
Separation of uniform learning lassesSandra ZillesFahbereih Informatik, Universit�at Kaiserslautern, Postfah 3049,67653 Kaiserslautern, GermanyAbstratWithin the sope of indutive inferene a reursion theoreti approah is used tomodel learning behaviour. The fundamental model onsidered is Gold's identi�a-tion of reursive funtions in the limit. Modifying the orresponding de�nition hasproposed several inferene lasses, whih have been ompared regarding the apa-ities of the relevant learners.The present paper is onerned with a meta-version of this learning model. Givena desription of a lass of target funtions, a uniform learner is supposed to developa spei� suessful method for learning the represented lass. The same modi�a-tions as in the elementary model are onsidered in the ontext of uniform learning,espeially respeting identi�ation apaities. It turns out that the former separa-tions of inferene lasses are reeted on the meta-level, in partiular �nite lassesof reursive funtions { whih onstitute the most simple learning problems in theelementary model { are evidene of these separations.
1 IntrodutionVarious theoretial onepts an be used to model learning behaviour. In thisontext indutive inferene is onerned with suitable tehniques provided byreursion theory. The target objets to be identi�ed are reursive funtionsrepresented by programs via a partial-reursive numbering alled hypothesisspae.In Gold's [8℄ basi model of identi�ation in the limit, the learner, modelledby a partial-reursive funtion, identi�es a reursive funtion f , if it transfersa sequene of information about f into a sequene of hypotheses onvergingto a orret program for f . A sequene of information about f is simply thesequene of output values returned by f in natural order. In general a lass ofEmail address: zilles�informatik.uni-kl.de (Sandra Zilles).Preprint submitted to Elsevier Siene 3 Deember 2002



reursive funtions is onsidered learnable if there is a single learner identify-ing eah element of the lass. By weakening or strengthening the onstraintsin Gold's de�nition { for example via additional demands respeting the qual-ity of the intermediate hypotheses { several alternative inferene lasses havebeen de�ned, f. [2{8,10,15,16℄. On the one hand, it has been of partiularinterest, what prie has to be paid for the quality of the intermediate hypothe-ses (i. e. how strengthening the onstraints redues the quantity of learnablelasses), on the other hand it has been studied, in whih ases it is advisableto loosen the demands (i. e. how weakening the onstraints inreases the quan-tity of learnable lasses). The results of these studies, see [2{6,10,15℄, providea hierarhy of inferene lasses.A quite oneivable idea is to analyse strutural properties that suessfullearners may have in ommon and thus hopefully to design universal methodsfor the uniform identi�ation of in�nitely many lasses of target objets. Evi-dently suh properties always go along with some ommon intrinsi strutureof the lasses to be learned and the orresponding adequate hypothesis spaes.For example a uniform method for learning all reursively enumerable sets ofreursive funtions in the limit is identi�ation by enumeration as de�ned byGold [8℄. This strategy an be generalized to temporarily onform identi�a-tion, f. [6℄, whih onstitutes a suessful uniform method in spei� hypoth-esis spaes. These ideas suggest the formal de�nition of a uniform learningmodel; analysing the orresponding identi�ation apaity is the sope of thepresent paper. The new model onsiders some kind of meta-learning, wherethe uniform learner is supposed to develop a spei� learner for eah targetlass represented via some desription assoiated with the lass. That means,the uniform learner is able to exploit the ommon struture in the identi�abletarget lasses, to the extent that suessful strategies for these lasses anbe omputed by a uniform method. The analysis of meta-learning perhapsprovides even more revelation about these ommon strutures.Uniform learning has also been investigated in the ontext of language iden-ti�ation, see [1,11,12℄. Baliga, Case, and Jain [1℄ ompare several inferenelasses in their uniform language learning model with plentiful results on-tributing to a more detailed understanding of general properties in Gold'selementary model. For examples of rather simple lasses of language families,whih annot be identi�ed uniformly, see [11,12℄. Jantke [9℄ has studied meta-learning of reursive funtions with similar negative results, whih are furtherstrengthened in [17℄. Yet this outome has to be interpreted arefully; mostoften suh simple lasses are not themselves too omplex for uniform learning,but an inadequate hoie of desriptions representing these lasses auses thefailure of uniform strategies.The present paper is mainly onerned with the omparison of inferene lasses{ formerly analysed in Gold's elementary model { now in the ontext of meta-2



learning. As it turns out, the known hierarhy remains valid in the new model,where eah separation of two inferene lasses is ahieved by a representationof �nite lasses of reursive funtions { most often either singleton lasses orlasses onsisting of two funtions, depending on the restritions in the hoieof hypothesis spaes. In the elementary model, �nite lasses an never witnessto an inrease of learning apaity in the omparison of two inferene lasses,beause they are identi�able with respet to any learning riterion onsideredhere. So, although �nite lasses onstitute trivial learning problems in thenon-uniform model, spei� desriptions of suh lasses are too diÆult formeta-learners to ope with.The reetion of the former hierarhy in the uniform model orroborates theintuition, that any pair of di�erent inferene lasses reates a relationship oflearning power universally valid in lots of learning models; i. e. the hierarhy oflearning lasses expresses some kind of natural relationships. So there mightexist a general trade-o� between quality onstraints in the learning riteriaand resulting identi�ation apaities. Therefore also in the ontext of uniformlearning it is sometimes advisable to loosen the restritive demands onerningthe inferene riteria in order to exploit a more powerful learning model.Moreover the proofs of the separations provide methods for onstruting de-sriptions of target lasses not suitable for uniform identi�ation with respetto a given inferene riterion. Hopefully a further analysis of these methodsmay give insight into strutures whih are generally inadequate for learningin the spei� inferene lasses.A preliminary version presenting parts of the results in this paper has ap-peared, f. [18℄.2 Preliminaries2.1 NotationsFor notions and onepts relating to reursion theory see [13℄. Standard notionsare used for the omparison of sets, where� always indiates a proper inlusionof sets and # expresses inomparability. ; is a symbol for the empty set. Inorder to refer to the ardinality of a set X the notion ardX is used.The basi onept needed for modelling a learning senario in indutive infer-ene is the onept of partial-reursive funtions (f. [13℄). Inputs and outputsof these funtions are non-negative integers, the set of whih is denoted by N .The variables n; x; y always range over N . A partial-reursive funtion whih3



is total, i. e. de�ned for all inputs, is simply alled reursive funtion. If f isany partial-reursive funtion, then f(n) denotes the value of f on input n,where f(n) " indiates, that f is unde�ned on input n. Similarly two-plaefuntions, three-plae funtions, et. are onsidered. sg symbolizes a reursivefuntion returning 1 on input 0 and 0 on all other inputs.By means of a reursive bijetive mapping, �nite tuples over N are iden-ti�ed with non-negative integers. Thus, if f is a partial-reursive funtionand n any input value suh that f(0); f(1); : : : ; f(n) are de�ned, this bi-jetive mapping yields a ode number f [n℄ to be identi�ed with the �nitetuple (f(0); f(1); : : : ; f(n)). Given another partial-reursive funtion g, thenotions g(f [n℄) and g(f(0) : : : f(n)) may sometimes be used interhangeably.If for all but �nitely many n either f(n) and g(n) are both unde�ned orf(n) = g(n), this is indiated by f =� g. Identifying the funtion f with theset f(n; f(n)) j f(n) is de�nedg explains the use of notions like f � g andf � g. But eah partial-reursive funtion may also be identi�ed with theorresponding sequene of output values. For example let f(n) = 0 for n � 6and f(n) " otherwise; g(n) = 0 for n � 5 and g(n) = 1 otherwise; h(n) = 0for all n. This might be denoted for short by f = 07 "1, g = 0611, h = 01.Here f # g, g# h, but f � h.If n is given, any (n+1)-plae partial-reursive funtion  enumerates the setf i j i 2 Ng of n-plae partial-reursive funtions, where  i (i 2 N) is givenby  i(x1; : : : ; xn) :=  (i; x1; : : : ; xn) for all elements x1; : : : ; xn of N . Thereforesuh a funtion  is also alled a numbering . Assume f belongs to f i j i 2 Ng.In this ase any index x satisfying  x = f is alled a  -number or a  -programof f . As an example onsider the funtion  , whih is for any x; y de�ned by (x; y) ", if x = 0;  (x; y) := 0, if x > 0 and y < x;  (x; y) := 1, otherwise.Then  is a numbering of the set f"1g [ f0i11 j i � 1g; 0 is the (unique) -number of "1 and eah index i > 0 is the  -number of 0i11. Of oursethere are also numberings whih provide more than one program for a singlefuntion.2.2 Hierarhy of learning lassesA theoretial learning model is prinipally haraterized by �ve omponents:a lass of possible target objets, a method for ommuniating informationabout these objets, a set of possible learners developing a hypothesis fromany feasible information about an objet to be learned, a lass of hypoth-esis spaes assoiating objets with suh hypotheses, and �nally a suessriterion delaring the desired behaviour of the other omponents. In anyinferene lass de�ned in this setion four of these omponents are alwaysspei�ed the same: the target objets to be identi�ed are reursive funtions4



f with the orresponding information presented as a gradually growing in�-nite sequene f [0℄; f [1℄; f [2℄; : : : of the tuples of its output values. Learners arepartial-reursive funtions, also alled strategies; hypothesis spaes are partial-reursive numberings, enumerating at least all the funtions whih have to beidenti�ed. That means, eah funtion to be learned has an index in the hy-pothesis spae.The di�erent inferene lasses de�ned here thus result from di�erent suessriteria. In the basi model { identi�ation in the limit or explanatory identi-�ation, f. [8℄ { the learner is required to eventually return a single orrethypothesis for any target funtion.The modi�ations of this model onsidered below are hosen suh that threeapproahes are taken into aount: �rstly, modifying the requirements on-erning the suess of the sequene of hypotheses; seondly, modifying the de-mands regarding the quality of the hypotheses { independent of the amountof information known about the target funtion; thirdly, modifying the qual-ity demands depending on the urrent information. Eah approah will berepresented by at least two inferene types.De�nition 1 A set U of reursive funtions is identi�able in the limit (Ex-identi�able), i� there is some hypothesis spae  and a strategy S, suh thatfor any f 2 U the following onditions are ful�lled:(1) S(f [n℄) is de�ned for all n 2 N,(2) the sequene (S(f [n℄))n2N onverges to a  -number of f .Ex denotes the lass of all Ex-learnable sets U .For example any lass of funtions enumerated by a reursive numbering isEx -learnable (see [8℄), but there is no adequate strategy for the whole lass ofreursive funtions (f. [8,4℄). Still it is oneivable that loosening the suessriterion in De�nition 1 might yield a learning model whih allows identi�a-bility of the whole set of reursive funtions. In a �rst step the requirementsonerning onvergene of the sequene of hypotheses are weakened. In themodel of behaviourally orret identi�ation, as de�ned in [2℄ and also dis-ussed in [5℄, onvergene is no longer required; the learner eventually has toreturn orret programs, but is allowed to onjeture di�erent programs forthe same funtion.De�nition 2 A set U of reursive funtions is B-identi�able, i� there issome hypothesis spae  and some learner S, suh that for any f 2 U allvalues S(f [n℄) (n 2 N) are de�ned and all but �nitely many of them are  -numbers for f . B is the lass of all B-learnable sets.This modi�ation of De�nition 1 yields an inrease of learning power, i. e. Ex is5



a proper subset of B (see [2℄), but the top of the hierarhy of learning lassesis not yet reahed. Permitting a few errors in the onjetures, as suggested in[5℄, results in an even stronger model, denoted by B�.De�nition 3 A set U of reursive funtions is B�-identi�able, i� there issome hypothesis spae  and some learner S, suh that for any f 2 U allvalues S(f [n℄) (n 2 N) are de�ned and all but �nitely many of them ful�l S(f [n℄) =� f . B� denotes the lass of all B�-learnable sets.With this inferene riterion the top of the hierarhy of identi�ation power isde�nitely reahed, sine the whole set of reursive funtions is B�-learnable;the orresponding proof in [5℄ refers to a private ommuniation to L. Har-rington. So loosening the onditions in De�nition 1 yields the hierarhy Ex �B � B� of inreasing learning power. But it is also oneivable to strengthenthe demands onerning Ex -identi�ability; one idea is for example to modifythe onditions regarding the aspet of mind hange omplexity in the sequeneof hypotheses returned by the strategy.De�nition 4 Let S be a strategy whih is additionally permitted to returnthe sign \?". A set U of reursive funtions is Exm-identi�able by S, i� Uis Ex-learned by S with respet to some hypothesis spae  , suh that for allf 2 U the following onditions hold:(1) there is some k 2 N, suh that S(f [n℄) =? i� n < k,(2) ardfn j? 6= S(f [n℄) 6= S(f [n+ 1℄)g � m.Exm is the lass of all sets whih are Exm-identi�able by some learner S.The advantage of identi�ation with a bound m on the number of mindhanges is, that whenever this bound is atually reahed in the identi�ationproess, the �nal orret hypothesis is already known. Note that the de�nitionof identi�ation in the limit never allows for ertainty onerning the orret-ness of the urrent hypothesis. But the advantage ahieved by the Exm-modelgoes along with a loss of identi�ation power: Exm � Exm+1 � Ex for allm � 0, f. [5℄. A further approah to strengthening the demands of De�ni-tion 1 is to improve the quality of the intermediate hypotheses by additionalonstraints arising from a somewhat natural motivation. De�nition 5 suggestssome properties oneivably augmenting this quality; for more bakground onthese properties and the orresponding learning models the reader is referredto [2{4,6{8,10,15,16℄.Note that all modi�ations of Ex -learning de�ned above deal with require-ments onerning the onvergene of the sequene of hypotheses returned bythe learner. The modi�ations to be de�ned next rather deal with the prop-erties of the intermediate hypotheses themselves. In partiular two types ofproperties are distinguished: �rst, properties in dependeny of the information6



the learner has urrently reeived, i. e. the known initial segment of the targetfuntion; suh properties are for example onsisteny or onformity. Seond, itis also oneivable to onsider properties negleting the amount of informationgiven about the target funtion, suh as onvergent inorretness or totalityof the intermediate hypotheses.De�nition 5 Let f be any reursive funtion, S a strategy,  any hypothesisspae. Fix some number n, suh that S(f [n℄) is de�ned. Moreover let m � 0.The hypothesis S(f [n℄) is alled� onsistent for f [m℄ with respet to  i�, for all x � m,  S(f [n℄)(x) is de�nedand equals f(x);� onform for f [m℄ with respet to  i�, for all x � m, either  S(f [n℄)(x) isunde�ned or  S(f [n℄)(x) = f(x);� onvergently inorret for f with respet to  i�  S(f [n℄) 6� f ;� total with respet to  i�  S(f [n℄) is a total funtion.Demanding that all hypotheses returned by a learner on relevant input se-quenes should be onsistent with the information seen so far, is a quite natu-ral approah. Yet these requirements might be too strong, taking into aountthat any inonsisteny resulting from an unde�ned value may in general notbe found by the learner. This motivates the approah of onformity.It is also oneivable that a learner may try to maintain its hypotheses untilthey are evidently found to be wrong. To allow for suh onvergently justi�edmind hanges, every inorret guess should orrespond to a funtion disagree-ing with the target funtion in at least one de�ned value, i. e. no inorrethypothesis desribes a subfuntion of f .Moreover, these requirements an be strengthened to a demand for total in-termediate hypotheses, sine in partiular no non-total funtion an equal thetarget funtion.De�nition 6 Let U be a set of reursive funtions, S a strategy and  somehypothesis spae, suh that U is Ex-learned by S with respet to  . Then U isCons-learned (Conf -, Cex-, Total-learned, resp.) by S with respet to  , i�,for any f 2 U and n 2 N, S(f [n℄) is onsistent for f [n℄ (onform for f [n℄,either orret or onvergently inorret for f , total, resp.) with respet to  .The notions Cons, Conf , Cex, Total are de�ned as usual.The inferene lass Cons has espeially been studied in [8,3,14,16℄; there it isveri�ed that the demand for onsisteny yields a derease of learning power.As the de�nitions already suggest, Conf is an inferene lass ranging betweenCons and Ex in the hierarhy. For a proof of Cons � Conf � Ex see [15℄,moreover in partiular the work of Fulk [7℄ is of interest regarding onformidenti�ation. Similar ideas as used for the separations of several inferene7



riteria in [6℄ yield Cons#Exm and Conf #Exm for allm � 1, whereas Ex 0 �Cons; details are omitted. The main work done regarding Cex -learning an befound in [6℄, inluding proofs for Cex � Ex , Cex #Cons, and Cex #Exm forall m � 1. Again Ex 0 � Cex is easily veri�ed and for the proof of Cex #Confthe ideas from [6℄ are helpful. For Total-identi�ation and a proof of Total �Cons see [10℄. Ex 0 � Total and Total #Exm for all m � 1 an be veri�edwith the help of the separations mentioned above. By de�nition Total is asubset of Cex ; the proper subset relation Total � Cex is then obtained fromTotal � Cons and Cons#Cex .The notion I refers to the set of all inferene lasses de�ned so far.I := fEx ;B;B�;Cons;Conf ;Cex ;Totalg [ fExm j m � 0g :The following lemma summarizes some ommonly used results, see for example[8,16℄.Lemma 7 Let I 2 I, U 2 I and let � be any aeptable numbering. Thenthere exists a strategy I-learning the lass U with respet to the hypothesisspae � . Moreover, if I =2 fCons;Conf g and  is a hypothesis spae, suh thatU is I-learnable with respet to  , then there exists a total reursive I-learneridentifying U with respet to  .A ounterexample for the the riterion Cons in the seond part of Lemma 7is given in [16℄. The results mentioned above are summarized in Theorem 8and illustrated in Figure 1.Theorem 8 [2{6,10,15℄(1) Exm � Exm+1 � Ex � B � B� for all m � 0, ff j f reursiveg 2 B�,(2) Ex 0 � Total � Cons � Conf � Ex,(3) Total � Cex � Ex,(4) Cex #Cons, Cex #Conf ,(5) Exm# I for all m � 1 and all I 2 fTotal ;Cex ;Cons;Conf g.Note that three kinds of inferene types have been de�ned via modi�ationsof the onstraints in Ex -identi�ation:� types resulting from speial onstraints onerning the suess riterion ofthe sequene of hypotheses, namely Exm for m 2 N , B, B� (the latter alsomodifying the auray demands); these form the right axis and the upperleft axis in Figure 1;� types resulting from speial onstraints onerning the quality of the inter-mediate hypotheses, independent of the amount of information urrentlyknown about the target funtion, namely Total and Cex ; these form themiddle left axis in Figure 1; 8



� types resulting from speial onstraints onerning the quality of the inter-mediate hypotheses, depending on the information urrently known aboutthe target funtion; namely Cons and Conf ; these form the lower left axisin Figure 1.For eah kind of inferene type the separation results will be transferred tothe ontext of uniform learning.
ConsTotal?
Ex 0? Conf- Cex- Ex 1- Ex- B- B�-QQQs ...QQQs������3Fig. 1. The hierarhy of learning lasses. Vetors indiate proper inlusions; if twolasses are not onneted by a sequene of vetors in one diretion, they are inom-parable.3 The model of uniform learning3.1 De�nitionsThe learning models de�ned in the previous setion will now be onsidered ona meta-level. Uniform learning is onerned with the existene of strategies,whih simulate appropriate learners for in�nitely many learning problems. Inthis ontext, any lass of reursive funtions onstitutes a learning problem. Soa uniform strategy { on input of a desription for a lass of reursive funtions{ must develop an appropriate learner for the lass desribed.The formal de�nition of the orresponding learning model �rst requires alear explanation of how to desribe learning problems. The desriptions areneessary, in order to inform a uniform learner of the atual learning problemto ope with. A quite simple method is to onsider a lass of reursive funtionsas a subset of a lass of partial-reursive funtions enumerated by an arbitrarynumbering. Thus a family of numberings yields a family of learning problems.So from now on let ' denote a �xed three-plae aeptable numbering. Thisprovides an e�etive enumeration ('d)d2N of all numberings, where 'd(i; x)equals '(d; i; x) for all d; i; x 2 N . With eah numbering 'd the reursive oreRd is assoiated as follows:Rd = f'di j i 2 N and 'di is reursiveg for any d 2 N :9



Hene any parameter d 2 N orresponds to a set Rd of reursive funtions tobe identi�ed, i. e. d desribes a learning problem. Consider for example thenumbering  , whih is for any x; y de�ned by  (x; y) ", if x = 0;  (x; y) := 0,if x > 0 and y < x;  (x; y) := 1, otherwise. Then any integer d satisfying'd =  is a desription of the reursive ore Rd = f0i11 j i � 1g. Of oursethe interpretation of suh desriptions is inuened by the hoie of '. Nev-ertheless, sine ' is aeptable, all results obtained below hold independently,no matter what aeptable numbering is hosen.Now note that any set D � N orresponds to a series of lasses of reursivefuntions and thus to a series of learning problems. Therefore suh a set willbe alled a desription set whenever it is onsidered as a set indexing a familyof lasses of reursive funtions. For a uniform learner trying to ope withany learning problem desribed in a set D, it is suÆient to develop fromany parameter d 2 D a suitable learner for the reursive ore desribed by d.More formally, if one input parameter of the uniform learner is �xed by d, theresulting funtion must be a learner for Rd.De�nition 9 Let I 2 I and D � N. Fix an aeptable numbering � . D isuniformly I-learnable i� there is a two-plae strategy S, suh that, for anydesription d 2 D, the learner Sd I-identi�es the set Rd with respet to � .UniI denotes the lass of all uniformly I-learnable desription sets.Note that this de�nition is independent of the hoie of � . Of ourse it isquite natural to hoose an aeptable numbering as the ommon hypothesisspae to be used for uniform learning of the whole series of lasses desribedin a set D, f. Lemma 7. Nevertheless other motivations might inuene thehoie of hypothesis spaes: as eah desription d of a reursive ore also or-responds to a numbering 'd whih \ontains" all funtions in the reursiveore, perhaps even the numberings 'd might serve as hypothesis spaes. Henethe idea to demand orret identi�ation with respet to the numberings as-soiated to the desriptions also seems oneivable. Sine 'd-programs anbe uniformly transformed into � -programs (for any aeptable numbering �),this idea yields a speial ase of the UniI -model. Therefore the term restriteduniform learning will be used in this ontext.De�nition 10 Let I 2 I and D � N. D is uniformly I-learnable with re-strited hoie of hypothesis spaes i� there is a two-plae strategy S, suhthat, for any desription d 2 D, the learner Sd I-identi�es the set Rd withrespet to 'd. resUniI denotes the lass of all desription sets whih are uni-formly I-learnable in this restrited model.Another oneivable thought is to weaken the onstraints onerning the hoieof hypothesis spaes, suh that the learner is just required to synthesize ade-quate strategies for the learning problems desribed, but no longer required to10



synthesize the orresponding suitable hypothesis spaes. Thus the UniI -modelis generalized to the so-alled model of extended uniform learning.De�nition 11 Let I 2 IandD � N. D is uniformly I-learnable with extendedhoie of hypothesis spaes i� there is a two-plae strategy S, suh that, forany desription d 2 D, the learner Sd I-identi�es the set Rd with respet tosome arbitrary hypothesis spae  . extUniI denotes the lass of all desriptionsets whih are uniformly I-learnable in this extended model.Of ourse, for any I 2 I, the inlusions resUniI � UniI � extUniI fol-low immediately from the de�nitions. To show that in general resUniI reallyonstitutes a restrition of UniI , and extUniI orresponds to a proper ex-tension of UniI , speial desriptions of �nite reursive ores are suÆient, asProposition 13 states. Sine this is not the only ontext where �nite lassesof reursive funtions help to obtain interesting results within the sope ofuniform learning, some further notation, onerning the identi�ation of �nitereursive ores, might be useful.De�nition 12 Let I 2 I. Then UniI [�℄ is the lass of all desription setsD 2 UniI orresponding to a family of �nite reursive ores. The notionsresUniI [�℄ and extUniI [�℄ are used analogously.Proposition 13 (1) resUniI [�℄ � UniI [�℄ � extUniI [�℄ for I 2 In fB�g,(2) resUniB�[�℄ � UniB�[�℄,(3) UniB� = extUniB� = fD j D � Ng.Sketh of proof. ad 1. Fix I 2 In fB�g. By the remarks above, it remainsto verify resUniI [�℄ 6= UniI [�℄ 6= extUniI [�℄. The set fd j ardRd = 1g isan example for a desription set belonging to extUniI [�℄ n UniI [�℄. Uniformlearning of this set in the extended model is trivial: sine for every reursivefuntion f there is a hypothesis spae  satisfying  0 = f , the strategy on-stantly zero is an appropriate learner. fd j ardRd = 1g =2 UniI [�℄ followsfrom Theorem 24.1 for (I; I 0) = (B;B�), so a proof will be given below.Moreover there exists a set D � fd j ardfi j 'di is reursiveg = 1g, whihis not suitable for restrited uniform B-identi�ation (see the proof of The-orem 24.1 for (I; I 0) = (B;B�)). From suh a set D a desription set D0in UniI [�℄ n resUniI [�℄ an be onstruted in the following way: hoose areursive funtion g, suh that, for all d; i; x,'g(d)i (x) = 8<:0 ; if 'di (y) is de�ned for all y � x ;" ; otherwise :Then letD0 = fg(d) j d 2 Dg. Sine eah reursive ore desribed by D0 equalsf01g, the strategy onstantly returning a �xed program for 01 witnesses toD0 2 UniI [�℄. If there was an appropriate I-learner S for D0 in the restrited11



uniform model, then de�ningTd(f [n℄) := Sg(d)(0n) for all reursive funtions f and all d; n ;would yield a resUniI -learner for D. To verify this, note that, for all d 2 Dand all i, 'di is reursive i� 'g(d)i equals 01. Sine D =2 resUniB, this resultsin a ontradition. Hene D0 2 UniI [�℄ n resUniI [�℄.ad 2. The desription set fd j ardRd = 1g belongs to UniB�[�℄, but not toresUniB�[�℄ (f. [17℄).ad 3. This follows immediately from Theorem 8 and Lemma 7, beause thewhole set of reursive funtions is B�-identi�able with respet to any aept-able numbering. So, in the ontext of UniB�- and extUniB�-identi�ation,even the \lassial" learners suÆe. 2If I; I 0 2 Iare inferene lasses, suh that I 0nI 6= ;, then also UniI 0nUniI 6= ;and extUniI 0 nextUniI 6= ;; any desription of a reursive ore in I 0 nI an beused to verify this result. Similar results an be obtained for most infereneriteria in the restrited model, if the desriptions are hosen arefully. Thefollowing lemma is used to show, that suh desriptions exist for all uniformlearning models onsidered here.Lemma 14 Let I 2 I, U 2 I . Then there exists a hypothesis spae  , suhthat U � f i j i � 0g and the reursive ore of the numbering  is I -learnable.Proof. First assume I = B�. Then the whole set of reursive funtions isI-learnable with respet to any aeptable numbering, so the assertion holds.Next let I = Ex . In this ase the following haraterization from [15℄ an beused: let U be a set of reursive funtions.U 2 Ex i� there is some partial-reursive numbering  and a reursivefuntion h satisfying� U � f i j i � 0g,� if i; j 2 N and i 6= j, then f(x;  i(x)) j x � h(i; j) and  i(x) is de�nedg 6=f(x;  j(x)) j x � h(i; j) and  j(x) is de�nedg, i. e.  i and  j disagree onsome input \below" h(i; j).Now if U 2 Ex and  , h are hosen aordingly, then also the reursiveore of  mathes this haraterization. Hene  witnesses to the assertion ofLemma 14.In the ase I 2 fCons;Bg[fExm j m 2 Ng the same approah as for I = Exan be used. Details are omitted. 12



For the ase I = Conf let U be a lass in Conf , � an aeptable numberingand S any strategy Conf -identifying U with respet to � . Similar ideas as in[15℄ are used to obtain the desired numbering  . De�ne a set M of pairs byM := f(z; n) j �z(x) and S(�z[x℄) are de�ned for all x � nand S(�z[n℄) = zg :Obviously M is reursively enumerable, so let g be a reursive funtion withrange M . For any number i, if g(i) = (z; n), let  i[n℄ := �z[n℄. Moreover, forx > n, let  i(x) := �z(x), if S(�z[n℄) = S(�z[n + 1℄) = : : : = S(�z[x℄) = z andif Condition A holds.Condition A. None of the x + 1 initial hypotheses are found to be non-onform with respet to � within x steps of omputation (formally: for ally � x and all m � y, if �S(�z[y℄)(m) is de�ned within x steps of omputation,then �S(�z[y℄)(m) = �z(m)).In any other ase, let  i(x) be unde�ned. Now it remains to verify, that  satis�es the desired properties.To prove that U is ontained in the set of all funtions  i, i � 0, �x somearbitrary funtion f in U . Then there exist numbers z and n, suh that �zequals f and, for all x � n, S(�z[x℄) = z. Otherwise S would not learn f inthe limit with respet to � . In addition, S(�z[x℄) must also be de�ned for anyx < n. Moreover { sine the onformity demands are ful�lled { if �S(�z[y℄)(m)is de�ned for any y � 0 and any m � y, then �S(�z [y℄)(m) equals �z(m). Byde�nition of M the pair (z; n) is ontained in M ; hene there is some i withg(i) = (z; n). The argumentation above then implies  i = �z = f . ThusU � f i j i � 0g.Finally it is possible to show, that S learns the reursive ore of  onformlywith respet to � . For that purpose �x some number i, suh that  i is areursive funtion. Let g(i) = (z; n). Obviously  i = �z. As  i is a totalfuntion, all hypotheses S(�z[x℄) for x � 0 must be de�ned and, if x � n,must equal z. Thus S learns  i in the limit with respet to � . Furthermore,if any intermediate hypothesis returned by S on �z was non-onform withrespet to � , then  i ould not be total beause of Condition A. This implies,that  i { and so the whole reursive ore of  { is Conf -learned by S (withrespet to �).For the ase I = Cex �x some U 2 Cex and some total reursive strategy SCex -learning U with respet to an aeptable numbering � . De�ne a set Msimilarly to the method above. A pair (z; n) belongs to M i� �z(x) is de�nedfor all x � n and S(�z[n℄) = z. Choose a reursive funtion g, suh that therange of g equals the set M . If g(i) = (z; n), let  i[n℄ := �z[n℄. Given x > n,let  i(x) := �z(x), if S(�z[n℄) = S(�z[n+1℄) = : : : = S(�z[x℄) and Condition Aholds. 13



Condition A. All of the x + 1 initial hypotheses are either onsistent oronvergently inorret for �z in an argument \below" x (formally: for ally � x either �S(�z[y℄)(m) = �z(m) for all m � y or there is some m � 0, suhthat �S(�z [y℄)(m) is de�ned and not equal to �z(m)).In any other ase let  i(x) be unde�ned.A similar argumentation as for the ase I = Conf shows that  ful�ls thedesired properties.Finally, if I = Total , onsider a set U 2 Total and a reursive strategy S whihlearns U with total intermediate hypotheses with respet to an aeptablenumbering � . The proof proeeds as in the ase I = Cex , where Condition Ais replaed as follows.Condition A. All of the x + 1 initial hypotheses orrespond to funtionsde�ned for the initial segment of length x+1 (formally: �S(�z [y℄)(m) is de�nedfor all y;m � x.The rest of the argumentation an be transferred as usual. 2Corollary 15 Suppose I; I 0 2 I are inferene lasses, suh that I 0 n I 6= ;.Then there exists a desription d satisfying fdg 2 UniI 0 n extUniI .Proof. Choose U 2 I 0nI . By Lemma 14 there is a desription d, suh that U �Rd and Rd 2 I 0. Lemma 7 then implies Rd 2 I 0� for any aeptable numbering� . Moreover Rd =2 I , beause U =2 I . Consequently, fdg 2 UniI 0nextUniI . 2Hene UniI 0 n UniI and extUniI 0 n extUniI are non-empty, if I 0 n I 6= ;.The more hallenging question is, whether there are desription sets, whih(i) orrespond to families of lasses in I, (ii) are uniformly I 0-learnable, but(iii) are not uniformly I-learnable. Of ourse this problem is also relevant forthe restrited and extended models. The main onern of this paper is to showthat, for most of the models, suh desription sets exist. Moreover most oftenfamilies of �nite lasses suÆe to verify the desired results.3.2 Helpful resultsIn the subsequent proofs for separations of the kind UniI � UniI 0 (forI; I 0 2 I) desription sets are onstruted to disallow UniI -identi�ation forany learner. Suh onstrutions beome muh more aessible, if a diagonal ar-gument defeating all reursive learners suÆes. Fortunately, as Proposition 16shows, this idea an be exploited in many ases.Proposition 16 Let I 2 In fCons;Conf g and let D be any desription set.14



Assume D 2 UniI (D 2 extUniI ). Then there exists a total reursive funtionS, suh that D is UniI -identi�able by S (extUniI -identi�able by S, respe-tively). Moreover, if I =2 fTotal ;Cexg and D 2 resUniI , there exists sometotal reursive learner S, whih resUniI -identi�es D.The idea of the proof is the same as for the orresponding laims in Lemma 7and is therefore not demonstrated. Counterexamples for the ases exluded inthe statement of Proposition 16 are proposed below in Examples 17 and 18.Example 17 Let I 2 fCons;Conf ;Cex ;Totalg; �x a desription set D byD := fd j Rd = f01g and there is exatly one index i suh that 'di (0) = 0g :Then D belongs to resUniI , but D is not resUniI -identi�able by any totalreursive strategy.Proof. First let I 2 fCons;Conf ;Totalg. The ase I = Cex will be handledseparately afterwards. Obviously, D is resUniI -identi�able: given the parame-ter d as a desription of a reursive ore, a learner just has to return a numberi satisfying 'di (0) = 0. If d belongs to the set D, suh a number must existand is a program for 01, whih is the only funtion in Rd.It remains to prove that D annot be identi�ed with respet to resUniI byany reursive learner. For that purpose �x some arbitrary reursive strategyS. To verify that S is not suitable for resUniI -identi�ation of the whole setD, a desription d� is onstruted, suh that the following two properties hold:(1) d� belongs to D, but(2) the reursive ore desribed by d� is not I-learned by Sd� with respet tothe hypothesis spae 'd� .For that purpose de�ne for eah number d a two-plae funtion  as follows.First ompute e := Sd(0)+ 1 and let  e = 01. Moreover, de�ne  i = 1 "1 forall programs i 6= e.As S is a total reursive funtion, this de�nition is uniformly e�etive in d.Hene there exists some �xed point value d�, satisfying 'd� =  , for thenumbering  onstruted from S and d�. This �xed point value shall be usedto make the learner S fail. End Constrution of d�Now the desired properties an be veri�ed.ad 1. d� belongs to D.This is an immediate onsequene of the de�nitions.15



ad 2. The reursive ore desribed by d� is not I-learned by Sd� with respetto the hypothesis spae 'd�.By onstrution, 'd�Sd�(0) equals 1 "1. So, on input of the �rst initial segmentof 01, the learner Sd� returns some 'd�-number of a non-total funtion, whihis not onform. Note that 01 belongs to Rd� . Consequently, the reursive oredesribed by d� is not I-identi�ed by Sd� with respet to the hypothesis spae'd�.These two properties of d� now imply that S is not an appropriate resUniI -learner for D. Sine S was hosen arbitrarily from all reursive learners, thisproves the laim for I 2 fCons;Conf ;Totalg.Finally, if I = Cex , the proof proeeds analogously, where \ i = 1 "1" isreplaed by \ i ="1" for all i 6= e. 2Example 18 Let I 2 fCons;Conf g and de�ne a desription set D byD := fd j 'd is a reursive funtiong :Then D belongs to resUniI , but D is not extUniI -identi�able by any totalreursive strategy.Proof. It suÆes to show, that the set D is resUniCons-learnable, but notextUniConf -identi�able by any reursive learner.Given a number d and some segment �, a resUniCons-learner for D justreturns the minimal 'd-index onsistent for �. Sine 'd is reursive for eahd 2 D, this yields a suessful strategy (whih has been de�ned as the methodof \identi�ation by enumeration" by Gold [8℄).In order to prove that D annot be learned by any reursive strategy { evenin the extended model extUniConf { �x some reursive funtion S. Now Sis shown to be inappropriate for extUniConf -learning of the whole lass D.This an be ahieved by onstruting a desription d� satisfying(1) d� belongs to D, but(2) the reursive ore desribed by d� is not Conf -learnable by Sd� withrespet to any hypothesis spae.For that purpose de�ne for eah number d a two-plae funtion  by stagesas follows.Stage 0. Let  0(0) := 0. Go to stage 1.In eah stage k (k � 1),  0(k) is de�ned by 0, if this fores the learner Sd intoa mind hange. Otherwise,  0(k) := 1. Furthermore, the funtion  k is used16



to make Sd return some inorret or non-onform hypothesis, if suh a mindhange on  0 annot be fored.Stage k (k � 1). Compute the values Sd( 0[k � 1℄) and Sd( 0[k � 1℄0). IfSd( 0[k � 1℄) 6= Sd( 0[k � 1℄0), then let  0(k) := 0, otherwise  0(k) := 1.Moreover let  k :=  0[k � 1℄01. Go to stage k + 1.As S is reursive, this onstrution proeeds uniformly in d. Thus there issome �xed point value d� satisfying 'd� =  for the numbering  onstrutedfrom S and d�. This �xed point value will be used to show that S is not anextUniConf -learner for D. End Constrution of d�It remains to prove the desired properties.ad 1. d� belongs to D.This follows obviously from the onstrution, beause all stages must bereahed in the de�nition of the numbering  orresponding to S and d�.ad 2. The reursive ore desribed by d� is not Conf -learnable by Sd� withrespet to any hypothesis spae.Consider two ases.Case 1. Sd�('d�0 [k � 1℄) 6= Sd�('d�0 [k℄) for in�nitely many k � 1.Then Sd� annot learn 'd�0 onformly, beause it fails to generate a onvergentsequene of hypotheses.Case 2. Sd�('d�0 [k � 1℄) = Sd�('d�0 [k℄) for in�nitely many k � 1.For eah suh k, by the instrutions in stage k, 'd�0 [k℄ = 'd�0 [k� 1℄1, 'd�k [k℄ ='d�0 [k � 1℄0, andSd�('d�k [k℄) = Sd�('d�0 [k � 1℄0) = Sd�('d�0 [k � 1℄) = Sd�('d�0 [k℄) : (1)Now hoose some arbitrary hypothesis spae �.Case 2.1. �Sd�('d�0 [k℄)(k) is de�ned for some k � 1 satisfying (1).Then �Sd�('d�0 [k℄)(k) 6= 'd�k (k) or �Sd�('d�0 [k℄)(k) 6= 'd�0 (k), although all thesevalues are de�ned. Hene, for at least one of the funtions 'd�0 and 'd�k , Sd�returns some hypothesis violating the onformity demands with respet to �.Consequently, Rd� is not Conf -learnable by Sd� with respet to �.Case 2.2. �Sd�('d�0 [k℄)(k) is unde�ned for all k � 1 satisfying (1).In partiular �Sd�('d�0 [k℄) is non-total for in�nitely many k � 1. Thus, for thefuntion 'd�0 , Sd� returns hypotheses inorret with respet to � in�nitely often.Hene Sd� does not Conf -identify the lass Rd� with respet to �.17



This veri�es Property 2. 24 Hierarhies of lasses in uniform learningAs illustrated in Figure 1, the hierarhy of all inferene lasses has already beenstudied for the non-uniform learning model (f. [2{6,10,15℄). Now the sopeof the subsequent theorems is to investigate the orresponding hierarhies foruniform identi�ation { in the basi model as well as in the restrited andextended ases.Atually hierarhies for the basi and the extended model an immediately bededued from Corollary 15: sine for any I; I 0 2 Iwith I 0 n I 6= ; there is somedesription set in UniI 0 n extUniI , both UniI 0 nUniI and extUniI 0 n extUniImust be non-empty. For a proof of Corollary 15 the required desription setwas hosen to represent a reursive ore belonging to I 0 n I, whih obviouslydisallows uniform I-learning. Together with a proof for UniI � UniI 0 thisyields the same hierarhy for the Uni -model 1 as has been veri�ed in the non-uniform ase { not a very astonishing result. It would be more remarkableto �nd desription sets in UniI 0 n UniI (and in parallel for the restritedand extended models), suh that eah reursive ore desribed belongs to thelass I. Indeed the following results show that suh desription sets exist fornearly all the models. In partiular, any separation veri�ed here is ahievedby desriptions of �nite reursive ores (most often even singletons or oresonsisting of two elements). In the non-uniform model �nite lasses are themost simple sets regarding learnability: they an be identi�ed with respetto any riterion I 2 I by a quite straightforward strategy. But despite theirtrivial role in the basi inferene model these lasses are omplex enough toseparate inferene riteria in meta-learning.Theorem 19 �rst summarizes the inlusions obtained for uniform learning of�nite reursive ores; whih of these are proper inlusions will be studied inthe subsequent analysis.Theorem 19 Let I; I 0 2 I be inferene lasses, suh that I � I 0.(1) UniI [�℄ � UniI 0[�℄.(2) If (I; I 0) 6= (Ex 0;Total), then resUniI [�℄ � resUniI 0[�℄.(3) If (I; I 0) 6= (Total ;Cons) and (I; I 0) 6= (Total ;Conf ), then extUniI [�℄ �extUniI 0[�℄.1 For most of the riteria parallels are observed easily in the restrited and extendedases. 18



Sketh of Proof. The �rst two laims an be veri�ed easily for the pair (I; I 0) =(Total ;Cons): a uniform Cons-strategy just has to simulate a uniform Total-strategy and test its output for onsisteny. Any onsistent intermediate hy-pothesis is returned without modi�ation, any inonsistent hypothesis an behanged into an arbitrary onsistent output.The following idea for a proof of the seond laim for the pair (Ex 0;Cex)has been suggested by Johen Nessel: if D is a desription set belonging toresUniEx 0 and S is a orresponding uniform strategy, then a resUniCex -learner T for D just has to replae the \?"-signs returned by S with orretor onvergently inorret intermediate hypotheses. Whenever S returns a hy-pothesis di�erent from \?", then T may do the same. So, if Sd(f [n℄) =? forsome reursive funtion f and some d; n � 0, then Td (on input f [n℄) looksfor some pair (i;m) of numbers, suh that i is onsistent for f [n℄ with respetto 'd and Sd('di [m℄) = i. As soon as suh a pair (i;m) is found, Td returnsi. If f 2 Rd and 'di 6= f , then Sd(f [m℄) 6= i beause of the hoie of S. So'di [m℄ 6= f [m℄, i. e. i is onvergently inorret for f with respet to 'd.In order to prove Claim 3 for the pairs (Ex 0;Total) and (Ex 0;Cons) thehypothesis spaes used for Ex 0-learning have to be adjusted. To allow uni-form Total -learning, an arbitrary total funtion (for example the funtiononstantly zero) is added to the hypothesis spae at a �xed index. This �xedindex may be output, whenever the uniform Ex 0-learner returns \?". Thisyields a uniform Total-strategy. For uniform Cons-learning the old hypothe-sis spaes are mixed with an enumeration of all reursive funtions of �nitesupport. If the Ex 0-learner returns \?", then a Cons-learner may return someonsistent hypothesis orresponding to a suitable funtion of �nite support.All other statements of the theorem follow immediately from the de�nitionsof the orresponding learning lasses. 2Figure 2 summarizes the results to be proved in the subsequent setions. More-over it will turn out that� all separations onerning the Uni -model are ahieved via desriptions ofsingletons;� all separations onerning the resUni -model { exept for resUniTotal nresUniExm 6= ; (m � 0) { are ahieved via desriptions of singletons;� all separations onerning the extUni -model are ahieved via desriptionsof reursive ores onsisting of no more than 2 funtions.Note that singleton reursive ores an never yield separations in the extendedmodel of uniform learning: as for eah reursive funtion f there is a num-bering  with  0 = f , the strategy onstantly zero witnesses to the fat thateah desription set representing singletons is extUniEx 0-identi�able and thusextUniI -identi�able for all I 2 I. Therefore reursive ores onsisting of two19



funtions onstitute the optimal result in this ontext.
UniCons [�℄UniTotal [�℄?
UniEx 0[�℄? UniConf [�℄- UniCex [�℄- UniEx 1[�℄- UniEx [�℄- UniB[�℄- UniB�[�℄-QQQs .. .QQs������3
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extUniCons [�℄extUniTotal [�℄=extUniCex [�℄=extUniEx [�℄extUniEx 0[�℄
extUniConf [�℄-
extUniEx 1[�℄- extUniB[�℄=extUniB�[�℄-QQQs ...QQs������3?Fig. 2. The hierarhies for the three models of uniform learning of �nite reursiveores. Vetors indiate proper inlusions; if two lasses are not onneted by asequene of vetors in one diretion, they are inomparable.The orresponding proofs are the sope of the studies below.4.1 Similarities between the hierarhiesSine all proofs regarding the hierarhies in Figure 2 meet a ommon struture,the riteria Ex and B are hosen for a �rst example. The orrespondingseparations are veri�ed in detail, whereas the proofs for other inferene lassesare just skethed.Theorem 20 There exists a desription set D 2 resUniB n extUniEx , suhthat eah reursive ore desribed by D onsists of at most 2 funtions.Proof. The de�nition of D uses the following idea: �rst for eah total reursivelearner S and eah number d a numbering  is onstruted. The reursiveore of this numbering  will onsist of at most 2 funtions and will not be20



identi�able in the limit by Sd. Then the onstrution yields some �xed pointvalue d�, suh that Sd� fails to identify Rd� . Moreover Rd� will have no morethan 2 elements. Finally these �xed point values are used as desriptions inthe set D. For eah reursive learner S suh a �xed point d� is inluded inD. Then D is not suitable for extended uniform learning in the limit, beauseeah reursive strategy S fails for at least one reursive ore Rd� . A arefularrying out of this idea will still enable restrited uniform B-learning of theonstruted set D.More formally: for any reursive learner S and any number d a partial-reursivenumbering  is onstruted by stages as follows.Stage 0. Let  0(0) := 0 and n1 := 0. Go to stage 1.In eah stage k (k � 1) the strategy Sd is presented 2 di�erent graduallygrowing extensions of  0[nk℄. As soon as Sd hanges its mind on at least oneof these segments (Case A), the funtion  0 is extended aordingly. Otherwise(not Case A)  2k�1 and  2k beome two di�erent reursive funtions, suh thatthe sequene of hypotheses returned by Sd onverges to the same program onboth  2k�1 and  2k.The idea behind this is, that Sd annot Ex -identify the reursive ore of thenumbering  : either Case A ours in eah stage or Case A fails at leastone. If Case A ours in eah stage, then  0 beomes a reursive funtion, onwhih Sd hanges its mind in�nitely often. If Case A does not our in stage k(k � 1), then Sd guesses the same program for the two di�erent funtions 2k�1 and  2k in the limit.Stage k (k � 1). Let  2k�1[nk℄ =  2k[nk℄ =  0[nk℄. Searh for a number zsatisfyingSd( 0[nk℄(2k � 1)z) 6= Sd( 0[nk℄) or Sd( 0[nk℄(2k)z) 6= Sd( 0[nk℄) : (2)In parallel extend  2k�1 with a sequene of the value 2k � 1 and  2k with asequene of the value 2k, until the searh for z is suessful.Case A. There exists a number z, suh that (2) is ful�lled.Then let zk be the minimal number z satisfying (2). Moreover de�ne nk+1 :=nk + zk and 0[nk+1℄ := 8<: 0[nk℄(2k � 1)zk ; if Sd( 0[nk℄(2k � 1)zk) 6= Sd( 0[nk℄) ; 0[nk℄(2k)zk ; if Sd( 0[nk℄(2k � 1)zk) = Sd( 0[nk℄) ;as well as 21



 2k�1 :=8<: 0 ; if Sd( 0[nk℄(2k � 1)zk) 6= Sd( 0[nk℄) ; 0[nk℄(2k � 1)zk "1 ; if Sd( 0[nk℄(2k � 1)zk) = Sd( 0[nk℄) ; 2k :=8<: 0 ; if Sd( 0[nk℄(2k � 1)zk) = Sd( 0[nk℄) ; 0[nk℄(2k)zk "1 ; if Sd( 0[nk℄(2k � 1)zk) 6= Sd( 0[nk℄) :Go to stage k + 1.Remark. If there is no number z satisfying (2), i. e. if Case A is not ful�lled,then stage k does not terminate. In this ase  2k�1 =  0[nk℄(2k � 1)1 and 2k =  0[nk℄(2k)1. Furthermore,  0(x) remains unde�ned for all x > nk, thatmeans  0 =  0[nk℄ "1; stage k + 1 is not reahed in the omputation. Inpartiular, for all i > 2k,  i is the empty funtion. End Constrution of  Note that the whole onstrution is uniformly e�etive in S and d. For anyreursive learner S this implies the existene of some number d�, suh that'd� equals the numbering  onstruted from S and d�. From now on, forany �xed reursive strategy S, suh a orresponding number d� will be alleda �xed point assoiated to S. Thus the desription set D an be de�ned asexplained in the idea in the beginning of the proof:D := fd j d is a �xed point assoiated to some reursive funtion Sg :The onstrution of the numberings  (by de�nition orresponding to thereursive ores desribed by D) provides two helpful observations:Fat 1. If d 2 D, then Rd = f'd0g or there are some k � 1 and n � 0, suhthat Rd = f'd2k�1; 'd2kg = f'd0[n℄(2k � 1)1; 'd0[n℄(2k)1g.This an be veri�ed easily: the onstrution of a numbering  either runsthrough all stages or there is some unique stage, whih is never left. If allstages are reahed, the orresponding reursive ore onsists of the funtion 0 only. Otherwise, where the number of the last stage reahed is k (k � 1),the reursive ore of  ontains exatly the funtions  2k�1 and  2k aordingto the remark below Case A.Fat 2. If d 2 D and stage k (k � 1) is reahed in the onstrution ofthe orresponding numbering  = 'd (with the value nk aordingly), then'd0(x) � 'd0(nk) < 2k � 1 for all x � nk.This fat is veri�ed by a simple indution.It remains to prove the following laim.Claim.(1) Eah reursive ore desribed by D onsists of at most 2 funtions,22



(2) D 2 resUniB,(3) D =2 extUniEx .ad 1. This is a diret onsequene of Fat 1.ad 2. De�ne a learner T for any reursive funtion f and all n � 0 byT (f [n℄) := maxff(x) j x � ng. This learner B-identi�es any reursive oreRd desribed by D with respet to its orresponding numbering 'd. To verifythis, �x some d 2 D. By Fat 1 it suÆes to onsider two ases.Case 1. Rd = f'd0g.Then eah stage k (k � 0) is reahed in the onstrution of the orrespondingnumbering  . In partiular, Case A ours in eah stage. For any k � 1 thisimplies that either 'd2k�1 = 'd0 or 'd2k = 'd0. To be more onrete,'d2k�1='d0 () 'd0(nk + 1) = � � � = 'd0(nk+1) = 2k � 1 and'd2k ='d0 () 'd0(nk + 1) = � � � = 'd0(nk+1) = 2k : (3)Moreover, for any n 2 fnk + 1; : : : ; nk+1g, Fat 2 impliesT ('d0[n℄) = maxf'd0(x) j x � ng = 'd0(nk + 1) :As (3) holds for any k � 1, this proves 'dT ('d0 [n℄) = 'd0 for all n � 0. Hene Tis a B-learner for Rd with respet to 'd.Case 2. Rd = f'd2k�1; 'd2kg for some k � 1.Then, by onstrution, 'd2k�1 = 'd0[nk℄(2k � 1)1 and 'd2k = 'd0[nk℄(2k)1.Clearly, in the onstrution of the orresponding numbering  , stage k musthave been reahed. Fat 2 then implies 'd0(x) < 2k � 1 for all x � nk. SoT ('d2k�1[n℄) = maxf'd2k�1(x) j x � ng = 2k�1 and T ('d2k[n℄) = maxf'd2k(x) jx � ng = 2k for all n > nk. Consequently, the learner T orretly B-identi�es(even Ex -identi�es) the lass Rd with respet to the numbering 'd.Sine for any d 2 D the learner T is a suessful B-strategy for Rd withrespet to 'd, the desription set D is suitable for uniform B-identi�ationin the restrited model. So Claim 2 is veri�ed.ad 3. Assume to the ontrary, that D is suitable for extended uniform Ex -identi�ation. Then by Proposition 16 there exists a reursive strategy S,suh that eah reursive ore Rd desribed by D is identi�ed in the limit bySd. Now let d� be a �xed point assoiated to S. By de�nition this �xed pointd� belongs to the set D. Therefore Rd� is Ex -identi�ed by Sd� . Aording toFat 1 only the following two ases must be onsidered.Case 1. Rd� = f'd�0 g.Then eah stage k (k � 0) is reahed in the onstrution of the orresponding23



numbering  . In partiular, Case A ours in eah stage. For any k � 1 thisimplies that Sd�('d�0 [nk℄) 6= Sd�('d�0 [nk+1℄). Sine nk+1 > nk for all k � 1, thelearner Sd� hanges its hypothesis on 'd�0 in�nitely often. Thus Sd� does notidentify Rd� in the limit { a ontradition.Case 2. Rd� = f'd�2k�1; 'd�2kg for some k � 1.Then, by onstrution, 'd�2k�1 = 'd�0 [nk℄(2k � 1)1 and 'd�2k = 'd�0 [nk℄(2k)1.Furthermore, stage k is the last stage reahed in the de�nition of the or-responding numbering  . In partiular, there does not exist any number z,suh that (2) is ful�lled. Thus Sd�('d�0 [nk℄(2k�1)z) = Sd�('d�0 [nk℄(2k)z) for allz � 0. That means, that the sequenes of hypotheses returned by Sd� on thetwo di�erent funtions in Rd� onverge to the same program. Consequently,Sd� does not identify Rd� in the limit. This yields a ontradition.As both ases result in a ontradition, the assumption D 2 extUniEx iswrong. This proves Claim 3. 2Corollary 21 (1) UniEx [�℄ � UniB[�℄.(2) resUniEx [�℄ � resUniB[�℄.(3) extUniEx [�℄ � extUniB[�℄.Thus the separation of uniform B- and Ex -learning is veri�ed for all threemodels; nevertheless Theorem 22 o�ers an interesting reinforement of Theo-rem 20 for the ase of resUni -identi�ation, namely that in this model single-ton reursive ores are suÆient to obtain the desired separation.Theorem 22 There exists a desription set D 2 resUniB n UniEx, suhthat eah reursive ore desribed by D is a singleton set.Proof. Now the idea in the proof of Theorem 20 is adjusted to �t the UniEx -model: �rst for eah aeptable numbering � , eah reursive learner S, andeah number d, a numbering  is onstruted. The reursive ore of  willbe a singleton set and will not be Ex -identi�able by S with respet to thehypothesis spae � . The onstrution yields some �xed point value d�, suhthat Sd� fails to identify Rd� with respet to � . Again for any aeptablenumbering and any reursive learner these �xed point values are olleted inthe desription set D.More formally: for any aeptable numbering � , any reursive learner S, andany number d a partial-reursive numbering  is onstruted by stages asfollows.Stage 0. Let  0(0) := 0 and n1 := 0. Go to stage 1.In eah stage k (k � 1) the funtion  k �rst adapts the initial segment  0[nk℄onstruted so far. This segment is extended, until either Sd hanges its mind24



on  k or the funtion omputed by � { for the program Sd guesses { returns avalue for some input greater than nk. In the �rst ase (Case A.1) the funtion 0 is extended aordingly. In the seond ase (Case A.2) the funtion  0 isextended with a value di�ering from the one returned by � . If neither Case A.1nor Case A.2 ours, then  k is extended ad in�nitum.The idea behind this is that Sd annot Ex -identify the reursive ore of  with respet to � : if in eah step either Case A.1 or Case A.2 ours, then  0beomes a reursive funtion, on whih Sd hanges its mind in�nitely oftenor returns inorret programs in�nitely often. If, at some stage k, neitherCase A.1 nor Case A.2 ours, then  k beomes a reursive funtion, but theprogram Sd guesses for  k in the limit is wrong with respet to � .Stage k (k � 1). Searh for a number z satisfyingSd( 0[nk℄(k + 1)z) 6= Sd( 0[nk℄) (4)or �Sd( 0[nk℄)(nk + 1) is de�ned within z steps of omputation (5)In parallel extend  k with the value k+ 1, until the searh for z is suessful.Case A. There exists a number z, suh that (4) or (5) is ful�lled.Then let zk be the minimal number satisfying (4) or (5). Two ases are dis-tinguished.Case A.1. (4) is ful�lled for zk.Then de�ne nk+1 := nk + zk and  0[nk+1℄ :=  0[nk℄(k + 1)zk as well as k :=  0. Go to stage k + 1.Case A.2. (4) is not ful�lled for zk (so (5) is ful�lled for zk).Then let ek := sg(�Sd( 0[nk℄)(nk + 1)). Moreover de�ne nk+1 := nk + 1 and 0[nk+1℄ :=  0[nk℄ek as well as  k =  0[nk℄(k + 1)zk "1. Go to stage k + 1.Remark. If there is no number z satisfying (4) or (5), i. e. if Case A does notour, then stage k does not terminate. In this ase  k :=  0[nk℄(k + 1)1.Furthermore,  0(x) remains unde�ned for all x > nk, i. e.  0 =  0[nk℄ "1;stage k+1 is not reahed. In partiular, for all i > k,  i is the empty funtion.End onstrution of  Note that the whole onstrution is uniformly e�etive in � , S, and d. Henefor any aeptable numbering � and any reursive funtion S there is somed�, suh that 'd� is the numbering  onstruted from � , S, and d�. Suh anumber d� is alled a �xed point assoiated to � and S. Finally, letD := fd j d is a �xed point assoiated to some aeptablenumbering � and some reursive funtion Sg25



The de�nition of D provides two helpful observations, both of whih an beveri�ed easily from the onstrution above.Fat 1. Let d be an element of D.(1) If in eah stage of the onstrution Case A ours, then Rd = f'd0g and,for any k � 1, 'dk = 'd0 i� 'd0(nk + 1) = � � � = 'd0(nk+1) = k + 1.(2) If at some stage k (k � 1) Case A does not our, then Rd = f'dkg =f'd0[nk℄(k + 1)1g.Fat 2. If d belongs to D and stage k (k � 1) is reahed in the onstrutionof 'd (with the orresponding value nk), then 'd0(x) < k + 1 for all x � nk.It remains to prove the following laim.Claim.(1) Eah reursive ore desribed by D is a singleton set,(2) D 2 resUniB,(3) D =2 UniEx .ad 1. This is a diret onsequene of Fat 1.ad 2. De�ne a learner T for any reursive funtion f and any n � 0 byT (0n+1) := 0 and T (f [n℄) := maxff(x) j x � ng � 1, if f [n℄ 6= 0n+1. Thislearner B-identi�es any reursive ore Rd desribed by D with respet to itsorresponding numbering 'd. To verify this, �x some d 2 D. By Fat 1 itsuÆes to onsider two ases.Case 1. Rd = f'd0g.Then eah stage k (k � 0) is reahed in the onstrution of the orrespondingnumbering  . In partiular, Case A ours in eah stage. For any k � 1, Fat 1implies that 'dk = 'd0 i� 'd0(nk + 1) = k + 1. Applying Fat 2 evidenes'dk = 'd0 () maxf'd0(x) j x � nk + 1g = k + 1for all k � 1. Thus, for any n � 0, the learner T satis�es T ('d0[n℄) = 0or T ('d0[n℄) = maxf'd0(x) j x � ng � 1 2 fk j 'dk = 'd0g. This implies'dT ('d0[n℄) = 'd0 for all n � 0. Hene T is a B-learner for Rd with respet to 'd.Case 2. Rd = f'dkg for some k � 1, suh that 'dk 6= 'd0.Then, by onstrution, 'dk = 'd0[nk℄(k + 1)1. Obviously, in the onstrutionof the orresponding numbering  , stage k must have been reahed. Fat 2implies 'd0(x) < k+1 for all x � nk. So T ('dk[n℄) = maxf'dk(x) j x � ng�1 = kfor all n � nk + 1. Consequently, the learner T orretly B-identi�es (evenEx -identi�es) the lass Rd with respet to the numbering 'd.26



Sine for any d 2 D the learner T is a suessful B-strategy for Rd withrespet to 'd, the desription set D is suitable for uniform B-identi�ationin the restrited model. So Claim 2 is veri�ed.ad 3. Assume to the ontrary, that D is suitable for uniform Ex -identi�ation.Then, by Proposition 16, there exist an aeptable numbering � and a reursivestrategy S, suh that eah reursive ore Rd desribed by D is identi�ed inthe limit by Sd with respet to � . Now let d� 2 D be a �xed point assoiatedto � and S, so by assumption Rd� is Ex -identi�ed by Sd� with respet to � .Aording to Fat 1, only the following two ases must be onsidered.Case 1. Rd� = f'd�0 g.Then eah stage k (k � 0) is reahed in the onstrution of the orrespondingnumbering  . In partiular, Case A ours in eah stage. For any k � 1 thisimplies that either Sd�('d�0 [nk℄) 6= Sd�('d�0 [nk+1℄) or �Sd�('d�0 [nk℄)(nk+1) 6= ek ='d�0 (nk+1). Sine nk+1 > nk for all k � 1, the learner Sd� hanges its hypothesison 'd�0 in�nitely often or returns inorret hypotheses for 'd�0 in�nitely often.Thus Sd� does not identify Rd� in the limit { a ontradition.Case 2. Rd� = f'd�k g for some k � 1, suh that 'd�k 6= 'd�0 .Then by onstrution 'd�k = 'd�0 [nk℄(k + 1)1 and stage k is the last stagereahed in the de�nition of the orresponding numbering  . In partiular,there does not exist any number z, suh that (4) or (5) is ful�lled. ThusSd�('d�0 [nk℄(k + 1)z) = Sd�('d�0 [nk℄) for all z � 0. Moreover �Sd�('d�0 [nk℄) isunde�ned on input nk + 1. In partiular, Sd�('d�0 [nk℄) is not a � -program for'd�k . That means, that the sequene of hypotheses, returned by Sd� on thefuntion in Rd� , onverges to a wrong � -number. Consequently, Sd� does notEx -identify Rd� with respet to � . This yields a ontradition.As both ases result in a ontradition, the assumption D 2 UniEx is wrong.This proves Claim 3. 2Evidently, reursive ores of no more than two funtions are adequate forthe separation of extended uniform B-learning from extended uniform Ex -learning; furthermore for the non-extended ase singleton reursive ores meetthe requirements. As Theorem 24 will show, this agrees with the results formost of the other separations in Figure 2. Yet onsidering desription setsuniformly Total-learnable and not uniformly Exm-learnable (for m � 1), thisobservation only holds for Uni - and extUni -learning. Regarding the resUni -model, a separation with reursive ores of m + 2 funtions is the best resultobtainable. The orresponding proof is just skethed.Theorem 23 Let m � 0.(1) There exists a desription set D 2 UniTotal n UniExm, suh that eah27



reursive ore desribed by D is a singleton set.(2) There exists a desription set D 2 UniTotal nextUniExm, suh that eahreursive ore desribed by D onsists of at most 2 funtions.(3) There exists a desription set D 2 resUniTotal n extUniExm, suh thateah reursive ore desribed by D onsists of at most m+ 2 funtions.(4) If D 2 resUniTotal and eah reursive ore desribed by D onsists of atmost m+ 1 funtions, then D 2 resUniExm.Assertions 1 and 2 oinide with the orresponding results for other inferenelasses, whereas Assertions 3 and 4 imply that, in general, the separationsin restrited uniform learning with total intermediate hypotheses annot bewitnessed by reursive ores onsisting of one or two funtions. To disallowextUniExm-identi�ation, ores of ardinality m + 2 suÆe, moreover Asser-tion 4 states that in general this result annot be improved.Sketh of Proof. ad 1. For any reursive learner S and any number d a funtion is onstruted as follows.In stage 0 let  0(0) := 0. Extend  0 by 0's, until Sd(0x) 6=? for some minimalx � 1 and �Sd(0y)(y) = 0 for some y � x. If suh a pair (x; y) does not exist (notCase A), then stage 0 does not terminate and  0 = 01; otherwise (Case A)extend  0 by (m+ 2) "1 and go to stage 1 with n1 := y � 1.In eah stage k, for 1 � k � m, let  k[nk℄ :=  k�1[nk℄.(* Note that �Sd( k[nk℄)(nk + 1) = k � 1. *)Extend  k by k's, until Sd( k[nk℄) 6= Sd( k[nk℄kx) for some minimal x � 1and �Sd( k[nk℄ky)(nk + y + 1) = k for some y � x. If suh a pair (x; y) does notexist (not Case A), then stage k does not terminate and  k =  k�1[nk℄k1;otherwise (Case A) let nk+1 := nk + y, extend  k by (m + 2) "1, and go tostage k + 1.In stage m + 1 let  m+1 =  m[nm+1℄(m + 1)1 and stop. All funtions  i, fori > m+ 1, remain empty.If in any stage k (k � m) Case A is not ful�lled, then  k is the only reursivefuntion enumerated by  , but, on input of the values of  k, Sd does notonverge to a � -program of  k. If Case A ours in all stages k (k � m), thenstage m + 1 is reahed and  m+1 is the only reursive funtion enumeratedby  . In this ase, the learner Sd must hange its mind at least m + 1 timesto identify  m+1. Consequently, Sd is no Exm-learner for the reursive ore ofthe numbering  .De�ning D by analogy with the proof of Theorem 22 yields a desriptionset belonging to UniTotal [�℄ n UniExm[�℄ (details of the veri�ation an betransferred). Moreover all reursive ores desribed by D will be singleton sets.ad 2. For any reursive learner S and any number d a funtion  is onstrutedas follows. In stage 0 let  0(0) := 0. Extend  0 by 0's, until Sd(0x) 6=? for some28



minimal x � 1. If suh an x does not exist, then  0 = 01. Otherwise de�nen1 := x� 1, let  0[n1℄ := 0x, t1 := 0; go to stage 1.In stage k (1 � k � m) let  k[nk℄ :=  tk [nk℄. Extend  k with k's,  tk withtk's, until Sd( tk [nk℄kx) 6= Sd( tk [nk℄) or Sd( tk [nk℄txk) 6= Sd( tk [nk℄) for someminimal x � 1. If x does not exist (not Case A), then stage k does not termi-nate and  k =  tk [nk℄k1,  tk =  tk [nk℄t1k . Otherwise (Case A) let fz; tk+1g =fk; tkg, where tk+1 is hosen to satisfy Sd( tk [nk℄txk+1) 6= Sd( tk [nk℄). Thende�ne nk+1 := nk + x,  tk+1 [nk+1℄ :=  tk [nk℄txk+1, extend  z by (m + 2) "1,and go to stage k + 1.In stagem+1 de�ne  m+1 :=  tm+1 [nm+1℄(m+1)1,  tm+1 :=  tm+1 [nm+1℄t1m+1,and stop.If stage 1 is not reahed, then  0 = 01, but Sd always returns ? on  0. If in anystage k (1 � k � m) Case A is not ful�lled, then the reursive ore of  equalsf k;  tkg, but Sd does not Exm-identify this set with respet to any hypothesisspae. If Case A ours in all stages k (1 � k � m), then stagem+1 is reahedand the reursive ore of  equals f tm+1 [nm+1℄(m + 1)1;  tm+1 [nm+1℄t1m+1g.Sine Sd hanges its mind on  tm+1 [nm+1℄ at least m times, Sd annot Exm-identify this set with respet to any hypothesis spae. Note that in any asethe reursive ore of  has no more than 2 elements.De�ning D as usual yields a desription set belonging to UniTotal [�℄, but notto extUniExm[�℄. Details are omitted.ad 3. Here the onstrution proeeds by analogy. The only di�erene is, thatin Case A at stage k the funtion  z is extended by (m + 2)1 instead of(m + 2) "1. This makes the hypothesis z total with respet to  . The priepaid for this is an inrease in the number of funtions ontained in the reursiveore onstruted: in the worst asem+2 funtions ( 0; : : : ;  m+1) are obtained.ad 4. If D ful�ls the onditions above and S is a strategy appropriate forresUniTotal -identi�ation ofD, then a resUniExm-learner T forD is obtainedfrom the following idea: assume d 2 D. Sine Sd returns only total hypothesesfor the m+1 funtions in Rd, there are at most m+1 funtions (but perhapsmore programs), whih Sd may guess during the learning proess for somef 2 Rd. So let Td simulate Sd. In order to avoid superuous mind hanges,Td will only hange its hypothesis, if its old guess is no longer onsistent andthe urrent guess of Sd is onsistent. Consisteny tests are possible, beauseall intermediate hypotheses returned by Sd on any f 2 Rd orrespond to totalfuntions.Formally: for any reursive funtion f and any desription d let Td(f [0℄) :=?, if'dSd(f [0℄)(0) 6= f(0), and let Td(f [0℄) := Sd(f [0℄) otherwise. For n � 1 omputeSd(f [n℄) and Td(f [n � 1℄). If Sd(f [n℄) is inonsistent for f [n℄ with respetto 'd or Td(f [n � 1℄) is onsistent for f [n℄ with respet to 'd, then de�ne29



Td(f [n℄) := Td(f [n� 1℄). Otherwise let Td(f [n℄) := Sd(f [n℄). Now it is easy toshow, that T learns D aording to the model resUniExm. 2Theorem 24 summarizes the remaining ases, for whih the hierarhy of uni-form learning power looks similar to the hierarhy in the non-uniform model.As the struture of the orresponding proofs is lose to the veri�ation of The-orems 20 and 22, just the spei� parts onerning the onstrutions of therequired �xed point values for the separating desription sets are outlined.Theorem 24 Let I; I 0 be inferene lasses in I, suh that I 0nI 6= ;. Moreoverassume (I; I 0) 6= (Exm;Total) for any m � 0.(1) There exists a desription set D 2 resUniI 0 nUniI , suh that eah reur-sive ore desribed by D is a singleton set.(2) If (I; I 0) 6= (B;B�) and I =2 fCex ;Totalg, then there exists a desriptionset D 2 resUniI 0 n extUniI , suh that eah reursive ore desribed by Donsists of at most 2 funtions.Sketh of Proof. Any of these laims an be veri�ed by a �xed point onstru-tion as in the proofs of Theorem 20 and Theorem 22. The main di�erene in thevarious proofs onsists of the spei� ideas used to onstrut the numberings . Fix some aeptable numbering � for the proof of the �rst part.ad 1.� (I; I 0) = (Ex ;B). For this pair of learning lasses see Theorem 22.� (I; I 0) = (B;B�). Again for any reursive learner S and any number d afuntion  is de�ned by stages. In stage 0, let  0(0) := 0, let n1 := 0 and go tostage 1. In eah stage k (k � 1), let  k[nk℄ :=  0[nk℄. Then  k is extended by asequene of 0's, until a number x is found, suh that �Sd( 0[nk℄0x)(nk+x+1) = 0.If suh an x does not exist (not Case A), this yields  k =  0[nk℄01 andstage k does not terminate. Otherwise (Case A) let nk+1 := nk + x + 1 and 0[nk+1℄ :=  0[nk℄0x1. The �rst value of  k whih has not yet been de�ned,will remain unde�ned (to exlude  k from the reursive ore onstruted). Allfurther values of  k will be de�ned as the orresponding values of  0 in thefollowing stages (suh that  k =�  0); go to stage k + 1.If in any stage k (k � 1) Case A is not ful�lled, then  k =  0[nk℄01 is the onlyreursive funtion enumerated by  . In this ase the output of the learner Sdon any segment  0[nk℄0x does not orrespond to a � -program for  k, beause�Sd( 0[nk℄0x)(nk + x + 1) is not equal to 0 =  k(nk + x + 1). If Case A oursin all stages, then  0 is the only reursive funtion enumerated by  , but,for in�nitely many initial segments of  0, Sd returns � -programs of funtionsdi�erent from  0:  0(nk+1) = 1 6= 0 = �Sd( 0[nk+1�1℄)(nk+1) for all k � 1 (notethat nk+1 > nk). Hene Sd is not suitable for B-identi�ation of the reursive30



ore of the numbering  with respet to � .De�ning D by analogy with the proof of Theorem 22 yields a desription setbelonging to resUniB�[�℄ n UniB[�℄. Moreover all reursive ores desribedby D will be singleton sets.� (I; I 0) 2 f(Exm;Exm+1); (Exm;Cex); (Exm;Cons)g for arbitrary m � 0.Here the desription set D used in the proof of Theorem 23.1 is suÆient.� (I; I 0) 2 f(Conf ;Ex 1); (Conf ;Cex)g. Here all partial-reursive learners haveto be onsidered in the onstrution of the numberings  . If S and d are �xed,start the de�nition of  in stage 0 with n1 = 0 and  0(0) = 0; then go tostage 1. In eah stage k, k � 1, proeed as follows.Let  0(nk+2) := 0 (this will allow Cex -learning) and let  k[nk+1℄ :=  0[nk℄0.Moreover extend  k by a sequene of the value k + 1, until the omputationsof Sd( 0[nk℄) and Sd( 0[nk℄0) terminate. The value k+1 will help the desiredEx 1-learner to identify  k, if neessary.Remark 1. If Sd( 0[nk℄) is unde�ned or Sd( 0[nk℄0) is unde�ned (i. e. neitherCase A nor Case B below ours), then stage k does not terminate. This yields k =  0[nk℄0(k + 1)1 as the only element in the reursive ore of  , but Sddoes not identify  k.Case A. Sd( 0[nk℄) and Sd( 0[nk℄0) are de�ned and Sd( 0[nk℄) 6= Sd( 0[nk℄0).Then let nk+1 := nk + 2,  0(nk + 1) := 0; go to stage k + 1.(* Note that in this ase  k remains initial and Sd hanges its mind on theextension of  0 onstruted in stage k. *)Case B. Sd( 0[nk℄) and Sd( 0[nk℄0) are de�ned and equal.In this ase let  0(nk + 1) := 1 and extend  0 with a sequene of zeros, untilthe omputation of Sd( 0[nk℄1) terminates.Remark 2. If Sd( 0[nk℄1) is unde�ned (i. e. neither Case B.1 nor Case B.2below ours), then stage k does not terminate. Hene the reursive ore of onsists of the funtion  0 =  0[nk℄101 only, but Sd does not identify  0.Case B.1. Sd( 0[nk℄1) is de�ned within x steps of omputation and di�ersfrom Sd( 0[nk℄).In this ase let nk+1 := nk+1+x and  0[nk+1℄ :=  0[nk℄10x; go to stage k+1.(* Note that  k remains initial and Sd hanges its mind on the extension of 0 onstruted in this ase. *)Case B.2. Sd( 0[nk℄1) is de�ned within x steps of omputation and equalto Sd( 0[nk℄0) and Sd( 0[nk℄).Then extend  0 with a further sequene of zeros, until the omputation31



of �Sd( 0[nk℄)(nk + 1) stops or until some number z is found, suh thatSd( 0[nk℄1) 6= Sd( 0[nk℄10z).Remark 3. If the extension in Case B.2 never stops (i. e. none of the asesB.2.1, B.2.2, B.2.3 below our), then stage k does not terminate. Thisyields  0 =  0[nk℄101 as the only element of the reursive ore of  . As�Sd( 0[nk℄)(nk + 1) is unde�ned, the hypothesis Sd( 0[nk℄) = Sd( 0[nk℄1) isnot a � -program for  0. But the output of Sd on  0 onverges to Sd( 0[nk℄),i. e. Sd does not identify  0 with respet to � .Case B.2.1. The extension in Case B.2 is stopped, beause the omputa-tion of �Sd( 0[nk℄)(nk + 1) stops within y steps and the result is di�erentfrom 1.Then let  0 :=  0[nk℄101 be the only funtion in the reursive ore.(* Now the hypothesis Sd( 0[nk + 1℄) is not onform for  0[nk + 1℄ withrespet to � . Hene Sd does not identify the funtion  0 onformly withrespet to � . *)Case B.2.2. The extension in Case B.2 is stopped, beause the omputa-tion of �Sd( 0[nk℄)(nk + 1) stops within y steps and the result equals 1.Then let  0 remain initial and let  k :=  0[nk℄0(k + 1)1 be the only ele-ment in the reursive ore of  .(* Now the hypothesis Sd( k[nk + 1℄) = Sd( 0[nk℄0) = Sd( 0[nk℄) is notonform for  k[nk + 1℄ with respet to � . *)Case B.2.3. The extension in Case B.2 is stopped, beause some z satis-fying Sd( 0[nk℄1) 6= Sd( 0[nk℄10z) has been found within y steps.Let y0 be the maximum of z and y and de�ne nk+1 := nk+1+y0. Moreover 0[nk+1℄ :=  0[nk℄10y0 . Go to stage k + 1.(* In this ase  k remains initial and Sd hanges its mind on the extensionof  0 onstruted in stage k. *) End stage kNow Sd does not learn the reursive ore of  onformly with respet to � :if one of the ases A, B.1, B.2.3, ours in�nitely often, then the reursiveore of  onsists of the funtion  0 only, but Sd hanges its mind on  0in�nitely often. If one of the ases B.2.1, B.2.2 is ful�lled one, then, by thenotes above, the reursive ore of  is not Conf -learned by Sd with respetto � either. Otherwise, by the remarks 1, 2, and 3, the same fat is observed.Furthermore the ore onstruted is a singleton set in any ase.De�ning D as usual yields a desription set, whih belongs to resUniEx 1[�℄ aswell as to resUniCex [�℄, but not to UniConf [�℄. Further details are omitted.32



� (I; I 0) = (Cons;Conf ). Again all partial-reursive learners have to be on-sidered. For eah strategy S and eah number d onstrut a two-plae funtion by stages. In stage 0 let  0(0) := 0 and go to stage 1. In eah stage k (k � 1)proeed as follows.Let  2k�1[k + 1℄ :=  0[k � 1℄0(k + 1) and  2k[k + 1℄ :=  0[k � 1℄1(k + 1) (thevalue k+1 will help the uniform Conf -learner to identify the funtions  2k�1and  2k, if neessary). Then extend  2k�1 with a sequene of the value k + 1,until the omputations of Sd( 0[k � 1℄) and Sd( 0[k � 1℄0) terminate.Remark 1. If Sd( 0[k� 1℄) or Sd( 0[k� 1℄0) is unde�ned (i. e. neither Case Anor Case B below ours), then stage k does not terminate. This yields  2k�1 = 0[k� 1℄0(k+1)1 as the only element of the reursive ore of  , but Sd doesnot identify  2k�1.Case A. Sd( 0[k � 1℄) and Sd( 0[k � 1℄0) are de�ned and Sd( 0[k � 1℄) 6=Sd( 0[k � 1℄0).In this ase let  0(k) := 0; go to stage k + 1.  2k�1 and  2k remain initial.(* Note that Sd hanges its mind on the extension of  0 onstruted in thisase. *)Case B. Sd( 0[k � 1℄) and Sd( 0[k � 1℄0) are de�ned and equal.Then extend  2k�1 with a sequene of the value k + 1, until the omputationof �Sd( 0[k�1℄)(k) stops with the result 0.Remark 2. If �Sd( 0[k�1℄)(k) is unde�ned or di�ers from 0 (i. e. Case B.1below does not our), then stage k does not terminate. This yields  2k�1 = 0[k � 1℄0(k + 1)1 as the only element of the reursive ore of  , but thehypothesis Sd( 2k�1[k℄) (= Sd( 0[k�1℄)) is not onsistent for  2k�1[k℄ withrespet to � .Case B.1. �Sd( 0[k�1℄)(k) = 0.Then let  2k�1 remain initial and extend  2k with a sequene of the valuek + 1, until the omputation of Sd( 0[k � 1℄1) terminates.Remark 3. If Sd( 0[k � 1℄1) is unde�ned (i. e. neither Case B.1.1 norCase B.1.2 below ours), then stage k does not terminate. Hene  2k = 0[k � 1℄1(k + 1)1 is the only funtion in the reursive ore of  , but Sddoes not identify  2k.Case B.1.1. Sd( 0[k � 1℄1) = Sd( 0[k � 1℄).Let  2k =  0[k � 1℄1(k + 1)1 be the only element of the reursive ore ofthe numbering  .(* Here Sd( 2k[k℄) (=Sd( 0[k�1℄)) is not onsistent for  2k[k℄ with respetto � (aording to Case B.1). *) 33



Case B.1.2. Sd( 0[k � 1℄1) is de�ned and di�ers from Sd( 0[k � 1℄).Then de�ne  0(k) := 1; go to stage k + 1.  2k remains initial.(* Note that Sd hanges its mind on the extension of  0 onstruted inthis ase. *) End stage kIf in the onstrution of  one of the ases A or B.1.2 ours in�nitely often,then the reursive ore of  equals f 0g, but Sd hanges its mind on  0in�nitely often. If Case B.1.1 is ful�lled one, then the reursive ore of  onsists of one funtion, whih is not Cons-learned by Sd with respet to� . Otherwise the remarks 1, 2, 3 above imply the same fat. Hene in anyase Sd does not identify the reursive ore of  with onsistent intermediatehypotheses with respet to � .De�ning D as usual yields a desription set, whih belongs to resUniConf [�℄,but not to UniCons[�℄. Further details are omitted.� (I; I 0) 2 f(Cex ;Ex 1); (Cex ;Cons)g. For any reursive learner S and anynumber d de�ne a funtion  by stages. In stage 0 let  0(0) := 0, n1 := 0 andgo to stage 1. In eah stage k (k � 1) proeed in the following way.De�ne  k[nk℄ :=  0[nk℄ and hk := Sd( 0[nk℄). Then extend  k with the valuek + 1, until (i) or (ii) is found true.(i) there is some yk > nk, suh that �hk(yk) is de�ned;(ii) there is some yk � nk, suh that �hk(yk) is de�nedand �hk(yk) 6=  0(yk):The value k + 1 will help the desired Ex 1- and Cons-learners to identify  k,if neessary.Remark 1. If neither (i) nor (ii) is found true (i. e. neither Case A nor Case Bbelow ours), then stage k does not terminate. Hene the reursive ore of  equals f kg = f 0[nk℄(k+1)1g, but �Sd( 0[nk℄) = �hk �  0[nk℄ "1�  k. As thehypothesis hk returned by Sd on  k[nk℄ is a � -program of a proper subfuntionof  k, the learner Sd does not Cex -identify  k with respet to � .Case A. The extension of  k is stopped, beause (i) is found true.Then let nk+1 := yk and  0[nk+1℄ :=  0[nk℄00 : : : 0sg(�hk(yk)); go to stage k+1.(* Note that in this ase Sd( 0[nk℄) (= hk) is not a � -number of  0. *)Case B. The extension of  k is stopped, beause (ii) is found true.Then extend  0 with 0's, until Sd( 0[nk℄0x) 6= hk is ful�lled for an extensionof  0 with 0x for some x � 1.
34



Remark 2. If Sd( 0[nk℄0x) = hk for all x > 0 (i. e. Case B.1 below doesnot our), then stage k does not terminate. This implies that the reursiveore of  equals f 0g = f 0[nk℄01g, but the output sequene of Sd on  0onverges to hk, whih is inorret for  0 with respet to � (beause of (ii)).Thus Sd does not identify  0 with respet to � .Case B.1. Sd( 0[nk℄0x) 6= hk for some minimal x > 0.In this ase let nk+1 := nk + x and  0[nk+1℄ :=  0[nk℄0x; go to stage k + 1.(* Note that Sd hanges its hypothesis on the extension of  0 de�ned in thisase. *) End stage kIf Case A ours in�nitely often in the onstrution of  , then the reursiveore of  onsists of the funtion  0 only, but on  0 the strategy Sd returnsinorret hypotheses for  0 with respet to � in�nitely often. If Case B.1ours in�nitely often, then again the reursive ore equals f 0g, but Sd makesin�nitely many mind hanges on  0. Otherwise, by the remarks 1 and 2 above,Sd does not Cex -identify the only funtion in the reursive ore of  withrespet to � . Altogether this proves that Sd is not suitable for Cex -learning ofthe reursive ore onstruted.De�ning D as usual yields a desription set, whih belongs to resUniEx 1[�℄\resUniCons[�℄, but not to UniCex [�℄. Further details are omitted.For the other pairs (I; I 0) satisfying the required onditions the orrespondinglaim follows from Theorem 19 and those parts of the laim whih have alreadybeen veri�ed.ad 2.� (I; I 0) = (Ex ;B). See Theorem 20.� (I; I 0) 2 f(Exm;Exm+1); (Exm;Cons)g for arbitrary m � 0. Here the de-sription set used in the proof of Theorem 23.2 is suÆient.� (I; I 0) 2 f(Conf ;Ex 1); (Conf ;Cex)g. For these pairs also non-total strate-gies have to be onsidered. For eah learner S and eah number d de�ne anumbering  by stages. In stage 0 let  0(0) := 0 and  0(2) := 0. Furthermorede�ne n1 := 0 and go to stage 1. In eah stage k (k � 1) proeed as follows.Let  2k�1[nk + 2℄ :=  0[nk℄0(k + 1),  2k[nk + 2℄ :=  0[nk℄1(k + 1). The value(k+1) will prevent the desired Cex -learner form returning programs of propersubfuntions in the relevant ases. Moreover it helps the desired Ex 1-learnerto identify  2k�1 and  2k, if neessary. Extend  2k�1 and  2k by the valuek + 1, until the omputations of all the values Sd( 0[nk℄), Sd( 0[nk℄0), andSd( 0[nk℄1) terminate. 35



Remark 1. If one of the values Sd( 0[nk℄), Sd( 0[nk℄0), Sd( 0[nk℄1) is unde�ned(i. e. neither Case A nor Case B below ours), then stage k does not terminate.Hene the reursive ore of the numbering  is equal to the set f 2k�1;  2kg =f 0[nk℄0(k + 1)1;  0[nk℄1(k + 1)1g, but at least one of the funtions  2k�1, 2k is not identi�ed by Sd.Case A. Sd( 0[nk℄), Sd( 0[nk℄0), and Sd( 0[nk℄1) are de�ned and there is somet 2 f0; 1g satisfying Sd( 0[nk℄) 6= Sd( 0[nk℄t).Then leave the funtions  2k�1 and  2k initial, let nk+1 := nk +2,  0[nk+1℄ := 0[nk℄t0,  0(nk+1 + 2) := 0, and go to stage k + 1.(* Note that in Case A the learner Sd hanges its mind on the extension of  0just de�ned. *)Case B. Sd( 0[nk℄), Sd( 0[nk℄0), and Sd( 0[nk℄1) are de�ned and equal.In this ase extend  0 by 0's and  2k by the value k + 1, until some x � 0 isfound, suh that Sd( 0[nk℄0x+2) 6= Sd( 0[nk℄) is ful�lled.Case B.1. This extension stops within y steps; Sd( 0[nk℄0x+2) 6= Sd( 0[nk℄)for some x � y.Then let nk+1 := nk+2+y and de�ne  0[nk+1℄ :=  0[nk℄0y+2,  0(nk+1+2) :=0; go to stage k + 1.(* Note that in Case B.1 the learner Sd hanges its mind on the extensionof  0 just de�ned. *)Remark 2. If Sd( 0[nk℄0x+2) = Sd( 0[nk℄) for all x � 0 (i. e. Case B.1 doesnot our), then stage k does not terminate. Hene the reursive ore of  equals f 0;  2kg = f 0[nk℄01;  0[nk℄1(k+1)1g. Now let � be any adequatehypothesis spae for the reursive ore of  and onsider two ases.(i) �Sd( 0 [nk℄)(nk + 1) is de�ned.Then Sd( 0[nk℄) = Sd( 0[nk + 1℄) = Sd( 2k[nk + 1℄) is non-onform for atleast one of the segments  0[nk + 1℄,  2k[nk + 1℄ with respet to �. ThusSd does not Conf -learn the reursive ore of  with respet to �.(ii) �Sd( 0[nk℄)(nk + 1) is unde�ned.In this ase the index Sd( 0[nk℄) is inorret for  0 with respet to �,but aording to the ondition in Remark 2 the output sequene of Sd onthe funtion  0 onverges to Sd( 0[nk℄). Therefore Sd does not identify  0with respet to �. End stage kIf Case A or Case B.1 our in�nitely often in the onstrution of  , thenthe reursive ore of  equals f 0g, but Sd hanges its mind on  0 in�nitelyoften. If in some stage k both Case A and Case B.1 fail, then, by Remark 1,36



the reursive ore onsists of the funtions  2k�1 and  2k, but Sd does notidentify this set. Otherwise, Remark 2 above shows that Sd does not Conf -learn the reursive ore f 0;  2kg of  with respet to any hypothesis spae�. Consequently, in any ase, Sd does not identify the reursive ore of  withonform intermediate hypotheses.De�ning D by analogy with the proof of Theorem 20 yields a desriptionset belonging to resUniEx 1[�℄ and resUniCex [�℄, but not to extUniConf [�℄.Details are left out.� (I; I 0) = (Cons;Conf ). Again all partial-reursive learners have to be on-sidered. For any strategy S and any number d onstrut a partial-reursivefuntion  in the following way. In stage 0 let  0(0) := 0 and go to stage 1.In eah stage k (k � 1) proeed aording to the following instrutions.Let  2k�1[k + 1℄ :=  0[k � 1℄0(k + 1),  2k[k + 1℄ :=  0[k � 1℄1(k + 1) andextend the funtions  2k�1 and  2k by the value k+1, until the omputationsof all the values Sd( 0[k � 1℄), Sd( 0[k � 1℄0), and Sd( 0[k � 1℄1) terminate.The value k + 1 will help the desired Conf -learner to identify  2k�1 and  2k,if neessary.Remark 1. If one of the values Sd( 0[k � 1℄), Sd( 0[k � 1℄0), Sd( 0[k� 1℄1) isunde�ned (i. e. neither Case A nor Case B below ours), then stage k does notterminate. This yields f 2k�1;  2kg = f 0[k�1℄0(k+1)1;  0[k�1℄1(k+1)1gas the reursive ore of  , but at least one of the funtions  2k�1,  2k is notidenti�ed by Sd.Case A. Sd( 0[k�1℄), Sd( 0[k�1℄0), and Sd( 0[k�1℄1) are de�ned and equal.In this ase let  2k�1 :=  0[k � 1℄0(k + 1)1,  2k =  0[k � 1℄1(k + 1)1 andleave all other funtions enumerated by  initial.(* Sine Sd returns the same output for the segments  0[k�1℄0 and  0[k�1℄1,this hypothesis must be inonsistent (with respet to any hypothesis spae) forat least one of the segments  2k�1[k℄,  2k[k℄. Hene Sd is not an appropriateCons-strategy for the reursive ore of  . *)Case B. Sd( 0[k�1℄), Sd( 0[k�1℄0), and Sd( 0[k�1℄1) are de�ned and thereis some t 2 f0; 1g satisfying Sd( 0[k � 1℄) 6= Sd( 0[k � 1℄t).Then let the funtions  2k�1 and  2k remain initial, let  0(k) := t and go tostage k + 1.(* Note that in Case B the learner Sd hanges its mind on the extension of  0just de�ned. *) End stage kIf in the onstrution of  Case B ours in�nitely often, then the reursiveore of  equals f 0g, but Sd hanges its mind on  0 in�nitely often. If Case Ais one ful�lled, then the note above implies that Sd is not suitable for Cons-identi�ation of the reursive ore of  (whih equals f 2k�1;  2kg for some k �37



1). Otherwise, by Remark 1 above, the same fat is observed. Consequently, thereursive ore of  is not Cons-learned by Sd with respet to any hypothesisspae.De�ning D as usual yields a desription set, whih belongs to resUniConf [�℄,but not to extUniCons[�℄. Further details are omitted.� For the other pairs (I; I 0) satisfying the required onditions the orrespond-ing laim follows from Theorem 19 and those parts of the laim whih havealready been veri�ed. 2This yields the following strit version of Theorem 19.Corollary 25 Let I; I 0 2 I be inferene lasses, suh that I � I 0.(1) UniI [�℄ � UniI 0[�℄.(2) If (I; I 0) 6= (Ex 0;Total), then resUniI [�℄ � resUniI 0[�℄.(3) If (I; I 0) 6= (B;B�), I =2 fCex ;Totalg, then extUniI [�℄ � extUniI 0[�℄.Moreover the following inomparability results are obtained from Theorem 23and Theorem 24.Corollary 26 (1) UniCex [�℄ #UniCons[�℄ and UniCex [�℄ #UniConf [�℄(analogously for resUni instead of Uni).(2) UniExm[�℄ #UniI [�℄ for all I 2 fTotal ;Cex ;Cons;Conf g and all m � 1(analogously for resUni instead of Uni).(3) extUniExm[�℄ # extUniCons[�℄ and extUniExm[�℄ # extUniConf [�℄ forall m � 1.4.2 Disrepanies between the hierarhiesWith the preeding theorems all parts of the hierarhies for uniform learning,whih agree with the orresponding parts of the hierarhy for the elementarylearning model, have been veri�ed. It remains to onsider those ases, in whiha hange in the hierarhy has been laimed in Figure 2:� resUniEx 0[�℄ # resUniTotal [�℄,� extUniB[�℄ = extUniB�[�℄,� extUniEx [�℄ = extUniCex [�℄ = extUniTotal [�℄.The �rst of these laims is a onsequene of Theorem 27, whih furthermorestates that the required separation is obtained with singleton reursive ores.Theorem 27 There exists a desription set D 2 resUniEx 0 n resUniTotal ,suh that eah reursive ore desribed by D is a singleton set.38



Proof. The struture of the proof results from ideas similar to those used in theproof of Theorem 22. For any learner S and any number d a partial-reursivenumbering  is onstruted as follows.Let  i :="1 for all i � 2. Start omputing Sd(0). For eah x, if the omputa-tion of Sd(0) takes more than x steps, let  0(x) := 0.Case A. Sd(0) is de�ned.If Sd(0) 6= 0, let  0 := 01 and  1 :="1. Otherwise, leave  0 := 0x "1 forsome x, and  1 := 011.Remark. If Sd(0) is unde�ned (i. e. if Case A does not our), then  0 equals01 and  1 equals "1. End Constrution of  As this onstrution is uniformly e�etive in S and d, there is some numberd�, suh that 'd� equals the numbering  onstruted from S and d�. Suh anumber d� is alled a �xed point assoiated to S. Now letD := fd j d is a �xed point assoiated to some partial-reursive funtion Sg :Note that, for any d 2 D,either Rd = f'd0g = f01g or Rd = f'd1g = f011g : (6)It remains to verify the following laim.Claim.(1) Eah reursive ore desribed by D is a singleton set,(2) D 2 resUniEx 0,(3) D =2 resUniTotal .ad 1. This follows immediately from (6).ad 2. By (6), an Ex 0-learner for any lass desribed by D has to return \?"on any initial segment onsisting of just one value. Furthermore, it suÆesto return 0 on input of any segment 0n (n � 2), and to return 1, otherwise.Clearly this veri�es D 2 resUniEx 0.ad 3. Assume to the ontrary, that D 2 resUniTotal . Then there exists somestrategy S, suh that eah reursive ore Rd desribed by D is identi�ed bySd with total intermediate hypotheses with respet to 'd. Now let d� 2 D bea �xed point assoiated to S, so by assumption Rd� is Total -learned by Sd�with respet to 'd�. In the onstrution of the numbering  orresponding tod� either Case A is ful�lled or not. 39



If Case A ours, then 'd�Sd�(0) equals "1 or 0k "1 for some k. So, for theonly funtion f 2 Rd�, the hypothesis Sd�(f [0℄) is a 'd�-number of a non-totalfuntion. Consequently, Sd� does not Total -identify Rd� with respet to 'd� .This yields a ontradition.If Case A does not our, then, by the remark above, 'd�0 = 01 and Sd�('d�0 [0℄)is unde�ned. Clearly this implies, that Rd� is not learned by Sd� , whih againleads to a ontradition.Thus the assumption D 2 resUniTotal is wrong. 2Corollary 28 resUniEx 0[�℄ # resUniTotal [�℄.The sope of the next two theorems is to verify the remaining laims onern-ing extended uniform learning. The proof of extUniB[�℄ = extUniB�[�℄ isbased on the fat that the set of all desriptions of B-lasses is uniformlyB-learnable in the extended model.Theorem 29 extUniB[�℄ = extUniB�[�℄.Proof. It is possible to show even more:extUniB = fD � N j Rd 2 B for eah d 2 Dg : (7)As eah �nite lass belongs to B and extUniB�[�℄ = fD � N j Rd is �niteg(f. Proposition 13), this implies the laim of Theorem 29. Therefore it re-mains to prove (7). Note that by de�nition extUniB � fD � N j Rd 2B for eah d 2 Dg. For the opposite inlusion, �x some desription set D,suh that eah reursive ore desribed by D belongs to B. The aim is toverify D 2 extUniB.For that purpose, let � be any aeptable numbering. By Lemma 7, thereexists a lass fT [d℄ j d 2 Dg of reursive strategies, suh that, for any d 2 D,the strategy T [d℄ B-identi�es Rd with respet to � . Now de�ne a lass f [d℄ jd 2 Dg of hypothesis spaes by [d℄i := �T [d℄(i) for all d 2 D and all i :Moreover let a learner S be given by Sd(f [n℄) := f [n℄ for all reursive funtionsf and all d; n. As an be veri�ed easily, S is appropriate for uniform B-identi�ation ofD in the extended model with respet to the hypothesis spaes [d℄ (d 2 D). Consequently, D 2 extUniB. 2Finally the proof of Figure 2 is ompleted by showing that for extended uni-form learning of �nite reursive ores the riteria Ex , Cex , and Total oinide.In partiular the inferene types resulting from speial properties onerning40



the quality of the intermediate hypotheses (independent of the amount of infor-mation known about the target funtion) yield an exeption in the separations{ ompared to the non-uniform model.Theorem 30 extUniEx [�℄ = extUniCex [�℄ = extUniTotal [�℄.Proof. Sine extUniTotal [�℄ � extUniCex [�℄ � extUniEx [�℄ by de�nition,it remains to prove extUniEx [�℄ � extUniTotal . For that purpose hoose adesription set D 2 extUniEx [�℄. Then(1) eah reursive ore desribed by D is �nite,(2) there is a strategy S, suh that for any d 2 D the reursive ore Rd isEx -identi�ed by Sd with respet to some hypothesis spae  [d℄.Note that the hypothesis spaes  [d℄ do not have to be omputable uniformlyin d. In order to prove that D belongs to extUniTotal the given strategy Sis used as an appropriate learner. This requires a hange of the hypothesisspaes  [d℄ for the desriptions d in the set D.The idea an be explained as follows: �x some desription d 2 D. Sine Sdidenti�es the �nite lass Rd in the limit, there are only �nitely many initialsegments of funtions in Rd, whih fore the strategy Sd to guess a non-totalfuntion. If the funtions in  [d℄ assoiated with these inadequate guessesare replaed by some total funtion, a suitable hypothesis spae for Total-identi�ation of Rd by Sd is obtained.More formally: Let d be an element of D. For all funtions f 2 Rd state-ment (2) above implies that the set fn � 0 j  [d℄Sd(f [n℄) is not totalg is �nite.De�ne the set of \forbidden" hypotheses on \relevant" initial segments byH [d℄ := fi � 0 j [d℄i is not total and there is some funtion f 2 Rdand some number n � 0 suh that Sd(f [n℄) = ig :By (1) and (2) the set H [d℄ is �nite. Consider a new hypothesis spae �[d℄:�[d℄i := 8<: [d℄i ; if i =2 H [d℄01 ; if i 2 H [d℄ for all i 2 N :SineH [d℄ is �nite, �[d℄ is omputable. Then Rd isTotal -identi�ed by Sd with re-spet to �[d℄. As d 2 D was hosen arbitrarily, this yieldsD 2 extUniTotal . 241
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