
Notes 03-2: Distance-Based Classification

Each item that is mapped to a class may be thought of as being more similar to the

other items in that class than it is to the items in other classes. Distance measures can

be used to quantify the similarity of different items.

Distance Measures

A distance measure is

The best known distance measures are Euclidean distance and Manhattan distance.

According to the Euclidean distance (or straight line distance), for some arbitrary m-

dimensional instance pi described by (pi1, pi2, …, pim), where piu denotes the value of

the u-th attribute of pi, then the difference between two instances pi and pj is defined

as

𝑑(𝑝𝑖 , 𝑝𝑗) = √∑(𝑝𝑖𝑢 − 𝑝𝑗𝑢)
2

𝑚

𝑢=1

An alternative distance measure is the Manhattan distance.

𝑑(𝑝𝑖 , 𝑝𝑗) = ∑ |𝑝𝑖𝑢 − 𝑝𝑗𝑢|

𝑚

𝑢=1

k-Nearest Neighbour Technique

The k-nearest neighbour technique assumes instances can be represented by points in

a Euclidean space.

The nearest neighbours of an instance are defined in terms of the standard Euclidean

distance.

Example – General idea behind k-nearest neighbour classification

EXAMPLE = Classification.D.1.a

A k-nearest neighbour classifier

Algorithm: KNN

Input: D = a set of points (i.e., instances) in Euclidean space

 of the form 〈𝑝1, 𝑝2, … 𝑝𝑛〉
 k = the number of neighbours to consider

 p' = an unlabeled instance

Output: CKNN = the class label

Method:

1. j = 0

2. for each p  D
3. j ++

4. if k == 1

5. if d (p, p') <= NN [1].distance

6. NN [1].distance = d (p, p')

7. NN [1].class = class (p)
8. else if j <= k

9. i = j

10. while i > 1 and d (p, p') <= NN [i – 1].distance
11. NN [i].distance = NN [i – 1].distance

12. NN [i].class = NN [i – 1].class

13. i –-

14. NN [i].distance = d (p, p')

15. NN [i].class = class (p)

16. else

17. i = k + 1

18. while i > 1 and d (p, p') <= NN [i – 1].distance

19. NN [i].distance = NN [i – 1].distance

20. NN [i].class = NN [i – 1].class

21. i –-

22. NN [i].distance = d (p, p')

23. NN [i].class = class (p)
24. c = 1

25. class [c].class = NN [1].class

26. class [c].count = 1

27. for j = 2 to k

28. newClass = true

29. for i = 1 to c

30. if class [i].class == NN [j].class

31. class [i].count ++

32. newClass = false

33. break

34. if newClass

35. c ++

36. class [c].class = NN [j].class

37. class [c].count = 1

38. CKNN = class [1].class

39. count = class [1].count

40. for i = 2 to c

41. if class [c].count >= count

42. CKNN = class [i].class

43. count = class [i].count

Example – Predicting a class label using KNN

Tuple Gender Height Class

t1 f 1.6 short

t2 m 2.0 tall

t3 f 1.9 medium

t4 f 1.8 medium

t5 f 1.7 short

t6 m 1.85 medium

t7 f 1.6 short

t8 m 1.7 short

t9 m 2.2 tall

t10 m 2.1 tall

t11 f 1.8 medium

t12 m 1.95 medium

t13 f 1.9 medium

t14 f 1.8 medium

t15 f 1.75 medium

The class label attribute is Class and has three unique values: short, medium,

and tall.

The unlabeled instance to be classified is 〈𝑡16, 𝑓, 1.6, ? 〉.

Assume k = 5. The five nearest neighbors to 〈𝑡16, 𝑓, 1.6, ? 〉 are
〈𝑡1, 𝑓, 1.6, 𝑠ℎ𝑜𝑟𝑡〉, 〈𝑡5, 𝑓, 1.7, 𝑠ℎ𝑜𝑟𝑡〉, 〈𝑡7, 𝑓, 1.6, 𝑠ℎ𝑜𝑟𝑡〉, 〈𝑡8, 𝑚, 1.7, 𝑠ℎ𝑜𝑟𝑡〉, and
〈𝑡15, 𝑓, 1.6, 𝑠ℎ𝑜𝑟𝑡〉. Since four out of five of the nearest neighbors are short,

CKNN = short, so we have 〈𝑡16, 𝑓, 1.6, 𝑠ℎ𝑜𝑟𝑡〉.

Normalizing Values

Since different attributes can be measured on different scales, the Euclidean distance

formula may exaggerate the effect of some attributes having larger scales.

Normalization can be used to force all values to lie between 0 and 1.

𝑎𝑖 =
𝑣𝑖 −min⁡(𝑣𝑖)

max(𝑣𝑖) − min⁡(𝑣𝑖)

where vi is the actual value of attribute i and min(vi) and max(vi) are the minimum and

maximum values, respectively, taken over all instances.

Example – Normalizing attribute values

Given the values 5, 3, 8, 12, 9, 15, 11, 6, and 1, the normalized values are (5–

1)/(15–1) = 4/14, 2/14, 7/14, 11/14, 8/14, 14/14, 10/14, 5/14, and 0/14.

