
Notes 03-6: Regression 
 

Linear regression techniques attempt to model data using a straight line. 

 

Given a set of data points (x1, y1), (x2, y2), …, (xn, yn), where yi is some response 

corresponding to xi, linear regression is a method for determining the function that 

best fits the observed data points. 

 

The first step in fitting a straight line to the data points is to construct a scatter plot. 

 

If the points appear to approximate a straight line, linear regression may be an 

appropriate analysis technique. 
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If they don’t, some other technique is required. 
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The method of least squares assumes the best-fit curve is one that has the minimal 

sum of the deviations squared from a given set of data points. 

 

The general regression equation can be written as 

 

�̂� = 𝛼 + 𝛽𝑥 
 

where α and β are called the regression coefficients. 

 

The regression coefficients can be estimated from the following two equations: 

 

𝛽 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 

 

𝛼 = �̅� − 𝛽�̅� 
 

Where x̅ is the mean of the x values in the sample, y̅ is the mean of the y values, β 

represents the slope of the line through the points, and α represents the y-intercept. 

 

Example – Linear regression 

 



Consider the table shown below, where Salary is shown for various values of 

Years of Service. The objective is to use the data in this table to predict Salary 

based upon Years of Service. Salary is called the explanatory variable and 

Years of Service is called the response variable. 

 

Salary Years of 

Service 

30   3 

57   8 

64   9 

72 13 

36   3 

43   6 

59 11 

90 21 

20   1 

83 16 

 

A scatter plot corresponding to the values in the table is shown below. 
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Based upon the values in the table, x̅ = 9.1, y̅ = 55.4, β = 3.54, and α = 23.19. 

Therefore ŷ = 23.19 + 3.54x. 

  

Salary can now predicted for any value of Years of Service. However, keep in 

mind that it is just a prediction. For example, the actual versus predicted Salary 

for Years of Service from the original table is shown below. 

 

Salary Years of 

Service 
 �̂� = 𝛼 + 𝛽𝑥 

30   3 33.81 

57   8 51.51 

64   9 55.05 

72 13 69.21 

36   3 33.81 

43   6 44.43 

59 11 62.13 

90 21 97.53 

20   1 26.73 



83 16 79.83 

     

When interpreting the regression coefficients: 

 

The estimated slope β = 3.54 implies that each additional year of service results 

in an increase in salary of $3,450. 

 

The regression line should not be used to predict the response ŷ when x lies outside 

the range of the initial values. 

 

Example 
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Coefficient of Determination 
 

The coefficient of determination represents the proportion of the total variability that 

is explained by the model. 

 

The coefficient of determination is represented by 

 

𝑅2 =
∑ (�̂�𝑖 − �̅�)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

  

where the numerator is the measure of the total variability of the fitted values and the 

denominator is the measure of the total variability of the original values. 

 

A value close to 1 implies that most of the variability is explained by the model. 

 

A value close to 0 implies that the model is not appropriate. 

 

Naïve Bayes 
 

The Naïve Bayes classifier is a well-known and highly effective classifier based upon 

Bayes’ Rule, a technique used to estimate the likelihood of class membership of an 

unseen instance given the set of labeled instances. 

 

The prior (or unconditional) probability, P(a), associated with a proposition a (i.e., an 

assertion that a is true) is the degree of belief accorded to it in the absence of any 

other information. 

 



Example – Prior probability 

 

P(rain = true) = 0.25 or P(rain) = 0.25 

 

The posterior (or conditional) probability, P(a | b), associated with a proposition a is 

the degree of belief accorded to it given that all we know is b. 

 

Example – Posterior probability 

 

P(rain | thunder) = 0.8 

 

A prior probability, such as P(rain), can be thought of as a special case of the 

posterior probability P(rain |  ), where the probability is conditioned on no evidence. 

 

Posterior probabilities can be defined in terms of prior probabilities. Specifically, 

 

𝑃(𝑎|𝑏) =
𝑃(𝑎 ∧ 𝑏)

𝑃(𝑏)
 

for P(b) > 0, which can also be written as 

 

𝑃(𝑎 ∧ 𝑏) = 𝑃(𝑎|𝑏)𝑃(𝑏) 
 

In a nutshell: For a and b to be true, we need b to be true, and we need a to be true 

given b. 

 

Since conjunction is commutative 𝑃(𝑎 ∧ 𝑏) = 𝑃(𝑏 ∧ 𝑎), so 

 

𝑃(𝑎 ∧ 𝑏) = 𝑃(𝑎|𝑏)𝑃(𝑏) 
 

can be written equivalently as 

 

𝑃(𝑏 ∧ 𝑎) = 𝑃(𝑏|𝑎)𝑃(𝑎) 
 

Then, since 𝑃(𝑎 ∧ 𝑏) = 𝑃(𝑏 ∧ 𝑎), we have Bayes’ Rule 

 

𝑃(𝑏|𝑎)𝑃(𝑎) = 𝑃(𝑎|𝑏)𝑃(𝑏) 
 

which can be written as 

 

𝑃(𝑏|𝑎) =
𝑃(𝑎|𝑏)𝑃(𝑏)

𝑃(𝑎)
 



 

A Naïve Bayes classifier applies to classification tasks where each instance x is 

described by a conjunction of attribute values (i.e., a tuple 〈𝑎1, 𝑎2, … , 𝑎𝑛〉) and where 

the target class can take on any value from some finite set C (i.e., the set of possible 

class values). 

 

A set of labeled instances is provided from which the prior and posterior probabilities 

can be derived. 

 

Predicting with Naïve Bayes 
 

When a new instance is presented, the classifier is asked to predict the class label. 

 

The Bayesian approach considers a set of candidate hypotheses (i.e., the various 

possible class labels) and determines the hypothesis (i.e., the class label) that is most 

probable given the labeled instances (known as the maximum posteriori hypothesis 

(MAP)). 

 

Given a new instance with attribute values 〈𝑎1, 𝑎2, … , 𝑎𝑛〉, the most probable class 

label is given by 

 

𝐶𝑀𝐴𝑃 = arg max𝐶𝑗∈𝐶 𝑃(𝐶𝑗|𝑎1, 𝑎2, … , 𝑎𝑛) 

 

Using Bayes’ Rule, the above expression can be written as 

 

𝐶𝑀𝐴𝑃 = arg max𝐶𝑗∈𝐶

𝑃(𝑎1, 𝑎2, … , 𝑎𝑛|𝐶𝑗)𝑃(𝐶𝑗)

𝑃(𝑎1, 𝑎2, … , 𝑎𝑛)
 

 

or 

  
𝐶𝑀𝐴𝑃 = arg max𝐶𝑗∈𝐶 𝑃(𝑎1, 𝑎2, … , 𝑎𝑛|𝐶𝑗)𝑃(𝐶𝑗) 

 

That is, the denominator 𝑃(𝑎1, 𝑎2, … , 𝑎𝑛) can be dropped because it is a constant term 

independent of Cj. 

 

Since a Naïve Bayes classifier assumes the effect of an attribute value on a given class 

is independent of the values of the other attributes (called the class conditional 

independence assumption), given CMAP, the probability of observing the conjunction 
〈𝑎1, 𝑎2, … , 𝑎𝑛〉 is just the product of the probabilities of the individual attributes. That 

is, 



 

𝑃(𝑎1, 𝑎2, … , 𝑎𝑛|𝐶𝑗) = ∏ 𝑃(𝑎𝑖|𝐶𝑗)

𝑛

𝑖=1

 

 

Substituting ∏ 𝑃(𝑎𝑖|𝐶𝑗)𝑛
𝑖=1  for 𝑃(𝑎1, 𝑎2, … , 𝑎𝑛|𝐶𝑗) in the equation for CMAP yields 

 

𝐶𝑁𝐵 = arg max𝐶𝑗∈𝐶 𝑃(𝐶𝑗) ∏ 𝑃(𝑎𝑖|𝐶𝑗)

𝑛

𝑖=1

 

 

where CNB denotes the assigned class label output by the Naïve Bayes classifier. 

 

Naïve Bayes Classifier for Categorical Attributes 
 
Algorithm: Naïve Bayes Learner 

Input: D = a set of labeled instances of the form 〈𝑎1, 𝑎2, … , 𝑎𝑛〉, 
       where each ai corresponds to a value from the domain of 

       attributes A1, A2, ..., An, respectively, and an is the 

       assigned class label 

Output: classProbability = an array of prior probabilities 

        attributeProbability = an array of posterior 

probabilities 

        v = an array of the number of unique values in the 

domain of each attribute 

 

Method: 

1. totalCount = 0 

2. m = the number of unique classes in the domain of An 

3. n = the number of attributes in the instances of D 
4. for j = 1 to m 

5.     classCount [j] = 0 

6.     for i = 1 to n - 1 

7.         v [i] = the number of unique values in the domain of 

Ai 

8.         for k = 1 to v [i] 

9.         attributeCount [j, i, k] = 0 

10. for each instance of D 

11.     totalCount ++ 
12.     j = an integer corresponding to the class of the current 

instance 

13.     classCount [j] ++ 
14.     for i = 1 to n - 1 
15.         k = an integer corresponding to the value of the 

current attribute 



16.         attributeCount [j, i, k] ++ 
17. for j = 1 to m 
18.     classProbability [j] = classCount [j] / totalCount 
19.     for i = 1 to n 
20.         for k = 1 to v [i] 
21.             attributeProbability [j, i, k] = attributeCount 

[j, i, k] / classCount [j] 

 

Algorithm: NaiveBayesClassifier 

Input: classProbability = an array of prior probabilities 

       attributeProbability = an array of posterior 

probabilities 

       m = the number of unique classes in the domain of An 

       n = the number of attributes in the instances of D 
       v = an array of the number of unique values in the domain 

of each attribute 

       〈𝑎1, 𝑎2, … , 𝑎𝑛−1〉 = an unlabeled instance 
Output: CNB = the class label 

 

Method: 

1. CNB = 0 

2. for j = 1 to m 

3.     CTemp = classProbability [j] 

4.     for i = 1 to n - 1 

5.         for k = 1 to v [i] 

6.             if ai == the attribute value corresponding to v 

[i] 

7.                 CTemp = CTemp * attributeProbability [j, i, k] 

8.                 break 

9.     if CTemp > CNB 

10.         CNB = CTemp 

 

Example – Predicting a class label using a Naïve Bayes classifier 

 

Tuple Age Income Student Credit Rating Buys 

Computer 

t1 <=30 high no fair no 

t2 <=30 high no excellent no 

t3 31..40 high no fair yes 

t4 >40 medium no fair yes 

t5 >40 low yes fair yes 

t6 >40 low yes excellent no 

t7 31..40 low yes excellent yes 

t8 <=30 m no fair no 



t9 <=30 low yes fair yes 

t10 >40 medium yes fair yes 

t11 <=30 medium yes excellent yes 

t12 31..40 medium no excellent yes 

t13 31..40 high yes fair yes 

t14 >40 medium no excellent no 

 

The class label attribute is Buys Computer and it has two unique values: yes 

and no. The unlabeled instance to be classified is 

 

Age = “<=30”, Income = medium, Student = yes, Credit Rating = fair. 

 

Let a1 = “<=30”, a2 = medium, a3 = yes, and a4 = fair. So, the problem is to 

determine 𝑃(𝐶𝑗|𝑎1, 𝑎2, 𝑎3, 𝑎4) for all j. Now, 

 

P(C1) = P(Buys Computer = yes) = 9/14 

 

and 

 

P(C2) = P(Buys Computer = no) = 5/14. 

 

To determine CNB, we only need to concern ourselves with the conditional 

probabilities associated with the attribute values on the unlabeled instance. So, 

 

𝑃(𝐶1) ∏ 𝑃(𝑎𝑖|𝐶1)𝑛
𝑖=1   = P(C1) P(a1|C1) P(a2|C1) P(a3|C1) P(a4|C1) 

    = (9/14)(2/9)(4/9)(6/9)(6/9) 

    = (0.643)(0.222)(0.444)(0.667)(0.667) 

    = 0.028 

 

and 

 

𝑃(𝐶2) ∏ 𝑃(𝑎𝑖|𝐶2)𝑛
𝑖=1  =  P(C2) P(a1|C2) P(a2|C2) P(a3|C2) P(a4|C2) 

    = (5/14)(3/5)(2/5)(1/5)(2/5) 

    = (0.357)(0.6)(0.4)(0.2)(0.4) 

    = 0.007 

 

We need to maximize 𝑃(𝐶𝑗) ∏ 𝑃(𝑎𝑖|𝐶𝑗)𝑛
𝑖=1 . Therefore, CNB = C1 = (Buys 

Computer = yes). 


