Notes 06-5: Density Methods

A density method groups neighbouring objects into clusters based upon density
conditions (i.e., such as the number of objects within a given radius of each object in
the cluster exceeding some threshold).

The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) method
grows regions with sufficiently high density into clusters and discovers clusters of
arbitrary shape in databases with noise (i.e., outliers).
Example — shape of clusters that DBSCAN can find

DIAGRAM = Clustering.G.1.a
The basic idea is that for each instance in a cluster, the neighbourhood of a given
radius has to contain at least a minimum number of instances (i.e., the density in the
neighbourhood has to exceed some threshold).

A discussion of DBSCAN relies on a number of concepts:

The e-neighbourhood of an instance (i.e., a point) consists of the instances (i.e.,
points) within a radius ¢ of the instance.

A core instance is an instance whose e-neighbourhood contains at least some
minimum number of instances, minPts.

Example — core instances
DIAGRAM = Clustering.G.1.c1

Given a set of instances, D, an instance i is directly density-reachable from instances j
if i is within the e-neighbourhood of j, and j is a core instance.

Example — directly density-reachable instances
DIAGRAM = Clustering.G.1.c2

An instance i is density-reachable from instance j with respect to ¢ and minPts in a
set of instances, D, if there is a chain of instances iy, iz, ..., in, i1 = j and in = i, such
that ix+1 is directly density-reachable from ix with respect to ¢ and minpts, for 1 <k <
n, ik € D.

Example — density-reachable instances
DIAGRAM = Clustering.G.1.c3

An instance i is density-connected to instance j with respect to ¢ and minpts in a set
of instances, D, if there is an instance p € D such that both i and j are density-
reachable from p with respect to ¢ and minpts.

Example — density-connected instances
DIAGRAM = Clustering.G.1.c4

A cluster K with respect to ¢ and minPts is a non-empty subset of a set of instances,
D, that satisfies the following conditions:

e Forallinstancesiand |, if i € K and j is density reachable from i with respect to
¢and minPts, then j € K.

e Forall instances i, j € K, 1 is density-connected to j with respect to ¢ and

minPts.

If Ky, ..., Kk are the clusters of a set of instances, D, with respect to ¢i and minPtsi, | =
1, ..., k, then noise is the set of instances in D not belonging to any Ki.

The general approach used by DBSCAN

DBSCAN searches for clusters by checking the e-neighbourhood of each instance in
the database.

If the e-neighbourhood of an instance i contains more than minpts, a new cluster with
I as the core instance is created.

Directly density-reachable instances from these core instances are iteratively collected
(may involve merging of a few density-reachable clusters).

The process terminates when no new instances are added to any cluster.

The DBSCAN method

Algorithm: DBSCAN

Input: D = a set of n instances of the form (p1, P2, ..., Pm)
& = the radius of the neighbourhood for each instance
minPts = the minimum number of instances in an &-
neighbourhood required for an instance to be a core instance
Output: K = a set of clusters

Method:
1. clusterID =1

2 for 1 = 1 to |D|

3. currentInstance = GetNextInstance (D, 1)

4 if currentInstance.clusterID == UNCLASSIFIED

5 if ExpandCluster (D, currentInstance, clusterID,
minPts)

6. clusterID ++

7. for 1 =1 to |D]

8. currentInstance = GetNextInstance (D, 1)

9. if currentInstance.clusterID != NOISE

10 Kcurrentlnstance.clusterID = Kcurrentlnstance.clusterID U
currentInstance

11. for i = 1 to clusterID - 1

12. K=KuUK

Algorithm: ExpandCluster
Input: D = a set of n instances of the form (p1, P2, ..., Pm)
currentInstance = an instance in D
clusterID = identifier for the cluster currently being
expanded
& = the radius of the neighbourhood for each instance
minPts = the minimum number of instances in an &-
neighbourhood required for an instance to be a core instance
Output: TRUE if the cluster was expanded, otherwise, FALSE
Method:
1. Dsceas = InstancesIn_ & Neighbourhood (currentInstance, D,
if minPts > |Dseeds|
ChangeClusterID (D, currentInstance, NOISE)
return FALSE

for i = 1 to |Dseeds|
currentSeed = GetNextInstance (Dseegs, 1)

2

3

4.

5. else
6

7

8 ChangeClusterID (D, currentSeed, clusterID)

9. Delete (currentInstance, Dseceds)

10. while | Dseeas | > O

11. currentInstance = GetFirstInstance (Dseceds)
12. & Neighbourhood = InstancesIn & Neighbourhood

(currentInstance, D, ¢)

&,

€)

13. if |& Neighbourhood| >= minPts

14. for 1 = 1 to |& Neighbourhood]|
15. candidateInstance = GetNextInstance

(¢ Neighbourhood, 1)

16. if candidateInstance.clusterID &
{UNCLASSIFIED, NOISE}

17. if candidateInstance.clusterID ==
UNCLASSIFIED

18. Append (Dseess, candidateInstance)

109. ChangeClusterID (D, candidateInstance,
clusterID)

20. Delete (Dseceqs, currentInstance)

21. return TRUE

Example - DBSCAN

Instance |x |y | clusterlD

1 2 |3 | Unclassified
2 2 |5 | Unclassified
3 2 |6 | Unclassified
4 3 |2 | Unclassified
5 3 |4 | Unclassified
6 3 |6 | Unclassified
7 3 |7 | Unclassified
8 4 |1 | Unclassified
9 4 |4 | Unclassified
10 4 |5 | Unclassified
11 4 |7 | Unclassified
12 5 |2 | Unclassified
13 5 |6 | Unclassified
14 5 |9 | Unclassified
15 6 |2 | Unclassified
16 6 |5 | Unclassified
17 6 |7 | Unclassified
18 6 |9 | Unclassified
19 7 |6 | Unclassified
20 7 |7 | Unclassified
21 8 |6 | Unclassified

Assume ¢ = 1 and minPts = 3.

Step 1: Initialize clusterID
Step 2: Initialize i = 1.Sincei <= |D|, go to Step 3.
Step 3: currentInstance = (2,3,U)

Step 4: Since currentInstance.clusterID = UNCLASSIFIED, go to Step
S.

Step 5: ExpandCluster (D, (2,3,U),1,1,3)

Step 5.1: Determine the instances within the e-neighbourhood of
currentInstance = (2,3,U). Thus, Dsceas = { (2,3,U) }.

Step 5.2: Since minPts > |Dseeas |, there are not sufficient instances within
the e-neighbourhood, so go to Step 5.3.

Step 5.3: At this point, currentInstances IS considered to be noise. Thus,
currentInstance = (2,3,N).

Step 5.4: The cluster could not be expanded around currentInstance, SO
return FALSE and go back to Step 2.

Step 2: Increment i = 2.Sincei <= |D]J, go to Step 3.
Step 3: currentInstance = (2,5,0).

Step 4: Since currentInstance.clusterID = UNCLASSIFIED, go to Step
5.

Step 5: ExpandCluster (D, (2,5,U),1,1,3).

Step 5.1: Determine the instances within the e-neighbourhood of
currentInstance = (2,5,U). Thus, Dsceas = {(2,5,U), (2,6,0)}.

Step 5.2: Since minPts > |Dseeas |, there are not sufficient instances within
the e-neighbourhood, so go to Step 5.3.

Step 5.3: At this point, currentInstance is considered to be noise. Thus,
currentInstance = (2,5,N).

Step 5.4: The cluster could not be expanded around currentInstance, SO
return FALSE and go back to Step 2.

Step 2: Increment i = 3.Sincei <= |D]J, go to Step 3.
Step 3: currentInstance = (2,6,U).

Step 4: Since currentInstance.clusterID = UNCLASSIFIED, go to Step
5.

Step 5: ExpandCluster (D, (2,6,U),1,1,3).

Step 5.1: Determine the instances within the e-neighbourhood of

currentInstance = (2,6,U). Thus, Dsceas = {(2,6,U), (2,5,N),
(3,6,0)}.
Step 5.2: Since minPts = |Dseeas |, there are sufficient instances within the -

neighbourhood, so go to Step 5.6.

Step 5.6: Initialize i = 1.Since i <= |Dseceas |, o to step 5.7.
Step 5.7: currentSeed = (2,6,U).

Step 5.8: Since clusterID = 1, currentSeed = (2,6,1).
Step 5.6: Increment i = 2.Since i <= |Dseeas!, O t0 step 5.7.
Step 5.7: currentSeed = (2,5,N).

Step 5.8: Since clusterID = 1, currentSeed = (2,5,1).
Step 5.6: Increment i = 3.Since i <= |Dseeas|, g0 to Step 5.7.
Step 5.7: currentSeed = (3,6,0U).

Step 5.8: Since clusterID = 1, currentSeed = (3,6,1).

Step 5.9: currentInstance = (2,6,1) isremoved from Dseceqs. Thus,
Dseeds = {(21511)1 (3/6/1)}

Step 5.10:
Step 5.11:
Step 5.12:
Step 5.13:

Step 5.20:

Since |Dseeas| > 0, g0 to step 5.11.

currentInstance = (2,5,1).

& neighbourhood = {(2,5,1)}.

Since | € neighbourhood| < minPts, go to step 5.20.
currentInstance = (2,5,1) isremoved from Dsceqs. Thus,

Dseeas = {(3,6,1)}.Go back to step 5.10.

Step 5.10:
Step 5.11:
Step 5.12:
Step 5.13:
Step 5.14:
Step 5.15:

Step 5.16:
5.14.

Step 5.14:
5.15.

Step 5.15:

Step 5.16:
5.14.

Step 5.14:
5.15.

Step 5.15:

Since |Dseeas| > 0, g0 to step 5.11.
currentInstance = (3,6,1).
&€ neighbourhood = {(3,6,1), (2,6,1), (3,7,0)}.

Since |¢ neighbourhood| >= minPts, go to step 5.14.

Initialize i = 1.Since i <= |& neighbourhood|, go to step 5.15.

candidateInstance = (3,60,1).

Since candidateInstance.ClusterID = 1, Qo back to step

Increment i

2.Since i <= |& neighbourhood|, go to step

candidatelInstance = (2,6,1).

Since candidateInstance.ClusterID = 1, Qo back to step

Increment i = 3.Since i <= |& neighbourhood]|, go to Step

candidateInstance = (3,7,0).

Step 5.16: Since candidateInstance.ClusterID
step 5.17.

UNCLASSIFIED, go to

Step 5.17: Since candidateInstance.ClusterID
step 5.18.

UNCLASSIFIED, go to
Step 5.18: candidateInstance has the potential to expand the cluster, so
Dseeds = {(31611)1 (3/7/U)}-

Step 5.19: Since clusterID = 1, candidateInstance = (3,7,1).

Step 5.20: currentInstance = (3,6,1) isremoved from Dseceas. Thus,
Dseeas = {(3,7,1)}.Go back to step 5.10.

Step 5.10: Since | Dseeas| > 0, go to step 5.11.

Step 5.11: currentInstance = (3,7,1).

Step 5.12: ¢ neighbourhood = {(3,7,1), (3,6,1), (4,7,U)}.

Step 5.13: Since | & neighbourhood| >= minPts, g0 to step 5.14 and repeat
step 5.14 t0 5.16 for (3,7,1) and (3,6, 1). As a result of this, there is no
changeto (3,7,1), (3,6,1) and Dseeas.

Step 5.14: Initialize i = 3.Since i <= |& neighbourhood|, go to step 5.15.

Step 5.15: candidateInstance = (4,7,U).

Step 5.16: Since candidateInstance.ClusterID
step 5.17.

UNCLASSIFIED, go to

Step 5.17: Since candidatelInstance.ClusterID
step 5.18.

UNCLASSIFIED, go to

Step 5.18: candidateInstance has the potential to expand the cluster, so
Dseeds = {(31711)1 (4/7/U)}-

Step 5.19: Since clusterID = 1, candidateInstance = (4,7,1).

Step 5.20: currentInstance = (3,7,1) isremoved from Dseceas. Thus,
Dseeas = {(4,7,1)}.Go back to step 5.10.

Step 5.10: Since | Dseeas| > 0, go to step 5.11.

Step 5.11: currentInstance = (4,7,1).

Step 5.12: ¢ neighbourhood = {(4,7,1), (3,7,1)}.

Step 5.13: Since |& neighbourhood| < minPts, go to step 5.20.

Step 5.20: currentInstance = (4,7,1) isremoved from Dseceas. Thus,
Dseeas = @. GO back to step 5.10.

Step 5.10: Since | Dseeas| = 0, go to step 5.21.

Step 5.21: Return TRUE.

Step 6: Increment cluster1D = 2. Go back to step 2.
Step 2: Increment i = 4.Sincei <= |D]J, go to Step 3.
Step 3: currentInstance = (3,2,0).

Step 4: Since currentInstance.clusterID = UNCLASSIFIED, go to Step
5.

Step 5: ExpandCluster (D, (3,2,U),2,1,3).

Step 5.1: Determine the instances within the e-neighbourhood of
currentInstance = (3,2,U). ThuS, Deceas = {(3,2,U)}.

Step 5.2: Since minPts > |Dsceas |, there are not sufficient instance within the
e-neighbourhood, so go to Step 5.3.

Step 5.3: At this point, currentInstance Is considered to be noise. Thus,
currentInstance = (3,2,N).

Step 5.4: The cluster could not be expanded around currentInstance, SO
return FALSE and go back to Step 2.

Step 2: Increment i = 5.Sincei <= |D]J, go to Step 3.
Step 3: currentInstance = (3,4,0).

Step 4: Since currentInstance.clusterID = UNCLASSIFIED, go to Step
5.

Step 5: ExpandCluster (D, (3,4,U),2,1,3).

Step 5.1: Determine the instances within the e-neighbourhood of
currentInstance = (3,4,U). Thus, Dsceas = {(3,4,U), (4,4,0)}.

Step 5.2: Since minPts > |Dseeas |, there are not sufficient instances within
the e-neighbourhood, so go to Step 5.3.

Step 5.3: At this point, currentInstance is considered to be noise. Thus,
currentInstance = (3,4,N).

Step 5.4: The cluster could not be expanded around currentInstance, SO
return FALSE and go back to Step 2.

Step 2: Increment i = 6and i = 7 and repeat steps 3 and 4 for (3,6,1) and
(3,7, 1) which are have already been placed in cluster 1.

Step 2: Increment i = 8 and do steps 2 to 5.4 for (4, 1, N) which has already
been classified as noise.

Step 2: Increment i = 9.Sincei <= |D]J, go to Step 3.
Step 3: currentInstance = (4,4,U).

Step 4: Since currentInstance.clusterID = UNCLASSIFIED, go to Step
5.

Step 5: ExpandCluster (D, (4,4,U),2,1,3).
Step 5.1: Determine the instances within the e-neighbourhood of

currentInstance = (4,4,U). Thus, Dseeas = {(4,4,U), (3,4,N),
(4,5,0) }.

Step 5.2: Since minPts = |Dseeas |, there are sufficient instances within the -
neighbourhood, so go to Step 5.6.

Step 5.6: Initialize i = 1.Since i <= |Dseeas!, o to step 5.7.
Step 5.7: currentSeed = (4,4,U).

Step 5.8: Since clusterID = 2, currentSeed = (4,4,2).
Step 5.6: Increment i = 2.Since i <= |Dseeas!, O t0 step 5.7.
Step 5.7: currentSeed = (3,4,N).

Step 5.8: Since clusterID = 2, currentSeed = (3,4,2).
Step 5.6: Increment i = 3.Since i <= |Dseeas|, g0 to Step 5.7.
Step 5.7: currentSeed = (4,5,U).

Step 5.8: Since clusterID = 1, currentSeed = (4,5,2).

Step 7: Initialize i = 1.Sincei <= |DJ, go to Step 8.

Step 8: currentInstance = (2,3,N).

Step 9: Since currentInstance.clusterID = NOISE, g0 back to step 7.
Step 7: Increment i = 2.Sincei <= |D]J, go to Step 8.

Step 8: currentInstance = (2,5,1).

Step 9: Since currentInstance.clusterID = 1, Qo to step 10.

Step 10: K1 = {(2,5,1)}. Go back to step 7.

Step 7: Increment i = 3.Sincei <= |D]J, go to Step 8.

Step 8: currentInstance = (2,6,1).
Step 9: Since currentInstance.clusterID = 1, (o to step 10.

Step10: K1 = {(2,5,1), (2,6,1)}.Go back to step 7.

Step 7: Increment i = 5.Sincei <= |D]J, go to Step 8.
Step 8: currentInstance = (3,4,2).

Step 9: Since currentInstance.clusterID = 2, (o to step 10.

Step 10: K2 = {(3,4,2)}.Go back to step 7.
Step10: K1 = {(2,5,1), (2,6,1), (3,6,1)}.Go backto step 7.
= {(3,4,2), (4,4,2)}.Goback to step 7.

Step 10: K>

Step 11: Initialize i = 1.Since i <= clusterID - 1, (0 to step 12.

Step12: K = {{2,5,1), (2,6,1), (3,6,1), (3,7,1), (4,7,1)}}.
Go back to step 11.

Step 11: Initialize i = 2.Since i <= clusterID - 1,0 to step 12.

Step12:K = {{2,5,1), (2,6,1), (3,6,1), (3,7,1), (4,7,1)},
{(3,4,2), (4,4,2), (4,5,2)}}.Gobackto step 11.

The average run time complexity of DBSCAN is O(n log n).
The experimental results reported in the original paper are all incorrect because the
authors were unaware of a serious bug in their program (they weren’t clustering all the
points in the dataset).
The OPTICS (Ordering Points To Identify the Clustering Structure) method extends
the DBSCAN method to consider a set of distance parameter values (i.e., a set of &’s)
in order to generate a set of clusters whose densities may be different.
Example — Clusters with different density parameters

DIAGRAM = Clustering.G.2.a

Example — Nested clusters

DIAGRAM = Clustering.G.2.b

