- AGGARWAL, C.C. AND YU, P.S., A new framework for itemset generation, Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, p.18-24, June 01-04, 1998, Seattle, Washington, United States
- AGRAWAL, R. AND SRIKANT, R. 1994. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Databases. Santiago, Chile. 487–499.
- AZE, J., KONDRATOFF, Y., 2002. Evaluation de la re´sistance au bruit de quelques mesures d’extraction de re`gles d’assocation. Extraction des connaissances et apprentissage (EGC 2002) 1
- BRIN, S., MOTWANI, R., ULLMAN, J., AND TSUR, S. 1997. Dynamic Itemset Counting and Implication Rules for Market Basket Data. In Ptoc. of the 1997 ACMSIGMOD Int’l Conf on the Management of Data, 255-264.
- BARBER, B. AND HAMILTON, H. J. 2003. Extracting share frequent itemsets with infrequent subsets. Data Mining Knowl. Discovery 7, 2, 153–185.
- BASTIDE, Y., PASQUIER, N., TAOUIL, R., STUMME, G., AND LAKHAL, L. 2000. Mining minimal nonredundant association rules using frequent closed itemsets. In Proceedings of the Ist International Conference on Computational Logic. London, UK. 972–986.
- BAY, S. D. AND PAZZANI, M. J. 1999. Detecting change in categorical data: Mining contrast sets. In Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining (KDD-99). San Diego, CA. 302–306.
- BAYARDO, R. J. AND AGRAWAL R. 1999. Mining the most interesting rules. In Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining (KDD-99). San Diego, CA. 145–154.
- BREIMAN, L., FREIDMAN, J., OLSHEN, R., AND STONE, C. 1984. Classification and Regression Trees. Wadsworth and Brooks, Pacific Grove, CA.
- CAI, C. H., FU, A. W., CHENG, C. H., AND KWONG, W. W. 1998. Mining association rules with weighted items. In Proceedings of the International Database Engineering and Applications Symposium (IDEAS ’98). Cardiff, UK. 68–77.
- CARTER, C. L., HAMILTON, H. J., AND CERCONE, N. 1997. Share-Based measures for itemsets. In Proceedings of the Ist European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD ’97). Trondheim, Norway. 14–24.
- CARVALHO, D. R. AND FREITAS, A. A. 2000. A genetic algorithm-based solution for the problem of small disjuncts. In Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2000). Lyon, France. 345–352.
- CHAN, R., YANG, Q., AND SHEN, Y. 2003. Mining high-utility itemsets. In Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM ’03). Melbourne, FL. 19–26.
- CHURCH, K.W., HANKS, P., 1990. Word association norms, mutual information an lexicography. Computational Linguistics 16 (1), 22–29.
- CLARK, P. AND BOSWELL, R. 1991. Rule induction with CN2: Some recent improvements. In Proceedings of the 5th European Working Session on Learning (EWSL ’91). Porto, Portugal. 151–163.
- DONG, G. AND LI, J. 1998. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. In Proceedings of the 2nd Pacific Asia Conference on Knowledge Discovery in Databases(PAKDD-98). Melbourne, Australia. 72–86.
- FABRIS, C. C. AND FREITAS, A. A. 2001. Incorporating deviation-detection functionality into the OLAP paradigm. In Proceedings of the 16th Brazilian Symposium on Databases (SBBD 2001). Rio de Janeiro,Brazil. 274–285.
- FAYYAD, U. M., PIATETSKY-SHAPIRO, G., AND SMYTH, P. 1996. From data mining to knowledge discovery: An overview. In Advances in Knowledge Discovery and Data Mining, U. M. Fayyad et al., Eds. MIT Press. Cambridge, MA, 1–34.
- FORSYTH, R. S., CLARKE, D. D., AND WRIGHT, R. L. 1994. Overfitting revisited: An information-theoretic approach to simplifying discrimination trees. J. Exp. Theor. Artif. Intell. 6, 289–302.
- FREITAS, A. A. 1998. On objective measures of rule surprisingness. In Proceedings of the 2nd European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD ’98). Nantes, France. 1–9.
- FURNKRANZ, J. AND FLACH, P. A. 2005. ROC ‘n’ rule learning: Towards a better understanding of covering algorithms. Mach. Learn. 58, 1, 39–77.
- GRAS, R., KUNTZ, P., COUTURIER, R., AND GUILLET, F., Une version entropique de l’intensit´e d’implication pour les corpus volumineux. Extraction des connaissances et apprentissage, volume 1, pages 69– 80. Hermes, 2001.
- GRAY, B. AND ORLOWSKA, M. E. 1998. CCAIIA: Clustering categorical attributes into interesting association rules. In Proceedings of the 2nd Pacific Asia Conference on Knowledge Discovery and Data Mining(PAKDD-98). Melbourne, Australia. 132–143.
- HAMILTON, H. J., GENG, L., FINDLATER, L., AND RANDALL, D. J. 2006. Efficient spatio-temporal data mining with GenSpace graphs. J. Appl. Logic 4, 2, 192–214.
- HILDERMAN, R. J., CARTER, C. L., HAMILTON, H. J., AND CERCONE, N. 1998. Mining market basket data using share measures and characterized itemsets. In Proceedings of the 2nd Pacific Asia Conference on Knowledge Discovery in Databases (PAKDD-98). Melbourne, Australia. 72–86.
- HILDERMAN, R. J. AND HAMILTON, H. J. 2001. Knowledge Discovery and Measures of Interest. Kluwer Academic, Boston, MA.
- HOAGLIN, D. C., MOSTELLER, F., AND TUKEY, J. W., EDS. 1985. Exploring Data Tables, Trends, and Shapes. Wiley, New York.
- JAROSZEWICZ, S. AND SIMOVICI, D. A. 2001. A general measure of rule interestingness. In Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2001). Freiburg,Germany. 253–265.
- KLOSGEN, W. 1996. Explora: A multipattern and multistrategy discovery assistant. In Advances in Knowledge Discovery and Data Mining, U. M. Fayyad et al., Eds. MIT Press, Cambridge, MA, 249–271.
- MORIMOTO, Y., FUKUDA, T., MATSUZAWA, H., TOKUYAMA, T., AND YODA, K. 1998. Algorithms for Mining Association Rules for Binary Segmentations of Huge Categorical Databases. In Ptoc. of the 24th Very Large Data Bases Conf., 380-39 1.
- PIATETSKY-SHAPIRO, G., "Discovery, Analysis, and Presentation of Strong Rules" (in Knowledge Discovery in Databases 1991), pp. 229-248.
- TAN, P., KUMAR, V., and SRIVASTAVA, J. Selecting the right interestingness measure for association patterns. Proc. of the 8th Int. Conf. on Knowledge Discovery and Data Mining, 2002, p. 32-41.
- VAILLANT, B., LALLICH, S. AND LENCA, P. Modeling of the counter-examples and association rules interestingness measures behavior
- ZHANG, T., 2000. Association rules. In Knowledge Discovery and Data Mining, Current Issues and New Applications, 4th Pacific-Asia Conference, PADKK 2000, Kyoto, Japan, Proceedings, Lecture Notes in Computer Science, vol. 1805. Springer.