider the following variants of Definition 6.

Definition 7. Let I € Z, J C I. Then suit,(J,I) consists of all sets B €
suit(J, I), for which there is some learner S € P? such that Ry € I, (\z.S(b, x))
for all b € B. Furthermore suity,(J,I) is the set of all B € suit(J,I), for which
there exists some S € P? which fulfils Ry € I»(Ax.S(b,x)) for all b € B. The
notions suit,(J, I)(S) and suit,(J, I)(S) are used by analogy with Definition 6.

Obviously suit,(J,I) C suit-(J,I) C suit(J,I) for all criteria I € Z, but in
general equality of these classes does not hold (suit, (., BC*) = suit(.J,BC*) is
an exception for any J C BC*, see also [14]). As in the non-uniform model, iden-
tifiability implies the existence of total strategies, if consistency is not required.

Proposition 1. Let I € Z\{CONS}, J C I, B C N. Assume B € suit(J,I)
(suit,(J,I), suit,(J,I)). Then there is o total recursive function S such that
B € suit(J, I)(S) (suit-(J, I)(S), suit,(J,I)(S) resp.). Moreover, S can be con-
structed uniformly from a program of a corresponding partial-recursive learner.

The following example shows that CONS-learning again yields an exception.
There even exists a description set suitable for CONS-learning in the most re-
stricted model (suit,-model) but not suitable for uniform learning by a total
strategy in the least restricted model (suit-model). The proof is omitted.

Ezample 1. The description set B := {b € N | ¢* € R?} is an element of
suit,(CONS, CONS), but B ¢ suit(CONS, CONS)(S) for any learner S € R?.



4 Results on Unions of Suitable Description Sets

Assume two description sets By, By € suit(I,I) for a criterion I € 7 are given.
The results below concern the question, what properties concerning By, B> make
the union of the two sets suitable for uniform learning with respect to I, i.e. what
properties are sufficient for the satisfaction of By U By € suit([,I). The same
question is considered for suit, or suit, instead of suit. suit(BC*,BC*) and
suit, (BC*, BC*) are closed under union, as R € BC*, but in general some further
condition concerning B; and Bs is needed, as the following example shows.

Ezample 2. Consider the description sets B; = {b € N | Ry, = {¢}} = {0=°}}
and By = {b € N | 3m € N [R; = {¢}} = {0™1°}]}. Both B; and B, are
elements of suit, (J', EXp), but By U By ¢ suit,(J', EXo).

Proof. The learner constantly i — 1 yields B; € suit,(J',EXp) for i € {1,2}.
Assuming B1UBs € suit, (J!, EXg) provides a strategy S € R? which fulfils R; €
(EXp),(Az.S(b,x)) for all b € By U Bs. To reveal a contradiction a description
bo € By U B, satisfying Ry, ¢ (EXo)r(Az.S(bg,x)) is constructed. For that
purpose it is adequate to define numberings 1® uniformly in b € N and choose by
as a fixed point value according to the recursion theorem, such that % = bo.

Construction of by. For each b € N define a function ¥* € P? as follows: let
¥8(0) := 0. Moreover, let ¢5(z +1) equal 0, if S(b,07*1) =? or all n < 2+ 1 such
that S(b,0") € N fulfil 7g(,0n) (1) T<z41 OF Ts(p,0m) (1) # 0. Otherwise, Yh(z+1)
is undefined. If 1§ = 0% 1°°, there is some minimal integer n < k, such that
S(b,0") € N and 75(,0n)(1) <k, Ts(s,0n)(n) = 0. In this case let b = 0"1>°,
Otherwise, i. e. if 15 = 0°°, let 1% :=1°°. In any case, all functions ¢ with i > 1
shall be empty.

Since ¢® is defined uniformly in b, there exists some recursive function g,
such that 9 = b for all b € N. Let by € N be a fixed point value of that
function g, i.e. P = @I(bo) = ybo, End construction of by.

Note that either Ry, = {@h°} = {0°} or Ry, = {p?*} = {01} for some
m € N. Thus by € By U By. But if Ry, = {0>°}, then S(bo,0") =7 or Tg,,0n) #
0% for all n € N; if Ry, = {0™1°°} for some m € N, then S(b,0™) € N and
Tspom)(m) =0 # 1 = @b (m). Therefore Ry, ¢ (EXq)r(Az.S(bo,z)), which
contradicts the choice of S. Hence By U By ¢ suit, (J!, EXj). O

For other learning classes in Z similar negative results are obtained with
recursive cores consisting of one or two elements.

Ezample 3. Consider the description sets C = {b € N | R, = {©}}}, as well
as B = {b € N| cardRy = card{i | ¢! € R} =2 A V>j [p} =]} and
By ={be N |card{i | o} € R} = 1 AV>j [p} =1>°]}. Then C' € suit,,(J', EXy),
B; € suit,(J?, CONS), B, € suit,(J', CONS), but C' U B; ¢ suit(J?, EX) and
C U By ¢ suit,(J',EX).

Ezample 4. Define two sets By := {b € N | {i | ¢! not initial} = {0}} and
By :={be N |3k [{i | ¢} not initial} = {k+1} A Vy > k+1 [} =1>]]}. Then



By € suit,(J', EXy), By € suit,(J',CONS), but B; U By ¢ suit,(J',BC) and
Bl U B2 ¢ suitw(Jl,BC*).

The proofs use ideas similar to those in the proof of Example 2. As the
reasons for the failure of all strategies for the unions in these examples are not
obvious, it might be helpful first to collect some simple properties of description
sets enabling the learnability of the corresponding unions.

Theorem 1. Let I € T and By, By € suit(I,I) (orsuit.(I, 1), suit,(I,I) resp.).

1. If By is recursive, then By U By € suit(I,I) (suit-(I, ), suit,(I,I) resp.).

2. If B1,B; are r.e., then By U By € suit(I, I) (suit,(1,I), suit,(I,I) resp.).

3. If I € {EX,BC,BC*} and at least one of the sets B1,N\ By is r.e., then
By U By € suit(I,I) (suit,(I,1I), suit,(I,I) resp.).

Proof (sketch). Fix I € Z, By, By € suit(I, I). For suit,, suit, all proofs proceed
analogously. Choose Ti, Ty € P? such that B; € suit(I, I)(T;) for i € {1,2}.

For the proof of the first claim let a new learner on input (b, f[n]) return
Ty (b, f[n]) if b € By, Tz(b, f[n]) otherwise. The second claim is shown with a
strategy searching for the given b in an enumeration of By and in parallel in an
enumeration of Bs. As soon as b € B; is verified for some i € {1,2}, the learner
simulates T;. For the third claim, let the new learner simulate 75 until the given
description is proved to belong to By (or N\ Bs), then simulate T3. O

The second and third claim in Theorem 1 already suggest, that for some
learning classes in Z just one r.e. description set is not sufficient for the uniform
identifiability of the union of two suitable description sets. Indeed this is true,
as Theorem 4 will prove, but first one more special case in which any union of a
suitable set with a suitable r.e. set again yields uniform learnability is regarded.

Theorem 2. Assume B; € suit(CONS, CONS) and B: € suit,(CONS, CONS).
If By (or N\ By) is r. e., then B1UB; € suit(CONS, CONS). If By (or N\ By ) is
r. e. and By € suit,(CONS, CONS), then also By U Bs € suit,(CONS, CONS).

Proof (sketch). Let By € suit(CONS, CONS), B, € suit.(CONS, CONS), more-

over By (or N\ By) r.e. Then there exist 71, T> € P and numberings ¢[b] for b €

By with Ry € CONS,,p (Az.T1(b,z)) for b € By and Ry € CONS,(Az.Ty (b, 7))

for b € B,. Define a new hypothesis space nl?! € P? for each b € N as follows.
ngz] = w[b] if b e By, ngz] = 7; otherwise; ng»]_,_l =7 foralli e N.

(3

If b € By, f € Ry, n €N, then Ts(b, f[n]) is consistent for f[n] with respect
to 7. So on input (b, f[n]) a meta-strategy for By U Bs can test by dove-tailed
computation, whether b € By (N\ By, resp.) or T (b, f[n]) is defined and consis-
tent for f[n] with respect to 7. As long as the latter property is verified first, the
consistent index 2T (b, f[n]) + 1 is returned; as soon as b € By (b ¢ Bs, resp.)
has once been verified, the hypotheses returned by Az.2T} (b, z) are used. These
are consistent with respect to 7, if f € Ry. Convergence follows from the choice
of T, Ts. Proving the second claim does not require new hypothesis spaces. O



The following result gives an example of how weakening the learning inten-
tion can lead to positive results without further demands concerning the two
description sets. The proof is omitted.

Theorem 3. Let m, ki, ka €N, m < ki, m < k. If By € suit(EX,,, EXy,) and
Bs € suit(EXm, EX]Q), then By U By € suit(EXm, EXk1+k2+1).

Thus the union of description sets suitable for learning with a bounded num-
ber of mind changes is still suitable, if a certain amount of further mind changes
is permitted. But unfortunately, if an increasing mind change complexity is for-
bidden, negative results are obtained, sometimes even if one of the description
sets is r.e. (in contrast to Theorems 1 and 2).

Theorem 4. Let m € N. There exist two description sets By, Bo C N such that
1. By, B € suit,(J%,EX,;,) (or By, By € suit,(J',EX,y,)),

2. By isr.e., but
8. By U By ¢ suit(J?,EX,,) (B1 U By ¢ suit, (J1,EX,,), resp.).

Proof. Fix m € N. First By, By are defined by constructing functions ¢ € P and
fp € R such that p®® = (ife()) for all i € N. The function fp assigns to each
integer ¢ some fixed point value according to the recursion theorem. By U Bs
will be the value set of fp. Below just the statements concerning descriptions of
recursive cores in .J? are verified, the proof for descriptions of singleton sets works
with the same method combined with the ideas in the proof below Example 2.

Definition of By, Bs. By Proposition 1 there is a function rec € R, such that
e € R and suit(J?, EX,,)(¢") C suit(J?, EX,,)(¢"®) for all i € N. From
now on the notion S; is used instead of ("), Next the function 1) € P* is
defined by constructing a numbering v € P> for any integer i as follows.

Fix b € N. Go to stage 0.

Stage 0. ¢(()i’b) (0) := 0. For z € N define

0 if S;(b, " [y]) =2 for 0 <y < &
G (x +1) == {m +2 if z is minimal, such that S;(b, 4\ [z]) € N
0 otherwise

Then {"" = 0% iff S;(b,0") =7 for all n € N. Otherwise, if ¢ is minimal with

Si(b,0t) € N, note \"" = 0t(m + 2) 1°°. In the latter case let al"") := 0! and

go to stage 1. In the first case agi’b) 1 and stage 1 is not reached. FEnd stage 0.

Stage k (1 < k < m). If | denotes the length of a\""), let (" 1 — 1] =
él}g’b) [-1]= a,(j;bl). For all z > [ define

kE—1 if S;(b, aii;bl)ry) = S;(b, a;fibl))
for0<y<z—landforalre {k—1k}
gkb_)l () :==<¢m +2 if z is minimal, such that Si(b,a,(:;bl)ry) # Si(b,a,(:;bl))
fory =z —1[ and some r € {k —1,k}
0 otherwise



fugy (@) =k~
m-|-2 1f1/1§2kb1() m+ 2

otherwise

(zb

Note that " = al"" (k — 1) iff (") = {0 e iff
Si(b, ™) = Si(b, ol (k — 1)™) = Si(b,al"") k™) for all n € N .

Otherwise, if ¢ is minimal, such that S;(b, o, G, b)) # Si(b, akz bl)rt) for some r €

{k—1,k}, then {2, = o™ (k — 1)t (m +2) 1°° and {2 = ol kt (m +2) 120
(4,b) . (4,b) ¢ (i,b)

In the latter case let a;”” := a;”"/r* and go to stage k+ 1. In the first case ay,

is undefined and stage k + 1 is not reached. End stage k.
Stage m + 1. 50 = alPmeo ) = oD (m 4 1), M) =4 for 7 >
2m + 2. End stage m + 1.

Next let ¢ € R be a function satisfying @900 = (0 for all i,b € N. By
the recursion theorem there is a function fp € R, such that P = p9liP() =
Y&P®) for all i € N. Define B := {fp(i) | i € N} and finally let

{fp()|zeN/\3w€N[<p () m+2]}, By:=B\Bj .

End definition of By, Bs.
It remains to verify the three properties stated in Theorem 4.

Property 1. By, By € suity,(J?, EX,y,).
card Ry < 2 for all b € B; U B» follows by construction. The strategy constantly
0 shows By € suitv(ﬂ,EXm). Let a meta-learner for By return “?” as long
as the initial segment presented consists of zeros only. Afterwards the minimal
consistent index in the numbering described is returned. This yields convergence
to a correct program with no more than m mind changes on all relevant inputs.
Property 2. By isr.e.
This property follows obviously by definition of B and Bj.
Property 8. By U Bs ¢ suit(J?, EX,,).
Assume B; U By € suit(J?,EX,,). Then there exists some i € N, such that
B € suit(J?,EX,,)(S;), i.e. for all b € B there is a numbering 5[’ € P? satisfying
Ry € (EXpn),m(Az.Si(b,z)). Now let b := fp(i). The construction of 1 then
implies Ry ¢ (EXp),m (Az.Si(b, 7)) (details are omitted) — a contradiction. [

Corollary 1. Let C:={b e N | Ry = {p}}}. Then C € suit,(J',EXy) and

1. if I € T\ {BC,BC*}, there is B € suit,(J%,I) such that BUC ¢ suit(J?, ),
2. if I € T\ {BC"}, there is B € suity,(J*, I) such that BUC' ¢ suit,(J*, ),
8. for all T € T there is some B € suity(J', I) such that BUC ¢ suit,(J', I).

Proof. See Examples 2, 3, 4 and the proof of Theorem 4. O

Theorem 1 indicates that regarding the suitability of a union of two descrip-
tion sets it is very promising, if there is a method for separating the two sets



algorithmically, that means if a learner can somehow determine which of the
two sets a given description belongs to. Since in general such a separability is
not attainable, it might be useful to state some properties of appropriate unions
more carefully. To merge two meta-learners for two description sets into a suc-
cessful meta-learner for the union set, it is not really required to find a way of
separating the two sets themselves. It is already sufficient to recognize a descrip-
tion, together with some initial segment of a function to be learned, as some
feasible input corresponding to one determinate description set of the two which
are possible. This property can later on be used to prove the strong separations.

Proposition 2. Let I € T and By,By € suit(I,I) (or suit,(I,I), suit,(I,I)
resp. ). Assume there is a function d € Poy satisfying the following two conditions.

1. d(b, f(0)) =1 for all descriptions b € By and all functions f € Ry,
2. d(b, f(0)) = 0 for all descriptions b € By \ By and all functions f € Ry.

Then By U By € suit(I,I) (suit,(I,I), suit,(I,I) resp.).!

Proof (sketch). Let I € Z, By, B € suit(I, 1) (the idea is the same for suit, (I, I)
and suit, (1, I)). Fix two strategies T1, T» € P?, such that By € suit(I,I)(T}) and
B, € suit(I,I)(T>). On input (b, f[n]) a learner witnessing to By UBsy € suit(1,I)
returns T4 (b, f[n]) if d(b, £(0)) = 1, Tx(b, f[n]) if d(b, f(0)) = 0. O

Without special requirements concerning the intermediate hypotheses or the
mind change complexity, the demands of Proposition 2 can be weakened. For
EX- or BC-learning it is not necessary to recognize feasible inputs corresponding
to a description set at once. It is enough to determine one of the two sets in the
limit from gradually growing feasible information on a function to be learned.

Proposition 3. Let I € {EX,BC,BC"} and By, By € suit(I,I) (or suit, (I, 1),
suity, (I, 1) resp.). Assume some function d € Po1 fulfils the following conditions.

1. V*°n [d(b, f[n]) = 1] for all descriptions b € By and all functions f € Ry,
2. ¥°°n [d(b, f[n]) = 0] for all descriptions b € B3\ By and all functions f € Ry.

Then By U By € suit(I,I) (suit,(1,I), suit,(I,I) resp.).

For a proof a similar strategy as in the verification of Proposition 2 is ad-
equate. Example 2 witnesses to the fact that Proposition 3 does not hold for
I = EX,. Define a function d € Py; on input (b, f[n]) to equal 1, if f[n] = 0"*+1,
and to equal 0, if f[n] # 0"*!. This yields the following properties.

— Ifbe By and f € Ry (i.e. f =0%), then d(b, f[n]) =1 for all n € N.

—Ifbe By \ By, f € Ry (i-e. f =01 for some m € N), then d(b, f[n]) =0
for all but finitely many n € N.

— Bl,BQ S suitw(EXO,EXO).

If Proposition 3 was also true for the criterion I = EXq, then By U By €
suit, (EXo, EXo) would hold - a contradiction to Example 2.

! That the decision of the function d, for any b € B; U By and any f € Ry, does not
depend on the values f(n) for n > 0, may seem rather odd. Indeed a stronger version
of Proposition 2 holds, yet for the purpose of this paper the actual version suffices.



5 Strong Separations of Criteria for Uniform Learning

In the uniform model now a strong separation of I and I’ is expressed in terms
of description sets as follows:

VB, € suit(I, 1) 3Bs € suit(I, I') [B; U B € suit(I, I') \ suit(Z,I)] (1)

or analogously with suit; or suit,. Fortunately such strong separations hold
for any pair of criteria in which the weak separations have been verified. And
it is possible to prove even more; the quantifiers in (1) can be switched. That
means for any strongly separated pair (I,I') there is one fixed description set
B € suit(1, I'") such that for any set B’ € suit(/,I) the union B U B’ belongs to
suit(Z,I"), but no longer to suit(Z, I). So there are special fixed description sets,
which are in some sense typical for a set not suitable for uniform I-learning, but
on the other hand restrictive enough to be suitable for uniform I’-identification
in combination with any description set in suit(7, I'). The proof below Theorem 5
just gives an example for the pair (EX,BC), because other results of this style
can be achieved by similar methods, even for the suit,- and suit,-models.

Theorem 5. Let (I,I') be a pair in {(EXo, CONS), (CONS,EX), (EX,BC)}
U{(EX},EX ;1) | m € N}. Then there is a set B C N satisfying

1. B is recursively enumerable,
2. cardRy <2 forallb € B,
3. if B' € suit(I,I), then BU B’ € suit(I,I') \ suit(l,I).

Moreover, this statement holds for suit; and suit, instead of suit, even if the
second condition is strengthened to card Ry = 1 for all b € B.

Proof for (I,I') = (EX,BC). First the set B is defined via the construction
of a partial-recursive function v and a recursive function fp such that ¢®(® =
(D) for all i € N. The function fp assigns to each integer i some fixed point
value according to the recursion theorem. B will be the value set of fp.

Definition of B. By Proposition 1 there is some rec € R, such that ™) ¢ R
and suit(EX, EX)(p?) C suit(EX, EX)(p"(®) for all i € N. From now on the
notion S; is used instead of (). Next the function ¢y € P* is defined by
constructing a numbering ¢ € P? for any integer i as follows.

Fix b € N. Let a((f’b) = (i), gb(()l’b) (0) = i and go to stage 0. In general, the
construction in stage k (k € N) proceeds in the following way:
Look for the minimal integer m\"" € N which fulfils

Si(b,alP00m ) £ Si(b, al?) or Si(b, 0l 10™ ") £ Si(b, ol

If such an integer does not exist, m%b) is undefined. Then let

(l b)OOm(’ 5)2 (2 b) \L and S (b Oé](cl ,b) Oom(l b)) # Sl(b’ a;:’b))
apt) = Ej AT (’b | and Si(b,al"00m") = S;(b, al"?)

1 if m,g’ R



In addition « klfl) becomes an initial segment of ¢éi’b), ie. (()’ b) [-1]:=a kl+b1): if

,(;H) is defined and of length [; 1/1“ b o ;f7b) 1°° otherwise. Furthermore define
al P00 if m{"? 4
g[}élki)l = w(i b) if mgjb) 1 and S;(b, aki b)OOm(l’b)) # S;(b, a(l b))
alPoom” 420 if m{) | and S;(b, al" oo™y = si(b,a,(j Py
a§j”’)10°° if m{"" 4
Pl = Lyl if m{™ | and S;(b, al"?00m." ”’) = S;(b, ol
Al P10 120 i m{ | and Si(b, oY 00m") # (b, al™?)
If mi bb) exists, then go to stage k + 1. End stage k.
Let g € R satisfy @900 = (D) for all i,b € N By the recursion theorem
there is some fp € R, such that ¢P(® = gog(’ (1) = (fe(@) for all ¢ € N.
Finally let B := {fp(i) | i € N}. End definition of B.

Claim. Let b € B and i € N such that fp(i) = b. Then

1. Ry = {gb} < m{"" is defined for all k € N > for all k € N some

tr € {0, 1} fulfils a(l by C <p0 and {@5, 1, @b 0} = {apo, O om” 103,
2. Ry = {O5 i1, Ppiat = {akl Yoo, Ej b)10°°} <= kis the minimal integer
such that m,(j " is not defined,
3. if agf’ ) is defined for some k € N, then card{r > 1 | a(l b) (r) =2} =k.

These claims follow immediately from the construction; hence it remains to
verify the properties 1 up to 3 stated in the Theorem.
Property 1. B is recursively enumerable.
B is the value set of a recursive function and thus r.e.
Property 2. card Ry < 2 for all b € B.
By Claims 1 and 2 either Ry, = {@}} or Ry = {1, ¢5; o} for some k € N.
Property 3. If B' € suit(EX, EX), then BU B’ € suit(EX, BC) \ suit(EX, EX).
Fix some description set B’ € suit(EX, EX). First B U B’ ¢ suit(EX, EX) will
be verified, afterwards the proof of B U B’ € suit(EX, BC) follows.
Proof of BU B’ ¢ suit(EX, EX). Assume that B U B’ € suit(EX, EX). Then
in particular there exists some total recursive uniform strategy appropriate for
EX-identification of the set B; that means, there is some ¢ € N such that

for all b € B some n*! € P? fulfils R, € EX,m (\r.S;(b,z)) . (2)

Let b := fp(i), i.e. ¢* = (¥ By Claims 1 and 2 it suffices to consider two
cases. ‘
Case (i). Ry = {‘Po} Then for all £ € N, by Claim 1, mgj ) is defined and the

construction yields a Wpom” ©b and S;(b, a,(; )y £ 8, (b, oz(Z D e0me Y for



some t;, € {0,1}. Thus the sequence of hypotheses returned by Az.S;(b, ) on ¢}
diverges, which implies Ry ¢ EX, i (A2.S;(b,r)) in contradiction to (2).

Case (ii). Ry = {@5, 1,050} = {a,(:’b)OOOO,a,(:’b)IOOO} for some k£ € N.
Then by Claim 2 the value mgjb) is not defined. This implies

Si(b,al"”00™) = 8;(b,al") = S;(b,al"”10™) for all m € N .

Thus Si(b, @5 ,1[n]) = Si(b, ¥y 0[n]) for all but finitely many n € N, al-
though @5, | # ©5,,,. Therefore — without influence of the hypothesis space
regarded — the sequence of hypotheses returned by Az.S;(b,z) must converge
to an incorrect program for at least one of the two functions in R;. Hence
Ry ¢ EX, 1 (A2.S;i(b, 7)); again a contradiction to (2).

Both cases lead to a contradiction, so BU B’ ¢ suit(EX, EX) is obtained.
Proof of BUB' € suit(EX, BC). By definition B’ € suit(EX, BC). It is possible to
show that B € suit(EX, BC) and afterwards apply Proposition 2. First a strategy
T € R satisfying Ry € BC»(T') for all b € B is defined as follows: let f € R.
Then T'(f[0]) := 0 and for any n > 0 with f(n) =2, let T(f[n]) := T(f[n — 1]).
If n>0and f(n) # 2, let k:=card{r | 1 <r < nA f(r) =2} and define
T(f[n]) := 2k + 1 in case f[n] = «20% for some segment o and some z > 0.
Otherwise T'(f[n]) := 2k 4+ 2. Ry € BC»(T) for all b € B can be verified with
the help of Claims 1-3. Details are omitted here. So B € suit(EX, BC).

In order to apply Proposition 2 it is necessary to find some d € Py satisfying;:

1. d(b, f(0)) = 1 for all descriptions b € B and all functions f € Ry,
2. d(b, f(0)) = 0 for all descriptions b € B'\ B and all functions f € Ry.

For that purpose let d(b,n) := 1, if fp(n) = b and d(b,n) := 0, if fp(n) # b
(b,n € N). If b € B, f € Ry, the construction of ¢ implies fp(f(0)) = b, so
d(b, f(0)) = 1. If b ¢ B = {fp(¢) | i € N}, then fp(n) # b is obtained for any
n € N; in particular d(b,n) = 0. So BU B’ € suit(EX, BC) by Proposition 2.2 0

According to Theorem 5 it might in some cases be reasonable to give up
certain constraints concerning the inference criterion I, because thus an increase
of learning power can be achieved, no matter what description set in suit(Z, I') has
to be learned. The proof (together with the proof of Proposition 2) indicates, how
to modify a uniform I-learner for an arbitrary set in suit(/, ) into an adequate
suit(I, I')-learner for a proper superset, which does no longer belong to suit (I, I).
Hence this result does not only give the advice to sometimes loosen the learning
criteria, but furthermore provides a method for designing more powerful learners.
The fact that there is a fixed description set, which witnesses to the strong
separation for any description set in suit(I, I), indicates that there exists some
kind of structure for a somehow characteristic description set corresponding to
the class suit(7, I') \ suit(I, I). The structure of such a characteristic set is on the
one hand complex enough to disallow uniform I-learning, but on the other hand

2 Actually Proposition 2 is not needed: since B is r.e., Theorem 1.3 suffices. But in
order to provide also the idea for the omitted parts, a universal method is chosen.



simple enough to enable uniform I'-identification of its union with any arbitrary
description set in suit(7, I).

Theorem 6. There is a description set B C N satisfying

1. B is recursively enumerable,

2. cardRy =1 for all b € B,

3. if B € suit,(BC,BC), then BU B’ € suit,(BC,BC") \ suit-(BC,BC) (or
analogously for suit,, instead of suit ).

The proof is omitted. Theorem 6 is formulated separately from Theorem 5,
because its statement does not hold for the uniform learning model given by
suit(BC,BC) (i.e. without specification of the hypothesis spaces). The reason
is that suit(BC,BC) = {B C N | Ry, € BC forallb € B}, which implies
suit(BC,BC*) = suit(BC,BC) (the proof uses a simple construction of appro-
priate hypothesis spaces). Note that Theorems 5 and 6 yield strong separations
for all pairs (I,I') of learning classes from Z, for which I C I' holds.
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