
Notes 05-4: Association Rules 
 

Association techniques attempt to derive a model of the data that shows attributes and 

attribute values that frequently occur together in the data. 

 

Example – Sales transactions 

 

The data consists of eleven transactions containing up to six items (i.e., items A 

to F), where values in the columns A to F are binary. The occurrence of a 1 in a 

tuple indicates that at least one of the corresponding item has been purchased 

and a 0 in a tuple indicates that it was not purchased. 

 

TID A B C D E F 

t1 1 0 1 1 0 0 

t2 0 1 0 0 1 0 

t3 1 1 1 0 0 0 

t4 0 0 1 0 1 1 

t5 0 0 0 1 0 1 

t6 0 1 1 0 1 0 

t7 1 0 0 1 1 1 

t8 1 0 0 1 0 1 

t9 0 1 0 0 1 1 

t10 0 1 1 0 1 0 

t11 0 0 1 0 0 1 

 

Association rules are used to describe the relationship between the items and are 

usually represented by implications of the type X → Y, where X and Y are sets of items 

(known as itemsets), X is called the antecedent, and Y is called the consequent. 

 

Example – Some itemsets 

 

Itemset TIDs # Transactions 

A t1, t3, t7, t8 4 

E t2, t4, t6, t7, t9, t10 6 

AC t1, t3 2 

CE t4, t6, t10 3 

BCE t6, t10 2 

 

Example – Some association rules 

 



Association Rule TIDs # Transactions 

A → C t1, t3 2 

A → B t3 1 

AB → C t3 1 

B → CE t6, t10 2 

AD → EF t7 1 

 

Support and confidence are widely accepted metrics for measuring the quality of an 

association rule. 

 

The support for an association rule X → Y in a dataset D measures the generality of a 

rule and is the percentage of transactions in D that contain X ∪ Y. That is, 

 

support (X → Y) = P(X ∪ Y) × 100 

 

The confidence for an association rule X → Y in a dataset D measures the reliability of 

a rule and is the ratio of the number of transactions in D that contain X ∪ Y to the 

number that contain X alone. That is, 

 

confidence(X → Y) = P(X ∪ Y) / P(X) × 100 

 

Example – Support and confidence 

 

  

Association 

Rule 

# Transactions 

(X ∪ Y) 

Support 

(%) 

# Transactions 

(X) 

Confidence 

(%) 

A → C 2 18 4   50 

A → B 1   9 4   25 

AB → C 1   9 1 100 

B → CE 2 18 5   40 

AD → EF 1   9 3   33 

 

More formally, the association rule mining problem is defined as follows: Given a set 

of items I = {I1, I2, …, Im} and a dataset of transactions D = {t1, t2, …, tn}, where ti = 

{Ii1, Ii2, …, Iik} (i.e., each transaction ti is a set of items such that ti  I), an association 

rule is an implication of the form X → Y,  where X and Y are itemsets, X  I, Y  I, 

and X ∩ Y = . The association rule X → Y holds in dataset D with confidence c if c% 

of the transactions in D that contain X, also contain Y. The association rule X → Y has 

support s in dataset D if s% of the transactions in D contain X ∪ Y. The association 



rule mining problem is to identify all association rules X → Y whose support and 

confidence exceed some pre-specified thresholds. 

 

The efficiency of association techniques is usually discussed in terms of the number 

of scans of the dataset that are required and the maximum number of items that must 

be counted in the itemsets. 

 

An algorithm for generating association rules when the frequent itemsets are already 

known 

 
Algorithm: Generate Association Rules 

Input: D = a dataset of transactions 

       L = the frequent itemsets 

       minConfidence = the confidence threshold 

Output: R = a set of association rules exceeding both s and c 
Method: 

1. R =  

2. for each l  L 

3.     for each x  l such that x ≠  

4.         if support (l) / support (x) >= minConfidence 

5.             R = R ∪ {x → (l – x)} 

 

Example – Generating association rules 

 

Assume minConfidence = 0.8 you are given the itemset {C, D, E}. There 

are six possible association rules that can be generated. Assume they have the 

characteristics shown below. 

 

Association 

Rule 

# Transactions 

(X ∪ Y) 

# Transactions 

(X) 

Confidence 

(%) 

DE → C 3 3 100 

CE → D 3 4 75 

CD → E 3 4 75 

E → CD 3 4 75 

D → CE 3 4 75 

C → DE 3 7 43 

 

Only one of the rules has confidence greater than minConfidence. 

 

Other Measures of Rule Quality 
 



Measures of rule quality (a.k.a. interestingness measures) are used for selecting and 

ranking rules according to their potential utility or usefulness to the user. Good 

measures also contribute to reducing time and space costs of the mining process. 

 

They are usually functions of the counts for a rule X → Y contained in a 2 × 2 

contingency table, such as the one shown below, where n(XY) denotes the number of 

tuples containing X and Y, and where N denotes the total number of tuples. 

 

 Y Y̅ Σ 

X n(XY) n(XY)̅ n(X) 

X̅ n(X̅Y) n(X̅Y)̅ n(X̅) 

Σ n(Y) n(Y̅) N 

 

In the measures that follow, P(X) is derived from the above contingency table, as 

follows: 

 

𝑃(𝑋) =
𝑛(𝑋)

𝑁
 

 

Lift considers the correlation between items in an association rule by considering both 

P(X) and P(Y). 

 

𝑙𝑖𝑓𝑡(𝑋 → 𝑌) =
𝑃(𝑋 ∪ 𝑌)

𝑃(𝑋)𝑃(𝑌)
 

 

It predicts the increase in the likelihood of an item occurring within a defined sub-

population compared to the full population. 

 

One problem with lift is that it is symmetric (i.e., it does not differentiate between the 

rules X → Y and Y → X). 

 

Rule interest (RI) describes the difference between the actual number of tuples 

containing X ∪ Y and the number of tuples to be expected if X and Y were 

independent. 

 

RI(X → Y) = P(X ∪ Y) – P(X)P(Y) 

 

RI satisfies the following three principles considered important for measuring 

association rule interestingness: 

 

RI(X → Y) = 0, if P(X ∪ Y) = P(X)P(Y) 



 

In a nutshell: Interestingness should be zero if the antecedent and consequent are 

statistically independent. 

 

RI(X → Y) monotonically increases with P(X ∪ Y) when other parameters remain the 

same. 

 

In a nutshell: If everything else is fixed, the more right-hand sides that are predicted 

by a rule, the more interesting it is. 

 

RI(X → Y) monotonically decreases when P(X) or P(Y) increases and the other 

parameters remain the same. 

 

Conviction considers both P(X) and P(Y). 

 

𝑐𝑜𝑛𝑣𝑖𝑐𝑡𝑖𝑜𝑛(𝑋 → 𝑌) =
𝑃(𝑋)𝑃(�̅�)

𝑃(𝑋 ∪ �̅�)
 

 

Conviction has two useful properties: 

 

conviction(X → Y) = 1, if X and Y are not related. 

 

conviction(X → Y) = ∞, if support(X → Y) = 100%. 

 

Other Algorithms 
 

Classic algorithms use a candidate generation strategy to construct candidate itemsets 

which are then validated to determine those that are frequent. 

 

Candidate generation algorithms are generally based upon one of three tree-based data 

structures: hash trees, enumeration sets, and prefix trees 

 

Hash trees: A combination of B-tree and hash table structures in which every internal 

node is a hash table, and every leaf node contains a set of itemsets. 

 

Example – Hash-tree 

 

DIAGRAM = Association.D.1.a 

 

When a leaf node reaches its quota of itemsets, the hash tree is extended by replacing 

the leaf node with a hash table whose leaf nodes contain the itemsets. 



 

Enumeration sets: An ordered tree where each node represents an itemset and an edge 

represents a pointer to a single item extension of that itemset. 

 

Example – Enumeration set 

 

DIAGRAM = Association.D.1.b 

 

Each level of the tree contains itemsets of the same length. 

 

The process of extending the tree is ordered and constrained so that only those items 

occurring after the last item of the current itemset are considered during the extension 

of the current itemset. 

 

Only new itemsets are inserted into the tree (e.g., AB and BA are the same itemset, so 

it will occur only once). 

 

Prefix trees: The itemset described by a node is accrued by traversing the tree to that 

node. 

 

Example – Prefix tree 

 

DIAGRAM = Association.D.1.c 

 

Structurally equivalent to enumeration set trees. 


