
Notes 03-2: Distance-Based Classification 
 

Each item that is mapped to a class may be thought of as being more similar to the 

other items in that class than it is to the items in other classes. Distance measures can 

be used to quantify the similarity of different items. 

 

Distance Measures 
 

A distance measure is 

 

The best known distance measures are Euclidean distance and Manhattan distance. 

According to the Euclidean distance (or straight line distance), for some arbitrary m-

dimensional instance pi described by (pi1, pi2, …, pim), where piu denotes the value of 

the u-th attribute of pi, then the difference between two instances pi and pj is defined 

as 

 

𝑑(𝑝𝑖 , 𝑝𝑗) = √∑(𝑝𝑖𝑢 − 𝑝𝑗𝑢)
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An alternative distance measure is the Manhattan distance. 

 

𝑑(𝑝𝑖 , 𝑝𝑗) = ∑ |𝑝𝑖𝑢 − 𝑝𝑗𝑢|
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k-Nearest Neighbour Technique 
 

The k-nearest neighbour technique assumes instances can be represented by points in 

a Euclidean space. 

 

The nearest neighbours of an instance are defined in terms of the standard Euclidean 

distance. 

 

Example – General idea behind k-nearest neighbour classification 

 

EXAMPLE = Classification.D.1.a 

 

 

A k-nearest neighbour classifier 



 
Algorithm: KNN 

Input: D = a set of points (i.e., instances) in Euclidean space 

       of the form 〈𝑝1, 𝑝2, … 𝑝𝑛〉 
       k = the number of neighbours to consider 

       p' = an unlabeled instance 

Output: CKNN = the class label 

 

Method: 

1. j = 0 

2. for each p  D 
3.     j ++ 

4.     if k == 1 

5.         if d (p, p') <= NN [1].distance 

6.             NN [1].distance = d (p, p') 

7.             NN [1].class = class (p) 
8.     else if j <= k 

9.         i = j 

10.         while i > 1 and d (p, p') <= NN [i – 1].distance 
11.             NN [i].distance = NN [i – 1].distance 

12.             NN [i].class = NN [i – 1].class 

13.             i –- 

14.         NN [i].distance = d (p, p') 

15.         NN [i].class = class (p) 

16.     else 

17.         i = k + 1 

18.         while i > 1 and d (p, p') <= NN [i – 1].distance 

19.             NN [i].distance = NN [i – 1].distance 

20.             NN [i].class = NN [i – 1].class 

21.             i –- 

22.         NN [i].distance = d (p, p') 

23.         NN [i].class = class (p) 
24. c = 1 

25. class [c].class = NN [1].class 

26. class [c].count = 1 

27. for j = 2 to k 

28.     newClass = true 

29.     for i = 1 to c 

30.         if class [i].class == NN [j].class 

31.             class [i].count ++ 

32.             newClass = false 

33.             break 

34.     if newClass 

35.         c ++ 

36.         class [c].class = NN [j].class 

37.         class [c].count = 1 



38. CKNN = class [1].class 

39. count = class [1].count 

40. for i = 2 to c 

41.     if class [c].count >= count 

42.         CKNN = class [i].class 

43.         count = class [i].count 

 

Example – Predicting a class label using KNN 

 

Tuple Gender Height Class 

t1 f 1.6 short 

t2 m 2.0 tall 

t3 f 1.9 medium 

t4 f 1.8 medium 

t5 f 1.7 short 

t6 m 1.85 medium 

t7 f 1.6 short 

t8 m 1.7 short 

t9 m 2.2 tall 

t10 m 2.1 tall 

t11 f 1.8 medium 

t12 m 1.95 medium 

t13 f 1.9 medium 

t14 f 1.8 medium 

t15 f 1.75 medium 

 

The class label attribute is Class and has three unique values: short, medium, 

and tall. 

 

The unlabeled instance to be classified is 〈𝑡16, 𝑓, 1.6, ? 〉. 
 

Assume k = 5. The five nearest neighbors to 〈𝑡16, 𝑓, 1.6, ? 〉 are 
〈𝑡1, 𝑓, 1.6, 𝑠ℎ𝑜𝑟𝑡〉, 〈𝑡5, 𝑓, 1.7, 𝑠ℎ𝑜𝑟𝑡〉, 〈𝑡7, 𝑓, 1.6, 𝑠ℎ𝑜𝑟𝑡〉, 〈𝑡8, 𝑚, 1.7, 𝑠ℎ𝑜𝑟𝑡〉, and 
〈𝑡15, 𝑓, 1.6, 𝑠ℎ𝑜𝑟𝑡〉. Since four out of five of the nearest neighbors are short, 

CKNN = short, so we have 〈𝑡16, 𝑓, 1.6, 𝑠ℎ𝑜𝑟𝑡〉. 
 

Normalizing Values 
 

Since different attributes can be measured on different scales, the Euclidean distance 

formula may exaggerate the effect of some attributes having larger scales. 

Normalization can be used to force all values to lie between 0 and 1. 



 

𝑎𝑖 =
𝑣𝑖 −min⁡(𝑣𝑖)

max(𝑣𝑖) − min⁡(𝑣𝑖)
 

 

where vi is the actual value of attribute i and min(vi) and max(vi) are the minimum and 

maximum values, respectively, taken over all instances. 

 

Example – Normalizing attribute values 

 

Given the values 5, 3, 8, 12, 9, 15, 11, 6, and 1, the normalized values are (5–

1)/(15–1) = 4/14, 2/14, 7/14, 11/14, 8/14, 14/14, 10/14, 5/14, and 0/14. 

 


