Notes 03-1: Introduction to Classification Classification techniques attempt to derive a model of the data that assigns labels to objects that describe and distinguish classes of objects with similar properties. A *training set* (i.e., objects whose class label is already known) is used to derive specific parameters of the model (known as the *training phase*). The derived model is used to predict the class label of a previously unseen or unknown object (known as the *classification phase*). More formally, the classification problem is defined as follows: Given a database $D = \{t_1, t_2, ..., t_n\}$ of tuples and a set of classes $C = \{C_1, C_2, ..., C_m\}$, the classification problem is to define a mapping $f: D \to C$, where each t_i is assigned to one class. A class, C_j , contains precisely those tuples mapped to it; that is, $C_j = \{t_i \mid f(t_i) = C_j \ (1 \le i \le n) \land t_i \in D\}$. *Three* basic methods used to solve the classification problem include: specifying boundaries, using known probability distributions, and using posterior probabilities. *Specifying boundaries*: Divide the input space of potential database tuples into regions, where each region is associated with one class. Example – Specifying boundaries EXAMPLE = Classification.A.3.b Using known probability distributions: For any given class, C_j , $P(t_i | C_j)$ is the probability density function for the class evaluated at t_i . If the probability of occurrence for each class, $P(C_j)$, is known, then $P(C_j)P(t_i | C_j)$ is used to estimate the probability that t_i is in class C_j . Assign t_i to the class with the highest probability. Example – Using known probability distributions | Tuple | Gender | Height | Class | |-----------------------|--------|--------|--------| | t_1 | f | 1.6 | short | | t_2 | m | 2.0 | tall | | <i>t</i> ₃ | f | 1.9 | medium | | t_4 | f | 1.8 | medium | | <i>t</i> 5 | f | 1.7 | short | | <i>t</i> ₆ | m | 1.85 | medium | | <i>t</i> ₇ | f | 1.6 | short | |------------------------|----------------|------|--------| | t ₈ | m | 1.7 | short | | t ₉ | m | 2.2 | tall | | <i>t</i> ₁₀ | m | 2.1 | tall | | t_{11} | f | 1.8 | medium | | <i>t</i> ₁₂ | m | 1.95 | medium | | t_{13} | f | 1.9 | medium | | t_{14} | \overline{f} | 1.8 | medium | | <i>t</i> 15 | f | 1.75 | medium | Note: The values in the Tuple column are not the t_i 's referred to in the probabilities in the explanation of using known probability distributions above. The values in the Tuple column are just the unique identifiers assigned to each tuple. The t_i 's in the probabilities correspond to particular attribute values in the Gender and Height columns. Consider those tuples where $t_i = 1.9$ and $C_j = medium$. What is the probability that 1.9 is in the *medium* class? Now, $$P(1.9|medium) = \frac{\#(medium \land 1.9)}{\#(medium)} = \frac{2}{8} = 0.25$$ and $$P(medium) = \frac{\#(medium)}{N} = \frac{8}{15} = 0.53,$$ where N = the number of tuples. So, $$P(medium)P(1.9|medium) = (0.53)(0.25) = 0.1325.$$ Using posterior probabilities: Given a data value t_i , determine the probability that t_i is in C_j , denoted as $P(C_j | t_i)$ and known as the posterior probability. Determine the posterior probability for each class containing t_i and then assign t_i to the class with the highest probability. Example – Using posterior probabilities | Tuple | Gender | Height | Class | |-------|--------|--------|--------| | t_1 | f | 1.6 | short | | t_2 | m | 2.0 | tall | | t_3 | f | 1.9 | medium | | t_4 | f | 1.8 | medium | |------------------------|---|------|--------| | <i>t</i> 5 | f | 1.7 | short | | t_6 | m | 1.85 | medium | | <i>t</i> ₇ | f | 1.6 | short | | <i>t</i> 8 | f | 1.8 | tall | | t9 | m | 1.7 | short | | t ₁₀ | m | 2.2 | tall | | t_{11} | m | 2.1 | tall | | <i>t</i> ₁₂ | f | 1.8 | medium | | <i>t</i> ₁₃ | m | 1.95 | medium | | <i>t</i> ₁₄ | f | 1.9 | medium | | <i>t</i> ₁₅ | f | 1.8 | medium | | t ₁₆ | f | 1.75 | medium | | <i>t</i> ₁₇ | m | 1.8 | tall | Consider those tuples where $t_i = 1.8$. What class should 1.8 be assigned to? Now, $$P(medium|1.8) = \frac{\#(1.8 \land medium)}{\#(1.8)} = \frac{3}{5} = 0.6,$$ $$P(tall|1.8) = \frac{\#(1.8 \land tall)}{\#(1.8)} = \frac{2}{5} = 0.4,$$ and $$P(short|1.8) = \frac{\#(1.8 \land short)}{\#(1.8)} = \frac{0}{5} = 0.0.$$ Therefore, 1.8 should be assigned to the *medium* class. ## **Machine Learning Approach to Classification** The machine learning approach to classification is based on using posterior probabilities. The probabilities are inferred from data and represented as a model. The model can be represented as: - Decision lists (a decision list is an ordered list of if-then rules) - Decision trees - Mathematical formulas - Neural networks - Etc. ## Example – Soybean disease classification The data consists of 680 descriptions of examples of diseased soybean plants (i.e., each example represents one plant). Each example is represented by 35 attributes, each describing a different characteristic of the diseased plant. | Sample | # Possible | Sample | |----------------|------------|-----------| | Attributes | Values | Value | | plant height | 2 | normal | | seed treatment | 3 | fungicide | | leaf condition | 2 | abnormal | | stem condition | 2 | normal | Each example is labeled with one of 17 diseases as determined by the diagnosis of an expert in plant biology. An if-then rule learned from the data ``` if leaf condition = normal and stem condition = abnormal and stem canker = below soil line and canker lesion color = brown then diagnosis = root rot ``` A decision tree could be constructed where one of the paths from the root to a leaf corresponds to the if-then rule given in the previous example.