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hberei
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h 3049,67653 Kaiserslautern, GermanyAbstra
tWithin the s
ope of indu
tive inferen
e a re
ursion theoreti
 approa
h is used tomodel learning behaviour. The fundamental model 
onsidered is Gold's identi�
a-tion of re
ursive fun
tions in the limit. Modifying the 
orresponding de�nition hasproposed several inferen
e 
lasses, whi
h have been 
ompared regarding the 
apa
-ities of the relevant learners.The present paper is 
on
erned with a meta-version of this learning model. Givena des
ription of a 
lass of target fun
tions, a uniform learner is supposed to developa spe
i�
 su

essful method for learning the represented 
lass. The same modi�
a-tions as in the elementary model are 
onsidered in the 
ontext of uniform learning,espe
ially respe
ting identi�
ation 
apa
ities. It turns out that the former separa-tions of inferen
e 
lasses are re
e
ted on the meta-level, in parti
ular �nite 
lassesof re
ursive fun
tions { whi
h 
onstitute the most simple learning problems in theelementary model { are eviden
e of these separations.
1 Introdu
tionVarious theoreti
al 
on
epts 
an be used to model learning behaviour. In this
ontext indu
tive inferen
e is 
on
erned with suitable te
hniques provided byre
ursion theory. The target obje
ts to be identi�ed are re
ursive fun
tionsrepresented by programs via a partial-re
ursive numbering 
alled hypothesisspa
e.In Gold's [8℄ basi
 model of identi�
ation in the limit, the learner, modelledby a partial-re
ursive fun
tion, identi�es a re
ursive fun
tion f , if it transfersa sequen
e of information about f into a sequen
e of hypotheses 
onvergingto a 
orre
t program for f . A sequen
e of information about f is simply thesequen
e of output values returned by f in natural order. In general a 
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re
ursive fun
tions is 
onsidered learnable if there is a single learner identify-ing ea
h element of the 
lass. By weakening or strengthening the 
onstraintsin Gold's de�nition { for example via additional demands respe
ting the qual-ity of the intermediate hypotheses { several alternative inferen
e 
lasses havebeen de�ned, 
f. [2{8,10,15,16℄. On the one hand, it has been of parti
ularinterest, what pri
e has to be paid for the quality of the intermediate hypothe-ses (i. e. how strengthening the 
onstraints redu
es the quantity of learnable
lasses), on the other hand it has been studied, in whi
h 
ases it is advisableto loosen the demands (i. e. how weakening the 
onstraints in
reases the quan-tity of learnable 
lasses). The results of these studies, see [2{6,10,15℄, providea hierar
hy of inferen
e 
lasses.A quite 
on
eivable idea is to analyse stru
tural properties that su

essfullearners may have in 
ommon and thus hopefully to design universal methodsfor the uniform identi�
ation of in�nitely many 
lasses of target obje
ts. Evi-dently su
h properties always go along with some 
ommon intrinsi
 stru
tureof the 
lasses to be learned and the 
orresponding adequate hypothesis spa
es.For example a uniform method for learning all re
ursively enumerable sets ofre
ursive fun
tions in the limit is identi�
ation by enumeration as de�ned byGold [8℄. This strategy 
an be generalized to temporarily 
onform identi�
a-tion, 
f. [6℄, whi
h 
onstitutes a su

essful uniform method in spe
i�
 hypoth-esis spa
es. These ideas suggest the formal de�nition of a uniform learningmodel; analysing the 
orresponding identi�
ation 
apa
ity is the s
ope of thepresent paper. The new model 
onsiders some kind of meta-learning, wherethe uniform learner is supposed to develop a spe
i�
 learner for ea
h target
lass represented via some des
ription asso
iated with the 
lass. That means,the uniform learner is able to exploit the 
ommon stru
ture in the identi�abletarget 
lasses, to the extent that su

essful strategies for these 
lasses 
anbe 
omputed by a uniform method. The analysis of meta-learning perhapsprovides even more revelation about these 
ommon stru
tures.Uniform learning has also been investigated in the 
ontext of language iden-ti�
ation, see [1,11,12℄. Baliga, Case, and Jain [1℄ 
ompare several inferen
e
lasses in their uniform language learning model with plentiful results 
on-tributing to a more detailed understanding of general properties in Gold'selementary model. For examples of rather simple 
lasses of language families,whi
h 
annot be identi�ed uniformly, see [11,12℄. Jantke [9℄ has studied meta-learning of re
ursive fun
tions with similar negative results, whi
h are furtherstrengthened in [17℄. Yet this out
ome has to be interpreted 
arefully; mostoften su
h simple 
lasses are not themselves too 
omplex for uniform learning,but an inadequate 
hoi
e of des
riptions representing these 
lasses 
auses thefailure of uniform strategies.The present paper is mainly 
on
erned with the 
omparison of inferen
e 
lasses{ formerly analysed in Gold's elementary model { now in the 
ontext of meta-2



learning. As it turns out, the known hierar
hy remains valid in the new model,where ea
h separation of two inferen
e 
lasses is a
hieved by a representationof �nite 
lasses of re
ursive fun
tions { most often either singleton 
lasses or
lasses 
onsisting of two fun
tions, depending on the restri
tions in the 
hoi
eof hypothesis spa
es. In the elementary model, �nite 
lasses 
an never witnessto an in
rease of learning 
apa
ity in the 
omparison of two inferen
e 
lasses,be
ause they are identi�able with respe
t to any learning 
riterion 
onsideredhere. So, although �nite 
lasses 
onstitute trivial learning problems in thenon-uniform model, spe
i�
 des
riptions of su
h 
lasses are too diÆ
ult formeta-learners to 
ope with.The re
e
tion of the former hierar
hy in the uniform model 
orroborates theintuition, that any pair of di�erent inferen
e 
lasses 
reates a relationship oflearning power universally valid in lots of learning models; i. e. the hierar
hy oflearning 
lasses expresses some kind of natural relationships. So there mightexist a general trade-o� between quality 
onstraints in the learning 
riteriaand resulting identi�
ation 
apa
ities. Therefore also in the 
ontext of uniformlearning it is sometimes advisable to loosen the restri
tive demands 
on
erningthe inferen
e 
riteria in order to exploit a more powerful learning model.Moreover the proofs of the separations provide methods for 
onstru
ting de-s
riptions of target 
lasses not suitable for uniform identi�
ation with respe
tto a given inferen
e 
riterion. Hopefully a further analysis of these methodsmay give insight into stru
tures whi
h are generally inadequate for learningin the spe
i�
 inferen
e 
lasses.A preliminary version presenting parts of the results in this paper has ap-peared, 
f. [18℄.2 Preliminaries2.1 NotationsFor notions and 
on
epts relating to re
ursion theory see [13℄. Standard notionsare used for the 
omparison of sets, where� always indi
ates a proper in
lusionof sets and # expresses in
omparability. ; is a symbol for the empty set. Inorder to refer to the 
ardinality of a set X the notion 
ardX is used.The basi
 
on
ept needed for modelling a learning s
enario in indu
tive infer-en
e is the 
on
ept of partial-re
ursive fun
tions (
f. [13℄). Inputs and outputsof these fun
tions are non-negative integers, the set of whi
h is denoted by N .The variables n; x; y always range over N . A partial-re
ursive fun
tion whi
h3



is total, i. e. de�ned for all inputs, is simply 
alled re
ursive fun
tion. If f isany partial-re
ursive fun
tion, then f(n) denotes the value of f on input n,where f(n) " indi
ates, that f is unde�ned on input n. Similarly two-pla
efun
tions, three-pla
e fun
tions, et
. are 
onsidered. sg symbolizes a re
ursivefun
tion returning 1 on input 0 and 0 on all other inputs.By means of a re
ursive bije
tive mapping, �nite tuples over N are iden-ti�ed with non-negative integers. Thus, if f is a partial-re
ursive fun
tionand n any input value su
h that f(0); f(1); : : : ; f(n) are de�ned, this bi-je
tive mapping yields a 
ode number f [n℄ to be identi�ed with the �nitetuple (f(0); f(1); : : : ; f(n)). Given another partial-re
ursive fun
tion g, thenotions g(f [n℄) and g(f(0) : : : f(n)) may sometimes be used inter
hangeably.If for all but �nitely many n either f(n) and g(n) are both unde�ned orf(n) = g(n), this is indi
ated by f =� g. Identifying the fun
tion f with theset f(n; f(n)) j f(n) is de�nedg explains the use of notions like f � g andf � g. But ea
h partial-re
ursive fun
tion may also be identi�ed with the
orresponding sequen
e of output values. For example let f(n) = 0 for n � 6and f(n) " otherwise; g(n) = 0 for n � 5 and g(n) = 1 otherwise; h(n) = 0for all n. This might be denoted for short by f = 07 "1, g = 0611, h = 01.Here f # g, g# h, but f � h.If n is given, any (n+1)-pla
e partial-re
ursive fun
tion  enumerates the setf i j i 2 Ng of n-pla
e partial-re
ursive fun
tions, where  i (i 2 N) is givenby  i(x1; : : : ; xn) :=  (i; x1; : : : ; xn) for all elements x1; : : : ; xn of N . Thereforesu
h a fun
tion  is also 
alled a numbering . Assume f belongs to f i j i 2 Ng.In this 
ase any index x satisfying  x = f is 
alled a  -number or a  -programof f . As an example 
onsider the fun
tion  , whi
h is for any x; y de�ned by (x; y) ", if x = 0;  (x; y) := 0, if x > 0 and y < x;  (x; y) := 1, otherwise.Then  is a numbering of the set f"1g [ f0i11 j i � 1g; 0 is the (unique) -number of "1 and ea
h index i > 0 is the  -number of 0i11. Of 
oursethere are also numberings whi
h provide more than one program for a singlefun
tion.2.2 Hierar
hy of learning 
lassesA theoreti
al learning model is prin
ipally 
hara
terized by �ve 
omponents:a 
lass of possible target obje
ts, a method for 
ommuni
ating informationabout these obje
ts, a set of possible learners developing a hypothesis fromany feasible information about an obje
t to be learned, a 
lass of hypoth-esis spa
es asso
iating obje
ts with su
h hypotheses, and �nally a su

ess
riterion de
laring the desired behaviour of the other 
omponents. In anyinferen
e 
lass de�ned in this se
tion four of these 
omponents are alwaysspe
i�ed the same: the target obje
ts to be identi�ed are re
ursive fun
tions4



f with the 
orresponding information presented as a gradually growing in�-nite sequen
e f [0℄; f [1℄; f [2℄; : : : of the tuples of its output values. Learners arepartial-re
ursive fun
tions, also 
alled strategies; hypothesis spa
es are partial-re
ursive numberings, enumerating at least all the fun
tions whi
h have to beidenti�ed. That means, ea
h fun
tion to be learned has an index in the hy-pothesis spa
e.The di�erent inferen
e 
lasses de�ned here thus result from di�erent su

ess
riteria. In the basi
 model { identi�
ation in the limit or explanatory identi-�
ation, 
f. [8℄ { the learner is required to eventually return a single 
orre
thypothesis for any target fun
tion.The modi�
ations of this model 
onsidered below are 
hosen su
h that threeapproa
hes are taken into a

ount: �rstly, modifying the requirements 
on-
erning the su

ess of the sequen
e of hypotheses; se
ondly, modifying the de-mands regarding the quality of the hypotheses { independent of the amountof information known about the target fun
tion; thirdly, modifying the qual-ity demands depending on the 
urrent information. Ea
h approa
h will berepresented by at least two inferen
e types.De�nition 1 A set U of re
ursive fun
tions is identi�able in the limit (Ex-identi�able), i� there is some hypothesis spa
e  and a strategy S, su
h thatfor any f 2 U the following 
onditions are ful�lled:(1) S(f [n℄) is de�ned for all n 2 N,(2) the sequen
e (S(f [n℄))n2N 
onverges to a  -number of f .Ex denotes the 
lass of all Ex-learnable sets U .For example any 
lass of fun
tions enumerated by a re
ursive numbering isEx -learnable (see [8℄), but there is no adequate strategy for the whole 
lass ofre
ursive fun
tions (
f. [8,4℄). Still it is 
on
eivable that loosening the su

ess
riterion in De�nition 1 might yield a learning model whi
h allows identi�a-bility of the whole set of re
ursive fun
tions. In a �rst step the requirements
on
erning 
onvergen
e of the sequen
e of hypotheses are weakened. In themodel of behaviourally 
orre
t identi�
ation, as de�ned in [2℄ and also dis-
ussed in [5℄, 
onvergen
e is no longer required; the learner eventually has toreturn 
orre
t programs, but is allowed to 
onje
ture di�erent programs forthe same fun
tion.De�nition 2 A set U of re
ursive fun
tions is B
-identi�able, i� there issome hypothesis spa
e  and some learner S, su
h that for any f 2 U allvalues S(f [n℄) (n 2 N) are de�ned and all but �nitely many of them are  -numbers for f . B
 is the 
lass of all B
-learnable sets.This modi�
ation of De�nition 1 yields an in
rease of learning power, i. e. Ex is5



a proper subset of B
 (see [2℄), but the top of the hierar
hy of learning 
lassesis not yet rea
hed. Permitting a few errors in the 
onje
tures, as suggested in[5℄, results in an even stronger model, denoted by B
�.De�nition 3 A set U of re
ursive fun
tions is B
�-identi�able, i� there issome hypothesis spa
e  and some learner S, su
h that for any f 2 U allvalues S(f [n℄) (n 2 N) are de�ned and all but �nitely many of them ful�l S(f [n℄) =� f . B
� denotes the 
lass of all B
�-learnable sets.With this inferen
e 
riterion the top of the hierar
hy of identi�
ation power isde�nitely rea
hed, sin
e the whole set of re
ursive fun
tions is B
�-learnable;the 
orresponding proof in [5℄ refers to a private 
ommuni
ation to L. Har-rington. So loosening the 
onditions in De�nition 1 yields the hierar
hy Ex �B
 � B
� of in
reasing learning power. But it is also 
on
eivable to strengthenthe demands 
on
erning Ex -identi�ability; one idea is for example to modifythe 
onditions regarding the aspe
t of mind 
hange 
omplexity in the sequen
eof hypotheses returned by the strategy.De�nition 4 Let S be a strategy whi
h is additionally permitted to returnthe sign \?". A set U of re
ursive fun
tions is Exm-identi�able by S, i� Uis Ex-learned by S with respe
t to some hypothesis spa
e  , su
h that for allf 2 U the following 
onditions hold:(1) there is some k 2 N, su
h that S(f [n℄) =? i� n < k,(2) 
ardfn j? 6= S(f [n℄) 6= S(f [n+ 1℄)g � m.Exm is the 
lass of all sets whi
h are Exm-identi�able by some learner S.The advantage of identi�
ation with a bound m on the number of mind
hanges is, that whenever this bound is a
tually rea
hed in the identi�
ationpro
ess, the �nal 
orre
t hypothesis is already known. Note that the de�nitionof identi�
ation in the limit never allows for 
ertainty 
on
erning the 
orre
t-ness of the 
urrent hypothesis. But the advantage a
hieved by the Exm-modelgoes along with a loss of identi�
ation power: Exm � Exm+1 � Ex for allm � 0, 
f. [5℄. A further approa
h to strengthening the demands of De�ni-tion 1 is to improve the quality of the intermediate hypotheses by additional
onstraints arising from a somewhat natural motivation. De�nition 5 suggestssome properties 
on
eivably augmenting this quality; for more ba
kground onthese properties and the 
orresponding learning models the reader is referredto [2{4,6{8,10,15,16℄.Note that all modi�
ations of Ex -learning de�ned above deal with require-ments 
on
erning the 
onvergen
e of the sequen
e of hypotheses returned bythe learner. The modi�
ations to be de�ned next rather deal with the prop-erties of the intermediate hypotheses themselves. In parti
ular two types ofproperties are distinguished: �rst, properties in dependen
y of the information6



the learner has 
urrently re
eived, i. e. the known initial segment of the targetfun
tion; su
h properties are for example 
onsisten
y or 
onformity. Se
ond, itis also 
on
eivable to 
onsider properties negle
ting the amount of informationgiven about the target fun
tion, su
h as 
onvergent in
orre
tness or totalityof the intermediate hypotheses.De�nition 5 Let f be any re
ursive fun
tion, S a strategy,  any hypothesisspa
e. Fix some number n, su
h that S(f [n℄) is de�ned. Moreover let m � 0.The hypothesis S(f [n℄) is 
alled� 
onsistent for f [m℄ with respe
t to  i�, for all x � m,  S(f [n℄)(x) is de�nedand equals f(x);� 
onform for f [m℄ with respe
t to  i�, for all x � m, either  S(f [n℄)(x) isunde�ned or  S(f [n℄)(x) = f(x);� 
onvergently in
orre
t for f with respe
t to  i�  S(f [n℄) 6� f ;� total with respe
t to  i�  S(f [n℄) is a total fun
tion.Demanding that all hypotheses returned by a learner on relevant input se-quen
es should be 
onsistent with the information seen so far, is a quite natu-ral approa
h. Yet these requirements might be too strong, taking into a

ountthat any in
onsisten
y resulting from an unde�ned value may in general notbe found by the learner. This motivates the approa
h of 
onformity.It is also 
on
eivable that a learner may try to maintain its hypotheses untilthey are evidently found to be wrong. To allow for su
h 
onvergently justi�edmind 
hanges, every in
orre
t guess should 
orrespond to a fun
tion disagree-ing with the target fun
tion in at least one de�ned value, i. e. no in
orre
thypothesis des
ribes a subfun
tion of f .Moreover, these requirements 
an be strengthened to a demand for total in-termediate hypotheses, sin
e in parti
ular no non-total fun
tion 
an equal thetarget fun
tion.De�nition 6 Let U be a set of re
ursive fun
tions, S a strategy and  somehypothesis spa
e, su
h that U is Ex-learned by S with respe
t to  . Then U isCons-learned (Conf -, Cex-, Total-learned, resp.) by S with respe
t to  , i�,for any f 2 U and n 2 N, S(f [n℄) is 
onsistent for f [n℄ (
onform for f [n℄,either 
orre
t or 
onvergently in
orre
t for f , total, resp.) with respe
t to  .The notions Cons, Conf , Cex, Total are de�ned as usual.The inferen
e 
lass Cons has espe
ially been studied in [8,3,14,16℄; there it isveri�ed that the demand for 
onsisten
y yields a de
rease of learning power.As the de�nitions already suggest, Conf is an inferen
e 
lass ranging betweenCons and Ex in the hierar
hy. For a proof of Cons � Conf � Ex see [15℄,moreover in parti
ular the work of Fulk [7℄ is of interest regarding 
onformidenti�
ation. Similar ideas as used for the separations of several inferen
e7




riteria in [6℄ yield Cons#Exm and Conf #Exm for allm � 1, whereas Ex 0 �Cons; details are omitted. The main work done regarding Cex -learning 
an befound in [6℄, in
luding proofs for Cex � Ex , Cex #Cons, and Cex #Exm forall m � 1. Again Ex 0 � Cex is easily veri�ed and for the proof of Cex #Confthe ideas from [6℄ are helpful. For Total-identi�
ation and a proof of Total �Cons see [10℄. Ex 0 � Total and Total #Exm for all m � 1 
an be veri�edwith the help of the separations mentioned above. By de�nition Total is asubset of Cex ; the proper subset relation Total � Cex is then obtained fromTotal � Cons and Cons#Cex .The notion I refers to the set of all inferen
e 
lasses de�ned so far.I := fEx ;B
;B
�;Cons;Conf ;Cex ;Totalg [ fExm j m � 0g :The following lemma summarizes some 
ommonly used results, see for example[8,16℄.Lemma 7 Let I 2 I, U 2 I and let � be any a

eptable numbering. Thenthere exists a strategy I-learning the 
lass U with respe
t to the hypothesisspa
e � . Moreover, if I =2 fCons;Conf g and  is a hypothesis spa
e, su
h thatU is I-learnable with respe
t to  , then there exists a total re
ursive I-learneridentifying U with respe
t to  .A 
ounterexample for the the 
riterion Cons in the se
ond part of Lemma 7is given in [16℄. The results mentioned above are summarized in Theorem 8and illustrated in Figure 1.Theorem 8 [2{6,10,15℄(1) Exm � Exm+1 � Ex � B
 � B
� for all m � 0, ff j f re
ursiveg 2 B
�,(2) Ex 0 � Total � Cons � Conf � Ex,(3) Total � Cex � Ex,(4) Cex #Cons, Cex #Conf ,(5) Exm# I for all m � 1 and all I 2 fTotal ;Cex ;Cons;Conf g.Note that three kinds of inferen
e types have been de�ned via modi�
ationsof the 
onstraints in Ex -identi�
ation:� types resulting from spe
ial 
onstraints 
on
erning the su

ess 
riterion ofthe sequen
e of hypotheses, namely Exm for m 2 N , B
, B
� (the latter alsomodifying the a

ura
y demands); these form the right axis and the upperleft axis in Figure 1;� types resulting from spe
ial 
onstraints 
on
erning the quality of the inter-mediate hypotheses, independent of the amount of information 
urrentlyknown about the target fun
tion, namely Total and Cex ; these form themiddle left axis in Figure 1; 8



� types resulting from spe
ial 
onstraints 
on
erning the quality of the inter-mediate hypotheses, depending on the information 
urrently known aboutthe target fun
tion; namely Cons and Conf ; these form the lower left axisin Figure 1.For ea
h kind of inferen
e type the separation results will be transferred tothe 
ontext of uniform learning.
ConsTotal?
Ex 0? Conf- Cex- Ex 1- Ex- B
- B
�-QQQs ...QQQs������3Fig. 1. The hierar
hy of learning 
lasses. Ve
tors indi
ate proper in
lusions; if two
lasses are not 
onne
ted by a sequen
e of ve
tors in one dire
tion, they are in
om-parable.3 The model of uniform learning3.1 De�nitionsThe learning models de�ned in the previous se
tion will now be 
onsidered ona meta-level. Uniform learning is 
on
erned with the existen
e of strategies,whi
h simulate appropriate learners for in�nitely many learning problems. Inthis 
ontext, any 
lass of re
ursive fun
tions 
onstitutes a learning problem. Soa uniform strategy { on input of a des
ription for a 
lass of re
ursive fun
tions{ must develop an appropriate learner for the 
lass des
ribed.The formal de�nition of the 
orresponding learning model �rst requires a
lear explanation of how to des
ribe learning problems. The des
riptions arene
essary, in order to inform a uniform learner of the a
tual learning problemto 
ope with. A quite simple method is to 
onsider a 
lass of re
ursive fun
tionsas a subset of a 
lass of partial-re
ursive fun
tions enumerated by an arbitrarynumbering. Thus a family of numberings yields a family of learning problems.So from now on let ' denote a �xed three-pla
e a

eptable numbering. Thisprovides an e�e
tive enumeration ('d)d2N of all numberings, where 'd(i; x)equals '(d; i; x) for all d; i; x 2 N . With ea
h numbering 'd the re
ursive 
oreRd is asso
iated as follows:Rd = f'di j i 2 N and 'di is re
ursiveg for any d 2 N :9



Hen
e any parameter d 2 N 
orresponds to a set Rd of re
ursive fun
tions tobe identi�ed, i. e. d des
ribes a learning problem. Consider for example thenumbering  , whi
h is for any x; y de�ned by  (x; y) ", if x = 0;  (x; y) := 0,if x > 0 and y < x;  (x; y) := 1, otherwise. Then any integer d satisfying'd =  is a des
ription of the re
ursive 
ore Rd = f0i11 j i � 1g. Of 
oursethe interpretation of su
h des
riptions is in
uen
ed by the 
hoi
e of '. Nev-ertheless, sin
e ' is a

eptable, all results obtained below hold independently,no matter what a

eptable numbering is 
hosen.Now note that any set D � N 
orresponds to a series of 
lasses of re
ursivefun
tions and thus to a series of learning problems. Therefore su
h a set willbe 
alled a des
ription set whenever it is 
onsidered as a set indexing a familyof 
lasses of re
ursive fun
tions. For a uniform learner trying to 
ope withany learning problem des
ribed in a set D, it is suÆ
ient to develop fromany parameter d 2 D a suitable learner for the re
ursive 
ore des
ribed by d.More formally, if one input parameter of the uniform learner is �xed by d, theresulting fun
tion must be a learner for Rd.De�nition 9 Let I 2 I and D � N. Fix an a

eptable numbering � . D isuniformly I-learnable i� there is a two-pla
e strategy S, su
h that, for anydes
ription d 2 D, the learner Sd I-identi�es the set Rd with respe
t to � .UniI denotes the 
lass of all uniformly I-learnable des
ription sets.Note that this de�nition is independent of the 
hoi
e of � . Of 
ourse it isquite natural to 
hoose an a

eptable numbering as the 
ommon hypothesisspa
e to be used for uniform learning of the whole series of 
lasses des
ribedin a set D, 
f. Lemma 7. Nevertheless other motivations might in
uen
e the
hoi
e of hypothesis spa
es: as ea
h des
ription d of a re
ursive 
ore also 
or-responds to a numbering 'd whi
h \
ontains" all fun
tions in the re
ursive
ore, perhaps even the numberings 'd might serve as hypothesis spa
es. Hen
ethe idea to demand 
orre
t identi�
ation with respe
t to the numberings as-so
iated to the des
riptions also seems 
on
eivable. Sin
e 'd-programs 
anbe uniformly transformed into � -programs (for any a

eptable numbering �),this idea yields a spe
ial 
ase of the UniI -model. Therefore the term restri
teduniform learning will be used in this 
ontext.De�nition 10 Let I 2 I and D � N. D is uniformly I-learnable with re-stri
ted 
hoi
e of hypothesis spa
es i� there is a two-pla
e strategy S, su
hthat, for any des
ription d 2 D, the learner Sd I-identi�es the set Rd withrespe
t to 'd. resUniI denotes the 
lass of all des
ription sets whi
h are uni-formly I-learnable in this restri
ted model.Another 
on
eivable thought is to weaken the 
onstraints 
on
erning the 
hoi
eof hypothesis spa
es, su
h that the learner is just required to synthesize ade-quate strategies for the learning problems des
ribed, but no longer required to10



synthesize the 
orresponding suitable hypothesis spa
es. Thus the UniI -modelis generalized to the so-
alled model of extended uniform learning.De�nition 11 Let I 2 IandD � N. D is uniformly I-learnable with extended
hoi
e of hypothesis spa
es i� there is a two-pla
e strategy S, su
h that, forany des
ription d 2 D, the learner Sd I-identi�es the set Rd with respe
t tosome arbitrary hypothesis spa
e  . extUniI denotes the 
lass of all des
riptionsets whi
h are uniformly I-learnable in this extended model.Of 
ourse, for any I 2 I, the in
lusions resUniI � UniI � extUniI fol-low immediately from the de�nitions. To show that in general resUniI really
onstitutes a restri
tion of UniI , and extUniI 
orresponds to a proper ex-tension of UniI , spe
ial des
riptions of �nite re
ursive 
ores are suÆ
ient, asProposition 13 states. Sin
e this is not the only 
ontext where �nite 
lassesof re
ursive fun
tions help to obtain interesting results within the s
ope ofuniform learning, some further notation, 
on
erning the identi�
ation of �nitere
ursive 
ores, might be useful.De�nition 12 Let I 2 I. Then UniI [�℄ is the 
lass of all des
ription setsD 2 UniI 
orresponding to a family of �nite re
ursive 
ores. The notionsresUniI [�℄ and extUniI [�℄ are used analogously.Proposition 13 (1) resUniI [�℄ � UniI [�℄ � extUniI [�℄ for I 2 In fB
�g,(2) resUniB
�[�℄ � UniB
�[�℄,(3) UniB
� = extUniB
� = fD j D � Ng.Sket
h of proof. ad 1. Fix I 2 In fB
�g. By the remarks above, it remainsto verify resUniI [�℄ 6= UniI [�℄ 6= extUniI [�℄. The set fd j 
ardRd = 1g isan example for a des
ription set belonging to extUniI [�℄ n UniI [�℄. Uniformlearning of this set in the extended model is trivial: sin
e for every re
ursivefun
tion f there is a hypothesis spa
e  satisfying  0 = f , the strategy 
on-stantly zero is an appropriate learner. fd j 
ardRd = 1g =2 UniI [�℄ followsfrom Theorem 24.1 for (I; I 0) = (B
;B
�), so a proof will be given below.Moreover there exists a set D � fd j 
ardfi j 'di is re
ursiveg = 1g, whi
his not suitable for restri
ted uniform B
-identi�
ation (see the proof of The-orem 24.1 for (I; I 0) = (B
;B
�)). From su
h a set D a des
ription set D0in UniI [�℄ n resUniI [�℄ 
an be 
onstru
ted in the following way: 
hoose are
ursive fun
tion g, su
h that, for all d; i; x,'g(d)i (x) = 8<:0 ; if 'di (y) is de�ned for all y � x ;" ; otherwise :Then letD0 = fg(d) j d 2 Dg. Sin
e ea
h re
ursive 
ore des
ribed by D0 equalsf01g, the strategy 
onstantly returning a �xed program for 01 witnesses toD0 2 UniI [�℄. If there was an appropriate I-learner S for D0 in the restri
ted11



uniform model, then de�ningTd(f [n℄) := Sg(d)(0n) for all re
ursive fun
tions f and all d; n ;would yield a resUniI -learner for D. To verify this, note that, for all d 2 Dand all i, 'di is re
ursive i� 'g(d)i equals 01. Sin
e D =2 resUniB
, this resultsin a 
ontradi
tion. Hen
e D0 2 UniI [�℄ n resUniI [�℄.ad 2. The des
ription set fd j 
ardRd = 1g belongs to UniB
�[�℄, but not toresUniB
�[�℄ (
f. [17℄).ad 3. This follows immediately from Theorem 8 and Lemma 7, be
ause thewhole set of re
ursive fun
tions is B
�-identi�able with respe
t to any a

ept-able numbering. So, in the 
ontext of UniB
�- and extUniB
�-identi�
ation,even the \
lassi
al" learners suÆ
e. 2If I; I 0 2 Iare inferen
e 
lasses, su
h that I 0nI 6= ;, then also UniI 0nUniI 6= ;and extUniI 0 nextUniI 6= ;; any des
ription of a re
ursive 
ore in I 0 nI 
an beused to verify this result. Similar results 
an be obtained for most inferen
e
riteria in the restri
ted model, if the des
riptions are 
hosen 
arefully. Thefollowing lemma is used to show, that su
h des
riptions exist for all uniformlearning models 
onsidered here.Lemma 14 Let I 2 I, U 2 I . Then there exists a hypothesis spa
e  , su
hthat U � f i j i � 0g and the re
ursive 
ore of the numbering  is I -learnable.Proof. First assume I = B
�. Then the whole set of re
ursive fun
tions isI-learnable with respe
t to any a

eptable numbering, so the assertion holds.Next let I = Ex . In this 
ase the following 
hara
terization from [15℄ 
an beused: let U be a set of re
ursive fun
tions.U 2 Ex i� there is some partial-re
ursive numbering  and a re
ursivefun
tion h satisfying� U � f i j i � 0g,� if i; j 2 N and i 6= j, then f(x;  i(x)) j x � h(i; j) and  i(x) is de�nedg 6=f(x;  j(x)) j x � h(i; j) and  j(x) is de�nedg, i. e.  i and  j disagree onsome input \below" h(i; j).Now if U 2 Ex and  , h are 
hosen a

ordingly, then also the re
ursive
ore of  mat
hes this 
hara
terization. Hen
e  witnesses to the assertion ofLemma 14.In the 
ase I 2 fCons;B
g[fExm j m 2 Ng the same approa
h as for I = Ex
an be used. Details are omitted. 12



For the 
ase I = Conf let U be a 
lass in Conf , � an a

eptable numberingand S any strategy Conf -identifying U with respe
t to � . Similar ideas as in[15℄ are used to obtain the desired numbering  . De�ne a set M of pairs byM := f(z; n) j �z(x) and S(�z[x℄) are de�ned for all x � nand S(�z[n℄) = zg :Obviously M is re
ursively enumerable, so let g be a re
ursive fun
tion withrange M . For any number i, if g(i) = (z; n), let  i[n℄ := �z[n℄. Moreover, forx > n, let  i(x) := �z(x), if S(�z[n℄) = S(�z[n + 1℄) = : : : = S(�z[x℄) = z andif Condition A holds.Condition A. None of the x + 1 initial hypotheses are found to be non-
onform with respe
t to � within x steps of 
omputation (formally: for ally � x and all m � y, if �S(�z[y℄)(m) is de�ned within x steps of 
omputation,then �S(�z[y℄)(m) = �z(m)).In any other 
ase, let  i(x) be unde�ned. Now it remains to verify, that  satis�es the desired properties.To prove that U is 
ontained in the set of all fun
tions  i, i � 0, �x somearbitrary fun
tion f in U . Then there exist numbers z and n, su
h that �zequals f and, for all x � n, S(�z[x℄) = z. Otherwise S would not learn f inthe limit with respe
t to � . In addition, S(�z[x℄) must also be de�ned for anyx < n. Moreover { sin
e the 
onformity demands are ful�lled { if �S(�z[y℄)(m)is de�ned for any y � 0 and any m � y, then �S(�z [y℄)(m) equals �z(m). Byde�nition of M the pair (z; n) is 
ontained in M ; hen
e there is some i withg(i) = (z; n). The argumentation above then implies  i = �z = f . ThusU � f i j i � 0g.Finally it is possible to show, that S learns the re
ursive 
ore of  
onformlywith respe
t to � . For that purpose �x some number i, su
h that  i is are
ursive fun
tion. Let g(i) = (z; n). Obviously  i = �z. As  i is a totalfun
tion, all hypotheses S(�z[x℄) for x � 0 must be de�ned and, if x � n,must equal z. Thus S learns  i in the limit with respe
t to � . Furthermore,if any intermediate hypothesis returned by S on �z was non-
onform withrespe
t to � , then  i 
ould not be total be
ause of Condition A. This implies,that  i { and so the whole re
ursive 
ore of  { is Conf -learned by S (withrespe
t to �).For the 
ase I = Cex �x some U 2 Cex and some total re
ursive strategy SCex -learning U with respe
t to an a

eptable numbering � . De�ne a set Msimilarly to the method above. A pair (z; n) belongs to M i� �z(x) is de�nedfor all x � n and S(�z[n℄) = z. Choose a re
ursive fun
tion g, su
h that therange of g equals the set M . If g(i) = (z; n), let  i[n℄ := �z[n℄. Given x > n,let  i(x) := �z(x), if S(�z[n℄) = S(�z[n+1℄) = : : : = S(�z[x℄) and Condition Aholds. 13



Condition A. All of the x + 1 initial hypotheses are either 
onsistent or
onvergently in
orre
t for �z in an argument \below" x (formally: for ally � x either �S(�z[y℄)(m) = �z(m) for all m � y or there is some m � 0, su
hthat �S(�z [y℄)(m) is de�ned and not equal to �z(m)).In any other 
ase let  i(x) be unde�ned.A similar argumentation as for the 
ase I = Conf shows that  ful�ls thedesired properties.Finally, if I = Total , 
onsider a set U 2 Total and a re
ursive strategy S whi
hlearns U with total intermediate hypotheses with respe
t to an a

eptablenumbering � . The proof pro
eeds as in the 
ase I = Cex , where Condition Ais repla
ed as follows.Condition A. All of the x + 1 initial hypotheses 
orrespond to fun
tionsde�ned for the initial segment of length x+1 (formally: �S(�z [y℄)(m) is de�nedfor all y;m � x.The rest of the argumentation 
an be transferred as usual. 2Corollary 15 Suppose I; I 0 2 I are inferen
e 
lasses, su
h that I 0 n I 6= ;.Then there exists a des
ription d satisfying fdg 2 UniI 0 n extUniI .Proof. Choose U 2 I 0nI . By Lemma 14 there is a des
ription d, su
h that U �Rd and Rd 2 I 0. Lemma 7 then implies Rd 2 I 0� for any a

eptable numbering� . Moreover Rd =2 I , be
ause U =2 I . Consequently, fdg 2 UniI 0nextUniI . 2Hen
e UniI 0 n UniI and extUniI 0 n extUniI are non-empty, if I 0 n I 6= ;.The more 
hallenging question is, whether there are des
ription sets, whi
h(i) 
orrespond to families of 
lasses in I, (ii) are uniformly I 0-learnable, but(iii) are not uniformly I-learnable. Of 
ourse this problem is also relevant forthe restri
ted and extended models. The main 
on
ern of this paper is to showthat, for most of the models, su
h des
ription sets exist. Moreover most oftenfamilies of �nite 
lasses suÆ
e to verify the desired results.3.2 Helpful resultsIn the subsequent proofs for separations of the kind UniI � UniI 0 (forI; I 0 2 I) des
ription sets are 
onstru
ted to disallow UniI -identi�
ation forany learner. Su
h 
onstru
tions be
ome mu
h more a

essible, if a diagonal ar-gument defeating all re
ursive learners suÆ
es. Fortunately, as Proposition 16shows, this idea 
an be exploited in many 
ases.Proposition 16 Let I 2 In fCons;Conf g and let D be any des
ription set.14



Assume D 2 UniI (D 2 extUniI ). Then there exists a total re
ursive fun
tionS, su
h that D is UniI -identi�able by S (extUniI -identi�able by S, respe
-tively). Moreover, if I =2 fTotal ;Cexg and D 2 resUniI , there exists sometotal re
ursive learner S, whi
h resUniI -identi�es D.The idea of the proof is the same as for the 
orresponding 
laims in Lemma 7and is therefore not demonstrated. Counterexamples for the 
ases ex
luded inthe statement of Proposition 16 are proposed below in Examples 17 and 18.Example 17 Let I 2 fCons;Conf ;Cex ;Totalg; �x a des
ription set D byD := fd j Rd = f01g and there is exa
tly one index i su
h that 'di (0) = 0g :Then D belongs to resUniI , but D is not resUniI -identi�able by any totalre
ursive strategy.Proof. First let I 2 fCons;Conf ;Totalg. The 
ase I = Cex will be handledseparately afterwards. Obviously, D is resUniI -identi�able: given the parame-ter d as a des
ription of a re
ursive 
ore, a learner just has to return a numberi satisfying 'di (0) = 0. If d belongs to the set D, su
h a number must existand is a program for 01, whi
h is the only fun
tion in Rd.It remains to prove that D 
annot be identi�ed with respe
t to resUniI byany re
ursive learner. For that purpose �x some arbitrary re
ursive strategyS. To verify that S is not suitable for resUniI -identi�
ation of the whole setD, a des
ription d� is 
onstru
ted, su
h that the following two properties hold:(1) d� belongs to D, but(2) the re
ursive 
ore des
ribed by d� is not I-learned by Sd� with respe
t tothe hypothesis spa
e 'd� .For that purpose de�ne for ea
h number d a two-pla
e fun
tion  as follows.First 
ompute e := Sd(0)+ 1 and let  e = 01. Moreover, de�ne  i = 1 "1 forall programs i 6= e.As S is a total re
ursive fun
tion, this de�nition is uniformly e�e
tive in d.Hen
e there exists some �xed point value d�, satisfying 'd� =  , for thenumbering  
onstru
ted from S and d�. This �xed point value shall be usedto make the learner S fail. End Constru
tion of d�Now the desired properties 
an be veri�ed.ad 1. d� belongs to D.This is an immediate 
onsequen
e of the de�nitions.15



ad 2. The re
ursive 
ore des
ribed by d� is not I-learned by Sd� with respe
tto the hypothesis spa
e 'd�.By 
onstru
tion, 'd�Sd�(0) equals 1 "1. So, on input of the �rst initial segmentof 01, the learner Sd� returns some 'd�-number of a non-total fun
tion, whi
his not 
onform. Note that 01 belongs to Rd� . Consequently, the re
ursive 
oredes
ribed by d� is not I-identi�ed by Sd� with respe
t to the hypothesis spa
e'd�.These two properties of d� now imply that S is not an appropriate resUniI -learner for D. Sin
e S was 
hosen arbitrarily from all re
ursive learners, thisproves the 
laim for I 2 fCons;Conf ;Totalg.Finally, if I = Cex , the proof pro
eeds analogously, where \ i = 1 "1" isrepla
ed by \ i ="1" for all i 6= e. 2Example 18 Let I 2 fCons;Conf g and de�ne a des
ription set D byD := fd j 'd is a re
ursive fun
tiong :Then D belongs to resUniI , but D is not extUniI -identi�able by any totalre
ursive strategy.Proof. It suÆ
es to show, that the set D is resUniCons-learnable, but notextUniConf -identi�able by any re
ursive learner.Given a number d and some segment �, a resUniCons-learner for D justreturns the minimal 'd-index 
onsistent for �. Sin
e 'd is re
ursive for ea
hd 2 D, this yields a su

essful strategy (whi
h has been de�ned as the methodof \identi�
ation by enumeration" by Gold [8℄).In order to prove that D 
annot be learned by any re
ursive strategy { evenin the extended model extUniConf { �x some re
ursive fun
tion S. Now Sis shown to be inappropriate for extUniConf -learning of the whole 
lass D.This 
an be a
hieved by 
onstru
ting a des
ription d� satisfying(1) d� belongs to D, but(2) the re
ursive 
ore des
ribed by d� is not Conf -learnable by Sd� withrespe
t to any hypothesis spa
e.For that purpose de�ne for ea
h number d a two-pla
e fun
tion  by stagesas follows.Stage 0. Let  0(0) := 0. Go to stage 1.In ea
h stage k (k � 1),  0(k) is de�ned by 0, if this for
es the learner Sd intoa mind 
hange. Otherwise,  0(k) := 1. Furthermore, the fun
tion  k is used16



to make Sd return some in
orre
t or non-
onform hypothesis, if su
h a mind
hange on  0 
annot be for
ed.Stage k (k � 1). Compute the values Sd( 0[k � 1℄) and Sd( 0[k � 1℄0). IfSd( 0[k � 1℄) 6= Sd( 0[k � 1℄0), then let  0(k) := 0, otherwise  0(k) := 1.Moreover let  k :=  0[k � 1℄01. Go to stage k + 1.As S is re
ursive, this 
onstru
tion pro
eeds uniformly in d. Thus there issome �xed point value d� satisfying 'd� =  for the numbering  
onstru
tedfrom S and d�. This �xed point value will be used to show that S is not anextUniConf -learner for D. End Constru
tion of d�It remains to prove the desired properties.ad 1. d� belongs to D.This follows obviously from the 
onstru
tion, be
ause all stages must berea
hed in the de�nition of the numbering  
orresponding to S and d�.ad 2. The re
ursive 
ore des
ribed by d� is not Conf -learnable by Sd� withrespe
t to any hypothesis spa
e.Consider two 
ases.Case 1. Sd�('d�0 [k � 1℄) 6= Sd�('d�0 [k℄) for in�nitely many k � 1.Then Sd� 
annot learn 'd�0 
onformly, be
ause it fails to generate a 
onvergentsequen
e of hypotheses.Case 2. Sd�('d�0 [k � 1℄) = Sd�('d�0 [k℄) for in�nitely many k � 1.For ea
h su
h k, by the instru
tions in stage k, 'd�0 [k℄ = 'd�0 [k� 1℄1, 'd�k [k℄ ='d�0 [k � 1℄0, andSd�('d�k [k℄) = Sd�('d�0 [k � 1℄0) = Sd�('d�0 [k � 1℄) = Sd�('d�0 [k℄) : (1)Now 
hoose some arbitrary hypothesis spa
e �.Case 2.1. �Sd�('d�0 [k℄)(k) is de�ned for some k � 1 satisfying (1).Then �Sd�('d�0 [k℄)(k) 6= 'd�k (k) or �Sd�('d�0 [k℄)(k) 6= 'd�0 (k), although all thesevalues are de�ned. Hen
e, for at least one of the fun
tions 'd�0 and 'd�k , Sd�returns some hypothesis violating the 
onformity demands with respe
t to �.Consequently, Rd� is not Conf -learnable by Sd� with respe
t to �.Case 2.2. �Sd�('d�0 [k℄)(k) is unde�ned for all k � 1 satisfying (1).In parti
ular �Sd�('d�0 [k℄) is non-total for in�nitely many k � 1. Thus, for thefun
tion 'd�0 , Sd� returns hypotheses in
orre
t with respe
t to � in�nitely often.Hen
e Sd� does not Conf -identify the 
lass Rd� with respe
t to �.17



This veri�es Property 2. 24 Hierar
hies of 
lasses in uniform learningAs illustrated in Figure 1, the hierar
hy of all inferen
e 
lasses has already beenstudied for the non-uniform learning model (
f. [2{6,10,15℄). Now the s
opeof the subsequent theorems is to investigate the 
orresponding hierar
hies foruniform identi�
ation { in the basi
 model as well as in the restri
ted andextended 
ases.A
tually hierar
hies for the basi
 and the extended model 
an immediately bededu
ed from Corollary 15: sin
e for any I; I 0 2 Iwith I 0 n I 6= ; there is somedes
ription set in UniI 0 n extUniI , both UniI 0 nUniI and extUniI 0 n extUniImust be non-empty. For a proof of Corollary 15 the required des
ription setwas 
hosen to represent a re
ursive 
ore belonging to I 0 n I, whi
h obviouslydisallows uniform I-learning. Together with a proof for UniI � UniI 0 thisyields the same hierar
hy for the Uni -model 1 as has been veri�ed in the non-uniform 
ase { not a very astonishing result. It would be more remarkableto �nd des
ription sets in UniI 0 n UniI (and in parallel for the restri
tedand extended models), su
h that ea
h re
ursive 
ore des
ribed belongs to the
lass I. Indeed the following results show that su
h des
ription sets exist fornearly all the models. In parti
ular, any separation veri�ed here is a
hievedby des
riptions of �nite re
ursive 
ores (most often even singletons or 
ores
onsisting of two elements). In the non-uniform model �nite 
lasses are themost simple sets regarding learnability: they 
an be identi�ed with respe
tto any 
riterion I 2 I by a quite straightforward strategy. But despite theirtrivial role in the basi
 inferen
e model these 
lasses are 
omplex enough toseparate inferen
e 
riteria in meta-learning.Theorem 19 �rst summarizes the in
lusions obtained for uniform learning of�nite re
ursive 
ores; whi
h of these are proper in
lusions will be studied inthe subsequent analysis.Theorem 19 Let I; I 0 2 I be inferen
e 
lasses, su
h that I � I 0.(1) UniI [�℄ � UniI 0[�℄.(2) If (I; I 0) 6= (Ex 0;Total), then resUniI [�℄ � resUniI 0[�℄.(3) If (I; I 0) 6= (Total ;Cons) and (I; I 0) 6= (Total ;Conf ), then extUniI [�℄ �extUniI 0[�℄.1 For most of the 
riteria parallels are observed easily in the restri
ted and extended
ases. 18



Sket
h of Proof. The �rst two 
laims 
an be veri�ed easily for the pair (I; I 0) =(Total ;Cons): a uniform Cons-strategy just has to simulate a uniform Total-strategy and test its output for 
onsisten
y. Any 
onsistent intermediate hy-pothesis is returned without modi�
ation, any in
onsistent hypothesis 
an be
hanged into an arbitrary 
onsistent output.The following idea for a proof of the se
ond 
laim for the pair (Ex 0;Cex)has been suggested by Jo
hen Nessel: if D is a des
ription set belonging toresUniEx 0 and S is a 
orresponding uniform strategy, then a resUniCex -learner T for D just has to repla
e the \?"-signs returned by S with 
orre
tor 
onvergently in
orre
t intermediate hypotheses. Whenever S returns a hy-pothesis di�erent from \?", then T may do the same. So, if Sd(f [n℄) =? forsome re
ursive fun
tion f and some d; n � 0, then Td (on input f [n℄) looksfor some pair (i;m) of numbers, su
h that i is 
onsistent for f [n℄ with respe
tto 'd and Sd('di [m℄) = i. As soon as su
h a pair (i;m) is found, Td returnsi. If f 2 Rd and 'di 6= f , then Sd(f [m℄) 6= i be
ause of the 
hoi
e of S. So'di [m℄ 6= f [m℄, i. e. i is 
onvergently in
orre
t for f with respe
t to 'd.In order to prove Claim 3 for the pairs (Ex 0;Total) and (Ex 0;Cons) thehypothesis spa
es used for Ex 0-learning have to be adjusted. To allow uni-form Total -learning, an arbitrary total fun
tion (for example the fun
tion
onstantly zero) is added to the hypothesis spa
e at a �xed index. This �xedindex may be output, whenever the uniform Ex 0-learner returns \?". Thisyields a uniform Total-strategy. For uniform Cons-learning the old hypothe-sis spa
es are mixed with an enumeration of all re
ursive fun
tions of �nitesupport. If the Ex 0-learner returns \?", then a Cons-learner may return some
onsistent hypothesis 
orresponding to a suitable fun
tion of �nite support.All other statements of the theorem follow immediately from the de�nitionsof the 
orresponding learning 
lasses. 2Figure 2 summarizes the results to be proved in the subsequent se
tions. More-over it will turn out that� all separations 
on
erning the Uni -model are a
hieved via des
riptions ofsingletons;� all separations 
on
erning the resUni -model { ex
ept for resUniTotal nresUniExm 6= ; (m � 0) { are a
hieved via des
riptions of singletons;� all separations 
on
erning the extUni -model are a
hieved via des
riptionsof re
ursive 
ores 
onsisting of no more than 2 fun
tions.Note that singleton re
ursive 
ores 
an never yield separations in the extendedmodel of uniform learning: as for ea
h re
ursive fun
tion f there is a num-bering  with  0 = f , the strategy 
onstantly zero witnesses to the fa
t thatea
h des
ription set representing singletons is extUniEx 0-identi�able and thusextUniI -identi�able for all I 2 I. Therefore re
ursive 
ores 
onsisting of two19



fun
tions 
onstitute the optimal result in this 
ontext.
UniCons [�℄UniTotal [�℄?
UniEx 0[�℄? UniConf [�℄- UniCex [�℄- UniEx 1[�℄- UniEx [�℄- UniB
[�℄- UniB
�[�℄-QQQs .. .QQs������3
resUniCons [�℄- resUniTotal [�℄resUniEx 0[�℄

resUniConf [�℄- resUniCex [�℄- resUniEx 1[�℄- resUniEx [�℄- resUniB
[�℄- resUniB
�[�℄-QQQs ...QQs������3?
QQQQQQs

extUniCons [�℄extUniTotal [�℄=extUniCex [�℄=extUniEx [�℄extUniEx 0[�℄
extUniConf [�℄-
extUniEx 1[�℄- extUniB
[�℄=extUniB
�[�℄-QQQs ...QQs������3?Fig. 2. The hierar
hies for the three models of uniform learning of �nite re
ursive
ores. Ve
tors indi
ate proper in
lusions; if two 
lasses are not 
onne
ted by asequen
e of ve
tors in one dire
tion, they are in
omparable.The 
orresponding proofs are the s
ope of the studies below.4.1 Similarities between the hierar
hiesSin
e all proofs regarding the hierar
hies in Figure 2 meet a 
ommon stru
ture,the 
riteria Ex and B
 are 
hosen for a �rst example. The 
orrespondingseparations are veri�ed in detail, whereas the proofs for other inferen
e 
lassesare just sket
hed.Theorem 20 There exists a des
ription set D 2 resUniB
 n extUniEx , su
hthat ea
h re
ursive 
ore des
ribed by D 
onsists of at most 2 fun
tions.Proof. The de�nition of D uses the following idea: �rst for ea
h total re
ursivelearner S and ea
h number d a numbering  is 
onstru
ted. The re
ursive
ore of this numbering  will 
onsist of at most 2 fun
tions and will not be20



identi�able in the limit by Sd. Then the 
onstru
tion yields some �xed pointvalue d�, su
h that Sd� fails to identify Rd� . Moreover Rd� will have no morethan 2 elements. Finally these �xed point values are used as des
riptions inthe set D. For ea
h re
ursive learner S su
h a �xed point d� is in
luded inD. Then D is not suitable for extended uniform learning in the limit, be
auseea
h re
ursive strategy S fails for at least one re
ursive 
ore Rd� . A 
areful
arrying out of this idea will still enable restri
ted uniform B
-learning of the
onstru
ted set D.More formally: for any re
ursive learner S and any number d a partial-re
ursivenumbering  is 
onstru
ted by stages as follows.Stage 0. Let  0(0) := 0 and n1 := 0. Go to stage 1.In ea
h stage k (k � 1) the strategy Sd is presented 2 di�erent graduallygrowing extensions of  0[nk℄. As soon as Sd 
hanges its mind on at least oneof these segments (Case A), the fun
tion  0 is extended a

ordingly. Otherwise(not Case A)  2k�1 and  2k be
ome two di�erent re
ursive fun
tions, su
h thatthe sequen
e of hypotheses returned by Sd 
onverges to the same program onboth  2k�1 and  2k.The idea behind this is, that Sd 
annot Ex -identify the re
ursive 
ore of thenumbering  : either Case A o

urs in ea
h stage or Case A fails at leaston
e. If Case A o

urs in ea
h stage, then  0 be
omes a re
ursive fun
tion, onwhi
h Sd 
hanges its mind in�nitely often. If Case A does not o

ur in stage k(k � 1), then Sd guesses the same program for the two di�erent fun
tions 2k�1 and  2k in the limit.Stage k (k � 1). Let  2k�1[nk℄ =  2k[nk℄ =  0[nk℄. Sear
h for a number zsatisfyingSd( 0[nk℄(2k � 1)z) 6= Sd( 0[nk℄) or Sd( 0[nk℄(2k)z) 6= Sd( 0[nk℄) : (2)In parallel extend  2k�1 with a sequen
e of the value 2k � 1 and  2k with asequen
e of the value 2k, until the sear
h for z is su

essful.Case A. There exists a number z, su
h that (2) is ful�lled.Then let zk be the minimal number z satisfying (2). Moreover de�ne nk+1 :=nk + zk and 0[nk+1℄ := 8<: 0[nk℄(2k � 1)zk ; if Sd( 0[nk℄(2k � 1)zk) 6= Sd( 0[nk℄) ; 0[nk℄(2k)zk ; if Sd( 0[nk℄(2k � 1)zk) = Sd( 0[nk℄) ;as well as 21



 2k�1 :=8<: 0 ; if Sd( 0[nk℄(2k � 1)zk) 6= Sd( 0[nk℄) ; 0[nk℄(2k � 1)zk "1 ; if Sd( 0[nk℄(2k � 1)zk) = Sd( 0[nk℄) ; 2k :=8<: 0 ; if Sd( 0[nk℄(2k � 1)zk) = Sd( 0[nk℄) ; 0[nk℄(2k)zk "1 ; if Sd( 0[nk℄(2k � 1)zk) 6= Sd( 0[nk℄) :Go to stage k + 1.Remark. If there is no number z satisfying (2), i. e. if Case A is not ful�lled,then stage k does not terminate. In this 
ase  2k�1 =  0[nk℄(2k � 1)1 and 2k =  0[nk℄(2k)1. Furthermore,  0(x) remains unde�ned for all x > nk, thatmeans  0 =  0[nk℄ "1; stage k + 1 is not rea
hed in the 
omputation. Inparti
ular, for all i > 2k,  i is the empty fun
tion. End Constru
tion of  Note that the whole 
onstru
tion is uniformly e�e
tive in S and d. For anyre
ursive learner S this implies the existen
e of some number d�, su
h that'd� equals the numbering  
onstru
ted from S and d�. From now on, forany �xed re
ursive strategy S, su
h a 
orresponding number d� will be 
alleda �xed point asso
iated to S. Thus the des
ription set D 
an be de�ned asexplained in the idea in the beginning of the proof:D := fd j d is a �xed point asso
iated to some re
ursive fun
tion Sg :The 
onstru
tion of the numberings  (by de�nition 
orresponding to there
ursive 
ores des
ribed by D) provides two helpful observations:Fa
t 1. If d 2 D, then Rd = f'd0g or there are some k � 1 and n � 0, su
hthat Rd = f'd2k�1; 'd2kg = f'd0[n℄(2k � 1)1; 'd0[n℄(2k)1g.This 
an be veri�ed easily: the 
onstru
tion of a numbering  either runsthrough all stages or there is some unique stage, whi
h is never left. If allstages are rea
hed, the 
orresponding re
ursive 
ore 
onsists of the fun
tion 0 only. Otherwise, where the number of the last stage rea
hed is k (k � 1),the re
ursive 
ore of  
ontains exa
tly the fun
tions  2k�1 and  2k a

ordingto the remark below Case A.Fa
t 2. If d 2 D and stage k (k � 1) is rea
hed in the 
onstru
tion ofthe 
orresponding numbering  = 'd (with the value nk a

ordingly), then'd0(x) � 'd0(nk) < 2k � 1 for all x � nk.This fa
t is veri�ed by a simple indu
tion.It remains to prove the following 
laim.Claim.(1) Ea
h re
ursive 
ore des
ribed by D 
onsists of at most 2 fun
tions,22



(2) D 2 resUniB
,(3) D =2 extUniEx .ad 1. This is a dire
t 
onsequen
e of Fa
t 1.ad 2. De�ne a learner T for any re
ursive fun
tion f and all n � 0 byT (f [n℄) := maxff(x) j x � ng. This learner B
-identi�es any re
ursive 
oreRd des
ribed by D with respe
t to its 
orresponding numbering 'd. To verifythis, �x some d 2 D. By Fa
t 1 it suÆ
es to 
onsider two 
ases.Case 1. Rd = f'd0g.Then ea
h stage k (k � 0) is rea
hed in the 
onstru
tion of the 
orrespondingnumbering  . In parti
ular, Case A o

urs in ea
h stage. For any k � 1 thisimplies that either 'd2k�1 = 'd0 or 'd2k = 'd0. To be more 
on
rete,'d2k�1='d0 () 'd0(nk + 1) = � � � = 'd0(nk+1) = 2k � 1 and'd2k ='d0 () 'd0(nk + 1) = � � � = 'd0(nk+1) = 2k : (3)Moreover, for any n 2 fnk + 1; : : : ; nk+1g, Fa
t 2 impliesT ('d0[n℄) = maxf'd0(x) j x � ng = 'd0(nk + 1) :As (3) holds for any k � 1, this proves 'dT ('d0 [n℄) = 'd0 for all n � 0. Hen
e Tis a B
-learner for Rd with respe
t to 'd.Case 2. Rd = f'd2k�1; 'd2kg for some k � 1.Then, by 
onstru
tion, 'd2k�1 = 'd0[nk℄(2k � 1)1 and 'd2k = 'd0[nk℄(2k)1.Clearly, in the 
onstru
tion of the 
orresponding numbering  , stage k musthave been rea
hed. Fa
t 2 then implies 'd0(x) < 2k � 1 for all x � nk. SoT ('d2k�1[n℄) = maxf'd2k�1(x) j x � ng = 2k�1 and T ('d2k[n℄) = maxf'd2k(x) jx � ng = 2k for all n > nk. Consequently, the learner T 
orre
tly B
-identi�es(even Ex -identi�es) the 
lass Rd with respe
t to the numbering 'd.Sin
e for any d 2 D the learner T is a su

essful B
-strategy for Rd withrespe
t to 'd, the des
ription set D is suitable for uniform B
-identi�
ationin the restri
ted model. So Claim 2 is veri�ed.ad 3. Assume to the 
ontrary, that D is suitable for extended uniform Ex -identi�
ation. Then by Proposition 16 there exists a re
ursive strategy S,su
h that ea
h re
ursive 
ore Rd des
ribed by D is identi�ed in the limit bySd. Now let d� be a �xed point asso
iated to S. By de�nition this �xed pointd� belongs to the set D. Therefore Rd� is Ex -identi�ed by Sd� . A

ording toFa
t 1 only the following two 
ases must be 
onsidered.Case 1. Rd� = f'd�0 g.Then ea
h stage k (k � 0) is rea
hed in the 
onstru
tion of the 
orresponding23



numbering  . In parti
ular, Case A o

urs in ea
h stage. For any k � 1 thisimplies that Sd�('d�0 [nk℄) 6= Sd�('d�0 [nk+1℄). Sin
e nk+1 > nk for all k � 1, thelearner Sd� 
hanges its hypothesis on 'd�0 in�nitely often. Thus Sd� does notidentify Rd� in the limit { a 
ontradi
tion.Case 2. Rd� = f'd�2k�1; 'd�2kg for some k � 1.Then, by 
onstru
tion, 'd�2k�1 = 'd�0 [nk℄(2k � 1)1 and 'd�2k = 'd�0 [nk℄(2k)1.Furthermore, stage k is the last stage rea
hed in the de�nition of the 
or-responding numbering  . In parti
ular, there does not exist any number z,su
h that (2) is ful�lled. Thus Sd�('d�0 [nk℄(2k�1)z) = Sd�('d�0 [nk℄(2k)z) for allz � 0. That means, that the sequen
es of hypotheses returned by Sd� on thetwo di�erent fun
tions in Rd� 
onverge to the same program. Consequently,Sd� does not identify Rd� in the limit. This yields a 
ontradi
tion.As both 
ases result in a 
ontradi
tion, the assumption D 2 extUniEx iswrong. This proves Claim 3. 2Corollary 21 (1) UniEx [�℄ � UniB
[�℄.(2) resUniEx [�℄ � resUniB
[�℄.(3) extUniEx [�℄ � extUniB
[�℄.Thus the separation of uniform B
- and Ex -learning is veri�ed for all threemodels; nevertheless Theorem 22 o�ers an interesting reinfor
ement of Theo-rem 20 for the 
ase of resUni -identi�
ation, namely that in this model single-ton re
ursive 
ores are suÆ
ient to obtain the desired separation.Theorem 22 There exists a des
ription set D 2 resUniB
 n UniEx, su
hthat ea
h re
ursive 
ore des
ribed by D is a singleton set.Proof. Now the idea in the proof of Theorem 20 is adjusted to �t the UniEx -model: �rst for ea
h a

eptable numbering � , ea
h re
ursive learner S, andea
h number d, a numbering  is 
onstru
ted. The re
ursive 
ore of  willbe a singleton set and will not be Ex -identi�able by S with respe
t to thehypothesis spa
e � . The 
onstru
tion yields some �xed point value d�, su
hthat Sd� fails to identify Rd� with respe
t to � . Again for any a

eptablenumbering and any re
ursive learner these �xed point values are 
olle
ted inthe des
ription set D.More formally: for any a

eptable numbering � , any re
ursive learner S, andany number d a partial-re
ursive numbering  is 
onstru
ted by stages asfollows.Stage 0. Let  0(0) := 0 and n1 := 0. Go to stage 1.In ea
h stage k (k � 1) the fun
tion  k �rst adapts the initial segment  0[nk℄
onstru
ted so far. This segment is extended, until either Sd 
hanges its mind24



on  k or the fun
tion 
omputed by � { for the program Sd guesses { returns avalue for some input greater than nk. In the �rst 
ase (Case A.1) the fun
tion 0 is extended a

ordingly. In the se
ond 
ase (Case A.2) the fun
tion  0 isextended with a value di�ering from the one returned by � . If neither Case A.1nor Case A.2 o

urs, then  k is extended ad in�nitum.The idea behind this is that Sd 
annot Ex -identify the re
ursive 
ore of  with respe
t to � : if in ea
h step either Case A.1 or Case A.2 o

urs, then  0be
omes a re
ursive fun
tion, on whi
h Sd 
hanges its mind in�nitely oftenor returns in
orre
t programs in�nitely often. If, at some stage k, neitherCase A.1 nor Case A.2 o

urs, then  k be
omes a re
ursive fun
tion, but theprogram Sd guesses for  k in the limit is wrong with respe
t to � .Stage k (k � 1). Sear
h for a number z satisfyingSd( 0[nk℄(k + 1)z) 6= Sd( 0[nk℄) (4)or �Sd( 0[nk℄)(nk + 1) is de�ned within z steps of 
omputation (5)In parallel extend  k with the value k+ 1, until the sear
h for z is su

essful.Case A. There exists a number z, su
h that (4) or (5) is ful�lled.Then let zk be the minimal number satisfying (4) or (5). Two 
ases are dis-tinguished.Case A.1. (4) is ful�lled for zk.Then de�ne nk+1 := nk + zk and  0[nk+1℄ :=  0[nk℄(k + 1)zk as well as k :=  0. Go to stage k + 1.Case A.2. (4) is not ful�lled for zk (so (5) is ful�lled for zk).Then let ek := sg(�Sd( 0[nk℄)(nk + 1)). Moreover de�ne nk+1 := nk + 1 and 0[nk+1℄ :=  0[nk℄ek as well as  k =  0[nk℄(k + 1)zk "1. Go to stage k + 1.Remark. If there is no number z satisfying (4) or (5), i. e. if Case A does noto

ur, then stage k does not terminate. In this 
ase  k :=  0[nk℄(k + 1)1.Furthermore,  0(x) remains unde�ned for all x > nk, i. e.  0 =  0[nk℄ "1;stage k+1 is not rea
hed. In parti
ular, for all i > k,  i is the empty fun
tion.End 
onstru
tion of  Note that the whole 
onstru
tion is uniformly e�e
tive in � , S, and d. Hen
efor any a

eptable numbering � and any re
ursive fun
tion S there is somed�, su
h that 'd� is the numbering  
onstru
ted from � , S, and d�. Su
h anumber d� is 
alled a �xed point asso
iated to � and S. Finally, letD := fd j d is a �xed point asso
iated to some a

eptablenumbering � and some re
ursive fun
tion Sg25



The de�nition of D provides two helpful observations, both of whi
h 
an beveri�ed easily from the 
onstru
tion above.Fa
t 1. Let d be an element of D.(1) If in ea
h stage of the 
onstru
tion Case A o

urs, then Rd = f'd0g and,for any k � 1, 'dk = 'd0 i� 'd0(nk + 1) = � � � = 'd0(nk+1) = k + 1.(2) If at some stage k (k � 1) Case A does not o

ur, then Rd = f'dkg =f'd0[nk℄(k + 1)1g.Fa
t 2. If d belongs to D and stage k (k � 1) is rea
hed in the 
onstru
tionof 'd (with the 
orresponding value nk), then 'd0(x) < k + 1 for all x � nk.It remains to prove the following 
laim.Claim.(1) Ea
h re
ursive 
ore des
ribed by D is a singleton set,(2) D 2 resUniB
,(3) D =2 UniEx .ad 1. This is a dire
t 
onsequen
e of Fa
t 1.ad 2. De�ne a learner T for any re
ursive fun
tion f and any n � 0 byT (0n+1) := 0 and T (f [n℄) := maxff(x) j x � ng � 1, if f [n℄ 6= 0n+1. Thislearner B
-identi�es any re
ursive 
ore Rd des
ribed by D with respe
t to its
orresponding numbering 'd. To verify this, �x some d 2 D. By Fa
t 1 itsuÆ
es to 
onsider two 
ases.Case 1. Rd = f'd0g.Then ea
h stage k (k � 0) is rea
hed in the 
onstru
tion of the 
orrespondingnumbering  . In parti
ular, Case A o

urs in ea
h stage. For any k � 1, Fa
t 1implies that 'dk = 'd0 i� 'd0(nk + 1) = k + 1. Applying Fa
t 2 eviden
es'dk = 'd0 () maxf'd0(x) j x � nk + 1g = k + 1for all k � 1. Thus, for any n � 0, the learner T satis�es T ('d0[n℄) = 0or T ('d0[n℄) = maxf'd0(x) j x � ng � 1 2 fk j 'dk = 'd0g. This implies'dT ('d0[n℄) = 'd0 for all n � 0. Hen
e T is a B
-learner for Rd with respe
t to 'd.Case 2. Rd = f'dkg for some k � 1, su
h that 'dk 6= 'd0.Then, by 
onstru
tion, 'dk = 'd0[nk℄(k + 1)1. Obviously, in the 
onstru
tionof the 
orresponding numbering  , stage k must have been rea
hed. Fa
t 2implies 'd0(x) < k+1 for all x � nk. So T ('dk[n℄) = maxf'dk(x) j x � ng�1 = kfor all n � nk + 1. Consequently, the learner T 
orre
tly B
-identi�es (evenEx -identi�es) the 
lass Rd with respe
t to the numbering 'd.26



Sin
e for any d 2 D the learner T is a su

essful B
-strategy for Rd withrespe
t to 'd, the des
ription set D is suitable for uniform B
-identi�
ationin the restri
ted model. So Claim 2 is veri�ed.ad 3. Assume to the 
ontrary, that D is suitable for uniform Ex -identi�
ation.Then, by Proposition 16, there exist an a

eptable numbering � and a re
ursivestrategy S, su
h that ea
h re
ursive 
ore Rd des
ribed by D is identi�ed inthe limit by Sd with respe
t to � . Now let d� 2 D be a �xed point asso
iatedto � and S, so by assumption Rd� is Ex -identi�ed by Sd� with respe
t to � .A

ording to Fa
t 1, only the following two 
ases must be 
onsidered.Case 1. Rd� = f'd�0 g.Then ea
h stage k (k � 0) is rea
hed in the 
onstru
tion of the 
orrespondingnumbering  . In parti
ular, Case A o

urs in ea
h stage. For any k � 1 thisimplies that either Sd�('d�0 [nk℄) 6= Sd�('d�0 [nk+1℄) or �Sd�('d�0 [nk℄)(nk+1) 6= ek ='d�0 (nk+1). Sin
e nk+1 > nk for all k � 1, the learner Sd� 
hanges its hypothesison 'd�0 in�nitely often or returns in
orre
t hypotheses for 'd�0 in�nitely often.Thus Sd� does not identify Rd� in the limit { a 
ontradi
tion.Case 2. Rd� = f'd�k g for some k � 1, su
h that 'd�k 6= 'd�0 .Then by 
onstru
tion 'd�k = 'd�0 [nk℄(k + 1)1 and stage k is the last stagerea
hed in the de�nition of the 
orresponding numbering  . In parti
ular,there does not exist any number z, su
h that (4) or (5) is ful�lled. ThusSd�('d�0 [nk℄(k + 1)z) = Sd�('d�0 [nk℄) for all z � 0. Moreover �Sd�('d�0 [nk℄) isunde�ned on input nk + 1. In parti
ular, Sd�('d�0 [nk℄) is not a � -program for'd�k . That means, that the sequen
e of hypotheses, returned by Sd� on thefun
tion in Rd� , 
onverges to a wrong � -number. Consequently, Sd� does notEx -identify Rd� with respe
t to � . This yields a 
ontradi
tion.As both 
ases result in a 
ontradi
tion, the assumption D 2 UniEx is wrong.This proves Claim 3. 2Evidently, re
ursive 
ores of no more than two fun
tions are adequate forthe separation of extended uniform B
-learning from extended uniform Ex -learning; furthermore for the non-extended 
ase singleton re
ursive 
ores meetthe requirements. As Theorem 24 will show, this agrees with the results formost of the other separations in Figure 2. Yet 
onsidering des
ription setsuniformly Total-learnable and not uniformly Exm-learnable (for m � 1), thisobservation only holds for Uni - and extUni -learning. Regarding the resUni -model, a separation with re
ursive 
ores of m + 2 fun
tions is the best resultobtainable. The 
orresponding proof is just sket
hed.Theorem 23 Let m � 0.(1) There exists a des
ription set D 2 UniTotal n UniExm, su
h that ea
h27



re
ursive 
ore des
ribed by D is a singleton set.(2) There exists a des
ription set D 2 UniTotal nextUniExm, su
h that ea
hre
ursive 
ore des
ribed by D 
onsists of at most 2 fun
tions.(3) There exists a des
ription set D 2 resUniTotal n extUniExm, su
h thatea
h re
ursive 
ore des
ribed by D 
onsists of at most m+ 2 fun
tions.(4) If D 2 resUniTotal and ea
h re
ursive 
ore des
ribed by D 
onsists of atmost m+ 1 fun
tions, then D 2 resUniExm.Assertions 1 and 2 
oin
ide with the 
orresponding results for other inferen
e
lasses, whereas Assertions 3 and 4 imply that, in general, the separationsin restri
ted uniform learning with total intermediate hypotheses 
annot bewitnessed by re
ursive 
ores 
onsisting of one or two fun
tions. To disallowextUniExm-identi�
ation, 
ores of 
ardinality m + 2 suÆ
e, moreover Asser-tion 4 states that in general this result 
annot be improved.Sket
h of Proof. ad 1. For any re
ursive learner S and any number d a fun
tion is 
onstru
ted as follows.In stage 0 let  0(0) := 0. Extend  0 by 0's, until Sd(0x) 6=? for some minimalx � 1 and �Sd(0y)(y) = 0 for some y � x. If su
h a pair (x; y) does not exist (notCase A), then stage 0 does not terminate and  0 = 01; otherwise (Case A)extend  0 by (m+ 2) "1 and go to stage 1 with n1 := y � 1.In ea
h stage k, for 1 � k � m, let  k[nk℄ :=  k�1[nk℄.(* Note that �Sd( k[nk℄)(nk + 1) = k � 1. *)Extend  k by k's, until Sd( k[nk℄) 6= Sd( k[nk℄kx) for some minimal x � 1and �Sd( k[nk℄ky)(nk + y + 1) = k for some y � x. If su
h a pair (x; y) does notexist (not Case A), then stage k does not terminate and  k =  k�1[nk℄k1;otherwise (Case A) let nk+1 := nk + y, extend  k by (m + 2) "1, and go tostage k + 1.In stage m + 1 let  m+1 =  m[nm+1℄(m + 1)1 and stop. All fun
tions  i, fori > m+ 1, remain empty.If in any stage k (k � m) Case A is not ful�lled, then  k is the only re
ursivefun
tion enumerated by  , but, on input of the values of  k, Sd does not
onverge to a � -program of  k. If Case A o

urs in all stages k (k � m), thenstage m + 1 is rea
hed and  m+1 is the only re
ursive fun
tion enumeratedby  . In this 
ase, the learner Sd must 
hange its mind at least m + 1 timesto identify  m+1. Consequently, Sd is no Exm-learner for the re
ursive 
ore ofthe numbering  .De�ning D by analogy with the proof of Theorem 22 yields a des
riptionset belonging to UniTotal [�℄ n UniExm[�℄ (details of the veri�
ation 
an betransferred). Moreover all re
ursive 
ores des
ribed by D will be singleton sets.ad 2. For any re
ursive learner S and any number d a fun
tion  is 
onstru
tedas follows. In stage 0 let  0(0) := 0. Extend  0 by 0's, until Sd(0x) 6=? for some28



minimal x � 1. If su
h an x does not exist, then  0 = 01. Otherwise de�nen1 := x� 1, let  0[n1℄ := 0x, t1 := 0; go to stage 1.In stage k (1 � k � m) let  k[nk℄ :=  tk [nk℄. Extend  k with k's,  tk withtk's, until Sd( tk [nk℄kx) 6= Sd( tk [nk℄) or Sd( tk [nk℄txk) 6= Sd( tk [nk℄) for someminimal x � 1. If x does not exist (not Case A), then stage k does not termi-nate and  k =  tk [nk℄k1,  tk =  tk [nk℄t1k . Otherwise (Case A) let fz; tk+1g =fk; tkg, where tk+1 is 
hosen to satisfy Sd( tk [nk℄txk+1) 6= Sd( tk [nk℄). Thende�ne nk+1 := nk + x,  tk+1 [nk+1℄ :=  tk [nk℄txk+1, extend  z by (m + 2) "1,and go to stage k + 1.In stagem+1 de�ne  m+1 :=  tm+1 [nm+1℄(m+1)1,  tm+1 :=  tm+1 [nm+1℄t1m+1,and stop.If stage 1 is not rea
hed, then  0 = 01, but Sd always returns ? on  0. If in anystage k (1 � k � m) Case A is not ful�lled, then the re
ursive 
ore of  equalsf k;  tkg, but Sd does not Exm-identify this set with respe
t to any hypothesisspa
e. If Case A o

urs in all stages k (1 � k � m), then stagem+1 is rea
hedand the re
ursive 
ore of  equals f tm+1 [nm+1℄(m + 1)1;  tm+1 [nm+1℄t1m+1g.Sin
e Sd 
hanges its mind on  tm+1 [nm+1℄ at least m times, Sd 
annot Exm-identify this set with respe
t to any hypothesis spa
e. Note that in any 
asethe re
ursive 
ore of  has no more than 2 elements.De�ning D as usual yields a des
ription set belonging to UniTotal [�℄, but notto extUniExm[�℄. Details are omitted.ad 3. Here the 
onstru
tion pro
eeds by analogy. The only di�eren
e is, thatin Case A at stage k the fun
tion  z is extended by (m + 2)1 instead of(m + 2) "1. This makes the hypothesis z total with respe
t to  . The pri
epaid for this is an in
rease in the number of fun
tions 
ontained in the re
ursive
ore 
onstru
ted: in the worst 
asem+2 fun
tions ( 0; : : : ;  m+1) are obtained.ad 4. If D ful�ls the 
onditions above and S is a strategy appropriate forresUniTotal -identi�
ation ofD, then a resUniExm-learner T forD is obtainedfrom the following idea: assume d 2 D. Sin
e Sd returns only total hypothesesfor the m+1 fun
tions in Rd, there are at most m+1 fun
tions (but perhapsmore programs), whi
h Sd may guess during the learning pro
ess for somef 2 Rd. So let Td simulate Sd. In order to avoid super
uous mind 
hanges,Td will only 
hange its hypothesis, if its old guess is no longer 
onsistent andthe 
urrent guess of Sd is 
onsistent. Consisten
y tests are possible, be
auseall intermediate hypotheses returned by Sd on any f 2 Rd 
orrespond to totalfun
tions.Formally: for any re
ursive fun
tion f and any des
ription d let Td(f [0℄) :=?, if'dSd(f [0℄)(0) 6= f(0), and let Td(f [0℄) := Sd(f [0℄) otherwise. For n � 1 
omputeSd(f [n℄) and Td(f [n � 1℄). If Sd(f [n℄) is in
onsistent for f [n℄ with respe
tto 'd or Td(f [n � 1℄) is 
onsistent for f [n℄ with respe
t to 'd, then de�ne29



Td(f [n℄) := Td(f [n� 1℄). Otherwise let Td(f [n℄) := Sd(f [n℄). Now it is easy toshow, that T learns D a

ording to the model resUniExm. 2Theorem 24 summarizes the remaining 
ases, for whi
h the hierar
hy of uni-form learning power looks similar to the hierar
hy in the non-uniform model.As the stru
ture of the 
orresponding proofs is 
lose to the veri�
ation of The-orems 20 and 22, just the spe
i�
 parts 
on
erning the 
onstru
tions of therequired �xed point values for the separating des
ription sets are outlined.Theorem 24 Let I; I 0 be inferen
e 
lasses in I, su
h that I 0nI 6= ;. Moreoverassume (I; I 0) 6= (Exm;Total) for any m � 0.(1) There exists a des
ription set D 2 resUniI 0 nUniI , su
h that ea
h re
ur-sive 
ore des
ribed by D is a singleton set.(2) If (I; I 0) 6= (B
;B
�) and I =2 fCex ;Totalg, then there exists a des
riptionset D 2 resUniI 0 n extUniI , su
h that ea
h re
ursive 
ore des
ribed by D
onsists of at most 2 fun
tions.Sket
h of Proof. Any of these 
laims 
an be veri�ed by a �xed point 
onstru
-tion as in the proofs of Theorem 20 and Theorem 22. The main di�eren
e in thevarious proofs 
onsists of the spe
i�
 ideas used to 
onstru
t the numberings . Fix some a

eptable numbering � for the proof of the �rst part.ad 1.� (I; I 0) = (Ex ;B
). For this pair of learning 
lasses see Theorem 22.� (I; I 0) = (B
;B
�). Again for any re
ursive learner S and any number d afun
tion  is de�ned by stages. In stage 0, let  0(0) := 0, let n1 := 0 and go tostage 1. In ea
h stage k (k � 1), let  k[nk℄ :=  0[nk℄. Then  k is extended by asequen
e of 0's, until a number x is found, su
h that �Sd( 0[nk℄0x)(nk+x+1) = 0.If su
h an x does not exist (not Case A), this yields  k =  0[nk℄01 andstage k does not terminate. Otherwise (Case A) let nk+1 := nk + x + 1 and 0[nk+1℄ :=  0[nk℄0x1. The �rst value of  k whi
h has not yet been de�ned,will remain unde�ned (to ex
lude  k from the re
ursive 
ore 
onstru
ted). Allfurther values of  k will be de�ned as the 
orresponding values of  0 in thefollowing stages (su
h that  k =�  0); go to stage k + 1.If in any stage k (k � 1) Case A is not ful�lled, then  k =  0[nk℄01 is the onlyre
ursive fun
tion enumerated by  . In this 
ase the output of the learner Sdon any segment  0[nk℄0x does not 
orrespond to a � -program for  k, be
ause�Sd( 0[nk℄0x)(nk + x + 1) is not equal to 0 =  k(nk + x + 1). If Case A o

ursin all stages, then  0 is the only re
ursive fun
tion enumerated by  , but,for in�nitely many initial segments of  0, Sd returns � -programs of fun
tionsdi�erent from  0:  0(nk+1) = 1 6= 0 = �Sd( 0[nk+1�1℄)(nk+1) for all k � 1 (notethat nk+1 > nk). Hen
e Sd is not suitable for B
-identi�
ation of the re
ursive30




ore of the numbering  with respe
t to � .De�ning D by analogy with the proof of Theorem 22 yields a des
ription setbelonging to resUniB
�[�℄ n UniB
[�℄. Moreover all re
ursive 
ores des
ribedby D will be singleton sets.� (I; I 0) 2 f(Exm;Exm+1); (Exm;Cex); (Exm;Cons)g for arbitrary m � 0.Here the des
ription set D used in the proof of Theorem 23.1 is suÆ
ient.� (I; I 0) 2 f(Conf ;Ex 1); (Conf ;Cex)g. Here all partial-re
ursive learners haveto be 
onsidered in the 
onstru
tion of the numberings  . If S and d are �xed,start the de�nition of  in stage 0 with n1 = 0 and  0(0) = 0; then go tostage 1. In ea
h stage k, k � 1, pro
eed as follows.Let  0(nk+2) := 0 (this will allow Cex -learning) and let  k[nk+1℄ :=  0[nk℄0.Moreover extend  k by a sequen
e of the value k + 1, until the 
omputationsof Sd( 0[nk℄) and Sd( 0[nk℄0) terminate. The value k+1 will help the desiredEx 1-learner to identify  k, if ne
essary.Remark 1. If Sd( 0[nk℄) is unde�ned or Sd( 0[nk℄0) is unde�ned (i. e. neitherCase A nor Case B below o

urs), then stage k does not terminate. This yields k =  0[nk℄0(k + 1)1 as the only element in the re
ursive 
ore of  , but Sddoes not identify  k.Case A. Sd( 0[nk℄) and Sd( 0[nk℄0) are de�ned and Sd( 0[nk℄) 6= Sd( 0[nk℄0).Then let nk+1 := nk + 2,  0(nk + 1) := 0; go to stage k + 1.(* Note that in this 
ase  k remains initial and Sd 
hanges its mind on theextension of  0 
onstru
ted in stage k. *)Case B. Sd( 0[nk℄) and Sd( 0[nk℄0) are de�ned and equal.In this 
ase let  0(nk + 1) := 1 and extend  0 with a sequen
e of zeros, untilthe 
omputation of Sd( 0[nk℄1) terminates.Remark 2. If Sd( 0[nk℄1) is unde�ned (i. e. neither Case B.1 nor Case B.2below o

urs), then stage k does not terminate. Hen
e the re
ursive 
ore of 
onsists of the fun
tion  0 =  0[nk℄101 only, but Sd does not identify  0.Case B.1. Sd( 0[nk℄1) is de�ned within x steps of 
omputation and di�ersfrom Sd( 0[nk℄).In this 
ase let nk+1 := nk+1+x and  0[nk+1℄ :=  0[nk℄10x; go to stage k+1.(* Note that  k remains initial and Sd 
hanges its mind on the extension of 0 
onstru
ted in this 
ase. *)Case B.2. Sd( 0[nk℄1) is de�ned within x steps of 
omputation and equalto Sd( 0[nk℄0) and Sd( 0[nk℄).Then extend  0 with a further sequen
e of zeros, until the 
omputation31



of �Sd( 0[nk℄)(nk + 1) stops or until some number z is found, su
h thatSd( 0[nk℄1) 6= Sd( 0[nk℄10z).Remark 3. If the extension in Case B.2 never stops (i. e. none of the 
asesB.2.1, B.2.2, B.2.3 below o

ur), then stage k does not terminate. Thisyields  0 =  0[nk℄101 as the only element of the re
ursive 
ore of  . As�Sd( 0[nk℄)(nk + 1) is unde�ned, the hypothesis Sd( 0[nk℄) = Sd( 0[nk℄1) isnot a � -program for  0. But the output of Sd on  0 
onverges to Sd( 0[nk℄),i. e. Sd does not identify  0 with respe
t to � .Case B.2.1. The extension in Case B.2 is stopped, be
ause the 
omputa-tion of �Sd( 0[nk℄)(nk + 1) stops within y steps and the result is di�erentfrom 1.Then let  0 :=  0[nk℄101 be the only fun
tion in the re
ursive 
ore.(* Now the hypothesis Sd( 0[nk + 1℄) is not 
onform for  0[nk + 1℄ withrespe
t to � . Hen
e Sd does not identify the fun
tion  0 
onformly withrespe
t to � . *)Case B.2.2. The extension in Case B.2 is stopped, be
ause the 
omputa-tion of �Sd( 0[nk℄)(nk + 1) stops within y steps and the result equals 1.Then let  0 remain initial and let  k :=  0[nk℄0(k + 1)1 be the only ele-ment in the re
ursive 
ore of  .(* Now the hypothesis Sd( k[nk + 1℄) = Sd( 0[nk℄0) = Sd( 0[nk℄) is not
onform for  k[nk + 1℄ with respe
t to � . *)Case B.2.3. The extension in Case B.2 is stopped, be
ause some z satis-fying Sd( 0[nk℄1) 6= Sd( 0[nk℄10z) has been found within y steps.Let y0 be the maximum of z and y and de�ne nk+1 := nk+1+y0. Moreover 0[nk+1℄ :=  0[nk℄10y0 . Go to stage k + 1.(* In this 
ase  k remains initial and Sd 
hanges its mind on the extensionof  0 
onstru
ted in stage k. *) End stage kNow Sd does not learn the re
ursive 
ore of  
onformly with respe
t to � :if one of the 
ases A, B.1, B.2.3, o

urs in�nitely often, then the re
ursive
ore of  
onsists of the fun
tion  0 only, but Sd 
hanges its mind on  0in�nitely often. If one of the 
ases B.2.1, B.2.2 is ful�lled on
e, then, by thenotes above, the re
ursive 
ore of  is not Conf -learned by Sd with respe
tto � either. Otherwise, by the remarks 1, 2, and 3, the same fa
t is observed.Furthermore the 
ore 
onstru
ted is a singleton set in any 
ase.De�ning D as usual yields a des
ription set, whi
h belongs to resUniEx 1[�℄ aswell as to resUniCex [�℄, but not to UniConf [�℄. Further details are omitted.32



� (I; I 0) = (Cons;Conf ). Again all partial-re
ursive learners have to be 
on-sidered. For ea
h strategy S and ea
h number d 
onstru
t a two-pla
e fun
tion by stages. In stage 0 let  0(0) := 0 and go to stage 1. In ea
h stage k (k � 1)pro
eed as follows.Let  2k�1[k + 1℄ :=  0[k � 1℄0(k + 1) and  2k[k + 1℄ :=  0[k � 1℄1(k + 1) (thevalue k+1 will help the uniform Conf -learner to identify the fun
tions  2k�1and  2k, if ne
essary). Then extend  2k�1 with a sequen
e of the value k + 1,until the 
omputations of Sd( 0[k � 1℄) and Sd( 0[k � 1℄0) terminate.Remark 1. If Sd( 0[k� 1℄) or Sd( 0[k� 1℄0) is unde�ned (i. e. neither Case Anor Case B below o

urs), then stage k does not terminate. This yields  2k�1 = 0[k� 1℄0(k+1)1 as the only element of the re
ursive 
ore of  , but Sd doesnot identify  2k�1.Case A. Sd( 0[k � 1℄) and Sd( 0[k � 1℄0) are de�ned and Sd( 0[k � 1℄) 6=Sd( 0[k � 1℄0).In this 
ase let  0(k) := 0; go to stage k + 1.  2k�1 and  2k remain initial.(* Note that Sd 
hanges its mind on the extension of  0 
onstru
ted in this
ase. *)Case B. Sd( 0[k � 1℄) and Sd( 0[k � 1℄0) are de�ned and equal.Then extend  2k�1 with a sequen
e of the value k + 1, until the 
omputationof �Sd( 0[k�1℄)(k) stops with the result 0.Remark 2. If �Sd( 0[k�1℄)(k) is unde�ned or di�ers from 0 (i. e. Case B.1below does not o

ur), then stage k does not terminate. This yields  2k�1 = 0[k � 1℄0(k + 1)1 as the only element of the re
ursive 
ore of  , but thehypothesis Sd( 2k�1[k℄) (= Sd( 0[k�1℄)) is not 
onsistent for  2k�1[k℄ withrespe
t to � .Case B.1. �Sd( 0[k�1℄)(k) = 0.Then let  2k�1 remain initial and extend  2k with a sequen
e of the valuek + 1, until the 
omputation of Sd( 0[k � 1℄1) terminates.Remark 3. If Sd( 0[k � 1℄1) is unde�ned (i. e. neither Case B.1.1 norCase B.1.2 below o

urs), then stage k does not terminate. Hen
e  2k = 0[k � 1℄1(k + 1)1 is the only fun
tion in the re
ursive 
ore of  , but Sddoes not identify  2k.Case B.1.1. Sd( 0[k � 1℄1) = Sd( 0[k � 1℄).Let  2k =  0[k � 1℄1(k + 1)1 be the only element of the re
ursive 
ore ofthe numbering  .(* Here Sd( 2k[k℄) (=Sd( 0[k�1℄)) is not 
onsistent for  2k[k℄ with respe
tto � (a

ording to Case B.1). *) 33



Case B.1.2. Sd( 0[k � 1℄1) is de�ned and di�ers from Sd( 0[k � 1℄).Then de�ne  0(k) := 1; go to stage k + 1.  2k remains initial.(* Note that Sd 
hanges its mind on the extension of  0 
onstru
ted inthis 
ase. *) End stage kIf in the 
onstru
tion of  one of the 
ases A or B.1.2 o

urs in�nitely often,then the re
ursive 
ore of  equals f 0g, but Sd 
hanges its mind on  0in�nitely often. If Case B.1.1 is ful�lled on
e, then the re
ursive 
ore of  
onsists of one fun
tion, whi
h is not Cons-learned by Sd with respe
t to� . Otherwise the remarks 1, 2, 3 above imply the same fa
t. Hen
e in any
ase Sd does not identify the re
ursive 
ore of  with 
onsistent intermediatehypotheses with respe
t to � .De�ning D as usual yields a des
ription set, whi
h belongs to resUniConf [�℄,but not to UniCons[�℄. Further details are omitted.� (I; I 0) 2 f(Cex ;Ex 1); (Cex ;Cons)g. For any re
ursive learner S and anynumber d de�ne a fun
tion  by stages. In stage 0 let  0(0) := 0, n1 := 0 andgo to stage 1. In ea
h stage k (k � 1) pro
eed in the following way.De�ne  k[nk℄ :=  0[nk℄ and hk := Sd( 0[nk℄). Then extend  k with the valuek + 1, until (i) or (ii) is found true.(i) there is some yk > nk, su
h that �hk(yk) is de�ned;(ii) there is some yk � nk, su
h that �hk(yk) is de�nedand �hk(yk) 6=  0(yk):The value k + 1 will help the desired Ex 1- and Cons-learners to identify  k,if ne
essary.Remark 1. If neither (i) nor (ii) is found true (i. e. neither Case A nor Case Bbelow o

urs), then stage k does not terminate. Hen
e the re
ursive 
ore of  equals f kg = f 0[nk℄(k+1)1g, but �Sd( 0[nk℄) = �hk �  0[nk℄ "1�  k. As thehypothesis hk returned by Sd on  k[nk℄ is a � -program of a proper subfun
tionof  k, the learner Sd does not Cex -identify  k with respe
t to � .Case A. The extension of  k is stopped, be
ause (i) is found true.Then let nk+1 := yk and  0[nk+1℄ :=  0[nk℄00 : : : 0sg(�hk(yk)); go to stage k+1.(* Note that in this 
ase Sd( 0[nk℄) (= hk) is not a � -number of  0. *)Case B. The extension of  k is stopped, be
ause (ii) is found true.Then extend  0 with 0's, until Sd( 0[nk℄0x) 6= hk is ful�lled for an extensionof  0 with 0x for some x � 1.
34



Remark 2. If Sd( 0[nk℄0x) = hk for all x > 0 (i. e. Case B.1 below doesnot o

ur), then stage k does not terminate. This implies that the re
ursive
ore of  equals f 0g = f 0[nk℄01g, but the output sequen
e of Sd on  0
onverges to hk, whi
h is in
orre
t for  0 with respe
t to � (be
ause of (ii)).Thus Sd does not identify  0 with respe
t to � .Case B.1. Sd( 0[nk℄0x) 6= hk for some minimal x > 0.In this 
ase let nk+1 := nk + x and  0[nk+1℄ :=  0[nk℄0x; go to stage k + 1.(* Note that Sd 
hanges its hypothesis on the extension of  0 de�ned in this
ase. *) End stage kIf Case A o

urs in�nitely often in the 
onstru
tion of  , then the re
ursive
ore of  
onsists of the fun
tion  0 only, but on  0 the strategy Sd returnsin
orre
t hypotheses for  0 with respe
t to � in�nitely often. If Case B.1o

urs in�nitely often, then again the re
ursive 
ore equals f 0g, but Sd makesin�nitely many mind 
hanges on  0. Otherwise, by the remarks 1 and 2 above,Sd does not Cex -identify the only fun
tion in the re
ursive 
ore of  withrespe
t to � . Altogether this proves that Sd is not suitable for Cex -learning ofthe re
ursive 
ore 
onstru
ted.De�ning D as usual yields a des
ription set, whi
h belongs to resUniEx 1[�℄\resUniCons[�℄, but not to UniCex [�℄. Further details are omitted.For the other pairs (I; I 0) satisfying the required 
onditions the 
orresponding
laim follows from Theorem 19 and those parts of the 
laim whi
h have alreadybeen veri�ed.ad 2.� (I; I 0) = (Ex ;B
). See Theorem 20.� (I; I 0) 2 f(Exm;Exm+1); (Exm;Cons)g for arbitrary m � 0. Here the de-s
ription set used in the proof of Theorem 23.2 is suÆ
ient.� (I; I 0) 2 f(Conf ;Ex 1); (Conf ;Cex)g. For these pairs also non-total strate-gies have to be 
onsidered. For ea
h learner S and ea
h number d de�ne anumbering  by stages. In stage 0 let  0(0) := 0 and  0(2) := 0. Furthermorede�ne n1 := 0 and go to stage 1. In ea
h stage k (k � 1) pro
eed as follows.Let  2k�1[nk + 2℄ :=  0[nk℄0(k + 1),  2k[nk + 2℄ :=  0[nk℄1(k + 1). The value(k+1) will prevent the desired Cex -learner form returning programs of propersubfun
tions in the relevant 
ases. Moreover it helps the desired Ex 1-learnerto identify  2k�1 and  2k, if ne
essary. Extend  2k�1 and  2k by the valuek + 1, until the 
omputations of all the values Sd( 0[nk℄), Sd( 0[nk℄0), andSd( 0[nk℄1) terminate. 35



Remark 1. If one of the values Sd( 0[nk℄), Sd( 0[nk℄0), Sd( 0[nk℄1) is unde�ned(i. e. neither Case A nor Case B below o

urs), then stage k does not terminate.Hen
e the re
ursive 
ore of the numbering  is equal to the set f 2k�1;  2kg =f 0[nk℄0(k + 1)1;  0[nk℄1(k + 1)1g, but at least one of the fun
tions  2k�1, 2k is not identi�ed by Sd.Case A. Sd( 0[nk℄), Sd( 0[nk℄0), and Sd( 0[nk℄1) are de�ned and there is somet 2 f0; 1g satisfying Sd( 0[nk℄) 6= Sd( 0[nk℄t).Then leave the fun
tions  2k�1 and  2k initial, let nk+1 := nk +2,  0[nk+1℄ := 0[nk℄t0,  0(nk+1 + 2) := 0, and go to stage k + 1.(* Note that in Case A the learner Sd 
hanges its mind on the extension of  0just de�ned. *)Case B. Sd( 0[nk℄), Sd( 0[nk℄0), and Sd( 0[nk℄1) are de�ned and equal.In this 
ase extend  0 by 0's and  2k by the value k + 1, until some x � 0 isfound, su
h that Sd( 0[nk℄0x+2) 6= Sd( 0[nk℄) is ful�lled.Case B.1. This extension stops within y steps; Sd( 0[nk℄0x+2) 6= Sd( 0[nk℄)for some x � y.Then let nk+1 := nk+2+y and de�ne  0[nk+1℄ :=  0[nk℄0y+2,  0(nk+1+2) :=0; go to stage k + 1.(* Note that in Case B.1 the learner Sd 
hanges its mind on the extensionof  0 just de�ned. *)Remark 2. If Sd( 0[nk℄0x+2) = Sd( 0[nk℄) for all x � 0 (i. e. Case B.1 doesnot o

ur), then stage k does not terminate. Hen
e the re
ursive 
ore of  equals f 0;  2kg = f 0[nk℄01;  0[nk℄1(k+1)1g. Now let � be any adequatehypothesis spa
e for the re
ursive 
ore of  and 
onsider two 
ases.(i) �Sd( 0 [nk℄)(nk + 1) is de�ned.Then Sd( 0[nk℄) = Sd( 0[nk + 1℄) = Sd( 2k[nk + 1℄) is non-
onform for atleast one of the segments  0[nk + 1℄,  2k[nk + 1℄ with respe
t to �. ThusSd does not Conf -learn the re
ursive 
ore of  with respe
t to �.(ii) �Sd( 0[nk℄)(nk + 1) is unde�ned.In this 
ase the index Sd( 0[nk℄) is in
orre
t for  0 with respe
t to �,but a

ording to the 
ondition in Remark 2 the output sequen
e of Sd onthe fun
tion  0 
onverges to Sd( 0[nk℄). Therefore Sd does not identify  0with respe
t to �. End stage kIf Case A or Case B.1 o

ur in�nitely often in the 
onstru
tion of  , thenthe re
ursive 
ore of  equals f 0g, but Sd 
hanges its mind on  0 in�nitelyoften. If in some stage k both Case A and Case B.1 fail, then, by Remark 1,36



the re
ursive 
ore 
onsists of the fun
tions  2k�1 and  2k, but Sd does notidentify this set. Otherwise, Remark 2 above shows that Sd does not Conf -learn the re
ursive 
ore f 0;  2kg of  with respe
t to any hypothesis spa
e�. Consequently, in any 
ase, Sd does not identify the re
ursive 
ore of  with
onform intermediate hypotheses.De�ning D by analogy with the proof of Theorem 20 yields a des
riptionset belonging to resUniEx 1[�℄ and resUniCex [�℄, but not to extUniConf [�℄.Details are left out.� (I; I 0) = (Cons;Conf ). Again all partial-re
ursive learners have to be 
on-sidered. For any strategy S and any number d 
onstru
t a partial-re
ursivefun
tion  in the following way. In stage 0 let  0(0) := 0 and go to stage 1.In ea
h stage k (k � 1) pro
eed a

ording to the following instru
tions.Let  2k�1[k + 1℄ :=  0[k � 1℄0(k + 1),  2k[k + 1℄ :=  0[k � 1℄1(k + 1) andextend the fun
tions  2k�1 and  2k by the value k+1, until the 
omputationsof all the values Sd( 0[k � 1℄), Sd( 0[k � 1℄0), and Sd( 0[k � 1℄1) terminate.The value k + 1 will help the desired Conf -learner to identify  2k�1 and  2k,if ne
essary.Remark 1. If one of the values Sd( 0[k � 1℄), Sd( 0[k � 1℄0), Sd( 0[k� 1℄1) isunde�ned (i. e. neither Case A nor Case B below o

urs), then stage k does notterminate. This yields f 2k�1;  2kg = f 0[k�1℄0(k+1)1;  0[k�1℄1(k+1)1gas the re
ursive 
ore of  , but at least one of the fun
tions  2k�1,  2k is notidenti�ed by Sd.Case A. Sd( 0[k�1℄), Sd( 0[k�1℄0), and Sd( 0[k�1℄1) are de�ned and equal.In this 
ase let  2k�1 :=  0[k � 1℄0(k + 1)1,  2k =  0[k � 1℄1(k + 1)1 andleave all other fun
tions enumerated by  initial.(* Sin
e Sd returns the same output for the segments  0[k�1℄0 and  0[k�1℄1,this hypothesis must be in
onsistent (with respe
t to any hypothesis spa
e) forat least one of the segments  2k�1[k℄,  2k[k℄. Hen
e Sd is not an appropriateCons-strategy for the re
ursive 
ore of  . *)Case B. Sd( 0[k�1℄), Sd( 0[k�1℄0), and Sd( 0[k�1℄1) are de�ned and thereis some t 2 f0; 1g satisfying Sd( 0[k � 1℄) 6= Sd( 0[k � 1℄t).Then let the fun
tions  2k�1 and  2k remain initial, let  0(k) := t and go tostage k + 1.(* Note that in Case B the learner Sd 
hanges its mind on the extension of  0just de�ned. *) End stage kIf in the 
onstru
tion of  Case B o

urs in�nitely often, then the re
ursive
ore of  equals f 0g, but Sd 
hanges its mind on  0 in�nitely often. If Case Ais on
e ful�lled, then the note above implies that Sd is not suitable for Cons-identi�
ation of the re
ursive 
ore of  (whi
h equals f 2k�1;  2kg for some k �37



1). Otherwise, by Remark 1 above, the same fa
t is observed. Consequently, there
ursive 
ore of  is not Cons-learned by Sd with respe
t to any hypothesisspa
e.De�ning D as usual yields a des
ription set, whi
h belongs to resUniConf [�℄,but not to extUniCons[�℄. Further details are omitted.� For the other pairs (I; I 0) satisfying the required 
onditions the 
orrespond-ing 
laim follows from Theorem 19 and those parts of the 
laim whi
h havealready been veri�ed. 2This yields the following stri
t version of Theorem 19.Corollary 25 Let I; I 0 2 I be inferen
e 
lasses, su
h that I � I 0.(1) UniI [�℄ � UniI 0[�℄.(2) If (I; I 0) 6= (Ex 0;Total), then resUniI [�℄ � resUniI 0[�℄.(3) If (I; I 0) 6= (B
;B
�), I =2 fCex ;Totalg, then extUniI [�℄ � extUniI 0[�℄.Moreover the following in
omparability results are obtained from Theorem 23and Theorem 24.Corollary 26 (1) UniCex [�℄ #UniCons[�℄ and UniCex [�℄ #UniConf [�℄(analogously for resUni instead of Uni).(2) UniExm[�℄ #UniI [�℄ for all I 2 fTotal ;Cex ;Cons;Conf g and all m � 1(analogously for resUni instead of Uni).(3) extUniExm[�℄ # extUniCons[�℄ and extUniExm[�℄ # extUniConf [�℄ forall m � 1.4.2 Dis
repan
ies between the hierar
hiesWith the pre
eding theorems all parts of the hierar
hies for uniform learning,whi
h agree with the 
orresponding parts of the hierar
hy for the elementarylearning model, have been veri�ed. It remains to 
onsider those 
ases, in whi
ha 
hange in the hierar
hy has been 
laimed in Figure 2:� resUniEx 0[�℄ # resUniTotal [�℄,� extUniB
[�℄ = extUniB
�[�℄,� extUniEx [�℄ = extUniCex [�℄ = extUniTotal [�℄.The �rst of these 
laims is a 
onsequen
e of Theorem 27, whi
h furthermorestates that the required separation is obtained with singleton re
ursive 
ores.Theorem 27 There exists a des
ription set D 2 resUniEx 0 n resUniTotal ,su
h that ea
h re
ursive 
ore des
ribed by D is a singleton set.38



Proof. The stru
ture of the proof results from ideas similar to those used in theproof of Theorem 22. For any learner S and any number d a partial-re
ursivenumbering  is 
onstru
ted as follows.Let  i :="1 for all i � 2. Start 
omputing Sd(0). For ea
h x, if the 
omputa-tion of Sd(0) takes more than x steps, let  0(x) := 0.Case A. Sd(0) is de�ned.If Sd(0) 6= 0, let  0 := 01 and  1 :="1. Otherwise, leave  0 := 0x "1 forsome x, and  1 := 011.Remark. If Sd(0) is unde�ned (i. e. if Case A does not o

ur), then  0 equals01 and  1 equals "1. End Constru
tion of  As this 
onstru
tion is uniformly e�e
tive in S and d, there is some numberd�, su
h that 'd� equals the numbering  
onstru
ted from S and d�. Su
h anumber d� is 
alled a �xed point asso
iated to S. Now letD := fd j d is a �xed point asso
iated to some partial-re
ursive fun
tion Sg :Note that, for any d 2 D,either Rd = f'd0g = f01g or Rd = f'd1g = f011g : (6)It remains to verify the following 
laim.Claim.(1) Ea
h re
ursive 
ore des
ribed by D is a singleton set,(2) D 2 resUniEx 0,(3) D =2 resUniTotal .ad 1. This follows immediately from (6).ad 2. By (6), an Ex 0-learner for any 
lass des
ribed by D has to return \?"on any initial segment 
onsisting of just one value. Furthermore, it suÆ
esto return 0 on input of any segment 0n (n � 2), and to return 1, otherwise.Clearly this veri�es D 2 resUniEx 0.ad 3. Assume to the 
ontrary, that D 2 resUniTotal . Then there exists somestrategy S, su
h that ea
h re
ursive 
ore Rd des
ribed by D is identi�ed bySd with total intermediate hypotheses with respe
t to 'd. Now let d� 2 D bea �xed point asso
iated to S, so by assumption Rd� is Total -learned by Sd�with respe
t to 'd�. In the 
onstru
tion of the numbering  
orresponding tod� either Case A is ful�lled or not. 39



If Case A o

urs, then 'd�Sd�(0) equals "1 or 0k "1 for some k. So, for theonly fun
tion f 2 Rd�, the hypothesis Sd�(f [0℄) is a 'd�-number of a non-totalfun
tion. Consequently, Sd� does not Total -identify Rd� with respe
t to 'd� .This yields a 
ontradi
tion.If Case A does not o

ur, then, by the remark above, 'd�0 = 01 and Sd�('d�0 [0℄)is unde�ned. Clearly this implies, that Rd� is not learned by Sd� , whi
h againleads to a 
ontradi
tion.Thus the assumption D 2 resUniTotal is wrong. 2Corollary 28 resUniEx 0[�℄ # resUniTotal [�℄.The s
ope of the next two theorems is to verify the remaining 
laims 
on
ern-ing extended uniform learning. The proof of extUniB
[�℄ = extUniB
�[�℄ isbased on the fa
t that the set of all des
riptions of B
-
lasses is uniformlyB
-learnable in the extended model.Theorem 29 extUniB
[�℄ = extUniB
�[�℄.Proof. It is possible to show even more:extUniB
 = fD � N j Rd 2 B
 for ea
h d 2 Dg : (7)As ea
h �nite 
lass belongs to B
 and extUniB
�[�℄ = fD � N j Rd is �niteg(
f. Proposition 13), this implies the 
laim of Theorem 29. Therefore it re-mains to prove (7). Note that by de�nition extUniB
 � fD � N j Rd 2B
 for ea
h d 2 Dg. For the opposite in
lusion, �x some des
ription set D,su
h that ea
h re
ursive 
ore des
ribed by D belongs to B
. The aim is toverify D 2 extUniB
.For that purpose, let � be any a

eptable numbering. By Lemma 7, thereexists a 
lass fT [d℄ j d 2 Dg of re
ursive strategies, su
h that, for any d 2 D,the strategy T [d℄ B
-identi�es Rd with respe
t to � . Now de�ne a 
lass f [d℄ jd 2 Dg of hypothesis spa
es by [d℄i := �T [d℄(i) for all d 2 D and all i :Moreover let a learner S be given by Sd(f [n℄) := f [n℄ for all re
ursive fun
tionsf and all d; n. As 
an be veri�ed easily, S is appropriate for uniform B
-identi�
ation ofD in the extended model with respe
t to the hypothesis spa
es [d℄ (d 2 D). Consequently, D 2 extUniB
. 2Finally the proof of Figure 2 is 
ompleted by showing that for extended uni-form learning of �nite re
ursive 
ores the 
riteria Ex , Cex , and Total 
oin
ide.In parti
ular the inferen
e types resulting from spe
ial properties 
on
erning40



the quality of the intermediate hypotheses (independent of the amount of infor-mation known about the target fun
tion) yield an ex
eption in the separations{ 
ompared to the non-uniform model.Theorem 30 extUniEx [�℄ = extUniCex [�℄ = extUniTotal [�℄.Proof. Sin
e extUniTotal [�℄ � extUniCex [�℄ � extUniEx [�℄ by de�nition,it remains to prove extUniEx [�℄ � extUniTotal . For that purpose 
hoose ades
ription set D 2 extUniEx [�℄. Then(1) ea
h re
ursive 
ore des
ribed by D is �nite,(2) there is a strategy S, su
h that for any d 2 D the re
ursive 
ore Rd isEx -identi�ed by Sd with respe
t to some hypothesis spa
e  [d℄.Note that the hypothesis spa
es  [d℄ do not have to be 
omputable uniformlyin d. In order to prove that D belongs to extUniTotal the given strategy Sis used as an appropriate learner. This requires a 
hange of the hypothesisspa
es  [d℄ for the des
riptions d in the set D.The idea 
an be explained as follows: �x some des
ription d 2 D. Sin
e Sdidenti�es the �nite 
lass Rd in the limit, there are only �nitely many initialsegments of fun
tions in Rd, whi
h for
e the strategy Sd to guess a non-totalfun
tion. If the fun
tions in  [d℄ asso
iated with these inadequate guessesare repla
ed by some total fun
tion, a suitable hypothesis spa
e for Total-identi�
ation of Rd by Sd is obtained.More formally: Let d be an element of D. For all fun
tions f 2 Rd state-ment (2) above implies that the set fn � 0 j  [d℄Sd(f [n℄) is not totalg is �nite.De�ne the set of \forbidden" hypotheses on \relevant" initial segments byH [d℄ := fi � 0 j [d℄i is not total and there is some fun
tion f 2 Rdand some number n � 0 su
h that Sd(f [n℄) = ig :By (1) and (2) the set H [d℄ is �nite. Consider a new hypothesis spa
e �[d℄:�[d℄i := 8<: [d℄i ; if i =2 H [d℄01 ; if i 2 H [d℄ for all i 2 N :Sin
eH [d℄ is �nite, �[d℄ is 
omputable. Then Rd isTotal -identi�ed by Sd with re-spe
t to �[d℄. As d 2 D was 
hosen arbitrarily, this yieldsD 2 extUniTotal . 241



5 Con
lusionGold's [8℄ model for identi�
ation of re
ursive fun
tions in the limit has beeninvestigated on a meta-level. As in the elementary model, several inferen
e
lasses resulting from modi�
ations of the 
onstraints in Gold's model havebeen studied, parti
ularly 
on
erning the 
omparison of the 
orrespondingidenti�
ation power. The hierar
hy known from the elementary model hasbeen manifested using �nite 
lasses of re
ursive fun
tions for separating ea
hpair of di�erent inferen
e 
lasses. As �nite 
lasses are not appropriate forseparations in the elementary model, this is eviden
e to the immense in
uen
eof the spe
i�
 des
riptions 
hosen to represent the target 
lasses to the learner.Moreover { by analysing three variants of the uniform learning model { theimpa
t of suitable hypothesis spa
es is revealed. It turns out that the knownhierar
hy of inferen
e 
lasses witnesses to some kind of universal relationship.In parti
ular, for ea
h inferen
e 
lass 
onsidered there must be 
hara
teristi
stru
tures arranging the learnable 
lasses and the adequate hypothesis spa
es.A
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