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Abstract

Hierarchical Markov networks (HMNs) were recently
proposed as a faithful representation of Bayesian networks.
In this paper, we propose a query processing algorithm for
HMNs. This method takes one query processing algorithm
for a traditional Markov network and extends it to a hier-
archy of Markov networks. Experimental results explicitly
demonstrate the effectiveness of our approach. The work
here will then be useful to any problem utilizing Bayesian
networks, such as traditional information retrieval, web
search, user profiling, multi-agents and e-commerce.

1 Introduction

Probability theory provides a formal foundation for un-
certain reasoning [12]. In particular,Bayesian networks
(BNs) [6] use the notion ofprobabilistic conditional inde-
pendence[13] to facilitate the acquisition of a joint proba-
bility distribution. Several researchers have naturally sug-
gested that Bayesian networks be applied in traditional in-
formation retrieval [2, 7, 10, 16], web search [9], user pro-
filing [11], multi-agents [5, 12, 17] and e-commerce [4].

To facilitate the inference process, a BN is typically
transformed into aMarkov network(MN) [12, 13]. A MN
is an acyclic hypergraph together with a marginal distri-
bution for each hyperedge in the hypergraph. The local
propagation algorithm in [3] has long been regarded in
the BN community as the best method for query process-
ing. This method involves fixing a particularjointree [1]
for an acyclic hypergraph. More recently, experimental re-
sults suggested that fixing a particular jointree leads to in-
creased computation when compared to using an acyclic hy-
pergraph [14].

On the other hand,hierarchical Markov networks
(HMNs) [15] were proposed as an alternative representa-
tion of BNs. As the name suggests, an HMN is a hierarchy
of MNs. One advantage of the HMN representation over the

MN representation is that the HMN representation is guar-
anteed to represent precisely those independencies encoded
in a BN [15]. No study, however, has put forth a method for
probabilistic inference in HMNs.

In this paper, we develop a query processing algorithm
for HMNs. Our method extends the one in [14] from a sin-
gle MN to multiple MNs. Optimizing probabilistic infer-
ence means taking advantage of independencies to reduce
computation during query processing. One salient feature
of our approach is that we can utilize every independence
holding in a BN. It is then not surprising that our experi-
mental results indicate query processing in HMNs can be
more efficient than in traditional MNs.

This paper is organized as follows. In Section 2, we re-
view three kinds of probabilistic networks. Our query pro-
cessing algorithm for HMNs is described in Section 3. In
Section 4, experimental results are reported. The conclu-
sion is given in Section 5.

2 Probabilistic Networks

2.1 Bayesian networks

Let U be a finite set of discrete random variables, each
with a finite set of mutually exclusive states. Obviously, it
may be impractical to define a joint distribution onU di-
rectly: for example, one would have to specify2n entries
for a distribution overn binary variables. BNs utilizecon-
ditional independencies[13] to facilitate the acquisition of
probabilistic knowledge.

Let X, Y and Z be disjoint subsets of variables inR.
Let x, y, andz denote arbitrary values ofX, Y andZ, re-
spectively. We sayY andZ areconditionally independent
givenX under the joint probability distributionp, denoted
I(Y, X, Z), if p(y|x, z) = p(y|x), wheneverp(x, z) > 0.
I(Y, X, Z) can be equivalently written as

p(y, x, z) =
p(y, x) · p(x, z)

p(x)
. (1)



A Bayesian network(BN) [6] is a pairB = (D, C).
In this pair, D is a directed acyclic graph(DAG) on a
setU of variables, andC = {p(ai|Pi) | ai ∈ D} is the
corresponding set ofconditional probability tables(CPTs),
wherePi denotes theparent setof variableai in the DAG
D. We will use the terms BN and DAG interchangeably
if no confusion arises. Thed-separationmethod [6] can
be used to read independencies from a DAG. For instance,
I(d, b, e), I(c, ∅, f), I(h, g, i) andI(defh, b, g) all hold by
d-separation in the DAGD in Fig. 1.
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Figure 1. A Bayesian network on variables
U = {a, b, c, d, e, f, g, h, i, j, k}.

Example 1 Consider the BNB = (D, C), whereD is
the DAG in Fig. 1 onU = {a, b, c, d, e, f, g, h, i, j, k}
= abcdefghijk, andC is the corresponding set of CPTs.
The conditional independencies encoded in the DAGD in-
dicate that the product of the CPTs inC define a unique
joint probability distributionp(U):

p(U) = p(a)p(b)p(c|a)p(d|b)p(e|b)p(f |d, e)p(g|b)

p(h|c, f)p(i|g)p(j|g, h, i)p(k|h). (2)

2.2 Markov networks

In order to facilitate the processing of queries, a BN is
usually transformed into a MN. Themoralizationand tri-
angulationprocedures [6] are applied to transform the DAG
in a triangulated (chordal) undirected graph. A triangulated
graph can be conveniently represented as anacyclic hyper-
graph [1], where each hyperedge in the hypergraph repre-
sents a maximal clique in the triangulated graph.

Example 2 One possible acyclic hypergraph, obtained by
applying the moralization and triangulation procedures on
the DAG in Fig. 1, is{ac, bdef, bfg, cfh, fgh, ghij, hk}.
This MN expresses the joint distribution in Ex. 1 as

p(U)

=
p(bdef)p(bfg)p(fgh)p(ghij)p(cfh)p(ac)p(hk)

p(bf)p(fg)p(gh)p(fh)p(c)p(h)
. (3)

Traditionally, in the probabilistic reasoning literature, an
acyclic hypergraph is fixed as ajointree [1]. One possi-
ble jointree for the above acyclic hypergraph is depicted in
Fig. 2.
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Figure 2. One possible jointree for the acyclic
hypergraph in Example 2.

Note that both probabilistic inference methods [3, 14]
will store marginals for every term in the right side of Eq.
(3).

2.3 Hierarchical Markov networks

In [15], it was suggested that BNs be represented ashi-
erarchical Markov networks(HMNs). Due to lack of space,
we refer the reader to [15] for details on the HMN represen-
tation and its construction.

Example 3 The BN in Fig. 1 can be represented by
the unique HMN illustrated in Fig. 3. HereH0 =
{ac, cfh, bdefgh, ghij, hk}, H1 = {bg, bde, def, fh},
H2 = {c, f}, H3 = {gh, gi},H4 = {bd, be}, and

child(bdefgh) = H1,

child(cfh) = H2,

child(ghij) = H3,

child(bde) = H4.

We refer to H0 as the root MN in the HMNH =
{H0,H1,H2,H3,H4}

This HMN encodes the following independency infor-
mation:

p(U) =
p(ac)p(cfh)p(hk)p(bdefgh)p(ghij)

p(c)p(h)p(fh)p(gh)
,
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Figure 3. The HMN for the DAG D in Fig. 1.

p(bdefgh) =
p(fh)p(def)p(bde)p(bg)

p(f)p(de)p(b)
,

p(cf) = p(c)p(f),

p(bde) =
p(bd)p(be)

p(b)
,

p(ghi) =
p(gh)p(gi)

p(g)
.

3 Processing Queries in HMNs

Before presenting our algorithm, we first make it clear
which marginals are stored in the knowledge base.

3.1 The Knowledge Base

A hyperedgeX is called aleaf, if X does not contain
another MN. Thecontextof MN H, denotedcontext(H),
is the setX of variables on whichH is defined.

Example 4 Hyperedgehk is a leaf hyperedge. On the con-
trary, ghij is not a leaf hyperedge as it contains the MNH3.
Herecontext(H3) = ghi.

We can choose to store three types of marginal dis-
tributions for the hyperedges in the HMN representation:
(i) those for leaf hyperedges, (ii) those necessarily com-
puted for type (i), and (iii) those hyperedgesX , where
context(child(X)) ⊂ X .

An example of a type (i) marginal isp(def). To illustrate
a type (ii) marginal, consider what is involved to compute
the type (i) marginalp(def). Since we are given the initial
conditionalp(f |de), we must computep(def) as follows:

p(def) = p(de)p(f |de).

The task then turns to computingp(de). It can be easily
verified thatp(de) can only be computed afterp(bde) is ob-
tained. Sincebde is a hyperedge in the HMN, the computed
marginalp(bde) is not discarded. Instead, it is stored in the
knowledge base together with the type (i) marginals. Fi-
nally, the type (iii) marginals in our running example are
p(cfh) andp(ghij).

3.2 A Query Processing Algorithm

Our method for processing a query in a HMN can
be viewed as recursively applying the method suggested
in [14], which is described next.

Suppose we wish to computep(X) from a MNH. The
selective reduction algorithm[8] is applied for this purpose.
First, mark the nodes inX . Next, repeatedly apply the fol-
lowing two operations until neither can be applied: (i) delete
an unmarked node that occurs in only one hyperedge, and
(ii) delete a hyperedge that is contained by another hyper-
edge.

Example 5 The selective reduction of the setbj of vari-
ables in the MNH of Example 2 is{bgh, fgh, ghj}. The
queryp(bj) can then be processed as:

p(bj) =
∑

fgh

p(bfg)p(fgh)p(ghj)

p(fg)p(gh)

=
∑

gh

p(ghj)

p(gh)

∑

f

p(bfg)p(fgh)

p(fg)

=
∑

gh

p(ghj)

p(gh)

∑

f

p(bfgh)

=
∑

gh

p(bgh)p(ghj)

p(gh)

=
∑

gh

p(bghj).

Since the selective reduction algorithm is an efficient
method for processing queries in a single MN [14] and a
HMN is a hierarchy of MNs, we can process queries in a
HMN by recursively calling the selective reduction algo-
rithm.

Suppose we wish to computep(X) from a HMNH. Call
the selective reduction algorithm ofX onH0. While there
exists a hyperedgeh such thatp(h) cannot be obtained by
marginalization from a stored marginal, call the selective
reduction algorithm ofh on child(h).



Example 6 Consider answering the queryp(bj) in the
HMN H = {H0, H1, H2, H3, H4} of Example 3. As pre-
viously mentioned, the root MN ofH is H0. The selective
reduction ofbj on H0 is {bgh, ghj}. This means that the
desired marginalp(bj) can be computed as

p(bj) =
∑

gh

p(bgh)p(ghj)

p(gh)
. (4)

Here p(ghj) can be obtained fromp(ghij) stored in the
knowledge base. On the contrary,p(bgh) cannot be ob-
tained by marginalizing any stored table. Hence, we
need to call the selective reduction algorithm again. The
child of hyperedgebdefgh in H0 is the MN H1, i.e.,
child(bdefgh) = H1. The selective reduction ofbgh on
H1 is H1 itself. Thus, the missing marginalp(bgh) can be
computed by

p(bgh) =
∑

def

p(bg)p(bde)p(def)p(fh)

p(b)p(de)p(f)

=
∑

de

p(bg)p(bde)

p(b)p(de)

∑

f

p(def)p(fh)

p(f)

=
∑

de

p(bg)p(bde)

p(b)p(de)

∑

f

p(defh)

=
∑

de

p(bg)p(bde)p(deh)

p(b)p(de)

=
p(bg)

p(b)

∑

de

p(bde)p(deh)

p(de)

=
p(bg)p(bh)

p(b)
.

After p(bgh) is obtained, the original queryp(bj) can be
answered using Eq. (4).

4 Experimental Results

In this section, empirical studies are conducted on three
approaches to answering queries, namely, the jointree ap-
proach [3], the acyclic hypergraph approach [14], and the
HMN approach presented in Section 3. Our comparison is
based on the BN in Fig. 1, which is a complicated version
of the well-known “Asia” BN commonly used in the proba-
bilistic reasoning literature.

Five queries are considered:p(ai), p(de), p(dg), p(eh),
p(kj). Four of the five queries involve variables that are
close together for the following reasoning. Xiang [17] states
that probabilistic queriesp(X) tend to be localized in prac-
tice, namely, the variables inX are indeed likely to be found
in close proximity. Nevertheless, we have also included
p(ai) where variablesa andi are spread apart in the BN.

Given that the BN in Fig. 1 can be represented by the
acyclic hypergraph in Example 2, the jointree in Fig. 2, or
the HMN in Fig. 3, we count the number of multiplications
(*), divisions (/), and additions (+) needed to answer each
of the five queries. The experimental results obtained are
listed in Table 1.

Table 1. Required operations for five queries.

p(ai) Jointree Acyclic Hypergraph HMN
∗ 48 16 16
/ 20 8 8
+ 16 24 24

Total 104 48 48

p(de) Jointree Acyclic Hypergraph HMN
∗ 0 0 0
/ 0 0 0
+ 12 12 4

Total 12 12 4

p(dg) Jointree Acyclic Hypergraph HMN
∗ 16 16 8
/ 8 8 4
+ 20 20 8

Total 44 44 20

p(eh) Jointree Acyclic Hypergraph HMN
∗ 32 8 8
/ 16 4 4
+ 24 16 8

Total 72 28 20

p(kj) Jointree Acyclic Hypergraph HMN
∗ 40 8 8
/ 20 4 4
+ 32 16 16

Total 92 28 28

The experimental results reported in Table 1 clearly
demonstrate that our method for processing queries in a
HMN is superior to the jointree method [3], which is re-
garded as the state-of-the-art algorithm in the BN commu-
nity. In addition, our proposed method shows modest im-
provement over the acyclic hypergraph approach [14]. Our
future experiments will be based on the large real-world
BNs found in sample data sets.

There are two primary factors that contribute to the im-
provement of the well established jointree method. First of
all, fixing a particular jointree will always benefit certain
queries while hindering others (see [14] for a more thor-



ough discussion). Secondly, query optimization means tak-
ing advantage of independencies while processing a query.
Only the HMN encodes those and only those independen-
cies encoded in a BN. For instance,I(c, ∅, f), I(h, g, i),
andI(b, de, f) are encoded in the BN and the HMN. On
the contrary, these independencies are not encoded in the
jointree and acyclic hypergraph representations. Failureto
represent known independency information can lead to in-
creased computation.

5 Conclusion

In this paper, we suggested a query processing algo-
rithm for hierarchical Markov networks. Our method can
be seen as recursively applying an efficient query process-
ing algorithm developed for a single Markov network. The
experimental results in Table 1 demonstrate the effective-
ness of our approach. Since the hierarchical Markov net-
work has many advantages over the Markov network rep-
resentation [15], and given the explanation of the favorable
experimental results at the end of Section 4, we feel that the
hierarchical Markov network representation could eventu-
ally become the standard representation of Bayesian net-
works. Thus, the encouraging results reported in this paper
are useful to any work applying BNs, including traditional
information retrieval [2, 7, 10, 16], web search [9], user pro-
filing [11], multi-agents [5, 12, 17] and e-commerce [4].
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