
Merging Uniform Indutive LearnersSandra ZillesFahbereih InformatikUniversit�at KaiserslauternPostfah 3049D - 67653 Kaiserslauternzilles�informatik.uni-kl.deAbstrat. The fundamental learning model onsidered here is identi�-ation of reursive funtions in the limit as introdued by Gold [8℄, butthe onept is investigated on a meta-level. A set of lasses of reursivefuntions is uniformly learnable under an inferene riterion I, if thereis a single learner, whih synthesizes a learner for eah of these lassesfrom a orresponding desription of the lass. The partiular questiondisussed here is how unions of uniformly learnable sets of suh lassesan still be identi�ed uniformly. Espeially unions of lasses leading tostrong separations of inferene riteria in the uniform model are onsid-ered. The main result is that for any pair (I; I 0) of di�erent infereneriteria onsidered here there exists a �xed set of desriptions of learn-ing problems from I, suh that its union with any uniformly I-learnableolletion is uniformly I 0-learnable, but no longer uniformly I-learnable.1 IntrodutionIndutive Inferene is onerned with algorithmi learning of programs for reur-sive funtions. In the fundamental model of identi�ation in the limit, f. [8℄, alearner suessful for a lass of reursive funtions must eventually �nd a singleorret program for any funtion in the lass from a gradually growing sequeneof its values. By modi�ation of the onstraints the learner has to satisfy severalinferene riteria have been de�ned and ompared with respet to the resultinglearning power, see for example [2, 6, 7℄.It is a quite natural thought to searh for properties that learners in the givenabstrat model have in ommon and thus try to �nd uniform learning methodsadequate for the solution of not only one but perhaps in�nitely many learningproblems. An example for a uniform method is identi�ation by enumeration(f. [8℄). Though this priniple does not yield strategies for all learnable lassesof reursive funtions, it is appropriate for the identi�ation of any reursivelyenumerable lass of reursive funtions, if a orresponding enumeration is known.That means, from eah enumeration of a set of total reursive funtions a pro-gram of a learner for the set of funtions enumerated an be derived. Anotheruniform learning method suessful in some speial hypothesis spaes is tem-porarily onform identi�ation as de�ned in [7℄. In general uniform learning an



be explained as some kind of meta-learning. Instead of onsidering speial strate-gies eah solving a spei� learning problem, the aim is to �nd meta-strategies,whih synthesize these speial learners from a desription of the orrespondinglearning problem. Suh meta-learners reveal a ommon method for learning thelasses of funtions and thus a ommon struture in these lasses. They mightbe helpful in explaining the nature of indutive learning, beause they representsome kind of general identi�ation method. For literature on uniform learningthe reader is espeially referred to [1, 9, 11, 10℄.In [9℄ it is veri�ed, that there are lasses of rather simple sets of reursivefuntions whih do not allow the synthesis of identi�ation strategies. Also modi-�ations of identi�ation in the limit are onsidered. Further results of this nature{ moreover onerning language learning { an be found in [11℄ and [10℄. Variousmodi�ations of uniform language identi�ation in the limit are presented andompared in [1℄. They lead to several separations and nie haraterizations andthus give insight into general methods of language learning.The uniform learning model onsidered here is equivalent to the one de�nedin [9℄, but is investigated in three slightly di�erent variants in order to express thespei� diÆulties in uniform learning in onnetion with the hoie of hypothesisspaes. The sope now is to investigate unions of olletions of learning problems.Given two olletions whih an be identi�ed uniformly under some infereneriterion, is the union still uniformly identi�able? If not, is it identi�able withrespet to some weaker inferene riterion? What properties of learning problemsenable the uniform learnability of unions of suh lasses? Questions of this styleare the main onern throughout the following pages. But why are suh questionsinteresting? The idea is the following: suppose you are given a learnable lass.If you want to understand the nature of learning and the struture of learnablelasses, it seems quite natural to add more and more objets to the lass, untilyou observe that the resulting lass an no longer be identi�ed by a single learner.That means you form the union of two lasses and try to �nd out what unions arestill learnable and what unions are not. For example the set of lasses identi�ablein the limit is not losed under union, as has been veri�ed in [2℄. Now thesame idea is onsidered in the uniform learning model. A partiular issue in theinvestigation of learnability of unions is the strong separation of learning lasses(see below). On the one hand, some simple properties enabling the uniformlearnability of the union of two learnable olletions are presented here; on theother hand examples are given to show that many olletions of very \simple"learning problems do not allow learnability in the union with other olletions.As in the non-uniform indutive inferene model, di�erent inferene lasseshave been ompared with respet to their learning power also in the ontext ofmeta-learning. Most of the hierarhies veri�ed in the lassial model (see [2, 6,7℄) are maintained in the uniform model, see [14℄. Hene it might be reasonableto give up ertain onstraints in the learning model in order to inrease thelearning power. But still, these separations of inferene riteria do not explain,whether any olletion of learning problems uniformly identi�able with respetto a riterion I an be inreased to a superset learnable with respet to some



other riterion, but no longer learnable with respet to I . In partiular it mightgive more insight into the struture of inferene riteria in uniform learningto �nd examples of suh supersets. Thus an aim might be to transfer strongseparation results like those in [5℄ to the meta-learning model. In [5℄ a strongseparation of two inferene lasses I and I 0 means that for any objet lassU 2 I there exists some objet lass V 2 I 0 suh that U [ V 2 I 0 n I (notethat this is not a diret onsequene of the \weak" separation I � I 0). Still,in the meta-learning model, there might exist a olletion of learning problemswhih is uniformly I-learnable, but no superlass of this olletion witnesses toa separation of uniform I 0-learning from uniform I-learning. If it were for somereason important to learn at least this olletion, then loosening the I-onstraintswould no longer inrease the learning power. Now a strong separation of I andI 0 ensures that this annot happen, that means for any olletion of learningproblems uniformly learnable under the riterion I there exists some olletion,suh that the union of both is identi�able under I 0 but not under I . Indeed, suhstrong separations an be presented for several identi�ation riteria { and evenmore: for any pair (I; I 0) of strongly separated riteria there is a �xed olletionof learning problems whih { added to an arbitrary olletion uniformly learnableunder I { yields a olletion appropriate for uniform I 0-learning but no longerappropriate for uniform I-learning. Note that this result is muh stronger thanrequired before. The proofs of the strong separations moreover provide a methodfor hanging a uniform I-learner into an I 0-learner making use of the possibleinrease of learning power, f. [5℄ for similar methods in the non-uniform model.2 PreliminariesFor notions used here without expliit de�nition the reader is referred to [12℄. Nis used to denote the set of non-negative integers. � and � stand for inlusionand proper inlusion of sets. The ardinality of a set X is denoted by ardX . Viasome bijetive total omputable funtion �nite tuples � of integers are identi�edwith elements of N. Given any variable n ranging over N the quanti�er 81nexpresses that the statement quanti�ed is true for all but �nitely many n 2 N.Any total or partial funtion maps elements of N again to elements of N.Reursion theory in general onentrates on partial-reursive funtions, the setof whih is denoted by P . Often the sublass R of all total funtions { alledreursive funtions { is studied. Both notions may also our with a supersriptindiating the number of input values of the funtions onsidered. P01 standsfor the set of partial-reursive funtions returning only values from f0; 1g. Givenf 2 P and n 2 N, the notion f(n) # expresses that f is de�ned on input n, theopposite is denoted by f(n) ". Furthermore f [n℄ is an abbreviation for the tuple(f(0); : : : ; f(n)), if all these values are de�ned. If f; g 2 P and n 2 N, then f =n gmeans that f(x; f(x)) j x � n and f(x) #g = f(x; g(x)) j x � n and g(x) #g.f =� g expresses that for all but �nitely many n 2 N either f(n) and g(n)are both unde�ned or f(n) = g(n). As funtions f; g an be identi�ed with thesequenes of their output values, simpli�ed notions might our, like f = 01 for



the funtion onstantly zero or g = 05 "1 for the funtion whih equals zero forall inputs less than 5 and is unde�ned otherwise. If �; � are tuples of integers,� � f (� � �) expresses that � is an initial segment of the funtion f (of � resp.),and � "1 is alled an initial funtion. If n 2 N, then n = 1 in ase n = 0 andn = 0 otherwise. If  2 P2 and i 2 N, then  i is the funtion ahieved by �xingthe �rst input parameter of  by i. Thus  enumerates the set f i j i 2 Ng � P .From now on ' 2 P3 and � 2 P2 denote �xed aeptable numberings. De�ning'b(x; y) := '(b; x; y) for all b; x; y 2 N yields an enumeration ('b)b2N of alltwo-plae partial-reursive funtions { onomitant with an enumeration of setsPb := f'bi j i 2 Ng. Given b 2 N, the subset Rb := Pb \ R of reursive funtionsis alled the reursive ore of 'b. Assume for example that, for some �xed b 2 Nand all x; y 2 N, '(b; x; y) = 0 if x = 0 or y < x, '(b; x; y) ", otherwise. ThenPb = f01g [ f0i "1j i � 1g and Rb = f01g. A Blum omplexity measure asin [4℄ suggests the notion f(n) #�x to indiate that the omputation of f(n)terminates within up to x steps (for f 2 P , n; x 2 N). If the omputation doesnot terminate or takes more than x steps, then f(n) "�x.The basi learning riterion investigated here is identi�ation in the limit,whih has �rst been studied in [8℄.De�nition 1. A set U � R of reursive funtions is alled identi�able in thelimit i� there is some  2 P2 and a funtion S 2 P suh that for any f 2 U :1. S(f [n℄) is de�ned for all n 2 N (S(f [n℄) is alled hypothesis on f [n℄),2. there is some j 2 N suh that  j = f and S(f [n℄) = j for all but �nitelymany n 2 N.EX is the lass of all sets U identi�able in the limit. The notion U 2 EX (S)shall indiate that S and  are known to ful�l the onditions above.Weakening the onstraints onerning onvergene yields the model of be-haviourally orret learning as de�ned in [2℄. Here the learner may hange itsoutput in�nitely often, as long as eventually the hypotheses are orret.De�nition 2. A set U � R is BC-identi�able i� there is some  2 P2 andsome S 2 P suh that any f 2 U ful�ls  S(f [n℄) = f for all but �nitely manyn; furthermore S(f [n℄) is de�ned for all f 2 U and n 2 N. BC and BC (S) arenotions used as explained in De�nition 1.De�ning several learning models always alls for a omparison of the result-ing identi�ation power. In [2℄ EX is proved to be a proper sublass of BC,i. e. there are lasses of reursive funtions whih are BC-identi�able but notEX-identi�able. Case and Smith [6℄ propose a variant of BC-learning, alledBC-learning with �nitely many anomalies, in whih orret hypotheses are nolonger required. The only restrition here is, that eventually all funtions sug-gested by the learner must have an \almost" orret input-output-behaviour.De�nition 3. A set U � R is BC�-identi�able i�, for some  2 P2 and someS 2 P, any f 2 U satis�es  S(f [n℄) =� f for all but �nitely many n; additionallyS(f [n℄) is de�ned for all f 2 U and n 2 N. BC� and BC� (S) are de�ned asusual.



[6℄ gives a proof for BC � BC� as well as the veri�ation of R 2 BC�(proposed by L. Harrington). In any learning proess aording to the riteriaEX; BC; BC� there is a ertain time, after whih all hypotheses returned mustful�l ertain onditions. But there are no further onstraints as to when thistime is reahed. A restrited learning model with bounds on the number of mindhanges is introdued in [6℄. In this model the learner is allowed only a ertainnumber of hanges in its sequene of hypotheses; in partiular, whenever thisapaity of mind hanges is exhausted, the atual hypothesis must be orret.De�nition 4. Let m 2 N. A set U � R is EXm-learnable i� some  2 P2 andsome S 2 P ful�l the following onditions.1. U 2 EX (S) (where S is additionally permitted to return the sign \?"),2. for all f 2 U there is an nf 2 N suh that S(f [x℄) =? i� x < nf ,3. ardfn 2 N j? 6= S(f [n℄) 6= S(f [n+ 1℄)g � m for all f 2 U .The sets (EXm) (S) and EXm are de�ned as usual. U is identi�able with abounded number of mind hanges i� there is an m 2 N suh that U 2 EXm.By returning \?" in the initial phase the strategy signals its being hesitant inorder not to waste a mind hange. For all boundsm the inlusion EXm � EXm+1is veri�ed in [6℄. Of ourse in the study of learning proesses not only the mindhange omplexity is interesting, but also whether the quality of the intermediatehypotheses an be improved in some sense. A quite natural motivation is todemand that any hypothesis returned by the learner has to be onsistent withthe data seen so far, i. e. it should agree with the known part of the input-output-behaviour of the funtion to be learned, see for example [8, 3, 13℄.De�nition 5. A lass U � R is CONS-identi�able i� it is in EX (S) for some 2 P2 and some S 2 P satisfying  S(f [n℄) =n f for all f 2 U and n 2 N. Theorresponding lasses CONS and CONS (S) are de�ned in the usual way.The demand for onsisteny results in a loss of learning power, that meansCONS � EX, f. [3℄. Moreover EX0 � CONS, but EXm and CONS are inompa-rable for all m � 1 (partly veri�ed in [7℄, the rest follows with similar methods).Note that for all inferene riteria de�ned here { exept for CONS { identi�abil-ity implies identi�ability by a total learner, i. e. whenever there exists a strategyfor a lass to be learned, then there also exists a strategy S 2 R learning thelass. Here onsistent learning is an exeption, as has been veri�ed in [13℄.Throughout the following setions I denotes the set of inferene lasses de-�ned above; I = fEX;BC;BC�;CONSg [ fEXm j m 2 Ng. Moreover, if n 2 N,let Jn := fU � R j ardU � ng. Obviously Jn 2 I for all n 2 N and all I 2 I.3 The Uniform Learning ModelUniform learning is onerned with methods for deriving suessful learners froma desription of a learning problem, whih �rst of all requires a tool for desribing



learning problems. A quite simple way to desribe a lass U of reursive funtionsto be identi�ed is to present some index b of a partial-reursive numbering thereursive ore of whih equals U . Thus any integer b 2 N orresponds to thelass Rb = f'bi j i 2 Ng \ R of reursive funtions, whih is interpreted as alass of objets to be learned. Furthermore any set B of integers orresponds toa olletion of lasses U � R to be learned { eah one desribed by some b 2 B.De�nition 6. Let I 2 I; J � I. A set B � N is suitable for uniform learningwith respet to (J; I) i�1. Rb 2 J for all b 2 B,2. there is a learner S 2 P2 suh that for any desription b 2 B there existssome  2 P2 satisfying Rb 2 I (�x:S(b; x)).suit(J; I) denotes the set of all sets B suitable in that sense. The notion B 2suit(J; I)(S) is used to indiate that S is a learner witnessing to B 2 suit(J; I).So a set of desriptions is identi�ed uniformly by S under (J; I), if eahreursive ore desribed by some b 2 B belongs to the lass J and is identi�edby the learner �x:S(b; x) synthesized by S from b. This de�nition involves somelak of pratiability, beause only the synthesis of learners but not the synthesisof adequate hypothesis spaes is required. Taking aount of this de�ieny it isadvisable also to onsider the following variants of De�nition 6.De�nition 7. Let I 2 I; J � I. Then suit� (J; I) onsists of all sets B 2suit(J; I), for whih there is some learner S 2 P2 suh that Rb 2 I� (�x:S(b; x))for all b 2 B. Furthermore suit'(J; I) is the set of all B 2 suit(J; I), for whihthere exists some S 2 P2 whih ful�ls Rb 2 I'b(�x:S(b; x)) for all b 2 B. Thenotions suit� (J; I)(S) and suit'(J; I)(S) are used by analogy with De�nition 6.Obviously suit'(J; I) � suit� (J; I) � suit(J; I) for all riteria I 2 I, but ingeneral equality of these lasses does not hold (suit� (J;BC�) = suit(J;BC�) isan exeption for any J � BC�, see also [14℄). As in the non-uniform model, iden-ti�ability implies the existene of total strategies, if onsisteny is not required.Proposition 1. Let I 2 InfCONSg; J � I; B � N. Assume B 2 suit(J; I)(suit� (J; I); suit'(J; I)). Then there is a total reursive funtion S suh thatB 2 suit(J; I)(S) (suit� (J; I)(S); suit'(J; I)(S) resp.). Moreover, S an be on-struted uniformly from a program of a orresponding partial-reursive learner.The following example shows that CONS-learning again yields an exeption.There even exists a desription set suitable for CONS-learning in the most re-strited model (suit'-model) but not suitable for uniform learning by a totalstrategy in the least restrited model (suit-model). The proof is omitted.Example 1. The desription set B := fb 2 N j 'b 2 R2g is an element ofsuit'(CONS;CONS), but B =2 suit(CONS;CONS)(S) for any learner S 2 R2.



4 Results on Unions of Suitable Desription SetsAssume two desription sets B1; B2 2 suit(I; I) for a riterion I 2 I are given.The results below onern the question, what properties onerning B1; B2 makethe union of the two sets suitable for uniform learning with respet to I , i. e. whatproperties are suÆient for the satisfation of B1 [ B2 2 suit(I; I). The samequestion is onsidered for suit� or suit' instead of suit. suit(BC�;BC�) andsuit� (BC�;BC�) are losed under union, asR 2 BC�, but in general some furtherondition onerning B1 and B2 is needed, as the following example shows.Example 2. Consider the desription sets B1 = fb 2 N j Rb = f'b0g = f01ggand B2 = fb 2 N j 9m 2 N [Rb = f'b1g = f0m11g℄g. Both B1 and B2 areelements of suit'(J1;EX0), but B1 [ B2 =2 suit� (J1;EX0).Proof. The learner onstantly i � 1 yields Bi 2 suit'(J1;EX0) for i 2 f1; 2g.Assuming B1[B2 2 suit� (J1;EX0) provides a strategy S 2 R2 whih ful�lsRb 2(EX0)� (�x:S(b; x)) for all b 2 B1 [ B2. To reveal a ontradition a desriptionb0 2 B1 [ B2 satisfying Rb0 =2 (EX0)� (�x:S(b0; x)) is onstruted. For thatpurpose it is adequate to de�ne numberings  b uniformly in b 2 N and hoose b0as a �xed point value aording to the reursion theorem, suh that 'b0 =  b0 .Constrution of b0. For eah b 2 N de�ne a funtion  b 2 P2 as follows: let b0(0) := 0. Moreover, let  b0(x+1) equal 0, if S(b; 0x+1) =? or all n � x+1 suhthat S(b; 0n) 2 N ful�l �S(b;0n)(n) "�x+1 or �S(b;0n)(n) 6= 0. Otherwise,  b0(x+1)is unde�ned. If  b0 = 0k "1, there is some minimal integer n � k, suh thatS(b; 0n) 2 N and �S(b;0n)(n) #�k, �S(b;0n)(n) = 0. In this ase let  b1 := 0n11.Otherwise, i. e. if  b0 = 01, let  b1 :="1. In any ase, all funtions  bi with i > 1shall be empty.Sine  b is de�ned uniformly in b, there exists some reursive funtion g,suh that 'g(b) =  b for all b 2 N. Let b0 2 N be a �xed point value of thatfuntion g, i. e. 'b0 = 'g(b0) =  b0 . End onstrution of b0.Note that either Rb0 = f'b00 g = f01g or Rb0 = f'b01 g = f0m11g for somem 2 N. Thus b0 2 B1 [B2. But if Rb0 = f01g, then S(b0; 0n) =? or �S(b0;0n) 6=01 for all n 2 N; if Rb0 = f0m11g for some m 2 N, then S(b; 0m) 2 N and�S(b;0m)(m) = 0 6= 1 = 'b01 (m). Therefore Rb0 =2 (EX0)� (�x:S(b0; x)), whihontradits the hoie of S. Hene B1 [B2 =2 suit� (J1;EX0). �For other learning lasses in I similar negative results are obtained withreursive ores onsisting of one or two elements.Example 3. Consider the desription sets C = fb 2 N j Rb = f'b0gg, as wellas B1 = fb 2 N j ardRb = ardfi j 'bi 2 Rg = 2 ^ 81j ['bj ="1℄g andB2 = fb 2 N j ardfi j 'bi 2 Rg = 1 ^ 81j ['bj ="1℄g. Then C 2 suit'(J1;EX0),B1 2 suit'(J2;CONS), B2 2 suit'(J1;CONS), but C [ B1 =2 suit(J2;EX) andC [ B2 =2 suit� (J1;EX).Example 4. De�ne two sets B1 := fb 2 N j fi j 'bi not initialg = f0gg andB2 := fb 2 N j 9k [fi j 'bi not initialg = fk+1g ^ 8y > k+1 ['by ="1℄℄g. Then



B1 2 suit'(J1;EX0), B2 2 suit'(J1;CONS), but B1 [ B2 =2 suit� (J1;BC) andB1 [ B2 =2 suit'(J1;BC�).The proofs use ideas similar to those in the proof of Example 2. As thereasons for the failure of all strategies for the unions in these examples are notobvious, it might be helpful �rst to ollet some simple properties of desriptionsets enabling the learnability of the orresponding unions.Theorem 1. Let I 2 I and B1; B2 2 suit(I; I) (or suit� (I; I), suit'(I; I) resp.).1. If B1 is reursive, then B1 [ B2 2 suit(I; I) (suit� (I; I), suit'(I; I) resp.).2. If B1; B2 are r. e., then B1 [ B2 2 suit(I; I) (suit� (I; I), suit'(I; I) resp.).3. If I 2 fEX;BC;BC�g and at least one of the sets B1;N n B2 is r. e., thenB1 [ B2 2 suit(I; I) (suit� (I; I), suit'(I; I) resp.).Proof (sketh). Fix I 2 I, B1; B2 2 suit(I; I). For suit� , suit' all proofs proeedanalogously. Choose T1; T2 2 P2 suh that Bi 2 suit(I; I)(Ti) for i 2 f1; 2g.For the proof of the �rst laim let a new learner on input (b; f [n℄) returnT1(b; f [n℄) if b 2 B1, T2(b; f [n℄) otherwise. The seond laim is shown with astrategy searhing for the given b in an enumeration of B1 and in parallel in anenumeration of B2. As soon as b 2 Bi is veri�ed for some i 2 f1; 2g, the learnersimulates Ti. For the third laim, let the new learner simulate T2 until the givendesription is proved to belong to B1 (or N nB2), then simulate T1. �The seond and third laim in Theorem 1 already suggest, that for somelearning lasses in I just one r. e. desription set is not suÆient for the uniformidenti�ability of the union of two suitable desription sets. Indeed this is true,as Theorem 4 will prove, but �rst one more speial ase in whih any union of asuitable set with a suitable r. e. set again yields uniform learnability is regarded.Theorem 2. Assume B1 2 suit(CONS;CONS) and B2 2 suit� (CONS;CONS).If B1 (or N nB2) is r. e., then B1[B2 2 suit(CONS;CONS). If B1 (or NnB2 ) isr. e. and B1 2 suit� (CONS;CONS), then also B1 [ B2 2 suit� (CONS;CONS).Proof (sketh). Let B1 2 suit(CONS;CONS), B2 2 suit� (CONS;CONS), more-over B1 (or N nB2 ) r. e. Then there exist T1; T2 2 P and numberings  [b℄ for b 2B1 with Rb 2 CONS [b℄(�x:T1(b; x)) for b 2 B1 and Rb 2 CONS� (�x:T2(b; x))for b 2 B2. De�ne a new hypothesis spae �[b℄ 2 P2 for eah b 2 N as follows.�[b℄2i =  [b℄i if b 2 B1; �[b℄2i = �i otherwise; �[b℄2i+1 = �i for all i 2 N :If b 2 B2; f 2 Rb; n 2 N, then T2(b; f [n℄) is onsistent for f [n℄ with respetto � . So on input (b; f [n℄) a meta-strategy for B1 [ B2 an test by dove-tailedomputation, whether b 2 B1 (N nB2, resp.) or T2(b; f [n℄) is de�ned and onsis-tent for f [n℄ with respet to � . As long as the latter property is veri�ed �rst, theonsistent index 2T2(b; f [n℄) + 1 is returned; as soon as b 2 B1 (b =2 B2, resp.)has one been veri�ed, the hypotheses returned by �x:2T1(b; x) are used. Theseare onsistent with respet to � , if f 2 Rb. Convergene follows from the hoieof T1, T2. Proving the seond laim does not require new hypothesis spaes. �



The following result gives an example of how weakening the learning inten-tion an lead to positive results without further demands onerning the twodesription sets. The proof is omitted.Theorem 3. Let m; k1; k2 2 N; m � k1; m � k2. If B1 2 suit(EXm;EXk1) andB2 2 suit(EXm;EXk2), then B1 [ B2 2 suit(EXm;EXk1+k2+1).Thus the union of desription sets suitable for learning with a bounded num-ber of mind hanges is still suitable, if a ertain amount of further mind hangesis permitted. But unfortunately, if an inreasing mind hange omplexity is for-bidden, negative results are obtained, sometimes even if one of the desriptionsets is r. e. (in ontrast to Theorems 1 and 2).Theorem 4. Let m 2 N. There exist two desription sets B1; B2 � N suh that1. B1; B2 2 suit'(J2;EXm) (or B1; B2 2 suit'(J1;EXm)),2. B1 is r. e., but3. B1 [ B2 =2 suit(J2;EXm) (B1 [ B2 =2 suit� (J1;EXm), resp.).Proof. Fix m 2 N. First B1; B2 are de�ned by onstruting funtions  2 P andfp 2 R suh that 'fp(i) =  (i;fp(i)) for all i 2 N. The funtion fp assigns to eahinteger i some �xed point value aording to the reursion theorem. B1 [ B2will be the value set of fp. Below just the statements onerning desriptions ofreursive ores in J2 are veri�ed, the proof for desriptions of singleton sets workswith the same method ombined with the ideas in the proof below Example 2.De�nition of B1; B2. By Proposition 1 there is a funtion re 2 R, suh that're(i) 2 R and suit(J2;EXm)('i) � suit(J2;EXm)('re(i)) for all i 2 N. Fromnow on the notion Si is used instead of 're(i). Next the funtion  2 P4 isde�ned by onstruting a numbering  i 2 P3 for any integer i as follows.Fix b 2 N. Go to stage 0.Stage 0.  (i;b)0 (0) := 0. For x 2 N de�ne (i;b)0 (x+ 1) := 8><>:0 if Si(b;  (i;b)0 [y℄) =? for 0 � y � xm+ 2 if x is minimal, suh that Si(b;  (i;b)0 [x℄) 2 N" otherwiseThen  (i;b)0 = 01 i� Si(b; 0n) =? for all n 2 N. Otherwise, if t is minimal withSi(b; 0t) 2 N, note  (i;b)0 = 0t(m + 2) "1. In the latter ase let �(i;b)0 := 0t andgo to stage 1. In the �rst ase �(i;b)0 " and stage 1 is not reahed. End stage 0.Stage k (1 � k � m). If l denotes the length of �(i;b)k�1 , let  (i;b)2k�1[l � 1℄ = (i;b)2k [l� 1℄ = �(i;b)k�1 . For all x � l de�ne (i;b)2k�1(x) :=8>>>>>><>>>>>>:k � 1 if Si(b; �(i;b)k�1ry) = Si(b; �(i;b)k�1)for 0 � y � x� l and for all r 2 fk � 1; kgm+ 2 if x is minimal, suh that Si(b; �(i;b)k�1ry) 6= Si(b; �(i;b)k�1)for y = x� l and some r 2 fk � 1; kg" otherwise



 (i;b)2k (x) :=8><>:k if  (i;b)2k�1(x) = k � 1m+ 2 if  (i;b)2k�1(x) = m+ 2" otherwiseNote that  (i;b)2k�1 = �(i;b)k�1(k � 1)1 i�  (i;b)2k = �(i;b)k�1k1 i�Si(b; �(i;b)k�1) = Si(b; �(i;b)k�1(k � 1)n) = Si(b; �(i;b)k�1kn) for all n 2 N :Otherwise, if t is minimal, suh that Si(b; �(i;b)k�1) 6= Si(b; �(i;b)k�1rt) for some r 2fk�1; kg, then  (i;b)2k�1 = �(i;b)k�1(k�1)t(m+2) "1 and  (i;b)2k = �(i;b)k�1kt(m+2) "1.In the latter ase let �(i;b)k := �(i;b)k�1rt and go to stage k+1. In the �rst ase �(i;b)kis unde�ned and stage k + 1 is not reahed. End stage k.Stage m + 1.  (i;b)2m+1 = �(i;b)m m1,  (i;b)2m+2 = �(i;b)m (m + 1)1,  (i;b)x ="1 for x >2m+ 2. End stage m+ 1.Next let g 2 R be a funtion satisfying 'g(i;b) =  (i;b) for all i; b 2 N. Bythe reursion theorem there is a funtion fp 2 R, suh that 'fp(i) = 'g(i;fp(i)) = (i;fp(i)) for all i 2 N. De�ne B := ffp(i) j i 2 Ng and �nally letB1 := ffp(i) j i 2 N ^ 9x 2 N ['fp(i)0 (x) = m+ 2℄g; B2 := B nB1 :End de�nition of B1; B2.It remains to verify the three properties stated in Theorem 4.Property 1. B1; B2 2 suit'(J2;EXm).ardRb � 2 for all b 2 B1 [B2 follows by onstrution. The strategy onstantly0 shows B2 2 suit'(J2;EXm). Let a meta-learner for B1 return \?" as longas the initial segment presented onsists of zeros only. Afterwards the minimalonsistent index in the numbering desribed is returned. This yields onvergeneto a orret program with no more than m mind hanges on all relevant inputs.Property 2. B1 is r. e.This property follows obviously by de�nition of B and B1.Property 3. B1 [ B2 =2 suit(J2;EXm).Assume B1 [ B2 2 suit(J2;EXm). Then there exists some i 2 N, suh thatB 2 suit(J2;EXm)(Si), i. e. for all b 2 B there is a numbering �[b℄ 2 P2 satisfyingRb 2 (EXm)�[b℄(�x:Si(b; x)). Now let b := fp(i). The onstrution of  thenimplies Rb =2 (EXm)�[b℄(�x:Si(b; x)) (details are omitted) { a ontradition. �Corollary 1. Let C := fb 2 N j Rb = f'b0gg. Then C 2 suit'(J1;EX0) and1. if I 2 I nfBC;BC�g, there is B 2 suit'(J2; I) suh that B[C =2 suit(J2; I),2. if I 2 I n fBC�g, there is B 2 suit'(J1; I) suh that B [ C =2 suit� (J1; I),3. for all I 2 I there is some B 2 suit'(J1; I) suh that B [ C =2 suit'(J1; I).Proof. See Examples 2, 3, 4 and the proof of Theorem 4. �Theorem 1 indiates that regarding the suitability of a union of two desrip-tion sets it is very promising, if there is a method for separating the two sets



algorithmially, that means if a learner an somehow determine whih of thetwo sets a given desription belongs to. Sine in general suh a separability isnot attainable, it might be useful to state some properties of appropriate unionsmore arefully. To merge two meta-learners for two desription sets into a su-essful meta-learner for the union set, it is not really required to �nd a way ofseparating the two sets themselves. It is already suÆient to reognize a desrip-tion, together with some initial segment of a funtion to be learned, as somefeasible input orresponding to one determinate desription set of the two whihare possible. This property an later on be used to prove the strong separations.Proposition 2. Let I 2 I and B1; B2 2 suit(I; I) (or suit� (I; I), suit'(I; I)resp.). Assume there is a funtion d 2 P01 satisfying the following two onditions.1. d(b; f(0)) = 1 for all desriptions b 2 B1 and all funtions f 2 Rb,2. d(b; f(0)) = 0 for all desriptions b 2 B2 nB1 and all funtions f 2 Rb.Then B1 [ B2 2 suit(I; I) (suit� (I; I), suit'(I; I) resp.).1Proof (sketh). Let I 2 I; B1; B2 2 suit(I; I) (the idea is the same for suit� (I; I)and suit'(I; I)). Fix two strategies T1; T2 2 P2, suh that B1 2 suit(I; I)(T1) andB2 2 suit(I; I)(T2). On input (b; f [n℄) a learner witnessing to B1[B2 2 suit(I; I)returns T1(b; f [n℄) if d(b; f(0)) = 1, T2(b; f [n℄) if d(b; f(0)) = 0. �Without speial requirements onerning the intermediate hypotheses or themind hange omplexity, the demands of Proposition 2 an be weakened. ForEX- or BC-learning it is not neessary to reognize feasible inputs orrespondingto a desription set at one. It is enough to determine one of the two sets in thelimit from gradually growing feasible information on a funtion to be learned.Proposition 3. Let I 2 fEX;BC;BC�g and B1; B2 2 suit(I; I) (or suit� (I; I),suit'(I; I) resp.). Assume some funtion d 2 P01 ful�ls the following onditions.1. 81n [d(b; f [n℄) = 1℄ for all desriptions b 2 B1 and all funtions f 2 Rb,2. 81n [d(b; f [n℄) = 0℄ for all desriptions b 2 B2nB1 and all funtions f 2 Rb.Then B1 [ B2 2 suit(I; I) (suit� (I; I), suit'(I; I) resp.).For a proof a similar strategy as in the veri�ation of Proposition 2 is ad-equate. Example 2 witnesses to the fat that Proposition 3 does not hold forI = EX0. De�ne a funtion d 2 P01 on input (b; f [n℄) to equal 1, if f [n℄ = 0n+1,and to equal 0, if f [n℄ 6= 0n+1. This yields the following properties.{ If b 2 B1 and f 2 Rb (i. e. f = 01), then d(b; f [n℄) = 1 for all n 2 N.{ If b 2 B2 nB1, f 2 Rb (i. e. f = 0m11 for some m 2 N), then d(b; f [n℄) = 0for all but �nitely many n 2 N.{ B1; B2 2 suit'(EX0;EX0).If Proposition 3 was also true for the riterion I = EX0, then B1 [ B2 2suit'(EX0;EX0) would hold { a ontradition to Example 2.1 That the deision of the funtion d, for any b 2 B1 [ B2 and any f 2 Rb, does notdepend on the values f(n) for n > 0, may seem rather odd. Indeed a stronger versionof Proposition 2 holds, yet for the purpose of this paper the atual version suÆes.



5 Strong Separations of Criteria for Uniform LearningIn the uniform model now a strong separation of I and I 0 is expressed in termsof desription sets as follows:8B1 2 suit(I; I) 9B2 2 suit(I; I 0) [B1 [ B2 2 suit(I; I 0) n suit(I; I)℄ (1)or analogously with suit� or suit'. Fortunately suh strong separations holdfor any pair of riteria in whih the weak separations have been veri�ed. Andit is possible to prove even more; the quanti�ers in (1) an be swithed. Thatmeans for any strongly separated pair (I; I 0) there is one �xed desription setB 2 suit(I; I 0) suh that for any set B0 2 suit(I; I) the union B [ B0 belongs tosuit(I; I 0), but no longer to suit(I; I). So there are speial �xed desription sets,whih are in some sense typial for a set not suitable for uniform I-learning, buton the other hand restritive enough to be suitable for uniform I 0-identi�ationin ombination with any desription set in suit(I; I). The proof below Theorem 5just gives an example for the pair (EX;BC), beause other results of this stylean be ahieved by similar methods, even for the suit� - and suit'-models.Theorem 5. Let (I; I 0) be a pair in f(EX0;CONS); (CONS;EX); (EX;BC)g[f(EXm;EXm+1) j m 2 Ng. Then there is a set B � N satisfying1. B is reursively enumerable,2. ardRb � 2 for all b 2 B,3. if B0 2 suit(I; I), then B [ B0 2 suit(I; I 0) n suit(I; I).Moreover, this statement holds for suit� and suit' instead of suit, even if theseond ondition is strengthened to ardRb = 1 for all b 2 B.Proof for (I; I 0) = (EX;BC). First the set B is de�ned via the onstrutionof a partial-reursive funtion  and a reursive funtion fp suh that 'fp(i) = (i;fp(i)) for all i 2 N. The funtion fp assigns to eah integer i some �xed pointvalue aording to the reursion theorem. B will be the value set of fp.De�nition of B. By Proposition 1 there is some re 2 R, suh that 're(i) 2 Rand suit(EX;EX)('i) � suit(EX;EX)('re(i)) for all i 2 N. From now on thenotion Si is used instead of 're(i). Next the funtion  2 P4 is de�ned byonstruting a numbering  i 2 P3 for any integer i as follows.Fix b 2 N. Let �(i;b)0 := (i);  (i;b)0 (0) = i and go to stage 0. In general, theonstrution in stage k (k 2 N) proeeds in the following way:Look for the minimal integer m(i;b)k 2 N whih ful�lsSi(b; �(i;b)k 00m(i;b)k ) 6= Si(b; �(i;b)k ) or Si(b; �(i;b)k 10m(i;b)k ) 6= Si(b; �(i;b)k ) :If suh an integer does not exist, m(i;b)k is unde�ned. Then let�(i;b)k+1 := 8><>:�(i;b)k 00m(i;b)k 2 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) 6= Si(b; �(i;b)k )�(i;b)k 10m(i;b)k 2 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) = Si(b; �(i;b)k )" if m(i;b)k "



In addition �(i;b)k+1 beomes an initial segment of  (i;b)0 , i. e.  (i;b)0 [l�1℄ := �(i;b)k+1 , if�(i;b)k+1 is de�ned and of length l;  (i;b)0 := �(i;b)k "1 otherwise. Furthermore de�ne (i;b)2k+1 := 8><>:�(i;b)k 001 if m(i;b)k " (i;b)0 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) 6= Si(b; �(i;b)k )�(i;b)k 00m(i;b)k "1 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) = Si(b; �(i;b)k ) (i;b)2k+2 := 8><>:�(i;b)k 101 if m(i;b)k " (i;b)0 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) = Si(b; �(i;b)k )�(i;b)k 10m(i;b)k "1 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) 6= Si(b; �(i;b)k )If m(i;b)k exists, then go to stage k + 1. End stage k.Let g 2 R satisfy 'g(i;b) =  (i;b) for all i; b 2 N. By the reursion theoremthere is some fp 2 R, suh that 'fp(i) = 'g(i;fp(i)) =  (i;fp(i)) for all i 2 N.Finally let B := ffp(i) j i 2 Ng. End de�nition of B.Claim. Let b 2 B and i 2 N suh that fp(i) = b. Then1. Rb = f'b0g () m(i;b)k is de�ned for all k 2 N () for all k 2 N sometk 2 f0; 1g ful�ls �(i;b)k tk � 'b0 and f'b2k+1; 'b2k+2g = f'b0; �(i;b)k tk0m(i;b)k "1g.2. Rb = f'b2k+1; 'b2k+2g = f�(i;b)k 001; �(i;b)k 101g () k is the minimal integersuh that m(i;b)k is not de�ned,3. if �(i;b)k is de�ned for some k 2 N, then ardfr � 1 j �(i;b)k (r) = 2g = k.These laims follow immediately from the onstrution; hene it remains toverify the properties 1 up to 3 stated in the Theorem.Property 1. B is reursively enumerable.B is the value set of a reursive funtion and thus r. e.Property 2. ardRb � 2 for all b 2 B.By Claims 1 and 2 either Rb = f'b0g or Rb = f'b2k+1; 'b2k+2g for some k 2 N.Property 3. If B0 2 suit(EX;EX), then B [B0 2 suit(EX;BC) n suit(EX;EX).Fix some desription set B0 2 suit(EX;EX). First B [ B0 =2 suit(EX;EX) willbe veri�ed, afterwards the proof of B [ B0 2 suit(EX;BC) follows.Proof of B [ B0 =2 suit(EX;EX). Assume that B [ B0 2 suit(EX;EX). Thenin partiular there exists some total reursive uniform strategy appropriate forEX-identi�ation of the set B; that means, there is some i 2 N suh thatfor all b 2 B some �[b℄ 2 P2 ful�ls Rb 2 EX�[b℄(�x:Si(b; x)) : (2)Let b := fp(i), i. e. 'b =  (i;b). By Claims 1 and 2 it suÆes to onsider twoases.Case (i). Rb = f'b0g. Then for all k 2 N, by Claim 1, m(i;b)k is de�ned and theonstrution yields �(i;b)k tk0m(i;b)k � 'b0 and Si(b; �(i;b)k ) 6= Si(b; �(i;b)k tk0m(i;b)k ) for



some tk 2 f0; 1g. Thus the sequene of hypotheses returned by �x:Si(b; x) on 'b0diverges, whih implies Rb =2 EX�[b℄(�x:Si(b; x)) in ontradition to (2).Case (ii). Rb = f'b2k+1; 'b2k+2g = f�(i;b)k 001; �(i;b)k 101g for some k 2 N.Then by Claim 2 the value m(i;b)k is not de�ned. This impliesSi(b; �(i;b)k 00m) = Si(b; �(i;b)k ) = Si(b; �(i;b)k 10m) for all m 2 N :Thus Si(b; 'b2k+1[n℄) = Si(b; 'b2k+2[n℄) for all but �nitely many n 2 N, al-though 'b2k+1 6= 'b2k+2. Therefore { without inuene of the hypothesis spaeregarded { the sequene of hypotheses returned by �x:Si(b; x) must onvergeto an inorret program for at least one of the two funtions in Rb. HeneRb =2 EX�[b℄(�x:Si(b; x)); again a ontradition to (2).Both ases lead to a ontradition, so B [ B0 =2 suit(EX;EX) is obtained.Proof of B[B0 2 suit(EX;BC). By de�nition B0 2 suit(EX;BC). It is possible toshow that B 2 suit(EX;BC) and afterwards apply Proposition 2. First a strategyT 2 R satisfying Rb 2 BC'b(T ) for all b 2 B is de�ned as follows: let f 2 R.Then T (f [0℄) := 0 and for any n > 0 with f(n) = 2, let T (f [n℄) := T (f [n� 1℄).If n > 0 and f(n) 6= 2, let k := ardfr j 1 � r � n ^ f(r) = 2g and de�neT (f [n℄) := 2k + 1 in ase f [n℄ = �20x for some segment � and some x > 0.Otherwise T (f [n℄) := 2k + 2. Rb 2 BC'b(T ) for all b 2 B an be veri�ed withthe help of Claims 1{3. Details are omitted here. So B 2 suit(EX;BC).In order to apply Proposition 2 it is neessary to �nd some d 2 P01 satisfying:1. d(b; f(0)) = 1 for all desriptions b 2 B and all funtions f 2 Rb,2. d(b; f(0)) = 0 for all desriptions b 2 B0 nB and all funtions f 2 Rb.For that purpose let d(b; n) := 1, if fp(n) = b and d(b; n) := 0, if fp(n) 6= b(b; n 2 N). If b 2 B; f 2 Rb, the onstrution of  implies fp(f(0)) = b, sod(b; f(0)) = 1. If b =2 B = ffp(i) j i 2 Ng, then fp(n) 6= b is obtained for anyn 2 N; in partiular d(b; n) = 0. So B [B0 2 suit(EX;BC) by Proposition 2.2 �Aording to Theorem 5 it might in some ases be reasonable to give upertain onstraints onerning the inferene riterion I , beause thus an inreaseof learning power an be ahieved, no matter what desription set in suit(I; I) hasto be learned. The proof (together with the proof of Proposition 2) indiates, howto modify a uniform I-learner for an arbitrary set in suit(I; I) into an adequatesuit(I; I 0)-learner for a proper superset, whih does no longer belong to suit(I; I).Hene this result does not only give the advie to sometimes loosen the learningriteria, but furthermore provides a method for designing more powerful learners.The fat that there is a �xed desription set, whih witnesses to the strongseparation for any desription set in suit(I; I), indiates that there exists somekind of struture for a somehow harateristi desription set orresponding tothe lass suit(I; I 0)nsuit(I; I). The struture of suh a harateristi set is on theone hand omplex enough to disallow uniform I-learning, but on the other hand2 Atually Proposition 2 is not needed: sine B is r. e., Theorem 1.3 suÆes. But inorder to provide also the idea for the omitted parts, a universal method is hosen.
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