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t. The fundamental learning model 
onsidered here is identi�-
ation of re
ursive fun
tions in the limit as introdu
ed by Gold [8℄, butthe 
on
ept is investigated on a meta-level. A set of 
lasses of re
ursivefun
tions is uniformly learnable under an inferen
e 
riterion I, if thereis a single learner, whi
h synthesizes a learner for ea
h of these 
lassesfrom a 
orresponding des
ription of the 
lass. The parti
ular questiondis
ussed here is how unions of uniformly learnable sets of su
h 
lasses
an still be identi�ed uniformly. Espe
ially unions of 
lasses leading tostrong separations of inferen
e 
riteria in the uniform model are 
onsid-ered. The main result is that for any pair (I; I 0) of di�erent inferen
e
riteria 
onsidered here there exists a �xed set of des
riptions of learn-ing problems from I, su
h that its union with any uniformly I-learnable
olle
tion is uniformly I 0-learnable, but no longer uniformly I-learnable.1 Introdu
tionIndu
tive Inferen
e is 
on
erned with algorithmi
 learning of programs for re
ur-sive fun
tions. In the fundamental model of identi�
ation in the limit, 
f. [8℄, alearner su

essful for a 
lass of re
ursive fun
tions must eventually �nd a single
orre
t program for any fun
tion in the 
lass from a gradually growing sequen
eof its values. By modi�
ation of the 
onstraints the learner has to satisfy severalinferen
e 
riteria have been de�ned and 
ompared with respe
t to the resultinglearning power, see for example [2, 6, 7℄.It is a quite natural thought to sear
h for properties that learners in the givenabstra
t model have in 
ommon and thus try to �nd uniform learning methodsadequate for the solution of not only one but perhaps in�nitely many learningproblems. An example for a uniform method is identi�
ation by enumeration(
f. [8℄). Though this prin
iple does not yield strategies for all learnable 
lassesof re
ursive fun
tions, it is appropriate for the identi�
ation of any re
ursivelyenumerable 
lass of re
ursive fun
tions, if a 
orresponding enumeration is known.That means, from ea
h enumeration of a set of total re
ursive fun
tions a pro-gram of a learner for the set of fun
tions enumerated 
an be derived. Anotheruniform learning method su

essful in some spe
ial hypothesis spa
es is tem-porarily 
onform identi�
ation as de�ned in [7℄. In general uniform learning 
an



be explained as some kind of meta-learning. Instead of 
onsidering spe
ial strate-gies ea
h solving a spe
i�
 learning problem, the aim is to �nd meta-strategies,whi
h synthesize these spe
ial learners from a des
ription of the 
orrespondinglearning problem. Su
h meta-learners reveal a 
ommon method for learning the
lasses of fun
tions and thus a 
ommon stru
ture in these 
lasses. They mightbe helpful in explaining the nature of indu
tive learning, be
ause they representsome kind of general identi�
ation method. For literature on uniform learningthe reader is espe
ially referred to [1, 9, 11, 10℄.In [9℄ it is veri�ed, that there are 
lasses of rather simple sets of re
ursivefun
tions whi
h do not allow the synthesis of identi�
ation strategies. Also modi-�
ations of identi�
ation in the limit are 
onsidered. Further results of this nature{ moreover 
on
erning language learning { 
an be found in [11℄ and [10℄. Variousmodi�
ations of uniform language identi�
ation in the limit are presented and
ompared in [1℄. They lead to several separations and ni
e 
hara
terizations andthus give insight into general methods of language learning.The uniform learning model 
onsidered here is equivalent to the one de�nedin [9℄, but is investigated in three slightly di�erent variants in order to express thespe
i�
 diÆ
ulties in uniform learning in 
onne
tion with the 
hoi
e of hypothesisspa
es. The s
ope now is to investigate unions of 
olle
tions of learning problems.Given two 
olle
tions whi
h 
an be identi�ed uniformly under some inferen
e
riterion, is the union still uniformly identi�able? If not, is it identi�able withrespe
t to some weaker inferen
e 
riterion? What properties of learning problemsenable the uniform learnability of unions of su
h 
lasses? Questions of this styleare the main 
on
ern throughout the following pages. But why are su
h questionsinteresting? The idea is the following: suppose you are given a learnable 
lass.If you want to understand the nature of learning and the stru
ture of learnable
lasses, it seems quite natural to add more and more obje
ts to the 
lass, untilyou observe that the resulting 
lass 
an no longer be identi�ed by a single learner.That means you form the union of two 
lasses and try to �nd out what unions arestill learnable and what unions are not. For example the set of 
lasses identi�ablein the limit is not 
losed under union, as has been veri�ed in [2℄. Now thesame idea is 
onsidered in the uniform learning model. A parti
ular issue in theinvestigation of learnability of unions is the strong separation of learning 
lasses(see below). On the one hand, some simple properties enabling the uniformlearnability of the union of two learnable 
olle
tions are presented here; on theother hand examples are given to show that many 
olle
tions of very \simple"learning problems do not allow learnability in the union with other 
olle
tions.As in the non-uniform indu
tive inferen
e model, di�erent inferen
e 
lasseshave been 
ompared with respe
t to their learning power also in the 
ontext ofmeta-learning. Most of the hierar
hies veri�ed in the 
lassi
al model (see [2, 6,7℄) are maintained in the uniform model, see [14℄. Hen
e it might be reasonableto give up 
ertain 
onstraints in the learning model in order to in
rease thelearning power. But still, these separations of inferen
e 
riteria do not explain,whether any 
olle
tion of learning problems uniformly identi�able with respe
tto a 
riterion I 
an be in
reased to a superset learnable with respe
t to some



other 
riterion, but no longer learnable with respe
t to I . In parti
ular it mightgive more insight into the stru
ture of inferen
e 
riteria in uniform learningto �nd examples of su
h supersets. Thus an aim might be to transfer strongseparation results like those in [5℄ to the meta-learning model. In [5℄ a strongseparation of two inferen
e 
lasses I and I 0 means that for any obje
t 
lassU 2 I there exists some obje
t 
lass V 2 I 0 su
h that U [ V 2 I 0 n I (notethat this is not a dire
t 
onsequen
e of the \weak" separation I � I 0). Still,in the meta-learning model, there might exist a 
olle
tion of learning problemswhi
h is uniformly I-learnable, but no super
lass of this 
olle
tion witnesses toa separation of uniform I 0-learning from uniform I-learning. If it were for somereason important to learn at least this 
olle
tion, then loosening the I-
onstraintswould no longer in
rease the learning power. Now a strong separation of I andI 0 ensures that this 
annot happen, that means for any 
olle
tion of learningproblems uniformly learnable under the 
riterion I there exists some 
olle
tion,su
h that the union of both is identi�able under I 0 but not under I . Indeed, su
hstrong separations 
an be presented for several identi�
ation 
riteria { and evenmore: for any pair (I; I 0) of strongly separated 
riteria there is a �xed 
olle
tionof learning problems whi
h { added to an arbitrary 
olle
tion uniformly learnableunder I { yields a 
olle
tion appropriate for uniform I 0-learning but no longerappropriate for uniform I-learning. Note that this result is mu
h stronger thanrequired before. The proofs of the strong separations moreover provide a methodfor 
hanging a uniform I-learner into an I 0-learner making use of the possiblein
rease of learning power, 
f. [5℄ for similar methods in the non-uniform model.2 PreliminariesFor notions used here without expli
it de�nition the reader is referred to [12℄. Nis used to denote the set of non-negative integers. � and � stand for in
lusionand proper in
lusion of sets. The 
ardinality of a set X is denoted by 
ardX . Viasome bije
tive total 
omputable fun
tion �nite tuples � of integers are identi�edwith elements of N. Given any variable n ranging over N the quanti�er 81nexpresses that the statement quanti�ed is true for all but �nitely many n 2 N.Any total or partial fun
tion maps elements of N again to elements of N.Re
ursion theory in general 
on
entrates on partial-re
ursive fun
tions, the setof whi
h is denoted by P . Often the sub
lass R of all total fun
tions { 
alledre
ursive fun
tions { is studied. Both notions may also o

ur with a supers
riptindi
ating the number of input values of the fun
tions 
onsidered. P01 standsfor the set of partial-re
ursive fun
tions returning only values from f0; 1g. Givenf 2 P and n 2 N, the notion f(n) # expresses that f is de�ned on input n, theopposite is denoted by f(n) ". Furthermore f [n℄ is an abbreviation for the tuple(f(0); : : : ; f(n)), if all these values are de�ned. If f; g 2 P and n 2 N, then f =n gmeans that f(x; f(x)) j x � n and f(x) #g = f(x; g(x)) j x � n and g(x) #g.f =� g expresses that for all but �nitely many n 2 N either f(n) and g(n)are both unde�ned or f(n) = g(n). As fun
tions f; g 
an be identi�ed with thesequen
es of their output values, simpli�ed notions might o

ur, like f = 01 for



the fun
tion 
onstantly zero or g = 05 "1 for the fun
tion whi
h equals zero forall inputs less than 5 and is unde�ned otherwise. If �; � are tuples of integers,� � f (� � �) expresses that � is an initial segment of the fun
tion f (of � resp.),and � "1 is 
alled an initial fun
tion. If n 2 N, then n = 1 in 
ase n = 0 andn = 0 otherwise. If  2 P2 and i 2 N, then  i is the fun
tion a
hieved by �xingthe �rst input parameter of  by i. Thus  enumerates the set f i j i 2 Ng � P .From now on ' 2 P3 and � 2 P2 denote �xed a

eptable numberings. De�ning'b(x; y) := '(b; x; y) for all b; x; y 2 N yields an enumeration ('b)b2N of alltwo-pla
e partial-re
ursive fun
tions { 
on
omitant with an enumeration of setsPb := f'bi j i 2 Ng. Given b 2 N, the subset Rb := Pb \ R of re
ursive fun
tionsis 
alled the re
ursive 
ore of 'b. Assume for example that, for some �xed b 2 Nand all x; y 2 N, '(b; x; y) = 0 if x = 0 or y < x, '(b; x; y) ", otherwise. ThenPb = f01g [ f0i "1j i � 1g and Rb = f01g. A Blum 
omplexity measure asin [4℄ suggests the notion f(n) #�x to indi
ate that the 
omputation of f(n)terminates within up to x steps (for f 2 P , n; x 2 N). If the 
omputation doesnot terminate or takes more than x steps, then f(n) "�x.The basi
 learning 
riterion investigated here is identi�
ation in the limit,whi
h has �rst been studied in [8℄.De�nition 1. A set U � R of re
ursive fun
tions is 
alled identi�able in thelimit i� there is some  2 P2 and a fun
tion S 2 P su
h that for any f 2 U :1. S(f [n℄) is de�ned for all n 2 N (S(f [n℄) is 
alled hypothesis on f [n℄),2. there is some j 2 N su
h that  j = f and S(f [n℄) = j for all but �nitelymany n 2 N.EX is the 
lass of all sets U identi�able in the limit. The notion U 2 EX (S)shall indi
ate that S and  are known to ful�l the 
onditions above.Weakening the 
onstraints 
on
erning 
onvergen
e yields the model of be-haviourally 
orre
t learning as de�ned in [2℄. Here the learner may 
hange itsoutput in�nitely often, as long as eventually the hypotheses are 
orre
t.De�nition 2. A set U � R is BC-identi�able i� there is some  2 P2 andsome S 2 P su
h that any f 2 U ful�ls  S(f [n℄) = f for all but �nitely manyn; furthermore S(f [n℄) is de�ned for all f 2 U and n 2 N. BC and BC (S) arenotions used as explained in De�nition 1.De�ning several learning models always 
alls for a 
omparison of the result-ing identi�
ation power. In [2℄ EX is proved to be a proper sub
lass of BC,i. e. there are 
lasses of re
ursive fun
tions whi
h are BC-identi�able but notEX-identi�able. Case and Smith [6℄ propose a variant of BC-learning, 
alledBC-learning with �nitely many anomalies, in whi
h 
orre
t hypotheses are nolonger required. The only restri
tion here is, that eventually all fun
tions sug-gested by the learner must have an \almost" 
orre
t input-output-behaviour.De�nition 3. A set U � R is BC�-identi�able i�, for some  2 P2 and someS 2 P, any f 2 U satis�es  S(f [n℄) =� f for all but �nitely many n; additionallyS(f [n℄) is de�ned for all f 2 U and n 2 N. BC� and BC� (S) are de�ned asusual.



[6℄ gives a proof for BC � BC� as well as the veri�
ation of R 2 BC�(proposed by L. Harrington). In any learning pro
ess a

ording to the 
riteriaEX; BC; BC� there is a 
ertain time, after whi
h all hypotheses returned mustful�l 
ertain 
onditions. But there are no further 
onstraints as to when thistime is rea
hed. A restri
ted learning model with bounds on the number of mind
hanges is introdu
ed in [6℄. In this model the learner is allowed only a 
ertainnumber of 
hanges in its sequen
e of hypotheses; in parti
ular, whenever this
apa
ity of mind 
hanges is exhausted, the a
tual hypothesis must be 
orre
t.De�nition 4. Let m 2 N. A set U � R is EXm-learnable i� some  2 P2 andsome S 2 P ful�l the following 
onditions.1. U 2 EX (S) (where S is additionally permitted to return the sign \?"),2. for all f 2 U there is an nf 2 N su
h that S(f [x℄) =? i� x < nf ,3. 
ardfn 2 N j? 6= S(f [n℄) 6= S(f [n+ 1℄)g � m for all f 2 U .The sets (EXm) (S) and EXm are de�ned as usual. U is identi�able with abounded number of mind 
hanges i� there is an m 2 N su
h that U 2 EXm.By returning \?" in the initial phase the strategy signals its being hesitant inorder not to waste a mind 
hange. For all boundsm the in
lusion EXm � EXm+1is veri�ed in [6℄. Of 
ourse in the study of learning pro
esses not only the mind
hange 
omplexity is interesting, but also whether the quality of the intermediatehypotheses 
an be improved in some sense. A quite natural motivation is todemand that any hypothesis returned by the learner has to be 
onsistent withthe data seen so far, i. e. it should agree with the known part of the input-output-behaviour of the fun
tion to be learned, see for example [8, 3, 13℄.De�nition 5. A 
lass U � R is CONS-identi�able i� it is in EX (S) for some 2 P2 and some S 2 P satisfying  S(f [n℄) =n f for all f 2 U and n 2 N. The
orresponding 
lasses CONS and CONS (S) are de�ned in the usual way.The demand for 
onsisten
y results in a loss of learning power, that meansCONS � EX, 
f. [3℄. Moreover EX0 � CONS, but EXm and CONS are in
ompa-rable for all m � 1 (partly veri�ed in [7℄, the rest follows with similar methods).Note that for all inferen
e 
riteria de�ned here { ex
ept for CONS { identi�abil-ity implies identi�ability by a total learner, i. e. whenever there exists a strategyfor a 
lass to be learned, then there also exists a strategy S 2 R learning the
lass. Here 
onsistent learning is an ex
eption, as has been veri�ed in [13℄.Throughout the following se
tions I denotes the set of inferen
e 
lasses de-�ned above; I = fEX;BC;BC�;CONSg [ fEXm j m 2 Ng. Moreover, if n 2 N,let Jn := fU � R j 
ardU � ng. Obviously Jn 2 I for all n 2 N and all I 2 I.3 The Uniform Learning ModelUniform learning is 
on
erned with methods for deriving su

essful learners froma des
ription of a learning problem, whi
h �rst of all requires a tool for des
ribing



learning problems. A quite simple way to des
ribe a 
lass U of re
ursive fun
tionsto be identi�ed is to present some index b of a partial-re
ursive numbering there
ursive 
ore of whi
h equals U . Thus any integer b 2 N 
orresponds to the
lass Rb = f'bi j i 2 Ng \ R of re
ursive fun
tions, whi
h is interpreted as a
lass of obje
ts to be learned. Furthermore any set B of integers 
orresponds toa 
olle
tion of 
lasses U � R to be learned { ea
h one des
ribed by some b 2 B.De�nition 6. Let I 2 I; J � I. A set B � N is suitable for uniform learningwith respe
t to (J; I) i�1. Rb 2 J for all b 2 B,2. there is a learner S 2 P2 su
h that for any des
ription b 2 B there existssome  2 P2 satisfying Rb 2 I (�x:S(b; x)).suit(J; I) denotes the set of all sets B suitable in that sense. The notion B 2suit(J; I)(S) is used to indi
ate that S is a learner witnessing to B 2 suit(J; I).So a set of des
riptions is identi�ed uniformly by S under (J; I), if ea
hre
ursive 
ore des
ribed by some b 2 B belongs to the 
lass J and is identi�edby the learner �x:S(b; x) synthesized by S from b. This de�nition involves somela
k of pra
ti
ability, be
ause only the synthesis of learners but not the synthesisof adequate hypothesis spa
es is required. Taking a

ount of this de�
ien
y it isadvisable also to 
onsider the following variants of De�nition 6.De�nition 7. Let I 2 I; J � I. Then suit� (J; I) 
onsists of all sets B 2suit(J; I), for whi
h there is some learner S 2 P2 su
h that Rb 2 I� (�x:S(b; x))for all b 2 B. Furthermore suit'(J; I) is the set of all B 2 suit(J; I), for whi
hthere exists some S 2 P2 whi
h ful�ls Rb 2 I'b(�x:S(b; x)) for all b 2 B. Thenotions suit� (J; I)(S) and suit'(J; I)(S) are used by analogy with De�nition 6.Obviously suit'(J; I) � suit� (J; I) � suit(J; I) for all 
riteria I 2 I, but ingeneral equality of these 
lasses does not hold (suit� (J;BC�) = suit(J;BC�) isan ex
eption for any J � BC�, see also [14℄). As in the non-uniform model, iden-ti�ability implies the existen
e of total strategies, if 
onsisten
y is not required.Proposition 1. Let I 2 InfCONSg; J � I; B � N. Assume B 2 suit(J; I)(suit� (J; I); suit'(J; I)). Then there is a total re
ursive fun
tion S su
h thatB 2 suit(J; I)(S) (suit� (J; I)(S); suit'(J; I)(S) resp.). Moreover, S 
an be 
on-stru
ted uniformly from a program of a 
orresponding partial-re
ursive learner.The following example shows that CONS-learning again yields an ex
eption.There even exists a des
ription set suitable for CONS-learning in the most re-stri
ted model (suit'-model) but not suitable for uniform learning by a totalstrategy in the least restri
ted model (suit-model). The proof is omitted.Example 1. The des
ription set B := fb 2 N j 'b 2 R2g is an element ofsuit'(CONS;CONS), but B =2 suit(CONS;CONS)(S) for any learner S 2 R2.



4 Results on Unions of Suitable Des
ription SetsAssume two des
ription sets B1; B2 2 suit(I; I) for a 
riterion I 2 I are given.The results below 
on
ern the question, what properties 
on
erning B1; B2 makethe union of the two sets suitable for uniform learning with respe
t to I , i. e. whatproperties are suÆ
ient for the satisfa
tion of B1 [ B2 2 suit(I; I). The samequestion is 
onsidered for suit� or suit' instead of suit. suit(BC�;BC�) andsuit� (BC�;BC�) are 
losed under union, asR 2 BC�, but in general some further
ondition 
on
erning B1 and B2 is needed, as the following example shows.Example 2. Consider the des
ription sets B1 = fb 2 N j Rb = f'b0g = f01ggand B2 = fb 2 N j 9m 2 N [Rb = f'b1g = f0m11g℄g. Both B1 and B2 areelements of suit'(J1;EX0), but B1 [ B2 =2 suit� (J1;EX0).Proof. The learner 
onstantly i � 1 yields Bi 2 suit'(J1;EX0) for i 2 f1; 2g.Assuming B1[B2 2 suit� (J1;EX0) provides a strategy S 2 R2 whi
h ful�lsRb 2(EX0)� (�x:S(b; x)) for all b 2 B1 [ B2. To reveal a 
ontradi
tion a des
riptionb0 2 B1 [ B2 satisfying Rb0 =2 (EX0)� (�x:S(b0; x)) is 
onstru
ted. For thatpurpose it is adequate to de�ne numberings  b uniformly in b 2 N and 
hoose b0as a �xed point value a

ording to the re
ursion theorem, su
h that 'b0 =  b0 .Constru
tion of b0. For ea
h b 2 N de�ne a fun
tion  b 2 P2 as follows: let b0(0) := 0. Moreover, let  b0(x+1) equal 0, if S(b; 0x+1) =? or all n � x+1 su
hthat S(b; 0n) 2 N ful�l �S(b;0n)(n) "�x+1 or �S(b;0n)(n) 6= 0. Otherwise,  b0(x+1)is unde�ned. If  b0 = 0k "1, there is some minimal integer n � k, su
h thatS(b; 0n) 2 N and �S(b;0n)(n) #�k, �S(b;0n)(n) = 0. In this 
ase let  b1 := 0n11.Otherwise, i. e. if  b0 = 01, let  b1 :="1. In any 
ase, all fun
tions  bi with i > 1shall be empty.Sin
e  b is de�ned uniformly in b, there exists some re
ursive fun
tion g,su
h that 'g(b) =  b for all b 2 N. Let b0 2 N be a �xed point value of thatfun
tion g, i. e. 'b0 = 'g(b0) =  b0 . End 
onstru
tion of b0.Note that either Rb0 = f'b00 g = f01g or Rb0 = f'b01 g = f0m11g for somem 2 N. Thus b0 2 B1 [B2. But if Rb0 = f01g, then S(b0; 0n) =? or �S(b0;0n) 6=01 for all n 2 N; if Rb0 = f0m11g for some m 2 N, then S(b; 0m) 2 N and�S(b;0m)(m) = 0 6= 1 = 'b01 (m). Therefore Rb0 =2 (EX0)� (�x:S(b0; x)), whi
h
ontradi
ts the 
hoi
e of S. Hen
e B1 [B2 =2 suit� (J1;EX0). �For other learning 
lasses in I similar negative results are obtained withre
ursive 
ores 
onsisting of one or two elements.Example 3. Consider the des
ription sets C = fb 2 N j Rb = f'b0gg, as wellas B1 = fb 2 N j 
ardRb = 
ardfi j 'bi 2 Rg = 2 ^ 81j ['bj ="1℄g andB2 = fb 2 N j 
ardfi j 'bi 2 Rg = 1 ^ 81j ['bj ="1℄g. Then C 2 suit'(J1;EX0),B1 2 suit'(J2;CONS), B2 2 suit'(J1;CONS), but C [ B1 =2 suit(J2;EX) andC [ B2 =2 suit� (J1;EX).Example 4. De�ne two sets B1 := fb 2 N j fi j 'bi not initialg = f0gg andB2 := fb 2 N j 9k [fi j 'bi not initialg = fk+1g ^ 8y > k+1 ['by ="1℄℄g. Then



B1 2 suit'(J1;EX0), B2 2 suit'(J1;CONS), but B1 [ B2 =2 suit� (J1;BC) andB1 [ B2 =2 suit'(J1;BC�).The proofs use ideas similar to those in the proof of Example 2. As thereasons for the failure of all strategies for the unions in these examples are notobvious, it might be helpful �rst to 
olle
t some simple properties of des
riptionsets enabling the learnability of the 
orresponding unions.Theorem 1. Let I 2 I and B1; B2 2 suit(I; I) (or suit� (I; I), suit'(I; I) resp.).1. If B1 is re
ursive, then B1 [ B2 2 suit(I; I) (suit� (I; I), suit'(I; I) resp.).2. If B1; B2 are r. e., then B1 [ B2 2 suit(I; I) (suit� (I; I), suit'(I; I) resp.).3. If I 2 fEX;BC;BC�g and at least one of the sets B1;N n B2 is r. e., thenB1 [ B2 2 suit(I; I) (suit� (I; I), suit'(I; I) resp.).Proof (sket
h). Fix I 2 I, B1; B2 2 suit(I; I). For suit� , suit' all proofs pro
eedanalogously. Choose T1; T2 2 P2 su
h that Bi 2 suit(I; I)(Ti) for i 2 f1; 2g.For the proof of the �rst 
laim let a new learner on input (b; f [n℄) returnT1(b; f [n℄) if b 2 B1, T2(b; f [n℄) otherwise. The se
ond 
laim is shown with astrategy sear
hing for the given b in an enumeration of B1 and in parallel in anenumeration of B2. As soon as b 2 Bi is veri�ed for some i 2 f1; 2g, the learnersimulates Ti. For the third 
laim, let the new learner simulate T2 until the givendes
ription is proved to belong to B1 (or N nB2), then simulate T1. �The se
ond and third 
laim in Theorem 1 already suggest, that for somelearning 
lasses in I just one r. e. des
ription set is not suÆ
ient for the uniformidenti�ability of the union of two suitable des
ription sets. Indeed this is true,as Theorem 4 will prove, but �rst one more spe
ial 
ase in whi
h any union of asuitable set with a suitable r. e. set again yields uniform learnability is regarded.Theorem 2. Assume B1 2 suit(CONS;CONS) and B2 2 suit� (CONS;CONS).If B1 (or N nB2) is r. e., then B1[B2 2 suit(CONS;CONS). If B1 (or NnB2 ) isr. e. and B1 2 suit� (CONS;CONS), then also B1 [ B2 2 suit� (CONS;CONS).Proof (sket
h). Let B1 2 suit(CONS;CONS), B2 2 suit� (CONS;CONS), more-over B1 (or N nB2 ) r. e. Then there exist T1; T2 2 P and numberings  [b℄ for b 2B1 with Rb 2 CONS [b℄(�x:T1(b; x)) for b 2 B1 and Rb 2 CONS� (�x:T2(b; x))for b 2 B2. De�ne a new hypothesis spa
e �[b℄ 2 P2 for ea
h b 2 N as follows.�[b℄2i =  [b℄i if b 2 B1; �[b℄2i = �i otherwise; �[b℄2i+1 = �i for all i 2 N :If b 2 B2; f 2 Rb; n 2 N, then T2(b; f [n℄) is 
onsistent for f [n℄ with respe
tto � . So on input (b; f [n℄) a meta-strategy for B1 [ B2 
an test by dove-tailed
omputation, whether b 2 B1 (N nB2, resp.) or T2(b; f [n℄) is de�ned and 
onsis-tent for f [n℄ with respe
t to � . As long as the latter property is veri�ed �rst, the
onsistent index 2T2(b; f [n℄) + 1 is returned; as soon as b 2 B1 (b =2 B2, resp.)has on
e been veri�ed, the hypotheses returned by �x:2T1(b; x) are used. Theseare 
onsistent with respe
t to � , if f 2 Rb. Convergen
e follows from the 
hoi
eof T1, T2. Proving the se
ond 
laim does not require new hypothesis spa
es. �



The following result gives an example of how weakening the learning inten-tion 
an lead to positive results without further demands 
on
erning the twodes
ription sets. The proof is omitted.Theorem 3. Let m; k1; k2 2 N; m � k1; m � k2. If B1 2 suit(EXm;EXk1) andB2 2 suit(EXm;EXk2), then B1 [ B2 2 suit(EXm;EXk1+k2+1).Thus the union of des
ription sets suitable for learning with a bounded num-ber of mind 
hanges is still suitable, if a 
ertain amount of further mind 
hangesis permitted. But unfortunately, if an in
reasing mind 
hange 
omplexity is for-bidden, negative results are obtained, sometimes even if one of the des
riptionsets is r. e. (in 
ontrast to Theorems 1 and 2).Theorem 4. Let m 2 N. There exist two des
ription sets B1; B2 � N su
h that1. B1; B2 2 suit'(J2;EXm) (or B1; B2 2 suit'(J1;EXm)),2. B1 is r. e., but3. B1 [ B2 =2 suit(J2;EXm) (B1 [ B2 =2 suit� (J1;EXm), resp.).Proof. Fix m 2 N. First B1; B2 are de�ned by 
onstru
ting fun
tions  2 P andfp 2 R su
h that 'fp(i) =  (i;fp(i)) for all i 2 N. The fun
tion fp assigns to ea
hinteger i some �xed point value a

ording to the re
ursion theorem. B1 [ B2will be the value set of fp. Below just the statements 
on
erning des
riptions ofre
ursive 
ores in J2 are veri�ed, the proof for des
riptions of singleton sets workswith the same method 
ombined with the ideas in the proof below Example 2.De�nition of B1; B2. By Proposition 1 there is a fun
tion re
 2 R, su
h that're
(i) 2 R and suit(J2;EXm)('i) � suit(J2;EXm)('re
(i)) for all i 2 N. Fromnow on the notion Si is used instead of 're
(i). Next the fun
tion  2 P4 isde�ned by 
onstru
ting a numbering  i 2 P3 for any integer i as follows.Fix b 2 N. Go to stage 0.Stage 0.  (i;b)0 (0) := 0. For x 2 N de�ne (i;b)0 (x+ 1) := 8><>:0 if Si(b;  (i;b)0 [y℄) =? for 0 � y � xm+ 2 if x is minimal, su
h that Si(b;  (i;b)0 [x℄) 2 N" otherwiseThen  (i;b)0 = 01 i� Si(b; 0n) =? for all n 2 N. Otherwise, if t is minimal withSi(b; 0t) 2 N, note  (i;b)0 = 0t(m + 2) "1. In the latter 
ase let �(i;b)0 := 0t andgo to stage 1. In the �rst 
ase �(i;b)0 " and stage 1 is not rea
hed. End stage 0.Stage k (1 � k � m). If l denotes the length of �(i;b)k�1 , let  (i;b)2k�1[l � 1℄ = (i;b)2k [l� 1℄ = �(i;b)k�1 . For all x � l de�ne (i;b)2k�1(x) :=8>>>>>><>>>>>>:k � 1 if Si(b; �(i;b)k�1ry) = Si(b; �(i;b)k�1)for 0 � y � x� l and for all r 2 fk � 1; kgm+ 2 if x is minimal, su
h that Si(b; �(i;b)k�1ry) 6= Si(b; �(i;b)k�1)for y = x� l and some r 2 fk � 1; kg" otherwise



 (i;b)2k (x) :=8><>:k if  (i;b)2k�1(x) = k � 1m+ 2 if  (i;b)2k�1(x) = m+ 2" otherwiseNote that  (i;b)2k�1 = �(i;b)k�1(k � 1)1 i�  (i;b)2k = �(i;b)k�1k1 i�Si(b; �(i;b)k�1) = Si(b; �(i;b)k�1(k � 1)n) = Si(b; �(i;b)k�1kn) for all n 2 N :Otherwise, if t is minimal, su
h that Si(b; �(i;b)k�1) 6= Si(b; �(i;b)k�1rt) for some r 2fk�1; kg, then  (i;b)2k�1 = �(i;b)k�1(k�1)t(m+2) "1 and  (i;b)2k = �(i;b)k�1kt(m+2) "1.In the latter 
ase let �(i;b)k := �(i;b)k�1rt and go to stage k+1. In the �rst 
ase �(i;b)kis unde�ned and stage k + 1 is not rea
hed. End stage k.Stage m + 1.  (i;b)2m+1 = �(i;b)m m1,  (i;b)2m+2 = �(i;b)m (m + 1)1,  (i;b)x ="1 for x >2m+ 2. End stage m+ 1.Next let g 2 R be a fun
tion satisfying 'g(i;b) =  (i;b) for all i; b 2 N. Bythe re
ursion theorem there is a fun
tion fp 2 R, su
h that 'fp(i) = 'g(i;fp(i)) = (i;fp(i)) for all i 2 N. De�ne B := ffp(i) j i 2 Ng and �nally letB1 := ffp(i) j i 2 N ^ 9x 2 N ['fp(i)0 (x) = m+ 2℄g; B2 := B nB1 :End de�nition of B1; B2.It remains to verify the three properties stated in Theorem 4.Property 1. B1; B2 2 suit'(J2;EXm).
ardRb � 2 for all b 2 B1 [B2 follows by 
onstru
tion. The strategy 
onstantly0 shows B2 2 suit'(J2;EXm). Let a meta-learner for B1 return \?" as longas the initial segment presented 
onsists of zeros only. Afterwards the minimal
onsistent index in the numbering des
ribed is returned. This yields 
onvergen
eto a 
orre
t program with no more than m mind 
hanges on all relevant inputs.Property 2. B1 is r. e.This property follows obviously by de�nition of B and B1.Property 3. B1 [ B2 =2 suit(J2;EXm).Assume B1 [ B2 2 suit(J2;EXm). Then there exists some i 2 N, su
h thatB 2 suit(J2;EXm)(Si), i. e. for all b 2 B there is a numbering �[b℄ 2 P2 satisfyingRb 2 (EXm)�[b℄(�x:Si(b; x)). Now let b := fp(i). The 
onstru
tion of  thenimplies Rb =2 (EXm)�[b℄(�x:Si(b; x)) (details are omitted) { a 
ontradi
tion. �Corollary 1. Let C := fb 2 N j Rb = f'b0gg. Then C 2 suit'(J1;EX0) and1. if I 2 I nfBC;BC�g, there is B 2 suit'(J2; I) su
h that B[C =2 suit(J2; I),2. if I 2 I n fBC�g, there is B 2 suit'(J1; I) su
h that B [ C =2 suit� (J1; I),3. for all I 2 I there is some B 2 suit'(J1; I) su
h that B [ C =2 suit'(J1; I).Proof. See Examples 2, 3, 4 and the proof of Theorem 4. �Theorem 1 indi
ates that regarding the suitability of a union of two des
rip-tion sets it is very promising, if there is a method for separating the two sets



algorithmi
ally, that means if a learner 
an somehow determine whi
h of thetwo sets a given des
ription belongs to. Sin
e in general su
h a separability isnot attainable, it might be useful to state some properties of appropriate unionsmore 
arefully. To merge two meta-learners for two des
ription sets into a su
-
essful meta-learner for the union set, it is not really required to �nd a way ofseparating the two sets themselves. It is already suÆ
ient to re
ognize a des
rip-tion, together with some initial segment of a fun
tion to be learned, as somefeasible input 
orresponding to one determinate des
ription set of the two whi
hare possible. This property 
an later on be used to prove the strong separations.Proposition 2. Let I 2 I and B1; B2 2 suit(I; I) (or suit� (I; I), suit'(I; I)resp.). Assume there is a fun
tion d 2 P01 satisfying the following two 
onditions.1. d(b; f(0)) = 1 for all des
riptions b 2 B1 and all fun
tions f 2 Rb,2. d(b; f(0)) = 0 for all des
riptions b 2 B2 nB1 and all fun
tions f 2 Rb.Then B1 [ B2 2 suit(I; I) (suit� (I; I), suit'(I; I) resp.).1Proof (sket
h). Let I 2 I; B1; B2 2 suit(I; I) (the idea is the same for suit� (I; I)and suit'(I; I)). Fix two strategies T1; T2 2 P2, su
h that B1 2 suit(I; I)(T1) andB2 2 suit(I; I)(T2). On input (b; f [n℄) a learner witnessing to B1[B2 2 suit(I; I)returns T1(b; f [n℄) if d(b; f(0)) = 1, T2(b; f [n℄) if d(b; f(0)) = 0. �Without spe
ial requirements 
on
erning the intermediate hypotheses or themind 
hange 
omplexity, the demands of Proposition 2 
an be weakened. ForEX- or BC-learning it is not ne
essary to re
ognize feasible inputs 
orrespondingto a des
ription set at on
e. It is enough to determine one of the two sets in thelimit from gradually growing feasible information on a fun
tion to be learned.Proposition 3. Let I 2 fEX;BC;BC�g and B1; B2 2 suit(I; I) (or suit� (I; I),suit'(I; I) resp.). Assume some fun
tion d 2 P01 ful�ls the following 
onditions.1. 81n [d(b; f [n℄) = 1℄ for all des
riptions b 2 B1 and all fun
tions f 2 Rb,2. 81n [d(b; f [n℄) = 0℄ for all des
riptions b 2 B2nB1 and all fun
tions f 2 Rb.Then B1 [ B2 2 suit(I; I) (suit� (I; I), suit'(I; I) resp.).For a proof a similar strategy as in the veri�
ation of Proposition 2 is ad-equate. Example 2 witnesses to the fa
t that Proposition 3 does not hold forI = EX0. De�ne a fun
tion d 2 P01 on input (b; f [n℄) to equal 1, if f [n℄ = 0n+1,and to equal 0, if f [n℄ 6= 0n+1. This yields the following properties.{ If b 2 B1 and f 2 Rb (i. e. f = 01), then d(b; f [n℄) = 1 for all n 2 N.{ If b 2 B2 nB1, f 2 Rb (i. e. f = 0m11 for some m 2 N), then d(b; f [n℄) = 0for all but �nitely many n 2 N.{ B1; B2 2 suit'(EX0;EX0).If Proposition 3 was also true for the 
riterion I = EX0, then B1 [ B2 2suit'(EX0;EX0) would hold { a 
ontradi
tion to Example 2.1 That the de
ision of the fun
tion d, for any b 2 B1 [ B2 and any f 2 Rb, does notdepend on the values f(n) for n > 0, may seem rather odd. Indeed a stronger versionof Proposition 2 holds, yet for the purpose of this paper the a
tual version suÆ
es.



5 Strong Separations of Criteria for Uniform LearningIn the uniform model now a strong separation of I and I 0 is expressed in termsof des
ription sets as follows:8B1 2 suit(I; I) 9B2 2 suit(I; I 0) [B1 [ B2 2 suit(I; I 0) n suit(I; I)℄ (1)or analogously with suit� or suit'. Fortunately su
h strong separations holdfor any pair of 
riteria in whi
h the weak separations have been veri�ed. Andit is possible to prove even more; the quanti�ers in (1) 
an be swit
hed. Thatmeans for any strongly separated pair (I; I 0) there is one �xed des
ription setB 2 suit(I; I 0) su
h that for any set B0 2 suit(I; I) the union B [ B0 belongs tosuit(I; I 0), but no longer to suit(I; I). So there are spe
ial �xed des
ription sets,whi
h are in some sense typi
al for a set not suitable for uniform I-learning, buton the other hand restri
tive enough to be suitable for uniform I 0-identi�
ationin 
ombination with any des
ription set in suit(I; I). The proof below Theorem 5just gives an example for the pair (EX;BC), be
ause other results of this style
an be a
hieved by similar methods, even for the suit� - and suit'-models.Theorem 5. Let (I; I 0) be a pair in f(EX0;CONS); (CONS;EX); (EX;BC)g[f(EXm;EXm+1) j m 2 Ng. Then there is a set B � N satisfying1. B is re
ursively enumerable,2. 
ardRb � 2 for all b 2 B,3. if B0 2 suit(I; I), then B [ B0 2 suit(I; I 0) n suit(I; I).Moreover, this statement holds for suit� and suit' instead of suit, even if these
ond 
ondition is strengthened to 
ardRb = 1 for all b 2 B.Proof for (I; I 0) = (EX;BC). First the set B is de�ned via the 
onstru
tionof a partial-re
ursive fun
tion  and a re
ursive fun
tion fp su
h that 'fp(i) = (i;fp(i)) for all i 2 N. The fun
tion fp assigns to ea
h integer i some �xed pointvalue a

ording to the re
ursion theorem. B will be the value set of fp.De�nition of B. By Proposition 1 there is some re
 2 R, su
h that 're
(i) 2 Rand suit(EX;EX)('i) � suit(EX;EX)('re
(i)) for all i 2 N. From now on thenotion Si is used instead of 're
(i). Next the fun
tion  2 P4 is de�ned by
onstru
ting a numbering  i 2 P3 for any integer i as follows.Fix b 2 N. Let �(i;b)0 := (i);  (i;b)0 (0) = i and go to stage 0. In general, the
onstru
tion in stage k (k 2 N) pro
eeds in the following way:Look for the minimal integer m(i;b)k 2 N whi
h ful�lsSi(b; �(i;b)k 00m(i;b)k ) 6= Si(b; �(i;b)k ) or Si(b; �(i;b)k 10m(i;b)k ) 6= Si(b; �(i;b)k ) :If su
h an integer does not exist, m(i;b)k is unde�ned. Then let�(i;b)k+1 := 8><>:�(i;b)k 00m(i;b)k 2 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) 6= Si(b; �(i;b)k )�(i;b)k 10m(i;b)k 2 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) = Si(b; �(i;b)k )" if m(i;b)k "



In addition �(i;b)k+1 be
omes an initial segment of  (i;b)0 , i. e.  (i;b)0 [l�1℄ := �(i;b)k+1 , if�(i;b)k+1 is de�ned and of length l;  (i;b)0 := �(i;b)k "1 otherwise. Furthermore de�ne (i;b)2k+1 := 8><>:�(i;b)k 001 if m(i;b)k " (i;b)0 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) 6= Si(b; �(i;b)k )�(i;b)k 00m(i;b)k "1 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) = Si(b; �(i;b)k ) (i;b)2k+2 := 8><>:�(i;b)k 101 if m(i;b)k " (i;b)0 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) = Si(b; �(i;b)k )�(i;b)k 10m(i;b)k "1 if m(i;b)k # and Si(b; �(i;b)k 00m(i;b)k ) 6= Si(b; �(i;b)k )If m(i;b)k exists, then go to stage k + 1. End stage k.Let g 2 R satisfy 'g(i;b) =  (i;b) for all i; b 2 N. By the re
ursion theoremthere is some fp 2 R, su
h that 'fp(i) = 'g(i;fp(i)) =  (i;fp(i)) for all i 2 N.Finally let B := ffp(i) j i 2 Ng. End de�nition of B.Claim. Let b 2 B and i 2 N su
h that fp(i) = b. Then1. Rb = f'b0g () m(i;b)k is de�ned for all k 2 N () for all k 2 N sometk 2 f0; 1g ful�ls �(i;b)k tk � 'b0 and f'b2k+1; 'b2k+2g = f'b0; �(i;b)k tk0m(i;b)k "1g.2. Rb = f'b2k+1; 'b2k+2g = f�(i;b)k 001; �(i;b)k 101g () k is the minimal integersu
h that m(i;b)k is not de�ned,3. if �(i;b)k is de�ned for some k 2 N, then 
ardfr � 1 j �(i;b)k (r) = 2g = k.These 
laims follow immediately from the 
onstru
tion; hen
e it remains toverify the properties 1 up to 3 stated in the Theorem.Property 1. B is re
ursively enumerable.B is the value set of a re
ursive fun
tion and thus r. e.Property 2. 
ardRb � 2 for all b 2 B.By Claims 1 and 2 either Rb = f'b0g or Rb = f'b2k+1; 'b2k+2g for some k 2 N.Property 3. If B0 2 suit(EX;EX), then B [B0 2 suit(EX;BC) n suit(EX;EX).Fix some des
ription set B0 2 suit(EX;EX). First B [ B0 =2 suit(EX;EX) willbe veri�ed, afterwards the proof of B [ B0 2 suit(EX;BC) follows.Proof of B [ B0 =2 suit(EX;EX). Assume that B [ B0 2 suit(EX;EX). Thenin parti
ular there exists some total re
ursive uniform strategy appropriate forEX-identi�
ation of the set B; that means, there is some i 2 N su
h thatfor all b 2 B some �[b℄ 2 P2 ful�ls Rb 2 EX�[b℄(�x:Si(b; x)) : (2)Let b := fp(i), i. e. 'b =  (i;b). By Claims 1 and 2 it suÆ
es to 
onsider two
ases.Case (i). Rb = f'b0g. Then for all k 2 N, by Claim 1, m(i;b)k is de�ned and the
onstru
tion yields �(i;b)k tk0m(i;b)k � 'b0 and Si(b; �(i;b)k ) 6= Si(b; �(i;b)k tk0m(i;b)k ) for



some tk 2 f0; 1g. Thus the sequen
e of hypotheses returned by �x:Si(b; x) on 'b0diverges, whi
h implies Rb =2 EX�[b℄(�x:Si(b; x)) in 
ontradi
tion to (2).Case (ii). Rb = f'b2k+1; 'b2k+2g = f�(i;b)k 001; �(i;b)k 101g for some k 2 N.Then by Claim 2 the value m(i;b)k is not de�ned. This impliesSi(b; �(i;b)k 00m) = Si(b; �(i;b)k ) = Si(b; �(i;b)k 10m) for all m 2 N :Thus Si(b; 'b2k+1[n℄) = Si(b; 'b2k+2[n℄) for all but �nitely many n 2 N, al-though 'b2k+1 6= 'b2k+2. Therefore { without in
uen
e of the hypothesis spa
eregarded { the sequen
e of hypotheses returned by �x:Si(b; x) must 
onvergeto an in
orre
t program for at least one of the two fun
tions in Rb. Hen
eRb =2 EX�[b℄(�x:Si(b; x)); again a 
ontradi
tion to (2).Both 
ases lead to a 
ontradi
tion, so B [ B0 =2 suit(EX;EX) is obtained.Proof of B[B0 2 suit(EX;BC). By de�nition B0 2 suit(EX;BC). It is possible toshow that B 2 suit(EX;BC) and afterwards apply Proposition 2. First a strategyT 2 R satisfying Rb 2 BC'b(T ) for all b 2 B is de�ned as follows: let f 2 R.Then T (f [0℄) := 0 and for any n > 0 with f(n) = 2, let T (f [n℄) := T (f [n� 1℄).If n > 0 and f(n) 6= 2, let k := 
ardfr j 1 � r � n ^ f(r) = 2g and de�neT (f [n℄) := 2k + 1 in 
ase f [n℄ = �20x for some segment � and some x > 0.Otherwise T (f [n℄) := 2k + 2. Rb 2 BC'b(T ) for all b 2 B 
an be veri�ed withthe help of Claims 1{3. Details are omitted here. So B 2 suit(EX;BC).In order to apply Proposition 2 it is ne
essary to �nd some d 2 P01 satisfying:1. d(b; f(0)) = 1 for all des
riptions b 2 B and all fun
tions f 2 Rb,2. d(b; f(0)) = 0 for all des
riptions b 2 B0 nB and all fun
tions f 2 Rb.For that purpose let d(b; n) := 1, if fp(n) = b and d(b; n) := 0, if fp(n) 6= b(b; n 2 N). If b 2 B; f 2 Rb, the 
onstru
tion of  implies fp(f(0)) = b, sod(b; f(0)) = 1. If b =2 B = ffp(i) j i 2 Ng, then fp(n) 6= b is obtained for anyn 2 N; in parti
ular d(b; n) = 0. So B [B0 2 suit(EX;BC) by Proposition 2.2 �A

ording to Theorem 5 it might in some 
ases be reasonable to give up
ertain 
onstraints 
on
erning the inferen
e 
riterion I , be
ause thus an in
reaseof learning power 
an be a
hieved, no matter what des
ription set in suit(I; I) hasto be learned. The proof (together with the proof of Proposition 2) indi
ates, howto modify a uniform I-learner for an arbitrary set in suit(I; I) into an adequatesuit(I; I 0)-learner for a proper superset, whi
h does no longer belong to suit(I; I).Hen
e this result does not only give the advi
e to sometimes loosen the learning
riteria, but furthermore provides a method for designing more powerful learners.The fa
t that there is a �xed des
ription set, whi
h witnesses to the strongseparation for any des
ription set in suit(I; I), indi
ates that there exists somekind of stru
ture for a somehow 
hara
teristi
 des
ription set 
orresponding tothe 
lass suit(I; I 0)nsuit(I; I). The stru
ture of su
h a 
hara
teristi
 set is on theone hand 
omplex enough to disallow uniform I-learning, but on the other hand2 A
tually Proposition 2 is not needed: sin
e B is r. e., Theorem 1.3 suÆ
es. But inorder to provide also the idea for the omitted parts, a universal method is 
hosen.



simple enough to enable uniform I 0-identi�
ation of its union with any arbitrarydes
ription set in suit(I; I).Theorem 6. There is a des
ription set B � N satisfying1. B is re
ursively enumerable,2. 
ardRb = 1 for all b 2 B,3. if B0 2 suit� (BC;BC), then B [ B0 2 suit� (BC;BC�) n suit� (BC;BC) (oranalogously for suit' instead of suit�).The proof is omitted. Theorem 6 is formulated separately from Theorem 5,be
ause its statement does not hold for the uniform learning model given bysuit(BC;BC) (i. e. without spe
i�
ation of the hypothesis spa
es). The reasonis that suit(BC;BC) = fB � N j Rb 2 BC for all b 2 Bg, whi
h impliessuit(BC;BC�) = suit(BC;BC) (the proof uses a simple 
onstru
tion of appro-priate hypothesis spa
es). Note that Theorems 5 and 6 yield strong separationsfor all pairs (I; I 0) of learning 
lasses from I, for whi
h I � I 0 holds.Referen
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