
Notes 06-4: Hierarchical Methods 
 

Hierarchical algorithms can be either agglomerative or divisive, that is top-down or 

bottom-up. All agglomerative hierarchical clustering algorithms begin with each 

object as a separate group. These groups are successively combined based on 

similarity until there is only one group remaining or a specified termination condition 

is satisfied. For n objects, n−1 mergings are done. Hierarchical algorithms are rigid 

in that once a merge has been done, it cannot be undone. Although there are smaller 

computational costs with this, it can also cause problems if an erroneous merge is 

done. As such, merge points need to be chosen carefully. Here we describe a simple 

agglomerative clustering algorithm. More complex algorithms have been developed, 

such as BIRCH and CURE, in an attempt to improve the clustering quality of 

hierarchical algorithms. 

 

 
Figure 1: Sample Dendogram 

 

In the context of hierarchical clustering, the hierarchy graph is called a dendogram. 

Figure 1 shows a sample dendogram that could be produced from a hierarchical 

clustering algorithm. Unlike with the k-means algorithm, the number of clusters (k) is 

not specified in hierarchical clustering. After the hierarchy is built, the user can 

specify the number of clusters required, from 1 to n. The top level of the hierarchy 

represents one cluster, or k=1. To examine more clusters, we simply need to traverse 

down the hierarchy. 

 

A hierarchical method creates a hierarchical decomposition (using a top-down 

approach) or a hierarchical composition (using a bottom-up approach) that groups 

instances using a tree. 

 

AGNES Method 
 

The AGNES (AGglomerative NESting) method builds a hierarchy graph called a 

dendogram. 



 

Each instance is initially assigned to its own cluster (i.e., each cluster contains a single 

instance). 

 

The clusters are merged into new clusters (i.e., creating nodes at lower levels in the 

graph) until there is only one cluster containing all the instances. 

 

DIAGRAM = Clustering.F.1.b 

 

The similarity between two clusters is measured by the similarity of the closest pair of 

instances. 

 

The two clusters may be merged if the distance between two instances is the minimum 

between any two instances from all the clusters. 

 

The distance between two instances can be determined using any similarity or 

distance measures. 

 

Unlike the partitioning methods, the number of clusters is not specified. 

 

After the hierarchy is built, the user can specify the number of clusters required (i.e., 

from 1 to n). 

 

The top level represents n clusters (or k = n) and fewer clusters (i.e., k < n) can be 

obtained by descending the hierarchy. 

 

The AGNES method (a hierarchical composition approach) 

 
Algorithm: AGNES 

Input: D = a set of n instances of the form (p1, p2, …, pm), where 

each pu represents a coordinate in a m-dimensional space 

Output: K = a nested set of instances (i.e., implicitly 

representing the hierarchy of clusters) 

 

Method: 

1. for i = 1 to n 

2.     Ki = {i} (i.e., instance i) 

3. K = {K1, K2, …, Kn} (i.e., K is a set of single-element 

sets) 

4. c = n + 1 

5. while |K| > 1 
6.     determine the distance between all pairs of instances i 

and j from different clusters in K 



7.     use the pair of clusters associated with the instances i 

and j that have the minimum distance (call them Kmin1 and 

Kmin2, respectively)  

8.     remove Kmin1 and Kmin2 from K 

9.     insert Kc = { Kmin1, Kmin2} into K 

10.     c ++ 

 

Agglomerative clustering methods suffer from a few of major weaknesses: 

 

 The complexity is at least O(n2), so it does not scale well to large datasets. 

 

 Once two clusters are combined, the algorithm cannot split the resulting cluster 

if it turns out to be a bad decision. 

 

 Once two clusters are combined, the algorithm cannot swap instances between 

clusters to further improve the resulting clusters. 

 

Example – Agglomerative nested clustering of a two-dimensional dataset 

 

Instance x y 

1 0 0 

2 1 1 

3 3 1 

4 2 4 

5 6 3 

6 6 6 

7 5 2 

8 3 5 

9 0 2 

10 2 1 

 

Assume the use of the Manhattan distance function. 

 

Steps 1 to 3: Assign each instance to its own cluster. For example, K1 = {1}, K2 

= {2}, …, K10 = {10}. Thus, 

 

K = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}. 

 

Step 5: | K | = 10, so continue. 

 



Step 6: Determine the distance between all pairs of instances from different 

clusters in K (not shown). 

 

Step 7: The minimum distance between two pairs of instances is 1, occurring 

between instances 2 and 10 and instances 3 and 10. Arbitrarily choose instances 

2 and 10. Thus, Kmin1 = K2 = {2} and Kmin2 = K10 = {10}. 

 

Step 8: Remove Kmin1 and Kmin2 from K. Thus, 

 

K = {{1}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}. 

 

Step 9: Insert K11 = {{2}, {10}} into K. Thus, 

 

K = {{1}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {{2}, {10}}}. 

 

Step 5: | K | = 9, so continue. 

 

Step 6: Determine the distance between all pairs of instances from different 

clusters in K (not shown). 

 

Step 7: The minimum distance between two pairs of instances is 1, occurring 

between instances 3 and 10. Thus, Kmin1 = K3 = {3} and Kmin2 = K11 = {{2}, 

{10}}. 

 

Step 8: Remove Kmin1 and Kmin2 from K. Thus, 

 

K = {{1}, {4}, {5}, {6}, {7}, {8}, {9}}. 

 

Step 9: Insert K12 = {{{2}, {10}}, {3}} into K. Thus, 

 

K = {{1}, {4}, {5}, {6}, {7}, {8}, {9}, {{{2}, {10}}, {3}}}. 

 

Step 5: | K | = 8, so continue. 

 

Note: From here on, not all steps are shown. 

 

Step 7: Kmin1 = K1 = {1} and Kmin2 = K12 = {{{2}, {10}}, {3}}. 

 

Step 9: Insert K13. Thus, 

 

K = {{4}, {5}, {6}, {7}, {8}, {9}, {{{{2}, {10}}, {3}}, {1}}}. 



 

Step 5: | K | = 7, so continue. 

 

Step 7: Kmin1 = K4 = {4} and Kmin2 = K8 = {8}. 

 

Step 9: Insert K14. Thus, 

 

K = {{5}, {6}, {7}, {9}, {{{{2}, {10}}, {3}}, {1}}, {{4}, {8}}}. 

 

Step 5: | K | = 6, so continue. 

 

Step 7: Kmin1 = K5 = {5} and Kmin2 = K7 = {7}. 

 

Step 9: Insert K15. Thus, 

 

K = {{6}, {9}, {{{{2}, {10}}, {3}}, {1}}, {{4}, {8}}, {{5}, {7}}}. 

 

Step 5: | K | = 5, so continue. 

 

Step 7: Kmin1 = K9 = {9} and Kmin2 = K13 = {{{{2}, {10}}, {3}}, {1}}. 

 

Step 9: Insert K16. Thus, 

 

K = {{6}, {{4}, {8}}, {{5}, {7}}, {{{{{2}, {10}}, {3}}, {1}}, {9}}}. 

 

Step 5: | K | = 4, so continue. 

 

Step 7: Kmin1 = K6 = {6} and Kmin2 = K15 = {{5}, {7}}. 

 

Step 9: Insert K17. Thus, 

 

K = {{{4}, {8}}, {{{{{2}, {10}}, {3}}, {1}}, {9}}, {{{5}, {7}}, {6}}}. 

 

Step 5: | K | = 3, so continue. 

 

Step 7: Kmin1 = K14 = {{4}, {8}} and Kmin2 = K16 = {{{{{2}, {10}}, {3}}, {1}}, 

{9}}. 

 

Step 9: Insert K18. Thus, 

 



K = {{{{5}, {7}}, {6}}, {{{{{{2}, {10}}, {3}}, {1}}, {9}}, {{4}, 

{8}}}}. 

 

Step 5: | K | = 2, so continue. 

 

Step 7: Kmin1 = K17 = {{{5}, {7}}, {6}} and Kmin2 = K18 = {{{{{{2}, {10}}, 

{3}}, {1}}, {9}}, {{4}, {8}}}. 

 

Step 9: Insert K19. Thus, 

 

K = {{{{{{{{2}, {10}}, {3}}, {1}}, {9}}, {{4}, {8}}}, {{{5, {7}}, {6}}}}. 

 

Step 5: | K | = 1, so stop. 

 

K is the nested set of clusters shown in the following diagram. 

 

DIAGRAM = Clustering.F.1.e 

 

DIANA Method 
 

The DIANA (DIvisive ANAlysis) method is like a reverse AGNES method. 

 

All data are initially assigned to one cluster. 

 

At each step, the cluster with the largest diameter is divided into two new clusters 

until all clusters contain only one instance. 

 

DIAGRAM = Clustering.F.2.b 

 

The DIANA method (a hierarchical decomposition approach) 

 
Algorithm: DIANA 

Input: D = a set of n instances of the form (p1, p2, …, pm), where 

each pu represents a coordinate in a m-dimensional space 

Output: K = a nested set of instances (i.e., implicitly 

representing the hierarchy of clusters) 

 

Method: 

1. K0 = {D} (i.e., K0 contains all the instances in D) 

2. K = {K0} 

3. a = 0 

4. while there is a cluster K' ∈ K such that |Kb|>1  



5.     determine the diameter of each cluster 

6.     let cluster K' be the cluster with the largest diameter 

7.     a ++ 

8.     if |K'| == 2  

9.         arbitrarily select h from the two instances in K' 

10.         Ka = {h} 

11.         K = K ∪ Ka 

12.         K' = K' – h (i.e., h is removed from K') 

13.     else 

14.         Ka = {} 

15.         K = K ∪ Ka 

16.         determine the average distance between all pairs of 

instances i and j in cluster K' 
17.         use the instance h that has the greatest average 

distance 

18.         Ka = Ka ∪ h (i.e., h in Ka is the initial instance in 

a new cluster) 

19.         K' = K' − h (i.e., h is removed from K') 
20.         repeat 

21.             for each instance i ∉ Ka (i.e., where instance i 

is not in the new cluster) 

22.                 average outside distance = Costj∉Ka (i, j) 

(i.e., the average distance between instance i outside Ka 

and all instances j outside Ka) 

23.                 average inside distance = Costj∈Ka (i, j) 

(i.e., the average distance between instance i outside Ka 

and all instances j inside Ka) 

24.                 net distance = average outside distance – 
average inside distance 

25.             use the instance h that has the greatest net 
distance 

26.             if the net distance for instance h > 0 

27.                 Ka = Ka ∪ h (i.e., h is another instance that 
can be added to Ka) 

28.                 K' = K' − h (i.e., h is removed from K') 

29.         until all net distances for each instance are < 0 

 

Example – divisive analysis of a two-dimensional dataset 

 

Instance x y 

1 2 2 

2 5.5 4 

3 5 5 

4 1.5 2.5 



5 1 1 

6 7 5 

7 5.75 6.5 

 

In this example, the data is standardized (for no particular reason) by finding 

the z-score, resulting in the table shown below. 

 

Instance x y 

1 -0.82 -0.88 

2 0.64 0.15 

3 0.43 0.66 

4 -1.03 -0.62 

5 -1.24 -1.39 

6 1.26 0.66 

7 0.74 1.43 

 

Assume the use of the Euclidean distance function. Also, assume that the 

distance between all pairs of points in D has been calculated and stored in a 

proximity matrix, resulting in the table shown below (these values will be used 

frequently in the steps that follow. 

 

Instance 1 2 3 4 5 6 7 

1 0.00 1.78 1.98 0.33 0.66 2.59 2.78 

2 1.78 0.00 0.55 1.83 2.42 0.81 1.28 

3 1.98 0.55 0.00 1.94 2.64 0.83 0.83 

4 0.33 1.83 1.94 0.00 0.80 2.62 2.71 

5 0.66 2.42 2.64 0.80 0.00 3.23 3.44 

6 2.59 0.81 0.83 2.62 3.23 0.00 0.93 

7 2.78 1.28 0.83 2.71 3.44 0.93 0.00 

 

Steps 1 and 2: Assign all instances to one cluster. For example, let K0 = {1, 2, 

3, 4, 5, 6, 7}. 

 

K = {K0} = {{1, 2, 3, 4, 5, 6, 7}}. 

 

Step 3: Initialize a (i.e., the cluster counter). 

 

Step 4: |K0| > 1, so continue. 

 



Step 5: Determine the diameter of each cluster containing more than one 

instance. However, at this point, there is only one cluster, namely, K0, so… 

 

Step 6: Use K0. 

 

Step 7: Increment a. 

 

Step 8: Since |K0| > 2, go to Step 14. 

 

Steps 14 and 15: K1 = {} and K = K ∪ K1. Thus, 

 

K = {{1, 2, 3, 4, 5, 6, 7}, {}}. 

 

Step 16: Calculate the average distance between all pairs of instances in K0. For 

example, the values used to calculate the average for instance 1 correspond to 

the distances from instance 1 to instances 2 (i.e., 1.78), 3 (i.e., 1.98), 4 (i.e., 

033), 5 (i.e., 0.66), 6 (i.e., 2.59), and 7 (i.e., 2.78). 

 

Instance Average Distance to Other Instances 

1 (1.78 + 1.98 + 0.33 + 0.66 + 2.59 + 2.78) / 6 = 1.69 

2 (1.78 + 0.55 + 1.83 + 2.42 + 0.81 + 1.28) / 6 = 1.45 

3 (1.98 + 0.55 + 1.94 + 2.64 + 0.83 + 0.83) / 6 = 1.46 

4 (0.33 + 1.83 + 1.94 + 0.80 + 2.62 + 2.71) / 6 = 1.71 

5 (0.66 + 2.42 + 2.64 + 0.80 + 3.23 + 3.44) / 6 = 2.20 

6 (2.59 + 0.81 + 0.83 + 2.62 + 3.23 + 0.93) / 6 = 1.84 

7 (2.78 + 1.28 + 0.83 + 2.71 + 3.44 + 0.93) / 6 = 2.00 

 

Step 17: Instance 5 has the greatest average distance (i.e., it is least similar to 

the other instances). 

 

Steps 18 and 19: K1 = K1 ∪ 5 and K0 = K0 − 5. Thus, 

 

K = {{1, 2, 3, 4, 6, 7}, {5}}. 

 

Steps 21 to 24: Calculate the average distance from each instance inside K0 to 

the other instances inside K0, and calculate the average distance from each 

instance inside K0 to the instances inside K1. 

 



Instance Average Distance 

Inside K0 

Average Distance 

Inside K1 

Net 

Distance 

1 (1.78 + 1.98 + 0.33 + 

2.59 + 2.78) / 5 = 1.89 

0.66 1.23 

2 (1.78 + 0.55 + 1.83 + 

0.81 + 1.28) / 5 = 1.25 

2.42 -1.17 

3 (1.98 + 0.55 + 1.94 + 

0.83 + 0.83) / 5 = 1.23 

2.64 -1.41 

4 (0.33 + 1.83 + 1.94 + 

2.62 + 2.71) / 5 = 1.89 

0.80 1.09 

6 (2.59 + 0.81 + 0.83 + 

2.62 + 0.93) / 5 = 1.56 

3.23 -1.67 

7 (2.78 + 1.28 + 0.83 + 

2.71 + 0.93) / 5 = 1.71 

3.44 -1.73 

 

Step 25: Instance 1 has the greatest net distance. 

 

Step 26: 1.23 > 0, so… 

 

Steps 27 and 28: K1 = K1 ∪ 1 and K0 = K0 − 1. Thus, 

 

K = {{2, 3, 4, 6, 7}, {1, 5}}. 

 

Step 29: Not all net distances are < 0, so continue at Step 20. 

 

Steps 21 to 24: Calculate the average distance from each instance inside K0 to 

the other instances inside K0, and calculate the average distance from each 

instance inside K0 to the instances inside K1. 

 



Instance Average Distance 

Inside K0 

Average Distance 

Inside K1 

Net 

Distance 

2 (0.55 + 1.83 + 0.81 + 

1.28) / 4 = 1.12 

(1.78 + 2.42) / 2 = 2.10 -0.98 

3 (0.55 + 1.94 + 0.83 + 

0.83) / 4 = 1.04 

(1.98 + 2.64) / 2 = 2.31 -1.27 

4 (1.83 + 1.94 + 2.62 + 

2.71) / 4 = 2.28 

(0.33 + 0.80) /2 = 0.56 1.72 

6 (0.81 + 0.83 + 2.62 + 

0.93) / 4 = 1.30 

(2.59 + 3.23) / 2 = 2.91 -1.61 

7 (1.28 + 0.83 + 2.71 + 

0.93) / 4 = 1.44 

(2.78 + 3.44) / 2 = 3.11 -1.67 

 

Step 25: Instance 4 has the greatest net distance. 

 

Step 26: 1.71 > 0, so… 

 

Steps 27 and 28: K1 = K1 ∪ 4 and K0 = K0 − 4. Thus, 

 

K = {{2, 3, 6, 7}, {1, 4, 5}}. 

 

Step 29: Not all net distances are < 0, so continue at Step 20. 

 

Steps 21 to 24: Calculate the average distance from each instance inside K0 to 

the other instances inside K0, and calculate the average distance from each 

instance inside K0 to the instances inside K1. 

 

Instance Average Distance 

Inside K0 

Average Distance 

Inside K1 

Net 

Distance 

2 (0.55 + 0.81 + 1.28) / 3 

= 0.88 

(1.78 + 1.83 + 2.42) / 3 

= 2.01 

-1.13 

3 (0.55 + 0.83 + 0.83) / 3 

= 0.74 

(1.98 + 1.94 + 2.64) / 3 

= 2.19 

-1.45 

6 (0.81 + 0.83 + 0.93) / 3 

= 0.86 

(2.59 + 2.62 + 3.23) / 3 

= 2.81 

-1.96 

7 (1.28 + 0.83 + 0.93) / 3 

= 1.01 

(2.78 + 3.44 + 2.71) / 3 

= 2.98 

-1.96 

 

Step 25: Instance 2 has the greatest net distance, but… 

 

Step 26: -1.13 < 0, so continue at Step 29. 



 

Step 29: All net distances are < 0, so continue at Step 4. 

 

Step 4: |K0| > 1 and |K1| > 1, so continue. 

 

Step 5: Determine the diameter of each cluster containing more than one 

instance. 

 

Step 6: The diameter of K0 and K1 is 1.28 and 0.80, respectively. Use K0 

because it is largest. 

 

Step 7: Increment a. 

 

Step 8: Since |K0| > 2, go to Step 14. 

 

Steps 14 and 15:  K2 = {} and K = K ∪ K2. Thus, 

 

K = {{2, 3, 6, 7}, {1, 4, 5}, {}}. 

 

Step 16: Calculate the average distance between all pairs of instances in K0. 

 

Instance Average Distance to Other Instances 

2 (0.55 + 0.81 + 1.28) / 3 = 0.88 

3 (0.55 + 0.83 + 0.83) / 3 = 0.74 

6 (0.81 + 0.83 + 0.93) / 3 = 0.86 

7 (1.28 + 0.83 + 0.93) / 3 = 1.01 

 

Step 17: Instance 7 has the greatest average distance (i.e., it is least similar to 

the other instances). 

 

Steps 18 and 19: K2 = K2 ∪ 7 and K0 = K0 − 7. Thus, 

 

K = {{2, 3, 6}, {1, 4, 5}, {7}}. 

 

Steps 21 to 24: Calculate the average distance from each instance inside K0 to 

the other instances inside K0, and calculate the average distance from each 

instance inside K0 to the instances inside K2. 

 



Instance Average Distance 

Inside K0 

Average Distance 

Inside K2 

Net 

Distance 

2 (0.55 + 0.81) / 2 = 

0.68 

1.28 -0.60 

3 (0.55 + 0.83) / 2 = 

0.69 

0.83 -0.14 

6 (0.81 + 0.83) / 2 = 

0.82 

0.93 -0.11 

 

Step 25: Instance 6 has the greatest net distance, but … 

 

Step 26: -0.11 < 0, so continue at Step 29. 

 

Step 29: All net distances are < 0, so continue at Step 4. 

 

Step 4: |K0| > 1 and |K1| > 1, so continue. 

 

Step 5: Determine the diameter of each cluster containing more than one 

instance. 

 

Step 6: The diameter of K0 and K1 is 0.83 and 0.80, respectively. Use K0 

because it is largest. 

 

Step 7: Increment a. 

 

Step 8: Since |K0| > 2, go to Step 14. 

 

Steps 14 and 15:  K3 = {} and K = K ∪ K3. Thus, 

 

K = {{2, 3, 6}, {1, 4, 5}, {7}, {}}. 

 

Step 16: Calculate the average distance between all pairs of instances in K0. 

 

Instance Average Distance to Other Instances 

2 (0.55 + 0.81) / 2 = 0.68 

3 (0.55 + 0.83) / 2 = 0.69 

6 (0.81 + 0.83) / 2 = 0.82 

 

Step 17: Instance 6 has the greatest average distance (i.e., it is least similar to 

the other instances). 

 



Steps 18 and 19: K3 = K3 ∪ 6 and K0 = K0 − 6. Thus, 

 

K = {{2, 3}, {1, 4, 5}, {7}, {6}}. 

 

Steps 21 to 24: Calculate the average distance from each instance inside K0 to 

the other instances inside K0, and calculate the average distance from each 

instance inside K0 to the instances inside K3. 

 

Instance Average Distance 

Inside K0 

Average Distance 

Inside K3 

Net 

Distance 

2 0.55 0.81 -0.26 

3 0.55 0.83 -0.28 

 

Step 25: Instance 3 has the greatest net distance, but … 

 

Step 26: -0.28 < 0, so continue at Step 29. 

 

Step 29: All net distances are < 0, so continue at Step 4. 

 

Step 4: |K0| > 1 and |K1| > 1, so continue. 

 

Step 5: Determine the diameter of each cluster containing more than one 

instance. 

 

Step 6: The diameter of K0 and K1 is 0.55 and 0.80, respectively. Use K1 

because it is largest. 

 

Step 7: Increment a. 

 

Step 8: Since |K1| > 2, go to Step 14. 

 

Steps 14 and 15: K4 = {} and K = K ∪ K4. Thus, 

 

K = {{2, 3}, {1, 4, 5}, {7}, {6}, {}}. 

 

Step 16: Calculate the average distance between all pairs of instances in K1. 

 

Instance Average Distance to Other Instances 

1 (0.33 + 0.66) / 2 = 0.50 

4 (0.33 + 0.80) / 2 = 0.57 

5 (0.66 + 0.80) / 2 = 0.73 



 

Step 17: Instance 5 has the greatest average distance (i.e., it is least similar to 

the other instances). 

 

Steps 18 and 19: K4 = K4 ∪ 5 and K1 = K1 − 5. Thus, 

 

K = {{2, 3}, {1, 4}, {7}, {6}, {5}}. 

 

Steps 21 to 24: Calculate the average distance from each instance inside K1 to 

the other instances inside K1, and calculate the average distance from each 

instance inside K1 to the instances inside K4. 

 

Instance Average Distance 

Inside K1 

Average Distance 

Inside K4 

Net 

Distance 

1 0.33 0.66 -0.33 

4 0.33 0.80 -0.47 

 

Step 25: Instance 4 has the greatest net distance, but … 

 

Step 26: -0.47 < 0, so continue at Step 29. 

 

Step 29: All net distances are < 0, so continue at Step 4. 

 

Step 4: |K0| > 1 and |K1| > 1, so continue. 

 

Step 5: Determine the diameter of each cluster containing more than one 

instance. 

 

Step 6: The diameter of K0 and K1 is 0.55 and 0.33, respectively. Use K0 

because it is largest. 

 

Step 7: Increment a. 

 

Steps 8 and 9: |K0| = 2, so arbitrarily select instance 2 from K0. 

 

Steps 10 to 12: K5 = {2}, K = K ∪ K5, and K0 = K0 − 2. Thus, 

 

K = {{3}, {1, 4}, {7}, {6}, {5}, {2}} 

 

and continue at Step 4. 

 



Step 4: |K1| > 1, so continue. 

 

Step 5: Determine the diameter of each cluster containing more than one 

instance. However, at this point, there is only one cluster, namely, K1, so… 

 

Step 6: Use K1. 

 

Step 7: Increment a. 

 

Steps 8 and 9: |K1| = 2, so arbitrarily select instance 1 from K1. 

 

Steps 10 to 12: K6 = {1}, K = K ∪ K6, and K1 = K1 − 1.  Thus, 

 

K = {{3}, {4}, {7}, {6}, {5}, {2}, {1}} 

 

and continue at Step 4. 

 

Step 4: There are no more clusters containing more than one instance, so done. 

 

Single Link and Double Link Clusters 
 

The distance function in this algorithm can determine similarity of clusters through 

many methods, including single link and group-average. Single link calculates the 

distance between two clusters as the shortest distance between any two objects 

contained in those clusters. Group-average first finds the average values for all 

objects in the group (i.e., cluster) and the calculates the distance between clusters as 

the distance between the average values. 

 

Each object in D is initially used to create a cluster containing a single object. These 

clusters are successively merged into new clusters, which are added to the set of 

clusters, K. When a pair of clusters is merged, the original clusters are removed from 

K. Thus, the number of clusters in K decreases until there is only one cluster 

remaining, containing all the objects from D. The hierarchy of clusters is implicitly 

represented in the nested sets of K. 


