Separation of uniform learning classes

Sandra Zilles

Fachbereich Informatik, Universitat Kaiserslautern, Postfach 3049,
67653 Kaiserslautern, Germany

Abstract

Within the scope of inductive inference a recursion theoretic approach is used to
model learning behaviour. The fundamental model considered is Gold’s identifica-
tion of recursive functions in the limit. Modifying the corresponding definition has
proposed several inference classes, which have been compared regarding the capac-
ities of the relevant learners.

The present paper is concerned with a meta-version of this learning model. Given
a description of a class of target functions, a uniform learner is supposed to develop
a specific successful method for learning the represented class. The same modifica-
tions as in the elementary model are considered in the context of uniform learning,
especially respecting identification capacities. It turns out that the former separa-
tions of inference classes are reflected on the meta-level, in particular finite classes
of recursive functions — which constitute the most simple learning problems in the
elementary model — are evidence of these separations.

1 Introduction

Various theoretical concepts can be used to model learning behaviour. In this
context inductive inference is concerned with suitable techniques provided by
recursion theory. The target objects to be identified are recursive functions
represented by programs via a partial-recursive numbering called hypothesis
space.

In Gold’s [8] basic model of identification in the limit, the learner, modelled
by a partial-recursive function, identifies a recursive function f, if it transfers
a sequence of information about f into a sequence of hypotheses converging
to a correct program for f. A sequence of information about f is simply the
sequence of output values returned by f in natural order. In general a class of

Email address: zilles@informatik.uni-kl.de (Sandra Zilles).

Preprint submitted to Elsevier Science 3 December 2002

recursive functions is considered learnable if there is a single learner identify-
ing each element of the class. By weakening or strengthening the constraints
in Gold’s definition — for example via additional demands respecting the qual-
ity of the intermediate hypotheses — several alternative inference classes have
been defined, cf. [2-8,10,15,16]. On the one hand, it has been of particular
interest, what price has to be paid for the quality of the intermediate hypothe-
ses (i.e. how strengthening the constraints reduces the quantity of learnable
classes), on the other hand it has been studied, in which cases it is advisable
to loosen the demands (i. e. how weakening the constraints increases the quan-
tity of learnable classes). The results of these studies, see [2-6,10,15], provide
a hierarchy of inference classes.

A quite conceivable idea is to analyse structural properties that successful
learners may have in common and thus hopefully to design universal methods
for the uniform identification of infinitely many classes of target objects. Evi-
dently such properties always go along with some common intrinsic structure
of the classes to be learned and the corresponding adequate hypothesis spaces.
For example a uniform method for learning all recursively enumerable sets of
recursive functions in the limit is identification by enumeration as defined by
Gold [8]. This strategy can be generalized to temporarily conform identifica-
tion, cf. [6], which constitutes a successful uniform method in specific hypoth-
esis spaces. These ideas suggest the formal definition of a uniform learning
model; analysing the corresponding identification capacity is the scope of the
present paper. The new model considers some kind of meta-learning, where
the uniform learner is supposed to develop a specific learner for each target
class represented via some description associated with the class. That means,
the uniform learner is able to exploit the common structure in the identifiable
target classes, to the extent that successful strategies for these classes can
be computed by a uniform method. The analysis of meta-learning perhaps
provides even more revelation about these common structures.

Uniform learning has also been investigated in the context of language iden-
tification, see [1,11,12]. Baliga, Case, and Jain [1] compare several inference
classes in their uniform language learning model with plentiful results con-
tributing to a more detailed understanding of general properties in Gold’s
elementary model. For examples of rather simple classes of language families,
which cannot be identified uniformly, see [11,12]. Jantke [9] has studied meta-
learning of recursive functions with similar negative results, which are further
strengthened in [17]. Yet this outcome has to be interpreted carefully; most
often such simple classes are not themselves too complex for uniform learning,
but an inadequate choice of descriptions representing these classes causes the
failure of uniform strategies.

The present paper is mainly concerned with the comparison of inference classes
— formerly analysed in Gold’s elementary model — now in the context of meta-

learning. As it turns out, the known hierarchy remains valid in the new model,
where each separation of two inference classes is achieved by a representation
of finite classes of recursive functions — most often either singleton classes or
classes consisting of two functions, depending on the restrictions in the choice
of hypothesis spaces. In the elementary model, finite classes can never witness
to an increase of learning capacity in the comparison of two inference classes,
because they are identifiable with respect to any learning criterion considered
here. So, although finite classes constitute trivial learning problems in the
non-uniform model, specific descriptions of such classes are too difficult for
meta-learners to cope with.

The reflection of the former hierarchy in the uniform model corroborates the
intuition, that any pair of different inference classes creates a relationship of
learning power universally valid in lots of learning models; i. e. the hierarchy of
learning classes expresses some kind of natural relationships. So there might
exist a general trade-off between quality constraints in the learning criteria
and resulting identification capacities. Therefore also in the context of uniform
learning it is sometimes advisable to loosen the restrictive demands concerning
the inference criteria in order to exploit a more powerful learning model.

Moreover the proofs of the separations provide methods for constructing de-
scriptions of target classes not suitable for uniform identification with respect
to a given inference criterion. Hopefully a further analysis of these methods
may give insight into structures which are generally inadequate for learning
in the specific inference classes.

A preliminary version presenting parts of the results in this paper has ap-
peared, cf. [18].

2 Preliminaries

2.1 Notations

For notions and concepts relating to recursion theory see [13]. Standard notions
are used for the comparison of sets, where C always indicates a proper inclusion
of sets and # expresses incomparability. () is a symbol for the empty set. In
order to refer to the cardinality of a set X the notion card X is used.

The basic concept needed for modelling a learning scenario in inductive infer-
ence is the concept of partial-recursive functions (cf. [13]). Inputs and outputs
of these functions are non-negative integers, the set of which is denoted by N.
The variables n, x, y always range over N. A partial-recursive function which

is total, i.e. defined for all inputs, is simply called recursive function. If f is
any partial-recursive function, then f(n) denotes the value of f on input n,
where f(n) 1 indicates, that f is undefined on input n. Similarly two-place
functions, three-place functions, etc. are considered. 5§ symbolizes a recursive
function returning 1 on input 0 and 0 on all other inputs.

By means of a recursive bijective mapping, finite tuples over N are iden-
tified with non-negative integers. Thus, if f is a partial-recursive function
and n any input value such that f(0), f(1),..., f(n) are defined, this bi-
jective mapping yields a code number f[n] to be identified with the finite
tuple (f(0), f(1),..., f(n)). Given another partial-recursive function g, the
notions g(f[n]) and g(f(0)...f(n)) may sometimes be used interchangeably.
If for all but finitely many n either f(n) and g(n) are both undefined or
f(n) = g(n), this is indicated by f =* g. Identifying the function f with the
set {(n, f(n)) | f(n) is defined} explains the use of notions like f C ¢ and
f C g. But each partial-recursive function may also be identified with the
corresponding sequence of output values. For example let f(n) =0 for n < 6
and f(n) 1 otherwise; g(n) = 0 for n < 5 and g(n) = 1 otherwise; h(n) = 0
for all n. This might be denoted for short by f = 07 1, g = 051°°, h = 0°°.
Here f# g, g# h, but f C h.

If n is given, any (n + 1)-place partial-recursive function) enumerates the set
{¢; | i € N} of n-place partial-recursive functions, where 1; (i € N) is given
by ¥i(z1,...,x,) = ¢¥(i,xq,. .., x,) for all elements x4, ..., x, of N. Therefore
such a function v is also called a numbering. Assume f belongs to {¢; | 7 € N}.
In this case any index x satisfying ¢, = f is called a ¢)-number or a ¥ -program
of f. As an example consider the function v, which is for any x,y defined by
Y(z,y) 1, if 2 =0; Y(x,y) :==0,if x > 0 and y < z; ¥(x,y) := 1, otherwise.
Then 1 is a numbering of the set {1°°} U {0°1%° | 4 > 1}; 0 is the (unique)
Y-number of 1 and each index 7 > 0 is the -number of 0°1%°. Of course
there are also numberings which provide more than one program for a single
function.

2.2 Hierarchy of learning classes

A theoretical learning model is principally characterized by five components:
a class of possible target objects, a method for communicating information
about these objects, a set of possible learners developing a hypothesis from
any feasible information about an object to be learned, a class of hypoth-
esis spaces associating objects with such hypotheses, and finally a success
criterion declaring the desired behaviour of the other components. In any
inference class defined in this section four of these components are always
specified the same: the target objects to be identified are recursive functions

f with the corresponding information presented as a gradually growing infi-
nite sequence f[0], f[1], f[2],... of the tuples of its output values. Learners are
partial-recursive functions, also called strategies; hypothesis spaces are partial-
recursive numberings, enumerating at least all the functions which have to be
identified. That means, each function to be learned has an index in the hy-
pothesis space.

The different inference classes defined here thus result from different success
criteria. In the basic model — identification in the limit or explanatory identi-
fication, cf. [8] — the learner is required to eventually return a single correct
hypothesis for any target function.

The modifications of this model considered below are chosen such that three
approaches are taken into account: firstly, modifying the requirements con-
cerning the success of the sequence of hypotheses; secondly, modifying the de-
mands regarding the quality of the hypotheses — independent of the amount
of information known about the target function; thirdly, modifying the qual-
ity demands depending on the current information. Each approach will be
represented by at least two inference types.

Definition 1 A set U of recursive functions is identifiable in the limit (Fz-
identifiable), iff there is some hypothesis space ¢ and a strategy S, such that
for any f € U the following conditions are fulfilled:

(1) S(f[n]) is defined for all n € N,
(2) the sequence (S(f[n]))nen converges to a -number of f.

Ezx denotes the class of all Ex-learnable sets U.

For example any class of functions enumerated by a recursive numbering is
FEz-learnable (see [8]), but there is no adequate strategy for the whole class of
recursive functions (cf. [8,4]). Still it is conceivable that loosening the success
criterion in Definition 1 might yield a learning model which allows identifia-
bility of the whole set of recursive functions. In a first step the requirements
concerning convergence of the sequence of hypotheses are weakened. In the
model of behaviourally correct identification, as defined in [2] and also dis-
cussed in [5], convergence is no longer required; the learner eventually has to
return correct programs, but is allowed to conjecture different programs for
the same function.

Definition 2 A set U of recursive functions is Bce-identifiable, iff there is
some hypothesis space 1 and some learner S, such that for any f € U all
values S(f[n]) (n € N) are defined and all but finitely many of them are -
numbers for f. Bc is the class of all Be-learnable sets.

This modification of Definition 1 yields an increase of learning power, i.e. Ex is

a proper subset of Bce (see [2]), but the top of the hierarchy of learning classes
is not yet reached. Permitting a few errors in the conjectures, as suggested in
[5], results in an even stronger model, denoted by Bc”.

Definition 3 A set U of recursive functions is Bc*-identifiable, iff there is
some hypothesis space 1 and some learner S, such that for any f € U all
values S(f[n]) (n € N) are defined and all but finitely many of them fulfil
Vs(si)) =" f. Be* denotes the class of all Bc*-learnable sets.

With this inference criterion the top of the hierarchy of identification power is
definitely reached, since the whole set of recursive functions is Bc*-learnable;
the corresponding proof in [5] refers to a private communication to L. Har-
rington. So loosening the conditions in Definition 1 yields the hierarchy Ez C
Be C Bc” of increasing learning power. But it is also conceivable to strengthen
the demands concerning Fz-identifiability; one idea is for example to modify
the conditions regarding the aspect of mind change complezity in the sequence
of hypotheses returned by the strategy.

Definition 4 Let S be a strateqy which is additionally permitted to return
the sign “?”7. A set U of recursive functions is Exp,-identifiable by S, iff U
is Ex-learned by S with respect to some hypothesis space v, such that for all
f € U the following conditions hold:

(1) there is some k € N, such that S(f[n]) =7 iff n <k,
(2) card{n [? # S(f[n]) # S(fln+1])} <m.

Ex,, is the class of all sets which are Ex,,-identifiable by some learner S.

The advantage of identification with a bound m on the number of mind
changes is, that whenever this bound is actually reached in the identification
process, the final correct hypothesis is already known. Note that the definition
of identification in the limit never allows for certainty concerning the correct-
ness of the current hypothesis. But the advantage achieved by the Ezx,,-model
goes along with a loss of identification power: Fr,, C Ez,,; C FEx for all
m > 0, cf. [5]. A further approach to strengthening the demands of Defini-
tion 1 is to improve the quality of the intermediate hypotheses by additional
constraints arising from a somewhat natural motivation. Definition 5 suggests
some properties conceivably augmenting this quality; for more background on
these properties and the corresponding learning models the reader is referred
to [2-4,6-8,10,15,16].

Note that all modifications of Ez-learning defined above deal with require-
ments concerning the convergence of the sequence of hypotheses returned by
the learner. The modifications to be defined next rather deal with the prop-
erties of the intermediate hypotheses themselves. In particular two types of
properties are distinguished: first, properties in dependency of the information

the learner has currently received, i.e. the known initial segment of the target
function; such properties are for example consistency or conformity. Second, it
is also conceivable to consider properties neglecting the amount of information
given about the target function, such as convergent incorrectness or totality
of the intermediate hypotheses.

Definition 5 Let f be any recursive function, S a strategy, v any hypothesis
space. Fiz some number n, such that S(f[n]) is defined. Moreover let m > 0.
The hypothesis S(f[n]) is called

e consistent for f[m] with respect to ¢ iff, for all v < m, Vs () is defined
and equals f(x);

o conform for flm] with respect to ¢ iff, for all x < m, either g s (v) is
undefined or Vs (@) = f(2);

e convergently incorrect for f with respect to 1 iff Vs € f;

o total with respect to ¢ iff Ys(sm)) 18 a total function.

Demanding that all hypotheses returned by a learner on relevant input se-
quences should be consistent with the information seen so far, is a quite natu-
ral approach. Yet these requirements might be too strong, taking into account
that any inconsistency resulting from an undefined value may in general not
be found by the learner. This motivates the approach of conformity.

It is also conceivable that a learner may try to maintain its hypotheses until
they are evidently found to be wrong. To allow for such convergently justified
mind changes, every incorrect guess should correspond to a function disagree-
ing with the target function in at least one defined value, i.e. no incorrect
hypothesis describes a subfunction of f.

Moreover, these requirements can be strengthened to a demand for total in-
termediate hypotheses, since in particular no non-total function can equal the
target function.

Definition 6 Let U be a set of recursive functions, S a strategy and) some
hypothesis space, such that U is Ex-learned by S with respect to 1. Then U 1is
Cons-learned (Conf-, Cex-, Total-learned, resp.) by S with respect to v, iff,
for any f € U and n € N, S(f[n]) is consistent for f[n| (conform for f[n],
either correct or convergently incorrect for f, total, resp.) with respect to 1.
The notions Cons, Conf, Cex, Total are defined as usual.

The inference class Cons has especially been studied in [8,3,14,16]; there it is
verified that the demand for consistency yields a decrease of learning power.
As the definitions already suggest, Conf is an inference class ranging between
Cons and Ez in the hierarchy. For a proof of Cons C Conf C Ez see [15],
moreover in particular the work of Fulk [7] is of interest regarding conform
identification. Similar ideas as used for the separations of several inference

criteria in [6] yield Cons # Ex,, and Conf # Ex,, for all m > 1, whereas Exy C
Cons; details are omitted. The main work done regarding Cez-learning can be
found in [6], including proofs for Cex C Ex, Cex # Cons, and Cex # Ex,, for
all m > 1. Again Fzg C Cex is easily verified and for the proof of Cex # Conf
the ideas from [6] are helpful. For Total-identification and a proof of Total C
Cons see [10]. Exy C Total and Total # Ex,, for all m > 1 can be verified
with the help of the separations mentioned above. By definition Total is a
subset of Cex; the proper subset relation Total C Cez is then obtained from
Total C Cons and Cons # Cex.

The notion I refers to the set of all inference classes defined so far.
I:={FEx, Bc, Bc*, Cons, Conf, Cex, Total} U {Fz,, | m > 0} .

The following lemma summarizes some commonly used results, see for example

[8,16].

Lemma 7 Let I € I, U € I and let 7 be any acceptable numbering. Then
there exists a strategy I-learning the class U with respect to the hypothesis
space T. Moreover, if I ¢ {Cons, Conf} and 1 is a hypothesis space, such that
U s I-learnable with respect to 1), then there exists a total recursive I-learner
wdentifying U with respect to 1.

A counterexample for the the criterion Cons in the second part of Lemma 7
is given in [16]. The results mentioned above are summarized in Theorem 8
and illustrated in Figure 1.

Theorem 8 [2-6,10,15]

(1) Ez, C Exyyy C Ex C Be C Be* forallm >0, {f | f recursive} € Be",
(2) Ezxy C Total C Cons C Conf C Er,

(3) Total C Cex C Ex,

(4) Cex # Cons, Cex # Conf,

(5) Bz, # 1 for allm > 1 and all I € {Total, Cex, Cons, Conf}.

Note that three kinds of inference types have been defined via modifications
of the constraints in Ez-identification:

e types resulting from special constraints concerning the success criterion of
the sequence of hypotheses, namely Fz,, for m € N, Be, Bc* (the latter also
modifying the accuracy demands); these form the right axis and the upper
left axis in Figure 1;

e types resulting from special constraints concerning the quality of the inter-
mediate hypotheses, independent of the amount of information currently
known about the target function, namely Total and Cex; these form the
middle left axis in Figure 1;

e types resulting from special constraints concerning the quality of the inter-
mediate hypotheses, depending on the information currently known about
the target function; namely Cons and Conf; these form the lower left axis
in Figure 1.

For each kind of inference type the separation results will be transferred to
the context of uniform learning.

FEzxg Eacl\.
{ .

Total Cex Ex Be Be*

|

Cons — Conf

Fig. 1. The hierarchy of learning classes. Vectors indicate proper inclusions; if two
classes are not connected by a sequence of vectors in one direction, they are incom-
parable.

3 The model of uniform learning

3.1 Definitions

The learning models defined in the previous section will now be considered on
a meta-level. Uniform learning is concerned with the existence of strategies,
which simulate appropriate learners for infinitely many learning problems. In
this context, any class of recursive functions constitutes a learning problem. So
a uniform strategy — on input of a description for a class of recursive functions
— must develop an appropriate learner for the class described.

The formal definition of the corresponding learning model first requires a
clear explanation of how to describe learning problems. The descriptions are
necessary, in order to inform a uniform learner of the actual learning problem
to cope with. A quite simple method is to consider a class of recursive functions
as a subset of a class of partial-recursive functions enumerated by an arbitrary
numbering. Thus a family of numberings yields a family of learning problems.
So from now on let ¢ denote a fixed three-place acceptable numbering. This
provides an effective enumeration (¢%)gen of all numberings, where ¢%(i, 1)
equals ¢(d, i, z) for all d, i,z € N. With each numbering ¢? the recursive core
R, is associated as follows:

Ry = {p?|i€ N and ¢! is recursive} for any d € N .

Hence any parameter d € N corresponds to a set R4 of recursive functions to
be identified, i.e. d describes a learning problem. Consider for example the
numbering v, which is for any x, y defined by ¢ (z,y) 1, if x = 0; ¢(x,y) := 0,
if x > 0and y < x; ¥(z,y) := 1, otherwise. Then any integer d satisfying
¢ = 1) is a description of the recursive core Ry = {0°1°° | i > 1}. Of course
the interpretation of such descriptions is influenced by the choice of p. Nev-
ertheless, since ¢ is acceptable, all results obtained below hold independently,
no matter what acceptable numbering is chosen.

Now note that any set D C N corresponds to a series of classes of recursive
functions and thus to a series of learning problems. Therefore such a set will
be called a description set whenever it is considered as a set indexing a family
of classes of recursive functions. For a uniform learner trying to cope with
any learning problem described in a set D, it is sufficient to develop from
any parameter d € D a suitable learner for the recursive core described by d.
More formally, if one input parameter of the uniform learner is fixed by d, the
resulting function must be a learner for R,.

Definition 9 Let I € T and D C N. Fiz an acceptable numbering 7. D s
uniformly I-learnable iff there is a two-place strateqy S, such that, for any
description d € D, the learner Sy I-identifies the set Ry with respect to T.
Unil denotes the class of all uniformly I-learnable description sets.

Note that this definition is independent of the choice of 7. Of course it is
quite natural to choose an acceptable numbering as the common hypothesis
space to be used for uniform learning of the whole series of classes described
in a set D, cf. Lemma 7. Nevertheless other motivations might influence the
choice of hypothesis spaces: as each description d of a recursive core also cor-
responds to a numbering ¢ which “contains” all functions in the recursive
core, perhaps even the numberings ¢? might serve as hypothesis spaces. Hence
the idea to demand correct identification with respect to the numberings as-
sociated to the descriptions also seems conceivable. Since %programs can
be uniformly transformed into 7-programs (for any acceptable numbering 7),
this idea yields a special case of the Unil-model. Therefore the term restricted
uniform learning will be used in this context.

Definition 10 Let I € I and D C N. D s uniformly I-learnable with re-
stricted choice of hypothesis spaces iff there is a two-place strategy S, such
that, for any description d € D, the learner Sy I-identifies the set Ry with
respect to ©?. resUnil denotes the class of all description sets which are uni-
formly I-learnable in this restricted model.

Another conceivable thought is to weaken the constraints concerning the choice

of hypothesis spaces, such that the learner is just required to synthesize ade-
quate strategies for the learning problems described, but no longer required to

10

synthesize the corresponding suitable hypothesis spaces. Thus the Uni/-model
is generalized to the so-called model of extended uniform learning.

Definition 11 LetI € I and D C N. D is uniformly I-learnable with extended
choice of hypothesis spaces iff there is a two-place strateqy S, such that, for
any description d € D, the learner S, I-identifies the set Ry with respect to
some arbitrary hypothesis space 1. ext Unil denotes the class of all description
sets which are uniformly I-learnable in this extended model.

Of course, for any I € I, the inclusions resUnil C Unil C extUnil fol-
low immediately from the definitions. To show that in general res Unil really
constitutes a restriction of Un:il, and ext Unil corresponds to a proper ex-
tension of Unil, special descriptions of finite recursive cores are sufficient, as
Proposition 13 states. Since this is not the only context where finite classes
of recursive functions help to obtain interesting results within the scope of
uniform learning, some further notation, concerning the identification of finite
recursive cores, might be useful.

Definition 12 Let I € 1. Then Unil[x| is the class of all description sets
D € Unil corresponding to a family of finite recursive cores. The notions
res Unil[x] and ext Unil[x| are used analogously.

Proposition 13 (1) resUnil[x| C Unil[*] C extUnil[*] for I € I\ {Bc"},
(2) resUniBc*[x] C UniBc*[x],
(3) UniBc* = extUniBc* = {D | D C N}.

Sketch of proof. ad 1. Fix I € T\ {Bc"}. By the remarks above, it remains
to verify resUnil[x] # Unil[x] # extUnil[x]. The set {d | cardRqy = 1} is
an example for a description set belonging to ext Unil[x]|\ Unil[]|. Uniform
learning of this set in the extended model is trivial: since for every recursive
function f there is a hypothesis space v satisfying ¢y = f, the strategy con-
stantly zero is an appropriate learner. {d | card Ry = 1} ¢ Unil[x] follows
from Theorem 24.1 for (I,1') = (Be, Bc*), so a proof will be given below.

Moreover there exists a set D C {d | card{i | ¢¢ is recursive} = 1}, which
is not suitable for restricted uniform Bc-identification (see the proof of The-
orem 24.1 for (I,I') = (Be, Bc*)). From such a set D a description set D’
in Unil[x] \ resUnil[«] can be constructed in the following way: choose a
recursive function ¢, such that, for all d,, x,

o(d) 0, if p¢(y) is defined for all y < x|
p; (T) = .
1, otherwise .

Then let D' = {g(d) | d € D}. Since each recursive core described by D’ equals
{0°°}, the strategy constantly returning a fixed program for 0 witnesses to
D' € Unil[«|. If there was an appropriate I-learner S for D' in the restricted

11

uniform model, then defining
Ty(f[n]) == Sya)(0") for all recursive functions f and all d,n ,

would yield a res UniI-learner for D. To verify this, note that, for all d € D
and all i, ©? is recursive iff cplg(d) equals 0. Since D ¢ res UniBc, this results
in a contradiction. Hence D' € Unil[x] \ resUnil[x].

ad 2. The description set {d | card Ry = 1} belongs to UniBc*[*], but not to
res Uni Be*[x] (cf. [17]).

ad 3. This follows immediately from Theorem 8 and Lemma 7, because the
whole set of recursive functions is Bc*-identifiable with respect to any accept-
able numbering. So, in the context of UniBc¢*- and ext UniBc*-identification,
even the “classical” learners suffice. O

If I, I' € Tare inference classes, such that I'\ I # (), then also Unil"\ Unil # ()
and ext UniI'\ ext Unil # 0; any description of a recursive core in I'\ I can be
used to verify this result. Similar results can be obtained for most inference
criteria in the restricted model, if the descriptions are chosen carefully. The
following lemma is used to show, that such descriptions exist for all uniform
learning models considered here.

Lemma 14 Let I € I, U € I. Then there exists a hypothesis space 1, such
that U C {4; | i > 0} and the recursive core of the numbering v is I-learnable.

Proof. First assume I = Bc*. Then the whole set of recursive functions is
I-learnable with respect to any acceptable numbering, so the assertion holds.

Next let I = Ez. In this case the following characterization from [15] can be
used: let U be a set of recursive functions.

U € Ex iff there is some partial-recursive numbering 1 and a recursive
function h satisfying

U C{yi i =0},

- ifi,j € Nand i # j, then {(z,v¢;(z)) | # < h(i,7) and ¢;(z) is defined} #
{(z,¢;(z)) | * < h(i,j) and ¢;(z) is defined}, i.e. ¢; and ¢, disagree on
some input “below” h(i, j).

Now if U € FEzr and v, h are chosen accordingly, then also the recursive
core of ¢» matches this characterization. Hence ¢ witnesses to the assertion of
Lemma 14.

In the case I € {Cons, Bc}U{Ez,, | m € N} the same approach as for I = Ex
can be used. Details are omitted.

12

For the case I = Conf let U be a class in Conf, 7 an acceptable numbering
and S any strategy Conf-identifying U with respect to 7. Similar ideas as in
[15] are used to obtain the desired numbering 1. Define a set M of pairs by

M = {(z,n) |7, (x) and S(7,[z]) are defined for all z < n
and S(1,[n]) = z} .

Obviously M is recursively enumerable, so let g be a recursive function with
range M. For any number i, if g(i) = (z,n), let ¢;[n] := 7,[n]. Moreover, for
x> n, let ;(x) = 7,(x), if S(1,[n]) = S(rn+1])=... = S(r.[z]) = z and
if Condition A holds.

Condition A. None of the = + 1 initial hypotheses are found to be non-
conform with respect to 7 within z steps of computation (formally: for all
y <z and all m <y, if 75(r.y)(m) is defined within steps of computation,
then TS(Tz[yD(m) = 1,(m)).

In any other case, let ¢;(x) be undefined. Now it remains to verify, that
satisfies the desired properties.

To prove that U is contained in the set of all functions v;, ¢ > 0, fix some
arbitrary function f in U. Then there exist numbers z and n, such that 7,
equals f and, for all x > n, S(7,[z]) = z. Otherwise S would not learn f in
the limit with respect to 7. In addition, S(7,[z]) must also be defined for any
& < n. Moreover — since the conformity demands are fulfilled — if 7g(,,p,) ()
is defined for any y > 0 and any m < y, then Tg(,) (m) equals 7,(m). By
definition of M the pair (z,n) is contained in M; hence there is some ¢ with
g(i1) = (z,n). The argumentation above then implies ¢); = 7, = f. Thus
U C {4 | >0}

Finally it is possible to show, that S learns the recursive core of ¢ conformly
with respect to 7. For that purpose fix some number i, such that 1; is a
recursive function. Let g(i) = (z,n). Obviously 1; = 7,. As ¢; is a total
function, all hypotheses S(7,[z]) for £ > 0 must be defined and, if x > n,
must equal z. Thus S learns ¢; in the limit with respect to 7. Furthermore,
if any intermediate hypothesis returned by S on 7, was non-conform with
respect to 7, then ; could not be total because of Condition A. This implies,
that ¢); — and so the whole recursive core of) —is Conf-learned by S (with
respect to 7).

For the case I = Cex fix some U € Cex and some total recursive strategy S
Cez-learning U with respect to an acceptable numbering 7. Define a set M
similarly to the method above. A pair (z,n) belongs to M iff 7,(x) is defined
for all # < n and S(7,[n]) = z. Choose a recursive function g, such that the
range of g equals the set M. If g(i) = (z,n), let i;[n] := 7,[n]. Given z > n,
let ¢ (x) :=7,(x), it S(7,[n]) = S(1,[n+1]) = ... = S(7,[z]) and Condition A
holds.

13

Condition A. All of the x + 1 initial hypotheses are either consistent or
convergently incorrect for 7, in an argument “below” x (formally: for all
y < x either Ty, [y)(m) = 7.(m) for all m < y or there is some m > 0, such
that 7g(-,;))(m) is defined and not equal to 7,(m)).

In any other case let v;(x) be undefined.
A similar argumentation as for the case I = Conf shows that ¢ fulfils the
desired properties.

Finally, if I = Total, consider a set U € Total and a recursive strategy S which
learns U with total intermediate hypotheses with respect to an acceptable
numbering 7. The proof proceeds as in the case I = Cez, where Condition A
is replaced as follows.

Condition A. All of the x + 1 initial hypotheses correspond to functions
defined for the initial segment of length x41 (formally: Tg(r,) (m) is defined
for all y,m < .

The rest of the argumentation can be transferred as usual. O

Corollary 15 Suppose I,1' € 1 are inference classes, such that I' \ I #).
Then there exists a description d satisfying {d} € Unil'\ ext Unil.

Proof. Choose U € I'\ I. By Lemma 14 there is a description d, such that U C
Ry and Ry € I'. Lemma 7 then implies Ry € I for any acceptable numbering
7. Moreover Ry ¢ I, because U ¢ I. Consequently, {d} € Unil'\ extUnil. O

Hence Unil'\ Unil and extUnil’ \ extUnil are non-empty, if I' \ I # 0.
The more challenging question is, whether there are description sets, which
(i) correspond to families of classes in I, (ii) are uniformly I’-learnable, but
(iii) are not uniformly I-learnable. Of course this problem is also relevant for
the restricted and extended models. The main concern of this paper is to show
that, for most of the models, such description sets exist. Moreover most often
families of finite classes suffice to verify the desired results.

3.2 Helpful results

In the subsequent proofs for separations of the kind Unil C Unil' (for
I,I' € T) description sets are constructed to disallow Unil-identification for
any learner. Such constructions become much more accessible, if a diagonal ar-
gument defeating all recursive learners suffices. Fortunately, as Proposition 16
shows, this idea can be exploited in many cases.

Proposition 16 Let I € I\ {Cons, Conf} and let D be any description set.

14

Assume D € Unil (D € extUnil). Then there exists a total recursive function
S, such that D is Unil-identifiable by S (ext Unil-identifiable by S, respec-
tively). Moreover, if I ¢ {Total, Cex} and D € resUnil, there erists some
total recursive learner S, which res Unil-identifies D.

The idea of the proof is the same as for the corresponding claims in Lemma 7
and is therefore not demonstrated. Counterexamples for the cases excluded in
the statement of Proposition 16 are proposed below in Examples 17 and 18.

Example 17 Let I € {Cons, Conf, Cex, Total}; fix a description set D by
D :={d| Ry = {0} and there is evactly one index i such that p(0) = 0} .

Then D belongs to resUnil, but D s not resUnil-identifiable by any total
recursive strategy.

Proof. First let I € {Cons, Conf, Total}. The case I = Cez will be handled
separately afterwards. Obviously, D is res UniI-identifiable: given the parame-
ter d as a description of a recursive core, a learner just has to return a number
i satisfying ©¢(0) = 0. If d belongs to the set D, such a number must exist
and is a program for 0°°, which is the only function in Rj,.

It remains to prove that D cannot be identified with respect to resUnil by
any recursive learner. For that purpose fix some arbitrary recursive strategy
S. To verify that S is not suitable for res Unil-identification of the whole set
D, a description d* is constructed, such that the following two properties hold:

(1) d* belongs to D, but
(2) the recursive core described by d* is not I-learned by Sy« with respect to
the hypothesis space %" .

For that purpose define for each number d a two-place function v as follows.

First compute e := S4(0) + 1 and let b, = 0>°. Moreover, define ¢; = 1 1 for
all programs i # e.

As S is a total recursive function, this definition is uniformly effective in d.

Hence there exists some fixed point value d*, satisfying ¢ = 1), for the
numbering ¢ constructed from S and d*. This fixed point value shall be used
to make the learner S fail. End Construction of d*

Now the desired properties can be verified.
ad 1. d* belongs to D.

This is an immediate consequence of the definitions.

15

ad 2. The recursive core described by d* is not [-learned by Sy with respect
to the hypothesis space ¢ .

By construction, godsy;* (0) €quals 1 1. So, on input of the first initial segment

of 0, the learner Sy returns some ¢? -number of a non-total function, which
is not conform. Note that 0 belongs to 4. Consequently, the recursive core
described by d* is not I-identified by Sy« with respect to the hypothesis space

T
These two properties of d* now imply that S is not an appropriate res Unil-

learner for D. Since S was chosen arbitrarily from all recursive learners, this
proves the claim for I € {Cons, Conf, Total}.

Finally, if I = Cex, the proof proceeds analogously, where “¥; = 1 1°°” is
replaced by “i; =1°°” for all i #e. O

Example 18 Let I € {Cons, Conf} and define a description set D by
D = {d | ¢* is a recursive function} .

Then D belongs to resUnil, but D s not ext Unil-identifiable by any total
recursive strategy.

Proof. 1t suffices to show, that the set D is res UniCons-learnable, but not
ext Uni Conf-identifiable by any recursive learner.

Given a number d and some segment «, a resUniCons-learner for D just
returns the minimal ¢%index consistent for «. Since ? is recursive for each
d € D, this yields a successful strategy (which has been defined as the method
of “identification by enumeration” by Gold [8]).

In order to prove that D cannot be learned by any recursive strategy — even
in the extended model ext UniConf — fix some recursive function S. Now S
is shown to be inappropriate for ext UniConf-learning of the whole class D.
This can be achieved by constructing a description d* satisfying

(1) d* belongs to D, but
(2) the recursive core described by d* is not Conf-learnable by Sy with
respect to any hypothesis space.

For that purpose define for each number d a two-place function ¢ by stages
as follows.

Stage 0. Let 1y(0) := 0. Go to stage 1.
In each stage k (k > 1), ¢y(k) is defined by 0, if this forces the learner Sy into

a mind change. Otherwise, 1y(k) := 1. Furthermore, the function v is used

16

to make S, return some incorrect or non-conform hypothesis, if such a mind
change on v, cannot be forced.

Stage k (k > 1). Compute the values Sy(¢o[k — 1]) and Sy(¢[k — 1]0). I
Sa(tolk — 1)) # Sa(vok — 1]0), then let ¢y(k) := 0, otherwise ¢y(k) := 1.
Moreover let 1)y := ¢y[k — 1]0°°. Go to stage k + 1.

As S is recursive, this construction proceeds uniformly in d. Thus there is
some fixed point value d* satisfying % = v for the numbering 1) constructed
from S and d*. This fixed point value will be used to show that S is not an
ext Uni Conf-learner for D. End Construction of d*

It remains to prove the desired properties.
ad 1. d* belongs to D.

This follows obviously from the construction, because all stages must be
reached in the definition of the numbering ¢ corresponding to S and d*.

ad 2. The recursive core described by d* is not Conf-learnable by Sz with
respect to any hypothesis space.

Counsider two cases.

Case 1. Sg- (o [k — 1]) # Sg- (g [k]) for infinitely many &k > 1.
Then Sz cannot learn ¢ conformly, because it fails to generate a convergent
sequence of hypotheses.

Case 2. Sg- (o [k — 1]) = Sg-(pd [k]) for infinitely many k > 1.
For each such k, by the instructions in stage k, ol [k] = ¢d [k — 1]1, pi [k] =
ot [k — 1]0, and

Sa- (o [k]) = Sa- (0 [k —1]0) = Sa= (0§ [k —1]) = Sa- (5 [k]) . (1)
Now choose some arbitrary hypothesis space 7.

Case 2.1. 775d (" k) (k) is defined for some k > 1 satisfying (1).

Then 7, () # o& (k) or 1840 (o 1)) (K) 7 ¢t (k), although all these

values are deﬁned. Hence, for at least one of the functions ¢ and o{ , Sy
returns some hypothesis violating the conformity demands with respect to 7.
Consequently, R4 is not Conf-learnable by Sy« with respect to 7.

Case 2.2. 1), (pa" i) (k) is undefined for all & > 1 satisfying (1).
In particular M54 (" TRY) is non-total for infinitely many k£ > 1. Thus, for the

function g, Sy« returns hypotheses incorrect with respect to n infinitely often.
Hence Sy- does not Conf-identify the class Ry with respect to 7.

17

This verifies Property 2. O

4 Hierarchies of classes in uniform learning

As illustrated in Figure 1, the hierarchy of all inference classes has already been
studied for the non-uniform learning model (cf. [2-6,10,15]). Now the scope
of the subsequent theorems is to investigate the corresponding hierarchies for
uniform identification — in the basic model as well as in the restricted and
extended cases.

Actually hierarchies for the basic and the extended model can immediately be
deduced from Corollary 15: since for any I, I' € T with I"\ I # () there is some
description set in Unil'"\ ext Unil, both Unil"\ Unil and ext Unil'\ ext Unil
must be non-empty. For a proof of Corollary 15 the required description set
was chosen to represent a recursive core belonging to I” \ I, which obviously
disallows uniform I-learning. Together with a proof for Unil C Unil' this
yields the same hierarchy for the Uni-model® as has been verified in the non-
uniform case — not a very astonishing result. It would be more remarkable
to find description sets in Unil’ \ Unil (and in parallel for the restricted
and extended models), such that each recursive core described belongs to the
class I. Indeed the following results show that such description sets exist for
nearly all the models. In particular, any separation verified here is achieved
by descriptions of finite recursive cores (most often even singletons or cores
consisting of two elements). In the non-uniform model finite classes are the
most simple sets regarding learnability: they can be identified with respect
to any criterion I € I by a quite straightforward strategy. But despite their
trivial role in the basic inference model these classes are complex enough to
separate inference criteria in meta-learning.

Theorem 19 first summarizes the inclusions obtained for uniform learning of
finite recursive cores; which of these are proper inclusions will be studied in
the subsequent analysis.

Theorem 19 Let I,1' € 1 be inference classes, such that I C I'.

(1) Unil[x] C Unil'[*].

(2) If (1,1') # (Exq, Total), then res Unil[x] C res Unil'[x].

(3) If (I,I') # (Total, Cons) and (I,1') # (Total, Conf), then ext Unil[x] C
ext Unil'[*].

L For most of the criteria parallels are observed easily in the restricted and extended
cases.

18

Sketch of Proof. The first two claims can be verified easily for the pair (7, 1') =
(Total, Cons): a uniform Cons-strategy just has to simulate a uniform Total-
strategy and test its output for consistency. Any consistent intermediate hy-
pothesis is returned without modification, any inconsistent hypothesis can be
changed into an arbitrary consistent output.

The following idea for a proof of the second claim for the pair (Ezq, Cex)
has been suggested by Jochen Nessel: if D is a description set belonging to
resUniFry and S is a corresponding uniform strategy, then a resUniCex-
learner T" for D just has to replace the “?”-signs returned by S with correct
or convergently incorrect intermediate hypotheses. Whenever S returns a hy-
pothesis different from “?”, then 7" may do the same. So, if Sy(f[n]) =7 for
some recursive function f and some d,n > 0, then T, (on input f[n]) looks
for some pair (7, m) of numbers, such that i is consistent for f[n| with respect
to p? and Sy(pd[m]) = i. As soon as such a pair (i,m) is found, T, returns
i. If f € Ry and ¢¢ # f, then Sy(f[m]) # i because of the choice of S. So
©¢lm] # flm], i.e. i is convergently incorrect for f with respect to 2.

In order to prove Claim 3 for the pairs (Ezg, Total) and (FEz,, Cons) the
hypothesis spaces used for Ery-learning have to be adjusted. To allow uni-
form Total-learning, an arbitrary total function (for example the function
constantly zero) is added to the hypothesis space at a fixed index. This fixed
index may be output, whenever the uniform Fz,-learner returns “?”. This
yields a uniform Total-strategy. For uniform Cons-learning the old hypothe-
sis spaces are mixed with an enumeration of all recursive functions of finite
support. If the Ezgy-learner returns “7?”, then a Cons-learner may return some
consistent hypothesis corresponding to a suitable function of finite support.

All other statements of the theorem follow immediately from the definitions
of the corresponding learning classes. O

Figure 2 summarizes the results to be proved in the subsequent sections. More-
over it will turn out that

e all separations concerning the Uni-model are achieved via descriptions of
singletons;

e all separations concerning the resUni-model — except for resUniTotal \
res Uni Bz, # () (m > 0) — are achieved via descriptions of singletons;

e all separations concerning the ext Uni-model are achieved via descriptions
of recursive cores consisting of no more than 2 functions.

Note that singleton recursive cores can never yield separations in the extended
model of uniform learning: as for each recursive function f there is a num-
bering v with ¢y = f, the strategy constantly zero witnesses to the fact that
each description set representing singletons is ext Uni Ezy-identifiable and thus
ext UniI-identifiable for all I € I. Therefore recursive cores consisting of two

19

functions constitute the optimal result in this context.

Um’E:z:l[*]\

Uni Total [x|— Uni Cex[*] Uni Ez[x|——UniBc[¥] —UniBc*[%]

Uni Cons[*] — Uni Conf %] /
— res Uni Exo[+] i{]ml@zl[*]\

res Uni Total[*]— res Uni Cex[*] — res Uni Ex x|~ res Uni Be[+] =~ res Uni Bc* [#]

|

= res Uni Cons[x]|— res Uni Conf [#]

Uni Ezo[*]

ext Uni Exo[x| — ext UniFx, [*]\

N

ext Uni Total[*] = ext Uni Cez x| = ext Uni Ex[*]~ ext UniBc[*| = ext Uni Bc™]

ext Uni Cons|[x|— ext Uni Conf [*]

Fig. 2. The hierarchies for the three models of uniform learning of finite recursive
cores. Vectors indicate proper inclusions; if two classes are not connected by a
sequence of vectors in one direction, they are incomparable.

The corresponding proofs are the scope of the studies below.

4.1 Similarities between the hierarchies

Since all proofs regarding the hierarchies in Figure 2 meet a common structure,
the criteria Fr and Bc are chosen for a first example. The corresponding
separations are verified in detail, whereas the proofs for other inference classes
are just sketched.

Theorem 20 There exists a description set D € resUniBc \ ext UniEx, such
that each recursive core described by D consists of at most 2 functions.

Proof. The definition of D uses the following idea: first for each total recursive
learner S and each number d a numbering 1) is constructed. The recursive
core of this numbering ¢ will consist of at most 2 functions and will not be

20

identifiable in the limit by S;. Then the construction yields some fixed point
value d*, such that Sy fails to identify Rg-. Moreover R4 will have no more
than 2 elements. Finally these fixed point values are used as descriptions in
the set D. For each recursive learner S such a fixed point d* is included in
D. Then D is not suitable for extended uniform learning in the limit, because
each recursive strategy S fails for at least one recursive core Rg«. A careful
carrying out of this idea will still enable restricted uniform Be-learning of the
constructed set D.

More formally: for any recursive learner S and any number d a partial-recursive
numbering v is constructed by stages as follows.

Stage 0. Let 1y(0) := 0 and n; := 0. Go to stage 1.

In each stage k (k > 1) the strategy Sy is presented 2 different gradually
growing extensions of ¢y[ny]. As soon as S, changes its mind on at least one
of these segments (Case A), the function ¢y is extended accordingly. Otherwise
(not Case A) 191 and 1y, become two different recursive functions, such that
the sequence of hypotheses returned by S; converges to the same program on

both 77b2k71 and w2k-

The idea behind this is, that S; cannot Ez-identify the recursive core of the
numbering 1: either Case A occurs in each stage or Case A fails at least
once. If Case A occurs in each stage, then 1y becomes a recursive function, on
which S, changes its mind infinitely often. If Case A does not occur in stage k
(k > 1), then S; guesses the same program for the two different functions
d)Qk—l and Ql)gk in the limit.

Stage k (k > 1). Let tog_1[ng] = thor[nk] = tho[nk]. Search for a number z
satisfying

Sa(tholn](2k = 1)%) # Sa(to[ne]) or Sa(vho[nkl(2k)%) # Sa(olme]) - (2)

In parallel extend 15,1 with a sequence of the value 2k — 1 and 9, with a
sequence of the value 2k, until the search for z is successful.

Case A. There exists a number z, such that (2) is fulfilled.

Then let 2, be the minimal number z satisfying (2). Moreover define ng;, :=
ng + 2z, and

tolni](2k — 1), if Sy(olne](2k — 1)) # Salolna]) ,

k= {%[nk](%)z’“ o Saulm 2k — 1)) = Sy(wolm])

as well as

21

J(2k — 1)7) # Sa(volna]) ,
1(2k — 1)) = Sa(toln]) ,
2k —1)*) = Sa(vo[nx])
2k — 1)) # Sa(vo[nr]) -

to[ng)(2k — 1)% 12°, if Sq(tho[n
_{%, if Sa(to[nk]
1/)219 —

w%l:{%’ if Sa(voln

k]
tolne](2k)™ 1%, if Sa(¢ho[ne](
Go to stage k + 1.

Remark. If there is no number z satisfying (2), i.e. if Case A is not fulfilled,
then stage k does not terminate. In this case ¥op_1 = o[ng|(2k — 1) and
Yok = o[nk](2k)>°. Furthermore, 1y(x) remains undefined for all z > ny, that
means ¢y = g[ng] 1°°; stage k + 1 is not reached in the computation. In
particular, for all 2 > 2k, v); is the empty function. End Construction of ¢

Note that the whole construction is uniformly effective in S and d. For any
recursive learner S this implies the existence of some number d*, such that
¢©? equals the numbering v constructed from S and d*. From now on, for
any fixed recursive strategy S, such a corresponding number d* will be called
a fized point associated to S. Thus the description set D can be defined as

explained in the idea in the beginning of the proof:
D :={d | d is a fixed point associated to some recursive function S} .

The construction of the numberings 1 (by definition corresponding to the
recursive cores described by D) provides two helpful observations:

Fact 1. 1f d € D, then Ry = {¢%} or there are some k > 1 and n > 0, such
that Rq = {91, 05} = {fn](2k — 1), &fln](2k)>}.

This can be verified easily: the construction of a numbering ¢ either runs
through all stages or there is some unique stage, which is never left. If all
stages are reached, the corresponding recursive core consists of the function
Y only. Otherwise, where the number of the last stage reached is k (k > 1),
the recursive core of ¢ contains exactly the functions 19,_; and 1y, according
to the remark below Case A.

Fact 2. If d € D and stage k (k > 1) is reached in the construction of

the corresponding numbering ¢ = ¢? (with the value n;, accordingly), then
d d —

oi(x) < pf(nk) < 2k — 1 for all x < ny.

This fact is verified by a simple induction.
It remains to prove the following claim.
Claim.

(1) Each recursive core described by D consists of at most 2 functions,

22

(2) D € resUniBc,
(3) D ¢ extUniFEz.

ad 1. This is a direct consequence of Fact 1.

ad 2. Define a learner 7' for any recursive function f and all n > 0 by
T(f[n]) == max{f(z) | # < n}. This learner Bc-identifies any recursive core
Ry described by D with respect to its corresponding numbering ¢?. To verify
this, fix some d € D. By Fact 1 it suffices to consider two cases.

Case 1. Ry = {pd}.

Then each stage k (k > 0) is reached in the construction of the corresponding
numbering 1. In particular, Case A occurs in each stage. For any k£ > 1 this
implies that either o, | = pd or p%, = p¢. To be more concrete,

Spgkq :Sog — soﬁ(nk +1)=---= gog(nkH) =2k —1 and
of =g = g +1) == l(ngy) = 2k . (3)
Moreover, for any n € {ny +1,...,nk+1}, Fact 2 implies

T(pp[n]) = max{ef(z) [o < n} = pf(m +1) .

As (3) holds for any k& > 1, this proves ¢ 4., = ¢§ for all n > 0. Hence T
0

is a Be-learner for Ry with respect to ¢

Case 2. Rqg = {4, |, 0%} for some k > 1.

Then, by construction, ¢, | = ©i[ng](2k — 1) and ¢, = [ng](2k)>.
Clearly, in the construction of the corresponding numbering 1, stage k& must
have been reached. Fact 2 then implies pd(z) < 2k — 1 for all < ny. So
T(pgy 1[n]) = max{pf, (x) | o < n} =2k -1 and T(pf,[n]) = max{ef,(z) |
x < n} = 2k for all n > ny;. Consequently, the learner T' correctly Be-identifies
(even Ez-identifies) the class Ry with respect to the numbering ¢¢.

Since for any d € D the learner 71" is a successful Be-strategy for Ry with
respect to %, the description set D is suitable for uniform Be-identification
in the restricted model. So Claim 2 is verified.

ad 3. Assume to the contrary, that D is suitable for extended uniform Ez-
identification. Then by Proposition 16 there exists a recursive strategy .S,
such that each recursive core Ry described by D is identified in the limit by
Sq. Now let d* be a fixed point associated to S. By definition this fixed point
d* belongs to the set D. Therefore R4 is Ez-identified by Sg-. According to
Fact 1 only the following two cases must be considered.

Case 1. Rg- = {3 }.
Then each stage k (k > 0) is reached in the construction of the corresponding

23

numbering 1. In particular, Case A occurs in each stage. For any £ > 1 this
implies that Sy (pd [ng]) # Sg- (o8 [nk11]). Since ngyy > ny, for all k > 1, the
learner Sy- changes its hypothesis on ¢¢ infinitely often. Thus Sz does not
identify R4« in the limit — a contradiction.

Case 2. Ry = {0%._,, ¢4} for some k > 1.

Then, by construction, %, | = 4 [ng](2k — 1) and ¢4 = ©d [ng](2k)>.
Furthermore, stage k is the last stage reached in the definition of the cor-
responding numbering . In particular, there does not exist any number z,
such that (2) is fulfilled. Thus Sy (3 [n4](2k —1)?) = Sg= (2 [n4](2k)?) for all
z > 0. That means, that the sequences of hypotheses returned by Sz on the
two different functions in R4« converge to the same program. Consequently,
Sg+ does not identify Ry« in the limit. This yields a contradiction.

As both cases result in a contradiction, the assumption D € extUniFx is
wrong. This proves Claim 3. O

Corollary 21 (1) UniEz[x] C UniBc[x].
(2) resUniEz[x] C res UniBc[*].
(3) ext UniEx[*] C ext UniBc[x].

Thus the separation of uniform Bec- and Fz-learning is verified for all three
models; nevertheless Theorem 22 offers an interesting reinforcement of Theo-
rem 20 for the case of res Uni-identification, namely that in this model single-
ton recursive cores are sufficient to obtain the desired separation.

Theorem 22 There exists a description set D € resUniBc \ UniEzx, such
that each recursive core described by D is a singleton set.

Proof. Now the idea in the proof of Theorem 20 is adjusted to fit the UniFzx-
model: first for each acceptable numbering 7, each recursive learner S, and
each number d, a numbering 1) is constructed. The recursive core of ¢ will
be a singleton set and will not be Ez-identifiable by S with respect to the
hypothesis space 7. The construction yields some fixed point value d*, such
that Sg- fails to identify R4 with respect to 7. Again for any acceptable
numbering and any recursive learner these fixed point values are collected in
the description set D.

More formally: for any acceptable numbering 7, any recursive learner S, and
any number d a partial-recursive numbering v is constructed by stages as
follows.

Stage 0. Let 1y(0) := 0 and n; := 0. Go to stage 1.

In each stage k (k > 1) the function v first adapts the initial segment y[ny]

constructed so far. This segment is extended, until either S; changes its mind

24

on 9y, or the function computed by 7 — for the program S; guesses — returns a
value for some input greater than ny. In the first case (Case A.1) the function
Yy is extended accordingly. In the second case (Case A.2) the function vy is
extended with a value differing from the one returned by 7. If neither Case A.1
nor Case A.2 occurs, then v is extended ad infinitum.

The idea behind this is that S; cannot Ez-identify the recursive core of ¢
with respect to 7: if in each step either Case A.1 or Case A.2 occurs, then g
becomes a recursive function, on which S; changes its mind infinitely often
or returns incorrect programs infinitely often. If, at some stage k, neither
Case A.1 nor Case A.2 occurs, then 9, becomes a recursive function, but the
program Sy guesses for ¢ in the limit is wrong with respect to 7.

Stage k (k > 1). Search for a number z satisfying

Sa(tholni](k +1)%) # Sa(tho[ns]) (4)

O T8, (vo[ny]) (e + 1) is defined within z steps of computation (5)
In parallel extend v, with the value k£ + 1, until the search for z is successful.

Case A. There exists a number z, such that (4) or (5) is fulfilled.
Then let z;, be the minimal number satisfying (4) or (5). Two cases are dis-
tinguished.

Case A.1. (4) is fulfilled for z.
Then define nygy1 = ng + 2zx and Yo[nki1] = Yo[nk](k + 1)% as well as
Y = 1. Go to stage k + 1.

Case A.2. (4) is not fulfilled for zj (so (5) is fulfilled for z).
Then let e; := 5g(Ts,(po[n,]) (7x + 1)). Moreover define njyy := ny + 1 and
Yo[nky1] = Yo[nkler as well as ¢ = Yo[ng](k + 1)* 1°°. Go to stage k + 1.

Remark. If there is no number z satisfying (4) or (5), i.e. if Case A does not
occur, then stage k does not terminate. In this case ¢y = to[ng](k + 1)°°.
Furthermore, () remains undefined for all x > ny, i.e. ¢y = o[ng] 1T°°;
stage k41 is not reached. In particular, for all 7 > k, v; is the empty function.

End construction of v

Note that the whole construction is uniformly effective in 7, S, and d. Hence
for any acceptable numbering 7 and any recursive function S there is some
d*, such that ¢% is the numbering 1 constructed from 7, S, and d*. Such a
number d* is called a fized point associated to T and S. Finally, let

D :={d|d is a fixed point associated to some acceptable
numbering 7 and some recursive function S}

25

The definition of D provides two helpful observations, both of which can be
verified easily from the construction above.

Fact 1. Let d be an element of D.

(1) If in each stage of the constructlon Case A occurs, then Ry = {¢¢} and,
for any k > 1, o = ol iff pd(ny, +1) = —goo(nkH) =k+ 1.
(2) If at some stage k (k > 1) Case A does not occur, then Ry = {¢%} =

{flne](k + 1)}

Fact 2. If d belongs to D and stage k (k > 1) is reached in the construction
of ¢ (with the corresponding value ny), then pd(x) < k + 1 for all z < ny,.

It remains to prove the following claim.
Claim.

(1) Each recursive core described by D is a singleton set,
(2) D € resUniBc,
(3) D ¢ UniFEx.

ad 1. This is a direct consequence of Fact 1.

ad 2. Define a learner T for any recursive function f and any n > 0 by
T(0") := 0 and T(f[n]) := max{f(z) | * < n} — 1, if f[n] # 0™, This
learner Bc-identifies any recursive core R, described by D with respect to its
corresponding numbering ¢¢. To verify this, fix some d € D. By Fact 1 it
suffices to consider two cases.

Case 1. Rqg = {¢t}.

Then each stage k (k > 0) is reached in the construction of the corresponding
numbering . In particular Case A occurs in each stage. For any k£ > 1, Fact 1
implies that ¢ff = ¢f iff pd(ny + 1) = k + 1. Applying Fact 2 ev1dences

gok goo — max{gpo(J]x<ng+1}=k+1

for all & > 1. Thus, for any n > 0, the learner T satisfies T(¢%[n]) = 0
or T(pg[n]) = max{pl(z) | * < n}—1 € {k | ¢} = ¢i}. This implies
QO%(%[R]) ¢t for all n > 0. Hence T is a Be-learner for Ry with respect to ¢¢.

Case 2. Ry = {pi} for some k > 1, such that of # d.

Then, by construction, ¢ = @é[n.](k + 1)*°. Obviously, in the construction
of the corresponding numbering v, stage k£ must have been reached. Fact 2
implies pd(z) < k+1 forall z < ng. So T'(¢%[n]) = max{pd(z) |z <n}—-1=k
for all n > ny + 1. Consequently, the learner T' correctly Be-identifies (even
Ez-identifies) the class Ry with respect to the numbering %

26

Since for any d € D the learner 71" is a successful Be-strategy for Ry with
respect to %, the description set D is suitable for uniform Be-identification
in the restricted model. So Claim 2 is verified.

ad 3. Assume to the contrary, that D is suitable for uniform Ez-identification.
Then, by Proposition 16, there exist an acceptable numbering 7 and a recursive
strategy S, such that each recursive core R, described by D is identified in
the limit by S; with respect to 7. Now let d* € D be a fixed point associated
to 7 and S, so by assumption Ry is Fz-identified by Sg« with respect to 7.
According to Fact 1, only the following two cases must be considered.

Case 1. Rg- = {8 }.

Then each stage k (k > 0) is reached in the construction of the corresponding
numbering 1. In particular, Case A occurs in each stage. For any k£ > 1 this
implies that either Sg-(¢f [14]) # Sa-(#§ [n441]) or 75, (o e (e + 1) # € =
gog* (ng+1). Since ng 1 > ny forall k > 1, the learner Sy- changes its hypothesis
on @& infinitely often or returns incorrect hypotheses for ¢ infinitely often.
Thus Sy does not identify Ry in the limit — a contradiction.

Case 2. Rg- = {¢% } for some k > 1, such that ¢ # ©d".

Then by construction p§ = o [ng](k + 1) and stage k is the last stage
reached in the definition of the corresponding numbering . In particular,
there does not exist any number z, such that (4) or (5) is fulfilled. Thus
Sa- (8 [n](k + 1)%) = Sa-(¢f [nx]) for all z > 0. Moreover 7g (i, I8
undefined on input ny + 1. In particular, Sg-(¢¢ [ng]) is not a 7-program for
¢ . That means, that the sequence of hypotheses, returned by Sz on the
function in R4+, converges to a wrong 7-number. Consequently, S;- does not
Ez-identify Ry« with respect to 7. This yields a contradiction.

As both cases result in a contradiction, the assumption D € UniFEz is wrong.
This proves Claim 3. O

Evidently, recursive cores of no more than two functions are adequate for
the separation of extended uniform Be-learning from extended uniform Fz-
learning; furthermore for the non-extended case singleton recursive cores meet
the requirements. As Theorem 24 will show, this agrees with the results for
most of the other separations in Figure 2. Yet considering description sets
uniformly Total-learnable and not uniformly Ez,,-learnable (for m > 1), this
observation only holds for Uni- and ezt Uni-learning. Regarding the res Uni-
model, a separation with recursive cores of m + 2 functions is the best result
obtainable. The corresponding proof is just sketched.

Theorem 23 Let m > 0.

(1) There exists a description set D € UniTotal \ UniEz,,, such that each

27

recursive core described by D 1s a singleton set.

(2) There ezists a description set D € UniTotal \ ext Uni Ex,,, such that each
recursive core described by D consists of at most 2 functions.

(3) There exists a description set D € resUniTotal \ ext UniEx,,, such that
each recursive core described by D consists of at most m + 2 functions.

(4) If D € resUniTotal and each recursive core described by D consists of at
most m + 1 functions, then D € resUniEx,y,.

Assertions 1 and 2 coincide with the corresponding results for other inference
classes, whereas Assertions 3 and 4 imply that, in general, the separations
in restricted uniform learning with total intermediate hypotheses cannot be
witnessed by recursive cores consisting of one or two functions. To disallow
ext Uni Ez,,-identification, cores of cardinality m + 2 suffice, moreover Asser-
tion 4 states that in general this result cannot be improved.

Sketch of Proof. ad 1. For any recursive learner S and any number d a function
Y is constructed as follows.

In stage 0 let ¢y(0) := 0. Extend)y by 0’s, until S4(0%) #7 for some minimal
x > 1 and 7,0 (y) = 0 for some y > . If such a pair (x,y) does not exist (not
Case A), then stage 0 does not terminate and ¢y = 0°; otherwise (Case A)
extend 1y by (m + 2) 1 and go to stage 1 with n; :=y — 1.

In each stage k, for 1 < k < m, let ¢y[ng] := Yp_1[nk-

(* Note that 7, () (e +1) =k — 1. %)

Extend 1y by k’s, until Sy(¢[ne]) # Sa(vk[ni]k®) for some minimal x > 1
and T, (g nglkv) (Nk +y + 1) = k for some y > . If such a pair (z,y) does not
exist (not Case A), then stage k does not terminate and ¢y = 1p_1[ng]k°;
otherwise (Case A) let ngiy 1= ng + y, extend 1 by (m + 2) 1°°, and go to
stage k + 1.

In stage m + 1 let ¢,01 = Ym[nme1](m + 1) and stop. All functions ;, for
t > m + 1, remain empty.

If in any stage k (kK < m) Case A is not fulfilled, then v is the only recursive
function enumerated by ¢, but, on input of the values of ¢, S; does not
converge to a 7-program of . If Case A occurs in all stages k (k < m), then
stage m + 1 is reached and ,,,1 is the only recursive function enumerated
by . In this case, the learner S; must change its mind at least m + 1 times
to identify v,,+1. Consequently, Sy is no Ez,,-learner for the recursive core of
the numbering .

Defining D by analogy with the proof of Theorem 22 yields a description
set belonging to UniTotal[x] \ UniFz,,[*] (details of the verification can be

transferred). Moreover all recursive cores described by D will be singleton sets.

ad 2. For any recursive learner S and any number d a function 1 is constructed
as follows. In stage 0 let 14(0) := 0. Extend 1)y by 0’s, until S;(0%) #? for some

28

minimal z > 1. If such an x does not exist, then ¢y = 0°°. Otherwise define
ny = x — 1, let 1ho[nq] := 0%, ¢; := 0; go to stage 1.

In stage k (1 < k < m) let ¢y[ng] := ¢y, [ne]. Extend ¢ with ks, ¢, with
tr’s, until Sy(vy, [nk]k®) # Sa(Wr, [nk]) or Sa(vy, [ne]th) # Sa(¢r, [nk]) for some
minimal x > 1. If = does not exist (not Case A), then stage k£ does not termi-
nate and ¢y = ¥y, [k, 1y, = Uy, [ng]t3°. Otherwise (Case A) let {z,t541} =
{k,tx}, where t;4, is chosen to satisfy Sg(vy, [ne]ti) # Sa(ty,[nk]). Then
define ngy1 = g + @, Yy, [Mer1] = Yy, [neti 1, extend ¢, by (m 4+ 2) 1,
and go to stage k + 1.

In stage m+1 define merl = wtmﬂ [nm+1](m+1)oo7 77btm+1 = wtmﬂ [nerl]t%OJrl’
and stop.

If stage 1 is not reached, then ¢y = 0°°, but Sy always returns ? on . If in any
stage k (1 < k < m) Case A is not fulfilled, then the recursive core of ¢ equals
{¥x, Y1, }, but Sy does not Ex,,-identify this set with respect to any hypothesis
space. If Case A occurs in all stages k (1 < k < m), then stage m+1 is reached
and the recursive core of 9 equals {t,, [my1](m + 1),y w1]toe,).
Since Sy changes its mind on vy, ., [m1] at least m times, Sy cannot Ez,,-
identify this set with respect to any hypothesis space. Note that in any case
the recursive core of 1) has no more than 2 elements.

Defining D as usual yields a description set belonging to Uni Total[*], but not
to ext UniEx,,[*]. Details are omitted.

ad 3. Here the construction proceeds by analogy. The only difference is, that
in Case A at stage k the function 1, is extended by (m + 2)*° instead of
(m + 2) 1°°. This makes the hypothesis z total with respect to 1. The price
paid for this is an increase in the number of functions contained in the recursive
core constructed: in the worst case m+2 functions (¢, . .., ¥;,+1) are obtained.

ad 4. If D fulfils the conditions above and S is a strategy appropriate for
res Uni Total-identification of D, then a res Uni Ex,-learner T for D is obtained
from the following idea: assume d € D. Since S, returns only total hypotheses
for the m + 1 functions in Ry, there are at most m + 1 functions (but perhaps
more programs), which S; may guess during the learning process for some
f € Ry. So let Ty simulate S;. In order to avoid superfluous mind changes,
T, will only change its hypothesis, if its old guess is no longer consistent and
the current guess of S; is consistent. Consistency tests are possible, because
all intermediate hypotheses returned by S; on any f € R, correspond to total
functions.

Formally: for any recursive function f and any description d let Ty(f[0]) :=?, if
0§, 710 (0) # £(0), and let Ty(f[0]) := Sa(f[0]) otherwise. For n > 1 compute
Sd(f[[nf) and Ty(f[n — 1]). If Sy(f[n]) is inconsistent for f[n] with respect
to ¢ or Ty(f[n — 1]) is consistent for f[n] with respect to ¢¢, then define

29

Tu(f[n]) == Tu(f[n — 1]). Otherwise let Ty(f[n]) := Sa(f[n]). Now it is easy to
show, that 1" learns D according to the model res UniEx,,. O

Theorem 24 summarizes the remaining cases, for which the hierarchy of uni-
form learning power looks similar to the hierarchy in the non-uniform model.
As the structure of the corresponding proofs is close to the verification of The-
orems 20 and 22, just the specific parts concerning the constructions of the
required fixed point values for the separating description sets are outlined.

Theorem 24 Let I,I' be inference classes in I, such that I'\ I # 0. Moreover
assume (I,1') # (Ezp,, Total) for any m > 0.

(1) There exists a description set D € resUnil'\ Unil, such that each recur-
stwe core described by D 1s a singleton set.

(2) If (1,1') # (Bc, Bc*) and I ¢ {Cex, Total}, then there exists a description
set D € resUnil"\ extUnil, such that each recursive core described by D
consists of at most 2 functions.

Sketch of Proof. Any of these claims can be verified by a fixed point construc-
tion as in the proofs of Theorem 20 and Theorem 22. The main difference in the
various proofs consists of the specific ideas used to construct the numberings
1. Fix some acceptable numbering 7 for the proof of the first part.

ad 1.
e (I,I') = (Ez, Be). For this pair of learning classes see Theorem 22.

e (I,I') = (Bc, Bc*). Again for any recursive learner S and any number d a
function v is defined by stages. In stage 0, let 14(0) := 0, let n; := 0 and go to
stage 1. In each stage k (k > 1), let ¢x[ng] := to[ng]. Then 1y is extended by a
sequence of 0’s, until a number z is found, such that 7g, ([,]0=) (ne+2+1) = 0.

If such an x does not exist (not Case A), this yields ¢ = y[ng]0> and
stage k does not terminate. Otherwise (Case A) let ngy; := ng + 2 + 1 and
Yo[ngs1] := o[ng]0*1. The first value of ¢, which has not yet been defined,
will remain undefined (to exclude 1 from the recursive core constructed). All
further values of ¢, will be defined as the corresponding values of v, in the
following stages (such that ¢, =* 1)y); go to stage k + 1.

If in any stage k (k > 1) Case A is not fulfilled, then ¢y, = 1)[n,]0° is the only
recursive function enumerated by ¢. In this case the output of the learner S,
on any segment ty[ng]0* does not correspond to a 7-program for v, because
TS, (wo[ne]o) (e + + 1) is not equal to 0 = ¢, (ny + 2 + 1). If Case A occurs
in all stages, then v is the only recursive function enumerated by ¢, but,
for infinitely many initial segments of)y, Sy returns 7-programs of functions
different from vo: ¢o(nx+1) = 1 # 0 = T, (po[ner1 1)) (Pr41) for all & > 1 (note
that ngy1 > ny). Hence Sy is not suitable for Be-identification of the recursive

30

core of the numbering v with respect to 7.

Defining D by analogy with the proof of Theorem 22 yields a description set
belonging to res UniBc*[x| \ UniBc|[*]. Moreover all recursive cores described
by D will be singleton sets.

e (I,I') € {(Fzp, Expyih), (Exy, Cex), (B, Cons)} for arbitrary m > 0.
Here the description set D used in the proof of Theorem 23.1 is sufficient.

o (I,I') € {(Conf, Ezxy),(Conf, Cex)}. Here all partial-recursive learners have
to be considered in the construction of the numberings . If S and d are fixed,
start the definition of 1 in stage 0 with n; = 0 and t,(0) = 0; then go to
stage 1. In each stage k, k > 1, proceed as follows.

Let 1o(ng+2) := 0 (this will allow Cez-learning) and let 1 [ng+1] := 1ho[n]O0.
Moreover extend ¢, by a sequence of the value k + 1, until the computations
of Sq(to[ng]) and Sy(t)o[nk]0) terminate. The value k + 1 will help the desired
Ezxq-learner to identify ¢, if necessary.

Remark 1. If Sy(1po[ng]) is undefined or Sy(t)y[nk]0) is undefined (i.e. neither
Case A nor Case B below occurs), then stage k does not terminate. This yields

Y = Po[ng]0(k + 1) as the only element in the recursive core of ¢, but Sy
does not identify .

Case A. Sy(wo[nk]) and Sy(1ho[nk]0) are defined and Sy(vvg[nk]) # Sa(o[nk]0).
Then let nyyq :=ng + 2, o(ng + 1) := 0; go to stage k + 1.

(* Note that in this case 1) remains initial and S; changes its mind on the
extension of vy constructed in stage k. *)

Case B. Sq(1o[nk]) and Sy()o[nk]0) are defined and equal.
In this case let ¢g(ng + 1) := 1 and extend 1)y with a sequence of zeros, until
the computation of Sy(1y[nk]1) terminates.

Remark 2. If Sy4(1o[ng|1) is undefined (i.e. neither Case B.1 nor Case B.2
below occurs), then stage £ does not terminate. Hence the recursive core of
1) consists of the function 1hy = 1g[ng]10%° only, but Sy does not identify 1.

Case B.1. Sq([ng]l) is defined within z steps of computation and differs

from Sy(vo[nk]).

In this case let ng,; := ng+1+x and ¥g[ng1] == o[ng|10%; go to stage k+1.
(* Note that v, remains initial and S; changes its mind on the extension of
b constructed in this case. *)

Case B.2. Sy(vo[nk]1) is defined within x steps of computation and equal

to Sd(wg[nk]()) and Sd(wg[nk])
Then extend 1)y with a further sequence of zeros, until the computation

31

of ng(%[nk])(nk + 1) stops or until some number z is found, such that

Sa(tho[ne]1) # Sa(vo[ns]107).

Remark 3. If the extension in Case B.2 never stops (i.e. none of the cases
B.2.1, B.2.2, B.2.3 below occur), then stage k does not terminate. This
yields ¢y = 1g[ng]10°° as the only element of the recursive core of 1. As
T, (wolne]) (T + 1) is undefined, the hypothesis Sq(vo[ns]) = Sa(vo[ni]l) is
not a 7-program for ¢. But the output of Sy on vy converges to Sy (vo[n]),
i.e. Sy does not identify ¢y with respect to 7.

Case B.2.1. The extension in Case B.2 is stopped, because the computa-
tion of Tg,(pem,)) (7 + 1) stops within y steps and the result is different
from 1.

Then let ¢y := 1py[ng]10°° be the only function in the recursive core.

(* Now the hypothesis Sy(1o[n + 1]) is not conform for ¢y[ny + 1] with
respect to 7. Hence S; does not identify the function ¢y conformly with
respect to 7. *)

Case B.2.2. The extension in Case B.2 is stopped, because the computa-
tion of T, (yome]) (M + 1) stops within y steps and the result equals 1.
Then let 1)y remain initial and let ¢y := 1)p[ng]0(k + 1)* be the only ele-
ment in the recursive core of .

(* Now the hypothesis Sq(¢x[ng + 1]) = Sa(to[ne]0) = Sa(tbo[nk]) is not
conform for ¢[ny + 1] with respect to 7. *)

Case B.2.3. The extension in Case B.2 is stopped, because some z satis-
fying Sq(¢o[ne|l) # Sa(wo[nk]10%) has been found within y steps.
Let y' be the maximum of z and y and define ng,1 := ny+1+v'. Moreover
Yo[nrs1] := o[nr]10¢. Go to stage k + 1.
(* In this case v, remains initial and Sy changes its mind on the extension
of ¢y constructed in stage k. *)

End stage k

Now Sy does not learn the recursive core of ¢ conformly with respect to T:
if one of the cases A, B.1, B.2.3, occurs infinitely often, then the recursive
core of v consists of the function 1)y only, but S; changes its mind on)
infinitely often. If one of the cases B.2.1, B.2.2 is fulfilled once, then, by the
notes above, the recursive core of 1 is not Conf-learned by S; with respect
to 7 either. Otherwise, by the remarks 1, 2, and 3, the same fact is observed.
Furthermore the core constructed is a singleton set in any case.

Defining D as usual yields a description set, which belongs to res Uni Ez,[+] as
well as to res Uni Cex[*], but not to UniConf|[*]. Further details are omitted.

32

e (I,I') = (Cons, Conf). Again all partial-recursive learners have to be con-
sidered. For each strategy S and each number d construct a two-place function
1 by stages. In stage 0 let 1)(0) := 0 and go to stage 1. In each stage k (k > 1)
proceed as follows.

Let tho—_1[k + 1] := o[k — 1]J0(k + 1) and ¢ox[k + 1] := tho[k — 1]1(k + 1) (the
value k 4+ 1 will help the uniform Conf-learner to identify the functions o) _;
and 1)y, if necessary). Then extend 9, _; with a sequence of the value k + 1,
until the computations of Sy(¢p[k — 1]) and Sy(1ho[k — 1]0) terminate.

Remark 1. If Sy(vo[k — 1]) or Sq(we[k — 1]0) is undefined (i. e. neither Case A
nor Case B below occurs), then stage k does not terminate. This yields 1o, 1 =
Yolk — 1]J0(k + 1)°° as the only element of the recursive core of 1, but S, does
not identify g _;.

Case A. Sy(tolk — 1)) and Sy(vo[k — 1]0) are defined and Sy(¢o[k — 1]) #
Sa(tholk — 1]0).

In this case let ¢ (k) := 0; go to stage k + 1. 1hgr_1 and 1y, remain initial.

(* Note that S; changes its mind on the extension of)y constructed in this
case. *)

Case B. Sq(1o[k — 1]) and Sg(¢pk — 1]0) are defined and equal.
Then extend 19,1 with a sequence of the value k£ + 1, until the computation
of Ts,wok—1])(k) stops with the result 0.

Remark 2. If 7g,(pok—1))(k) is undefined or differs from 0 (i.e. Case B.1
below does not occur), then stage k does not terminate. This yields ¢o,_1 =
o[k — 1]0(k + 1) as the only element of the recursive core of ¢, but the
hypothesis Sy(1or_1[k]) (= Sa(wo[k — 1])) is not consistent for ¢y, 1[k] with
respect to 7.

Case B.1. TSd(lﬁo[k*lD(k) =0.
Then let 191 remain initial and extend 9, with a sequence of the value
k + 1, until the computation of Sy(¢y[k — 1]1) terminates.

Remark 8. If Sy(¢p[k — 1]1) is undefined (i.e. neither Case B.1.1 nor
Case B.1.2 below occurs), then stage k does not terminate. Hence 1) =
o[k — 1]1(k 4+ 1) is the only function in the recursive core of 1, but Sy
does not identify tg.

Case B.1.1. Sq(¢o[k — 1]1) = Sy(vo[k — 1]).

Let o = o[k — 1]1(k + 1)*° be the only element of the recursive core of
the numbering .

(* Here Sq(ar[k]) (=Sa(1ho[k—1])) is not consistent for 19 [k] with respect
to 7 (according to Case B.1). *)

33

Case B.1.2. Sq(vo[k — 1]1) is defined and differs from Sy(¢g[k — 1]).
Then define 1)y(k) := 1; go to stage k + 1. o, remains initial.
(* Note that S, changes its mind on the extension of 1, constructed in
this case. *)

End stage k

If in the construction of ¢ one of the cases A or B.1.2 occurs infinitely often,
then the recursive core of ¢ equals {¢p}, but S; changes its mind on
infinitely often. If Case B.1.1 is fulfilled once, then the recursive core of ¢
consists of one function, which is not Cons-learned by S; with respect to
7. Otherwise the remarks 1, 2, 3 above imply the same fact. Hence in any
case Sy does not identify the recursive core of ¢ with consistent intermediate
hypotheses with respect to 7.

Defining D as usual yields a description set, which belongs to res Uni Conf],
but not to UniCons[*]. Further details are omitted.

e (I,I') € {(Cex, Ex,),(Cezx, Cons)}. For any recursive learner S and any
number d define a function 1 by stages. In stage 0 let 1y(0) := 0, n; := 0 and
go to stage 1. In each stage k (k > 1) proceed in the following way.

Define 9y [ng] := tg[ng] and hy := Sq(¢p[nk]). Then extend 1 with the value
k4 1, until (i) or (ii) is found true.

(i) there is some yj, > ng, such that 73, (y) is defined,
(i7) there is some y;, < ng, such that 7, (yx) is defined

and 7, (yx) 7 Yo(Yr)-

The value k + 1 will help the desired Ez;- and Cons-learners to identify 1/,
if necessary.

Remark 1. If neither (i) nor (ii) is found true (i. e. neither Case A nor Case B
below occurs), then stage & does not terminate. Hence the recursive core of v
equals {¢} = {Wo[ne](k+1)®}, but Ts, o) = Thy, € Yo[ne] 1°°C ¥y. As the
hypothesis hy returned by Sy on ¢ [ng] is a 7-program of a proper subfunction
of 1, the learner Sy does not Cez-identify v, with respect to .

Case A. The extension of 1)y is stopped, because (i) is found true.
Then let ngiq := yx and g [ng41] == 1o[nx]00 . .. 05g(7h, (yk)); go to stage k+1.
(* Note that in this case Sy(vo[ng]) (= hg) is not a 7-number of ty. *)

Case B. The extension of v, is stopped, because (ii) is found true.

Then extend 1y with 0’s, until Sy(to[ng]0%) # hy is fulfilled for an extension
of 1y with 0* for some =z > 1.

34

Remark 2. If Sq(¢o[ng]0®) = hy for all x > 0 (i.e. Case B.1 below does
not occur), then stage k does not terminate. This implies that the recursive
core of ¢ equals {¢g} = {to[nk]0°°}, but the output sequence of S, on 1y
converges to hy, which is incorrect for 1y with respect to 7 (because of (ii)).
Thus Sy does not identify 1)y with respect to .

Case B.1. S4(1o[nk]0%) # hy for some minimal z > 0.
In this case let g1 := ng + 2 and Yg[ngs1] == Yo[nk]0%; go to stage k + 1.
(* Note that Sy changes its hypothesis on the extension of 1y defined in this
case. *)

End stage k

If Case A occurs infinitely often in the construction of 1, then the recursive
core of ¥ consists of the function 1, only, but on ¢ the strategy Sy returns
incorrect hypotheses for v with respect to 7 infinitely often. If Case B.1
occurs infinitely often, then again the recursive core equals {1}, but Sy makes
infinitely many mind changes on 1)5. Otherwise, by the remarks 1 and 2 above,
Sy does not Cez-identify the only function in the recursive core of 1 with
respect to 7. Altogether this proves that Sy is not suitable for Cez-learning of
the recursive core constructed.

Defining D as usual yields a description set, which belongs to res Uni Ez;] N
res Uni Cons[x|, but not to UniCezx[*]. Further details are omitted.

For the other pairs (I, I') satisfying the required conditions the corresponding
claim follows from Theorem 19 and those parts of the claim which have already
been verified.

ad 2.
e (I,I') = (Fz, Be). See Theorem 20.

o (I,I') € {(Erp, Exppyi1), (Exy,, Cons)} for arbitrary m > 0. Here the de-
scription set used in the proof of Theorem 23.2 is sufficient.

o (I,I') € {(Conf, Ezy),(Conf, Cex)}. For these pairs also non-total strate-
gies have to be considered. For each learner S and each number d define a
numbering v by stages. In stage 0 let 159(0) := 0 and ty(2) := 0. Furthermore
define n; := 0 and go to stage 1. In each stage k (k > 1) proceed as follows.
Let o1 [ng + 2] := o[ng]0(k + 1), tor[ng + 2] := to[ng]1(k + 1). The value
(k+1) will prevent the desired Cez-learner form returning programs of proper
subfunctions in the relevant cases. Moreover it helps the desired Ez-learner
to identify tor_; and gy, if necessary. Extend t9,_; and g, by the value
k + 1, until the computations of all the values Sy(¢g[ng]), Sa(to[n]0), and
Sa(tp[ng]l) terminate.

35

Remark 1. If one of the values Sy(v0o[nx]), Sa(to[nk]0), Sa(1o[nk]1) is undefined
(i.e. neither Case A nor Case B below occurs), then stage £ does not terminate.
Hence the recursive core of the numbering 1 is equal to the set {to 1, 1o} =
{o[nk]O(k + 1)%°, ¢g[ng|1(k + 1)}, but at least one of the functions g1,
Y9y 1s not identified by Sy.

Case A. Sy(1o[nk]), Sa(to[nk]0), and Sq(t)o[nk]1) are defined and there is some
t € {0,1} satistying Sq(o[nx]) # Sa(to[r]t).

Then leave the functions ;1 and 1y initial, let ngyq 1= ng + 2, Yo[ngy1] :=
Yo [ng]t0, o(ng41 + 2) := 0, and go to stage k + 1.

(* Note that in Case A the learner Sy changes its mind on the extension of v
just defined. *)

Case B. Sq(vo[nk]), Sa(1o[ng]0), and Sy(o[nk|1) are defined and equal.
In this case extend 1y by 0’s and 19 by the value k + 1, until some =z > 0 is
found, such that Sg(1o[ng]0°+%) # Sy(tbo[ny]) is fulfilled.

Case B.1. This extension stops within y steps; Sq(¢o[ng]0°2) # Sq(vo[ns])
for some x < y.

Then let ngy := ngp+2+y and define Yy[ng 1] := Yo[ne]0Y ™2, Yo(ngy1+2) :=
0; go to stage k + 1.

(* Note that in Case B.1 the learner S; changes its mind on the extension
of 1)y just defined. *)

Remark 2. It Sq(tbo[ng]0%2) = Sy(wg[ny]) for all z > 0 (i.e. Case B.1 does
not occur), then stage k does not terminate. Hence the recursive core of v
equals {0y, Yo} = {¥o[nk]0°°, ¥o[ng]1(k+1)*}. Now let be any adequate
hypothesis space for the recursive core of ¢ and consider two cases.

(Z) ngd(q/,o[nk})(nk + 1) is defined.

Then Sq(vo[nk]) = Sa(o[ne + 1]) = Sa(1ex[nk + 1]) is non-conform for at
least one of the segments y[ng + 1], 1o [ng + 1] with respect to . Thus
Sq does not Conf-learn the recursive core of ¢ with respect to 7.

(ZZ) ngd(qpo[nk})(nk + 1) is undefined.
In this case the index Sy(to[ng]) is incorrect for 1, with respect to 7,
but according to the condition in Remark 2 the output sequence of S; on
the function vy converges to Sy(1o[ng]). Therefore Sy does not identify 1)y
with respect to 7.

End stage k

If Case A or Case B.1 occur infinitely often in the construction of 1, then

the recursive core of 1 equals {1y}, but S, changes its mind on v infinitely
often. If in some stage k both Case A and Case B.1 fail, then, by Remark 1,

36

the recursive core consists of the functions v9r_; and w9, but S; does not
identify this set. Otherwise, Remark 2 above shows that S; does not Conf-
learn the recursive core {1y, 19} of 1 with respect to any hypothesis space
n. Consequently, in any case, S; does not identify the recursive core of ¢ with
conform intermediate hypotheses.

Defining D by analogy with the proof of Theorem 20 yields a description
set belonging to res Uni Ex1[x| and res Uni Cex[x|, but not to ext Uni Conf [].
Details are left out.

e (I,I') = (Cons, Conf). Again all partial-recursive learners have to be con-
sidered. For any strategy S and any number d construct a partial-recursive
function ¢ in the following way. In stage 0 let 1)4(0) := 0 and go to stage 1.
In each stage k (k > 1) proceed according to the following instructions.

Let tor 1[k 4+ 1] := o[k — 1J0(k + 1), thop[k 4+ 1] := o[k — 1]1(k + 1) and
extend the functions 1o,_; and 9, by the value k + 1, until the computations
of all the values Sy(vo[k — 1]), Sa(to[k — 1]0), and Sy(¢og[k — 1]1) terminate.
The value £ + 1 will help the desired Conf-learner to identify 9,1 and o,
if necessary.

Remark 1. If one of the values Sq(volk — 1]), Sa(o[k — 1]0), Sa(¢o[k — 1]1) is
undefined (i. e. neither Case A nor Case B below occurs), then stage & does not
terminate. This yields {vor_1, Yor } = {Wo[k — 1]0(k+ 1), ¢k — 1]1(k+1)>}
as the recursive core of 1, but at least one of the functions 9, _1, 19 is not
identified by Sy.

Case A. Sq(o[k—1]), Sa(tg[k—1]0), and Sy(tg[k —1]1) are defined and equal.
In this case let top_1 = o[k — 1]0(k + 1), o = o[k — 1]1(k + 1)* and
leave all other functions enumerated by ¢ initial.

(* Since S, returns the same output for the segments 1y[k — 1|0 and o[k —1]1,
this hypothesis must be inconsistent (with respect to any hypothesis space) for
at least one of the segments o1 [k], 1ox[k]. Hence Sy is not an appropriate
Cons-strategy for the recursive core of . *)

Case B. Sy(1o[k — 1)), Sa(to[k — 1]0), and Sy(1ho[k —1]1) are defined and there
is some t € {0, 1} satisfying Sy(vo[k — 1]) # Sa(¢o[k — 1]t).
Then let the functions 19, 1 and 1y remain initial, let ¢y (k) := ¢ and go to
stage k + 1.
(* Note that in Case B the learner Sy changes its mind on the extension of v
just defined. *)

End stage k

If in the construction of ¢ Case B occurs infinitely often, then the recursive
core of 1) equals {1y}, but Sy changes its mind on vy infinitely often. If Case A
is once fulfilled, then the note above implies that S, is not suitable for Cons-
identification of the recursive core of ¢ (which equals {19x 1, 9y } for some k >

37

1). Otherwise, by Remark 1 above, the same fact is observed. Consequently, the
recursive core of v is not Cons-learned by S; with respect to any hypothesis
space.

Defining D as usual yields a description set, which belongs to res Uni Conf],
but not to ext Uni Cons[*]. Further details are omitted.

e For the other pairs (I, ') satisfying the required conditions the correspond-
ing claim follows from Theorem 19 and those parts of the claim which have
already been verified. O

This yields the following strict version of Theorem 19.
Corollary 25 Let I,1' € 1 be inference classes, such that I C I'.

(1) Unil[x] C Unil'[].
(2) If (I,1') # (Exy, Total), then resUnil[x] C res Unil'[«].
(3) If (I,I') # (Bc, Bc*), I ¢ {Cex, Total}, then ext Unil[x] C ext Unil'[*].

Moreover the following incomparability results are obtained from Theorem 23
and Theorem 24.

Corollary 26 (1) UniCez[x|# UniCons[x| and UniCex[x|# UniConf %]
(analogously for res Uni instead of Uni).

(2) UniEzx,,[x|# Unil[*| for all I € {Total, Cex, Cons, Conf} and allm > 1
(analogously for res Uni instead of Uni).

(3) ext UniExp,[*] # ext Uni Cons[*] and ext UniEx,[x| # ext Uni Conf[x] for
allm > 1.

4.2 Discrepancies between the hierarchies

With the preceding theorems all parts of the hierarchies for uniform learning,
which agree with the corresponding parts of the hierarchy for the elementary
learning model, have been verified. It remains to consider those cases, in which
a change in the hierarchy has been claimed in Figure 2:

o res UniExg[x] # res Uni Total[],
e crtUniBc[x| = ext UniBc™[x],
o cxtUniEx[*| = ext UniCex[x| = ext Uni Total[].

The first of these claims is a consequence of Theorem 27, which furthermore
states that the required separation is obtained with singleton recursive cores.

Theorem 27 There exists a description set D € resUniExq \ res Uni Total,
such that each recursive core described by D s a singleton set.

38

Proof. The structure of the proof results from ideas similar to those used in the
proof of Theorem 22. For any learner S and any number d a partial-recursive
numbering ¢ is constructed as follows.

Let v; ;=1 for all i > 2. Start computing S4(0). For each z, if the computa-
tion of S;(0) takes more than x steps, let 1y(x) := 0.

Case A. S4(0) is defined.
If S4(0) # 0, let ¢y := 0°° and ¢, :=1°°. Otherwise, leave 1) := 0% 1°° for
some x, and 1y := 01°°.

Remark. If S4(0) is undefined (i.e. if Case A does not occur), then ¢y equals
0% and 14 equals 1°. End Construction of i

As this construction is uniformly effective in S and d, there is some number
d*, such that % equals the numbering 1) constructed from S and d*. Such a
number d* is called a fized point associated to S. Now let

D :={d | d is a fixed point associated to some partial-recursive function S} .
Note that, for any d € D,

either Rq = {pg} = {07} or Ry = {f} = {01} . (6)
It remains to verify the following claim.
Claim.

(1) Each recursive core described by D is a singleton set,
(2) D € resUniFEzxy,
(3) D ¢ resUni Total.

ad 1. This follows immediately from (6).

ad 2. By (6), an Erg-learner for any class described by D has to return “?”
on any initial segment consisting of just one value. Furthermore, it suffices
to return 0 on input of any segment 0" (n > 2), and to return 1, otherwise.
Clearly this verifies D € res UniFxy.

ad 3. Assume to the contrary, that D € res Uni Total. Then there exists some
strategy S, such that each recursive core R, described by D is identified by
S; with total intermediate hypotheses with respect to ¢?. Now let d* € D be
a fixed point associated to S, so by assumption Ry is Total-learned by Sy
with respect to ¢ . In the construction of the numbering v corresponding to
d* either Case A is fulfilled or not.

39

If Case A occurs, then 90%;*(0) equals 1 or 0% 1 for some k. So, for the
only function f € Ry-, the hypothesis Sg-(f[0]) is a ¢ -number of a non-total
function. Consequently, Sy- does not Total-identify R4 with respect to o2 .
This yields a contradiction.

If Case A does not occur, then, by the remark above, ¢ = 0 and Sg- (g [0])
is undefined. Clearly this implies, that R4 is not learned by Sy, which again
leads to a contradiction.

Thus the assumption D € res Uni Total is wrong. O
Corollary 28 res UniFEx[x| # res Uni Total[*].

The scope of the next two theorems is to verify the remaining claims concern-
ing extended uniform learning. The proof of ezt UniBc[*] = ext UniBc*[%] is
based on the fact that the set of all descriptions of Be-classes is uniformly
Be-learnable in the extended model.

Theorem 29 ext UniBc[x] = ext Uni Be™[«].
Proof. 1t is possible to show even more:
ext UniBc = {D C N | Ry € Be for each d € D} . (7)

As each finite class belongs to Be and ext UniBc*[x] = {D C N | R, is finite}
(cf. Proposition 13), this implies the claim of Theorem 29. Therefore it re-
mains to prove (7). Note that by definition extUniBc C {D C N | R, €
Be for each d € D}. For the opposite inclusion, fix some description set D,
such that each recursive core described by D belongs to Bc. The aim is to
verify D € ext UniBec.

For that purpose, let 7 be any acceptable numbering. By Lemma 7, there
exists a class {T!4 | d € D} of recursive strategies, such that, for any d € D,
the strategy T Be-identifies R, with respect to 7. Now define a class {w[d] |
d € D} of hypothesis spaces by

= Ty for alld € D and all i .

Moreover let a learner S be given by Sy(f[n]) := f[n] for all recursive functions
f and all d,n. As can be verified easily, S is appropriate for uniform Bec-
identification of D in the extended model with respect to the hypothesis spaces
Yl (d € D). Consequently, D € ext UniBe. O

Finally the proof of Figure 2 is completed by showing that for extended uni-

form learning of finite recursive cores the criteria Fz, Cez, and Total coincide.
In particular the inference types resulting from special properties concerning

40

the quality of the intermediate hypotheses (independent of the amount of infor-
mation known about the target function) yield an exception in the separations
— compared to the non-uniform model.

Theorem 30 ext UniExz[x| = ext Uni Cex|[x] = ext Uni Total[x].

Proof. Since ext UniTotal[x] C extUniCex[x] C extUniEx[*] by definition,
it remains to prove ezt UniFz[x] C extUniTotal. For that purpose choose a
description set D € ext UniEx[*]. Then

(1) each recursive core described by D is finite,
(2) there is a strategy S, such that for any d € D the recursive core R, is
Ez-identified by S; with respect to some hypothesis space 1.

Note that the hypothesis spaces ¥!% do not have to be computable uniformly
in d. In order to prove that D belongs to ext UniTotal the given strategy S
is used as an appropriate learner. This requires a change of the hypothesis
spaces 14 for the descriptions d in the set D.

The idea can be explained as follows: fix some description d € D. Since S,
identifies the finite class Ry in the limit, there are only finitely many initial
segments of functions in Ry, which force the strategy S; to guess a non-total
function. If the functions in ¥4 associated with these inadequate guesses
are replaced by some total function, a suitable hypothesis space for Total-
identification of R4 by Sy is obtained.

More formally: Let d be an element of D. For all functions f € Ry state-
ment (2) above implies that the set {n > 0 | wgg(f[n]) is not total} is finite.
Define the set of “forbidden” hypotheses on “relevant” initial segments by

HY .= {i>0| wl[d} is not total and there is some function f € Ry
and some number n > 0 such that Sy(f[n]) =i} .

By (1) and (2) the set H!¥ is finite. Consider a new hypothesis space 7%

A ifi ¢ H

)

. forall: e N .
h {000, ificgad

Since H¥ is finite, 79 is computable. Then Ry is Total-identified by Sy with re-
spect to 4. As d € D was chosen arbitrarily, this yields D € ext Uni Total. O

41

5 Conclusion

Gold’s [8] model for identification of recursive functions in the limit has been
investigated on a meta-level. As in the elementary model, several inference
classes resulting from modifications of the constraints in Gold’s model have
been studied, particularly concerning the comparison of the corresponding
identification power. The hierarchy known from the elementary model has
been manifested using finite classes of recursive functions for separating each
pair of different inference classes. As finite classes are not appropriate for
separations in the elementary model, this is evidence to the immense influence
of the specific descriptions chosen to represent the target classes to the learner.
Moreover — by analysing three variants of the uniform learning model — the
impact of suitable hypothesis spaces is revealed. It turns out that the known
hierarchy of inference classes witnesses to some kind of universal relationship.
In particular, for each inference class considered there must be characteristic
structures arranging the learnable classes and the adequate hypothesis spaces.

Acknowledgements

The author is grateful for the helpful hints of the anonymous referees. Addi-
tionally, many thanks are due to Steffen Lange for his comments improving
the overall presentation.

References

[1] Baliga, G.; Case, J.; Jain, S. (1999); The Synthesis of Language Learners,
Information and Computation 152:16-43.

[2] Barzdin, J. (1974); Two Theorems on the Limiting Synthesis of Functions,
Theory of Algorithms and Programs, Latvian State University, Riga 210:82—
88 (in Russian).

[3] Barzdin, J. (1974); Inductive Inference of Automata, Functions and Programs,
In: Proceedings International Congress of Math., Vancouver, 455-460.

[4] Blum, L.; Blum, M. (1975); Toward a Mathematical Theory of Inductive
Inference, Information and Control 28:125-155.

[5] Case, J.; Smith, C. (1983); Comparison of Identification Criteria for Machine
Inductive Inference, Theoretical Computer Science 25:193-220.

[6] Freivalds, R.; Kinber, E.; Wiehagen, R. (1995); How Inductive Inference
Strategies Discover Their Errors, Information and Computation 118:208-226.

42

[7] Fulk, M. (1988); Saving the Phenomena: Requirements that Inductive Inference
Machines Not Contradict Known Data, Information and Computation 79:193—
209.

8] Gold, E.M. (1967); Language Identification in the Limit, Information and
Control 10:447-474.

9] Jantke, K.P. (1979); Natural Properties of Strategies Identifying Recursive
Functions, Elektronische Informationsverarbeitung und Kybernetik 15:487-496.

[10] Jantke, K.P.; Beick, H. (1981); Combining Postulates of Naturalness in
Inductive Inference, Elektronische Informationsverarbeitung und Kybernetik
17:465-484.

[11] Kapur, S.; Bilardi, G. (1992); On Uniform Learnability of Language Families,
Information Processing Letters 44:35-38.

[12] Osherson, D.; Stob, M.; Weinstein, S. (1988); Synthesizing Inductive Ezpertise,
Information and Computation 77:138-161.

[13] Rogers, H. (1987); Theory of Recursive Functions and Effective Computability,
MIT Press, Cambridge, Massachusetts.

[14] Wiehagen, R. (1976); Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien, Elektronische Informationsverarbeitung und Kybernetik 12:93-99
(in German).

[15] Wiehagen, R. (1978); Zur Theorie der algorithmischen Erkennung, Diss. B,
Humboldt-University, Berlin (in German).

[16] Wiehagen, R.; Zeugmann, T. (1995); Learning and Consistency, In: K. P. Jantke
and S. Lange, editors, Algorithmic Learning for Knowledge-Based Systems,
Lecture Notes in Artificial Intelligence 961:1-24.

[17] Zilles, S. (2001); On the Synthesis of Strategies Identifying Recursive Functions,
In: D. Helmbold, B. Williamson, editors, Computational Learning Theory,
Lecture Notes in Artificial Intelligence 2111:160-176.

[18] Zilles, S. (2001); On the Comparison of Inductive Inference Criteria for Uniform
Learning of Finite Classes, In: N. Abe, R. Khardon, and T. Zeugmann, editors,
Algorithmic Learning Theory, Lecture Notes in Artificial Intelligence 2225:251—
266.

43

