Notes 01-3: Primary Tasks of Data Mining

Data mining techniques are generally divided into two main categories.

Predictive: The objective is to predict the value of a particular attribute based upon the values of other attributes.

- The *target* (or dependent) variable is the attribute whose value is to be predicted.
- The *explanatory* (or independent) variables are the attributes used to make the prediction.

Descriptive: The objective is to derive patterns (e.g., correlations, trends, clusters, trajectories, and anomalies) that describe the fundamental relationships in the data.

Core Data Mining Techniques

Predictive modeling: Used to build a model for the target variable as a function of the explanatory variables. There are *two* types: *classification* and *regression*.

Classification: Used for discrete target variables.

Example - A simple decision tree for mammal classification

DIAGRAM = Introduction.F.2.a1 – **TO BE DONE**

Regression: Used for continuous target variables.

Example - Predicting salary based upon years of service

Salary	Years of Service
30	3
57	8
64	9
72	13
36	3
43	6
59	11
90	21

20	1
83	16

Plot the points on a graph and find a line that best represents the relationship between salary and years of service.

Association analysis: Used to discover patterns that describe strongly associated features in the data.

Example - Profiling sales

Assume some store sells the following products: milk, cheese, bread, eggs, diapers, and beer.

Store keeps track of when items are sold (i.e., AM or PM).

Customers can buy any combination of products.

Associations describe products that are purchased together.

```
milk → bread (AM and PM)
eggs → cheese (AM)
diapers → beer (PM)
```

Cluster analysis: Used to find groups of closely related objects so that objects in the same cluster are more similar to each other than to objects in other clusters.

Example – Clustering based upon customer profiles

Income	Age	Children	Marital Status	Education
25K	35	У	single	high school
15K	25	n	married	B.Sc.
20K	40	y	divorced	M.Sc.
30K	20	y	married	Ph.D.
20K	25	n	married	high school
70K	60	n	single	B.Sc.
90K	30	y	divorced	B.Sc.

Depending upon the attribute chosen, the clusters will be different.

Summarization involves methods for finding a compact description for a subset of data.

Dependency Modeling consists of finding a model which describes significant dependencies between variables. Dependency models exist at two levels:

- 1. The *structural* level of the model specifies (often graphically) which variables are locally dependent on each other, and
- 2. The *quantitative* level of the model specifies the strengths of the dependencies using some numerical scale.

Change and Deviation Detection focuses on discovering the most significant changes in the data from previously measured or normative values.