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Abstract

A problem that often arises in using abstraction is the
generation of abstract states, called spurious states,
that are—in the abstract space—reachable from some
abstract image of a state s, but which have no corre-
sponding state in the original space reachable from s.
Spurious states can have a negative effect on pattern
database sizes and heuristic quality.

We formally define a property—the downward path
preserving property (DPP)—that guarantees an ab-
straction has no spurious states. Analyzing the compu-
tational complexity of (i) testing the DPP property for
a given state space and abstraction and of (ii) deter-
mining whether this property is achievable at all for a
given state space, results in strong hardness theorems.
On the positive side, we identify formal conditions un-
der which finding DPP abstractions is tractable.

Introduction

Abstraction is a popular technique for speeding up plan-
ning and search. The idea is to build a coarse “ab-
stract” version of a given state space so that planning
or search in the abstract space is rapid. This can be
exploited in two ways: (i) by constructing a plan be-
tween two states in the original space by refining ab-
stract plans found between the corresponding abstract
states or (ii) by defining a heuristic function to guide
planning and search by using actual distances in the
abstract space as estimates of distances in the original
space. A potential problem with abstraction is that it
can introduce “spurious states”. Given a state s in the
original space, a spurious state is an abstract state that
is reachable from the abstraction of s but is not the
abstract image of any original state reachable from s.

The following example of 4 states s1, . . . , s4 illustrates
how spurious states can be generated. Assume s2 is
reachable from s1 and s4 is reachable from s3 but nei-
ther s3 nor s4 are reachable from either s1 or s2. If an
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abstraction ψ identifies s2 and s3 with each other, but
maps s1 and s4 to two separate abstract states, then
the abstract state ψ(s4) is spurious with respect to s1.
It is reachable from ψ(s1) but has no pre-image in the
original space that is reachable from s1, see Figure 1.

(a) s1 // s2 s3 // s4

(b) ψ(s1) // ψ(s2) = ψ(s3) // ψ(s4)

Figure 1: (a) Original state space and (b) abstract space
with spurious state ψ(s4).

Spurious states can cause several difficulties. First, an
abstract plan containing spurious states will be unre-
finable, and if the length of the abstract plan is used
as a heuristic it will often be overly optimistic because
of “short-cuts” created in the abstract space by spuri-
ous states. Unrefinable abstract plans and low heuristic
values can drastically slow down planning and search.
Secondly, if abstract distances are stored in memory,
as is done with pattern databases (PDBs), introduced
in (Culberson and Schaeffer 1998), spurious states can
increase the memory requirements dramatically.

In the heuristic search literature, the problem has been
addressed by Holte and Hernádvölgyi (2004). They an-
alyze different structural properties of state spaces and
abstractions that are likely to cause spurious states. Re-
cently Haslum et al. 2007—dealing with the problem of
how to define “good” abstractions—report that PDB
heuristics often turn out to be overly optimistic due to
the existence of spurious states. Haslum, Bonet, and
Geffner (2005) experimentally show that enforcing cer-
tain constraints when constructing the abstract space,
and thus reducing the number of spurious states, can
sometimes substantially speed up A*. However, there
are no practical methods known so far to avoid spurious
states completely; neither is there any formal research
on the complexity of the problem of avoiding them.

This motivates a formal analysis of the problem of
avoiding spurious states in abstraction. To this end



we introduce what we call the “Downward Path Pre-
serving” (DPP) property. This characteristic (i.e., nec-
essary and sufficient) property specifies state space ab-
stractions that do not cause spurious states at all.

We study the computational complexity of two closely
related problems, namely (A) to determine whether or
not a given abstraction has the DPP property, and
(B) to determine whether or not a given state space
possesses a DPP abstraction at all.1 Our complexity
analyses show that both problems are, in general, hard
to solve and that efficient general algorithms to produce
DPP abstractions are thus unlikely to exist.

The negative results on the computational complexity
are mitigated by tractability results for special cases.
We identify simple formal conditions on state spaces
that allow for finding DPP abstractions in polynomial
time. Some typical problem domains turn out to be rep-
resentable in a way that these conditions apply. How-
ever, some of them also have natural encodings that
do not match the formal conditions of our theorems,
and for which, moreover, it is not obvious that DPP
abstractions exist at all. This shows that the way a
problem domain is encoded is crucial for the design of
DPP abstractions. Given two equivalent representa-
tions, one might immediately yield DPP abstractions,
whereas the other might prevent DPP abstractions.

Formal definition of DPP abstractions

In this section we will formally define state spaces, ab-
stractions, and the DPP property.

|A| denotes the cardinality of a set A. If ψ : A → B is
a mapping between sets A,B then ψ(A) = {ψ(a) | a ∈
A} ⊆ B. Let Σ, Γ be finite alphabets, Γ ⊆ Σ, n ∈ N.
ψ : Σn → Γn is called a string homomorphism if there
is a mapping ψ0 : Σ → Γ such that ψ(σ1, . . . , σn) =
(ψ0(σ1), . . . , ψ0(σn)) for all σ1, . . . , σn ∈ Σ.

Definition 1 A state space is a triple S = (Σ, n,Π)
where Σ is a finite alphabet, n ∈ N, and Π ⊆ Σn × Σn.
Every s ∈ Σn is called a state and every pair (s, s′) ∈ Π
is called an edge from state s to state s′.

Definition 2 Let S = (Σ, n,Π) be a state space, s, s′ ∈
Σn. s′ is reachable from s (in S) if there is a sequence
π = (s1, s2, . . . , sz) ∈ (Σn)+ such that s1 = s, sz = s′,
and (si, si+1) ∈ Π for all i ∈ {1, . . . , z − 1}. Define
∆(s,S) = {s′ ∈ Σn | s′ is reachable from s in S}.

We assume that the set of all states in a state space S
is always the full set of n-tuples over Σ. In contrast to

1We focus only on the two most common types of ab-
stractions, namely projection and domain abstraction.

that it is also common to define a state space via a seed
state and all states reachable from that state (edges
and thus reachability might be defined in the form of
operators). In such a definition, the set of states in S
would only be one connected component of Σn. These
different perspectives on state spaces do not play a role
in this paper and so for simplicity we always assume
the set of states to be equal to Σn.

We follow the PSVN notation introduced
in (Hernádvölgyi and Holte 1999) for state space
representation. Here we define edges via parameterized
operators, so that one operator can represent a large
set of edges.

For instance, let Σ = {a, b, c}, n = 4 and X = {x1, x2}
a set of variables. The operator 〈x1, c, x1, x2〉 →
〈b, x1, x2, x2〉 means that every state s which has a ‘c’ in
component 2, identical entries σ in components 1 and
3, and any value σ′ in component 4 has an outgoing
edge to the state that has a ‘b’ in component 1, σ in
component 2, and σ′ in components 3 and 4. For ex-
ample, (〈a, c, a, a〉, 〈b, a, a, a〉) and (〈b, c, b, a〉, 〈b, b, a, a〉)
are edges induced by this operator, whereas neither
(〈a, a, a, a〉, 〈b, a, a, a〉) nor (〈a, c, a, a〉, 〈b, b, a, a〉) are.
This notation is formalized in Definition 3.

Definition 3 Let S = (Σ, n,Π) be a state space and
X = {xi | i ∈ N} a set of variables, X ∩ Σ = ∅. Any
n-tuple p = 〈y1, . . . , yn〉 ∈ (Σ ∪ X)n is called a state
pattern.
Let p = 〈y1, . . . , yn〉 and p′ = 〈y′1, . . . , y′n〉 be state pat-
terns. p → p′ is called an operator if, for all i ∈
{1, . . . , n}, y′i ∈ Σ or y′i = yj for some j ∈ {1, . . . , n}.
A state s = 〈σ1, . . . , σn〉 ∈ Σn matches p if for all
i ∈ {1, . . . , n} the following conditions hold.

(1) yi = σi or yi ∈ X,
(2) if yi = yj for some j ∈ {1, . . . , n} then σi = σj.

An edge (s, s′) matches the operator o = p → p′ if s
matches p, s′ matches p′, and for all i, j ∈ {1, . . . , n},
y′i = yj ⇒ s′i = sj.
(Σ, n,O) is a representation for S if O is a set of op-
erators such that (s, s′) ∈ Π if and only if there is an
o ∈ O such that (s, s′) matches o.

An abstraction of a state space S is a state space Sψ
with a mapping ψ from the states in S to the states in
Sψ. The edges are considered to be induced by ψ.

Definition 4 Let S = (Σ, n,Π) be a state space, Γ ⊆
Σ, and m ∈ N. Any mapping ψ : Σn → Γm induces
a state space Sψ = (Γ,m,Πψ) over Γm where, for all
t, t′ ∈ Γm we have (t, t′) ∈ Πψ if and only if there are
states s, s′ ∈ Σn such that ψ(s) = t, ψ(s′) = t′, and
(s, s′) ∈ Π. Sψ is called an abstraction of S, ψ is called
an abstraction mapping.



Thus ψ is a graph homomorphism between (Σn,Π) and
(Γm,Πψ), where without loss of generality and just for
simplicity we assume Γ ⊆ Σ. Note that our definition
precludes the abstract space containing edges that are
not induced by ψ (i.e., Πψ is the minimal set of edges
for which ψ is a graph homomorphism between (Σn,Π)
and (Γm,Πψ)).2 So all hardness results that we prove
below for this special case also hold in the general case
where Πψ is only a subset of the edges in the abstract
state space.

We consider two types of abstraction. In domain ab-
straction, some of the alphabet symbols are identified
with each other; in projection, some of the state vari-
ables are ignored.

Domain abstraction: m = n but |Γ| < |Σ|. A
domain abstraction3 mapping is a surjective string
homomorphism ψ :Σn → Γn with ψ(ψ(σ)) = ψ(σ)
for all σ ∈ Σ. The trivial case is |Γ| = 1.
Projection: Γ = Σ but m < n. A projection
mapping ψ is defined via a subset {i1, . . . , im} ⊂
{1, . . . , n} such that ψ(σ1, . . . , σn) = (σi1 , . . . , σim)
for all σ1, . . . , σn ∈ Σ. The trivial case is m = 0.

If S = (Σ, n,Π) is a state space and ψ an abstraction
mapping then ψ(∆(s,S)) ⊆ ∆(ψ(s),Sψ) holds for ev-
ery s ∈ S by definition. The opposite inclusion does
not necessarily hold—and this is what causes spurious
states. For any given original state s∗ (not necessarily
the start or goal state), a spurious state with respect to
s∗ is an abstract state t ∈ ∆(ψ(s∗),Sψ) \ ψ(∆(s∗,S)),
i.e., an abstract state that is reachable from the ab-
stract image of s∗ but has no pre-image in the original
state that is reachable from s∗. For any fixed state
s∗, an abstraction ψ avoiding unwanted spurious states
would fulfill ∆(ψ(s∗),Sψ) = ψ(∆(s∗,S)).

Definition 5 Let S = (Σ, n,Π) be a state space and
ψ an abstraction mapping. ψ is called a downward
path preserving (DPP) abstraction of S if ψ(∆(s,S)) =
∆(ψ(s),Sψ) for all s ∈ Σn.

DPP abstractions are hard to find

We assume that abstraction mappings can be computed
in polynomial time, so that they are never the bottle-
neck when we obtain hardness results. We analyze the
following decision problems.

2This equals the notion of homomorphism for abstraction
mappings in (Helmert, Haslum, and Hoffmann 2007).

3Here the term “domain” refers to the domain Σ of the
variables used for state space encodings, while often we use
the term “domain” to refer to the general problem domain,
e.g., the Blocks World domain with k blocks.

IS-DPP. Given a state space S and an abstraction map-
ping ψ (of type domain abstraction or projection), decide
whether or not ψ is a DPP abstraction of S.

EXIST-DPP. Given a type of abstraction (domain abstrac-
tion or projection), a state space S over Σn, Γ ⊆ Σ and
a number m (where either n = m (domain abstraction) or
Σ = Γ (projection)), decide whether or not there is a non-
trivial DPP abstraction mapping ψ of S, of the given type,
inducing a state space Sψ over Γm.

Hardness results on the problem of deciding, given a
state space and two different states s and s′, whether s
is reachable from s′, cf. (Bäckström 1992), help proving
the hardness of the IS-DPP problem. However none of
the proofs of the following hardness results are trivial;
the reader is referred to (Zilles, Ball, and Holte 2009).

Theorem 1 (1) IS-DPP is PSPACE-hard for either
type of abstraction.
(2) IS-DPP is in P for either type of abstraction if the
dimension n is fixed a priori.
(3) EXIST-DPP is PSPACE-hard for either type of ab-
straction.
(4) EXIST-DPP is in P for projection if the dimension
n is fixed a priori.
(5) EXIST-DPP is NP-hard for domain abstraction
even if the dimension n is fixed with n > 2 a priori.

When DPP abstractions are easy to find

From a practical point of view, easily testable crite-
ria that help us to design DPP abstractions for given
state spaces are very interesting. This section provides
such conditions for projection (Definition 6 and The-
orem 2) and for domain abstraction (Definition 7 and
Theorem 3). In particular they allow for finding DPP
abstractions in polynomial time.

Definition 6 Let (Σ, n,O) be a representation for a
state space. Let o = 〈y1, . . . , yn〉 → 〈y′1, . . . , y′n〉 be an
operator in O and I ⊆ {1, . . . , n}. We say that o is
closed on I if the following three conditions are satisfied.

(1) yi /∈ Σ for all i ∈ I.
(2) yi 6= yj for all i, j ∈ {1, . . . , n} with i 6= j.
(3) {y′i | i ∈ I} ⊆ {yi | i ∈ I}.

For example, in the Rubik’s Cube domain (Korf 1997),
every operator is closed on the set of indices of vari-
ables encoding the corner cubies. That means the ef-
fects on the corner cubie variables are given by shuffling
and/or copying the corner cubie variables in the opera-
tor’s preconditions (the latter not containing constants
or duplicates of variable names). The same holds for
the edge cubies. Our formal criterion allowing for DPP
projections reads as follows.



Theorem 2 Let (Σ, n,O) be a representation for a
state space S. Suppose there is a disjoint partition-
ing I1 ∪ . . . ∪ Iz = {1, . . . , n}, such that o is closed
on Ij for every o ∈ O and every j ∈ {1, . . . , z}. Let
j ∈ {1, . . . , z} and Ij = {j1, . . . , jl}. Then the mapping
ψ with ψ(σ1, . . . , σn) = (σj1 , . . . , σjl) defines a DPP ab-
straction of S.

Every variable in the standard representation of the Ru-
bik’s Cube domain, cf. (Korf 1997), encodes either a
property of a corner cubie or a property of an edge cu-
bie. Since every operator is both closed on the set of
indices of corner cubie variables and closed on the set
of indices of edge cubie variables, we can project out ei-
ther all corner cubie variables or all edge cubie variables
without violating the DPP property.

Definition 7 Let (Σ, n,O) be a representation for a
state space. Let o = 〈y1, . . . , yn〉 → 〈y′1, . . . , y′n〉 be an
operator in O and Σ0 ⊆ Σ. We say that o is indepen-
dent on Σ0 if the following two conditions are satisfied.

(1) yi /∈ Σ0 for all i ∈ {1, . . . , n}.
(2) yi 6= yj for all i, j ∈ {1, . . . , n} with i 6= j.

For instance, in the standard representation of the Slid-
ing Tile puzzle, every operator is independent on the set
of the names of tiles. The only constant symbol ever
appearing in any operator is the symbol B encoding
the blank; the symbols encoding names of tiles never
occur in the operators. Theorem 3 then says that every
domain abstraction that shrinks the set of tile names
and leaves the blank symbol untouched will be DPP.
It applies if we set Σ1 = {B} and let Σ0 be the set of
symbols representing tile names.

Theorem 3 Let (Σ0∪Σ1, n,O) be a representation for
a state space S, where Σ0∩Σ1 = ∅. Suppose every o ∈ O
is independent on Σ0. Then every domain abstraction
mapping ψ with ψ(Σ0) ⊆ Σ0 and ψ(σ) = σ for every
σ ∈ Σ1 defines a DPP abstraction of S.

As Theorems 2 and 3 show, certain properties of state
spaces immediately allow for finding DPP abstractions
in polynomial time. Since these properties concern not
the problem domain as such but its encoding as a state
space, there might be two encodings defining isomor-
phic state spaces for the same problem domain such
that one of them has DPP projections (or DPP domain
abstractions) while the other does not.

Probably not every planning or search domain can be
encoded in a way that DPP abstractions can easily be
designed. Moreover, even if this is possible for a certain
problem domain, it is far from trivial to (automatically)
find such encodings. Nevertheless there is a rich history
of research on automatic problem reformulation that

addresses this issue, e.g., (Amarel 1968; Benjamin 1989;
Korf 1980; Lowry 1988; Van Baalen 1992).

Some examples of planning domains, including Blocks
World, show that, if one deviates from standard strips
encodings, quite intuitive encodings that match The-
orems 2 and 3 can be found. Hence a careful design
of problem domain encodings may make the design of
DPP abstractions and thus maybe also planning and
search easier, cf. (Zilles, Ball, and Holte 2009).
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