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Abstract

Belief update in a Bayesian network using Lazy Propagation (LP) proceeds by message
passing over a junction tree (JT). In the process of computing a message, a set of variables
is eliminated. As the JT provides only a partial order on the elimination of variables, it
is necessary to identify elimination orders on-line. This paper considers the importance
of elimination heuristics in LP when using Variable Elimination (VE) as the message
and single marginal computation algorithm. It considers well-known cost measures for
selecting the next variable to eliminate and a new cost measure. The empirical evaluation
examines different heuristics as well as sequences of cost measures, and was conducted
on real-world and randomly generated Bayesian networks. The results show that for
most cases performance is robust relative to the cost measure used and in some cases the
elimination heuristic can have a significant impact on performance, especially for JTs that
are non-optimal.

1 Introduction

A Bayesian network (BN) (Pearl, 1988) is
a powerful and popular model for probabilis-
tic inference. Its graphical nature makes it
well-suited for representing complex problems
where the interactions between entities repre-
sented as variables can be described using con-
ditional probability distributions (CPDs). Since
the computational complexity of both exact
and approximate probabilistic inference in BNs
are NP-hard (Cooper, 1990b) and (Dagum and
Luby, 1993), we have to rely on methods that
in the worst case have exponential complexity
(unless P=NP). To improve feasibility of prob-
abilistic inference using such methods, it is im-
portant to consider extensions of existing meth-
ods that can lead to better performance.

There exist two main classes of algorithms
for probabilistic inference in a BN: algorithms
based on message passing in a secondary com-

putational structure, i.e., a JT, (Lauritzen
and Spiegelhalter, 1988; Jensen et al., 1990;
Shenoy and Shafer, 1990) and direct algo-
rithms operating on the CPDs associated with
the BN, including belief propagation (Pearl,
1982; Kim and Pearl, 1983), VE (Zhang
and Poole, 1994), the peeling method (Can-
nings et al., 1978), arc-reversal (Olmsted,
1983; Shachter, 1986), Recursive Decomposi-
tion (Cooper, 1990a) and Symbolic Probabilis-
tic Inference (SPI) (Shachter et al., 1990; Li
and D’Ambrosio, 1994; Bloemeke and Valtorta,
1998). LP (Madsen and Jensen, 1999) is a hy-
brid algorithm combining Shenoy-Shafer prop-
agation and direct algorithms with the aim of
exploiting independence properties induced by
evidence and barren variables (Shachter, 1986).

This paper considers the importance of elim-
ination heuristics in LP when using VE as the
message and single marginal computation algo-
rithm. The importance is assessed by an empir-
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ical evaluation, including both real-world and
randomly generated BNs. A total of six differ-
ent heuristics for selecting the next variable to
eliminate are considered along with sequences
of cost measures.

The experimental results confirm the assump-
tion that the triangulating order can have a
large impact on performance and that the ef-
fectiveness of using multiple cost measures de-
pends on the structure of the network and its
JT. Multiple cost measures appear to be most
effective on non-optimal JTs, and less so on
(near) optimal JTs.

2 Preliminaries and Notation

Here preliminaries and notation are introduced.

2.1 Bayesian Networks

Let X = {X1, . . . , Xn} be a set of discrete ran-
dom variables such that dom(X) is the state
space of X and ||X|| = |dom(X)|. A dis-
crete BN N = (X , G,P) over X consists of
an acyclic directed graph (DAG) G = (V,E)
with vertices V and edges E and a set of CPDs
P = {P (X |pa(X)) : X ∈ X}, where pa(X) de-
notes the parents of X in G (Pearl, 1988; Cowell
et al., 1999; Kjærulff and Madsen, 2008). The
BN N is an encoding of a joint probability dis-
tribution over X

P (X ) =
n∏
i=1

P (Xi |pa(Xi)).

Belief update in N is defined as the task of
computing the posterior marginal P (X | ε), for
each non-evidence variable X ∈ X \ Xε given a
set of variable instantiations ε, where Xε ⊆ X is
the set of variables instantiated by ε.

A potential on dom(φ) = Y is a function φ
such that φ(y) ≥ 0, for each configuration y ∈
dom(Y) and at least one φ(y) is positive (Shafer,
1996). The domain graph G({φ}) = (V,E)
induced by a potential φ is defined as the
graph over V = dom(φ) with edges E =
{(H1, H2), (H2, H1) | H1, H2 ∈ head(φ)} ∪
{(T,H) | H ∈ head(φ), T ∈ tail(φ)} where
head(φ) and tail(φ) are the conditioned and
conditioning variables of dom(φ), respectively.

That is, G contains an undirected edge (H1, H2)
for each pair H1, H2 ∈ head(φ) and a directed
edge (T,H) for each pair T ∈ tail(φ) and H ∈
head(φ) (Madsen, 2006).

The domain graph of a set of poten-
tials Φ = {φ1, . . . , φm} is defined as G(Φ) =⋃
φ∈ΦG({φ}). In general, a domain graph will

have both directed and undirected edges.
Barren variables are variables that are neither

evidence nor target variables and have only bar-
ren descendants, if any (Shachter, 1986). The
notion of barren variables can be extended to
domain graphs (Madsen, 2006).

The weight w(X,Y ) of an edge (X,Y ) in a
graph G is defined as w(X,Y ) = ||X|| · ||Y ||.
2.2 Lazy Propagation

LP computes all single marginals in a BN based
on massage passing in a JT T = (C,S) with
cliques C and separators S. T is constructed
from N = (X , G,P) by moralisation and trian-
gulation of G. Optimal decomposition is, how-
ever, NP-hard (Wen, 1991). Hence, the use of
heuristics is justified (unless P=NP).

Once T is constructed, the CPD of each X ∈
X is associated with a clique C such that
fa(X) ⊆ C, where fa(X) = {X} ∪ pa(X). We
let ΦC denote the set of CPDs associated with
C ∈ C. As part of the initialisation process
CPDs are reduced to reflect the evidence ε.

Belief update proceeds by passing messages
between cliques over separators in two rounds
relative to a root clique. Two messages are
passed over each S ∈ S; one message in each di-
rection. The message ΦA→B passed from clique
A to clique B consists of a set of probability
potentials and it is computed by eliminating
variables from a combination of potentials ΦA

associated with A and messages received from
neighboring cliques except B using VE:

ΦA→B =
∑
A\B

(ΦA ∪
⋃

C∈adj(A)\{B}
ΦC→A),

where adj(A) are the cliques adjacent to C.
Prior to marginalisation, barren variables (and
their potentials) are removed, and only poten-
tials for variables not separated from S by ε are
included in the calculation of ΦA→B.
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The structure of T induces a partial order on
the elimination of A \ B. This means that for
each message ΦA→B (or each marginal P (X |ε)),
LP has to determine the elimination order σ
over A \ B on-line. In order not to jeopardise
performance, it is important that the algorithm
for finding σ is fast. As triangulation, in gen-
eral, is NP-hard, we need to rely on heuristics.

3 Variable Elimination Heuristics

In LP, as described above, VE (Zhang and
Poole, 1994) (equivalent to the fusion op-
erator (Shenoy, 1997) and Bucket elimina-
tion (Dechter, 1999)) is used for computing mes-
sages and single marginals. If Φ is a set of po-
tentials and Y is a set of variables to eliminate
from Φ, then LP uses VE to eliminate one vari-
able Y ∈ Y at a time by computing:

φY =
∑
Y

∏
φ∈ΦY

φ,

Φ∗ = Φ \ ΦY ∪ {φY },

where ΦY = {φ ∈ Φ : Y ∈ dom(φ)}.
In the construction of T , it may be worth

spending additional resources on finding a
(near) optimal triangulation as this step is
performed only once and any improvement
achieved will impact performance of all subse-
quent belief update operations. On the other
hand, for the online triangulation, the aim is to
produce an efficient elimination order σ fast. In
some cases σ has few variables.

For variable X, we consider the cost mea-
sures sd(X) (degree of X (or clique candi-
date size minus one (Rose, 1973))), sdw(X)
(sum of the weights of the edges adjacent to
X), sfi(X) (number of fill-in-edges from elim-
inating X (Rose, 1973)), sfiw(X) (sum of the
weights of the fill-in-edges induced by elim-
inating X (Jensen, 2012)), scw(X) (weight
of the clique candidate induced by elimi-
nating X (Kjærulff, 1990)) and sH2(X) =
scw(X)/||X|| (Cano and Moral, 1994).

Cano and Moral (1994) evaluated six heuris-
tics H1, . . . , H6. They found H1 is equivalent
to scw, while H3-H6 are variants of scw(X) ad-
justed for the size of candidate cliques includ-

ing X, i.e., maximum size or sum of sizes. H2
is as fast to compute as H1 and produces bet-
ter results, whereas H3 to H6 are expensive to
compute. We consider only H2 for online trian-
gulation.

Notice that the scores sdw(X), sfiw(X),
scw(X) and sH2(X) all use the notion of weight
of an edge (X,Y ) between X and an adjacent
variable Y or a set of variables.

X5

X7 X6

X3 X4

X2

Figure 1: The domain graph for Example 1.

Example 1. Let Φ = {φ(X2), φ(X3 | X2),
φ(X4 | X2), φ(X7 | X3), φ(X6 | X4), φ(X5 |
X7, X8)} be a set of potentials, with G(Φ)
shown in Figure 1, from which we want to com-
pute φ(X5) and assume ||Xi|| = i. Different
heuristics will produce different elimination or-
ders for the computation of φ(X5) and assign
the same score to some variables. For instance,
sfi(X2) = sfi(X3) = sfi(X4) = 1, sfiw(X2) =
sfiw(X4) = sH2(X2) = sH2(X4) = 12, and
sdw(X2) = 14.

Example 1 also illustrates that none of
the heuristics finds the optimal order σ =
(X4, X3, X2, X6, X7).

4 The VarElim Algorithm

VarElim is a new algorithm for eliminating a set
of variables Y from a set of potentials Φ with do-
main graph G(Φ), taking as input a sequence of
cost measures S = (s1, . . . , sn) to identify the
next variable to eliminate (see Algorithm 1).
Starting with i = 1, if there is a tie for the
best value in a cost measure si, the algorithm
proceeds to consider si+1. The algorithm pro-
ceeds through the order to identify the variable
to eliminate next.
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Data: Let Y be the variables to eliminate
from Φ and S = (s1, . . . , sn) be an
ordered sequence of score functions.

Result: Φ∗ =
∑
Y Φ.

begin
1 foreach Y ∈ Y do

for i = 1 to n do Compute si(Y )
end
A0 = Y

2 while |A0| > 0 do
for i = 1 to n do

3 Set Ai = argY ∈Ai−1
min si(Y )

end
4 Eliminate Y ∈ An

Set A0 = A0 \ {Y }
5 Recompute si(Y ′) for Y ′ ∈ adj(Y ),

for i = 1, . . . , n
end

end
Algorithm 1: VarElim.

The loop in Step 1 computes the costs si(Y )
for Y ∈ Y. The loop in Step 2 iterates until all
variables are eliminated. In Step 3, Ai ⊆ Ai−1

is the set of variables with minimum cost in
the score function si. Notice that |Ai−1| = 1
means that Y is unique. If |An| = 1, then a
unique variable has been identified. If |An| > 1,
then these variables received the same score for
each si, for i = 1, 2, . . . , n and Y is selected
at random in Step 4. In this case, the score
functions in S were not able to break the ties
between elements of An. In Step 4, Y is elim-
inated as explained in Section 3 producing an
updated set of potentials Φ∗. Notice that Φ is
updated at each iteration and si is recomputed
in Step 5 from G(Φ∗).

Breaking ties in cost measures in relation to
LP with AR was studied by Butz et al. (2011)
as well as Madsen and Butz (2012), whereas
Cano and Moral (1994) suggested tie break-
ing rather than selecting randomly between
variables with equally good scores, and
Velev and Gao (2009) suggested tie break-
ing by looking at the degrees of vari-
ables adjacent to the variable to eliminate.

Table 1: BNs and JTs.

N |X |, |C| maxC∈C s(C)
∑

C∈C s(C)

Barley 48, 36 7,257,600 17,140,796
KK 50, 38 5,806,080 14,011,466
Mildew 35, 29 1,249,280 3,400,464
OOW solo 40, 29 1,644,300 4,651,788
ship-ship 50, 35 4,032,000 24,258,572

Bertele and Brioschi (1972) considered the se-
quences (d,fi) and (fi, d) to break ties.

Example 2. Consider again Example 1 com-
puting φ(X5) using VarElim with S =
(sfi, sfiw, sH2, sdw). The iteration in Step 3
will produce A1 = {X2, X3, X4, X6, X7}, A1 =
{X2, X3, X4}, A2 = {X2, X4}, A3 = {X2, X4}
and A4 = {X2}. This means that X2 is selected
as the first variable to eliminate. The algorithm
continues in the order σ = (X3, X4, X6, X7).

Notice that if two consecutive heuristics hi
and hi+1 in S always produce the same number
of ties, this means that one of hi and hi+1 is re-
dundant and does not improve the tie breaking.

5 Empirical Evaluation

5.1 Experimental Setup

The experiments were performed using both
real-world and randomly generated networks.
We report only the results for the five real-
world networks (Madsen, 2010) in Table 1,
where s(C) =

∏
X∈C |dom(X)|. JTs have

been generated using the total weight heuris-
tic (Jensen, 2012) who cites (Shoikhet and
Geiger, 1997). All single marginals are com-
puted for ten different sets of evidence, for each
|Xε| = 0, . . . , n, where n = |X |.

In the experiments, a greedy variant of VarE-
lim is used. Instead of generating all candidates
with the same score in each iteration, it keeps
track of the best scoring variable and use the
score sequence to compare and select variables.

The experiments were performed using a Java
implementation (Java (TM) 2 Runtime En-
vironment, Standard Edition (build 1.5.0 22-
b03)) running on a Linux Ubuntu (kernel
2.6.38-11-server) server with an Intel Xeon(TM)
E3-1270 Processor (3.4GHz, 4C/8T and 8MB
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Cache) and 32 GB RAM.

5.2 Different Heuristics

The aim is to analyse the impact of the elimina-
tion heuristics of Section 3 on the performance
of LP. This corresponds to calling VarElim with
|S| = 1. We compare VarElim using min and
max in Step 3 to assess the robustness of LP
with respect to each cost measure.

Figure 2 shows the performance of LP using
sdw in Barley. The difference in performance
between min and max is most significant for
small |Xε| and decreases as |Xε| increases.
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Figure 2: Belief update in Barley using sdw.

Figures 3-5 show the performance of LP us-
ing fiw, fi and H2 in ship-ship, respectively. The
performance difference between fiw, fi and H2 is
insignificant for the min versions. This is the
case across many examples considered in the
tests.
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Figure 3: Belief update in ship-ship using fiw.

LP appears to be robust with respect to the
heuristic used for the networks and JTs consid-
ered in the evaluation. It is important to reit-
erate that the JTs have been generated using
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Figure 4: Belief update in ship-ship using fi.
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Figure 5: Belief update in ship-ship using H2.

the total weight heuristic that is known to often
produce near optimal triangulations (Jensen,
2012). This may have a significant impact on
the results.

5.3 Minimum or Maximum Costs

Based on the results reported in the pre-
vious section and by Kjærulff (1990), we
consider four sequences of cost measures
S0 = (sfiw, scw, sdw, sfi, sd) and its reverse
sequence S1 = (sd, sfi, sdw, scw, sfiw) as well
as S2 = (sdw, sfiw, scw, sd, sfi) and S3 =
(sH2, sfiw, scw, sdw, sfi).

The aim is to analyse the impact cost mea-
sure sequences can have on performance and to
assess if the potential performance improvement
is robust with respect to the sequence in which
the cost measures are applied. The experimen-
tal results reported in this section are focused
on a comparison of VarElim using min in Step 3
with VarElim using max in Step 3.

Figure 6 shows the performance in ship-ship
using S0 (performance is similar for S1-S3), and
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Figure 7 shows the performance in KK using S1

(performance is similar for S0, S2 and S3).
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Figure 6: Belief update in ship-ship using S0.
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Figure 7: Belief update in KK using S1.

Figure 6 and Figure 7 illustrate that the dif-
ference in performance between using min and
max in Step 3 can be significant for the orders
generated. The results suggest that the partial
order induced by T ensures that performance is
not extremely jeopardised by using max.

5.4 Best and Worst Tie Breaking

The purpose of this experiment is to analyse
the potential impact cost measure sequences can
have on performance, once there is a tie for min-
imum value in the first cost measure used, and
to assess if the potential performance improve-
ment is robust with respect to the sequence in
which the cost measures are applied.

The experiment compares VarElim using min
in Step 3 with VarElim using min in Step 3 on
the first iteration and max in subsequent iter-
ations. Thus, the aim is to analyse the impact
of best and worst possible tie breaking once the

initial score is selected using min. Notice that
best tie breaking method is equivalent to the
minimum costs method.

Figure 8 shows the performance on OOW solo
using S0. The performance is similar for S1-
S3. In fact, for most networks considered in the
experiments, the difference is insignificant and
can be both positive and negative.
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Figure 8: Belief update in OOW solo using S0.

Figure 9 shows the number of ties encoun-
tered for each si (i = 1, . . . , 5) in S0 on
OOW solo. It also shows that the number of
ties decreases as VarElim iterates through the
scores and that for this network subsequences
(scw, sdw) and (sfi, sd) are not effective.
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Figure 9: Score ties, OOW solo using S0.

In the experiments total weight triangulations
(often optimal in clique weight) have been used
for constructing T . To investigate the impact of
optimal or what is believed to be near optimal
triangulations, non-optimal JTs (referred to as
Tcs) using the minimum clique size heuristic are
generated (see Table 2).

Figure 10 shows the performance in Barley
using S0 on Tcs (for S1 - S3 there is almost no
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Table 2: Minimum clique size JTs.

N |C| maxC∈C s(C)
∑

C∈C s(C)

Barley 36 13,063,680 24,970,779
Mildew 29 1,756,800 4,686,212
OOW solo 29 17,010,000 32,383,477

difference). Figure 11 shows the performance
in Mildew using S1 on Tcs (for S0, S2 and S3

results are similar).
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Figure 10: Barley on Tcs using S0.
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Figure 11: Mildew on Tcs using S1.

Figure 12 shows the performance in
OOW solo using S1 on Tcs (results for S0

are similar). For S2 and S3 there is no differ-
ence and performance is at the level of S1 best.
As expected, LP has higher cost on Tcs than on
T . This suggests that the initial partial order
of the JT is more important for performance
than the orders identified online.

6 Discussion and Conclusion

This paper has considered the importance of
elimination heuristics in LP when using VE as
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Figure 12: OOW solo on Tcs using S1.

the message and single marginal computation
algorithm. The paper has introduced VarElim
as an algorithm for eliminating a set of variables
from a set of potentials using a sequence of cost
measures, as opposed to using only a single cost
measure. The sequence of cost measures is used
for score tie breaking when identifying the vari-
able to eliminate next.

The paper reports on a number of empirical
evaluations on the performance of LP with re-
spect to the elimination heuristics used to iden-
tify the next variable to eliminate. The re-
sults indicate that LP is robust relative to the
cost measures used. This indicates that the
structure of the JT is more important for per-
formance than the online elimination heuristic.
The experiments with min and max show that
the time cost is increased by consistently se-
lecting the highest scoring variable to eliminate
next. The experiments with best and worst tie
breaking show that breaking ties does not have
a significant impact on performance when the
initial JT is optimal (or believed to be near op-
timal), whereas the impact is more significant
for less optimal JTs.
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