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Abstract

The Internet is a huge information centre consisting of billions of web pages. The

Hyper Text Markup Language (HTML) is perhaps the most popular specification

for constructing web pages on the Internet. Methodologies have been developed

to search and query HTML web pages. Search engines such as Google can match

given keywords on web pages and identify the most relevant pages. However, search

engines can only match keywords and are not able to query web pages in the same

manner that one can query databases. Query languages can specify requests for

retrieving information by treating web pages as semi-structured data on which to

perform queries, but previously existing data models for query languages either cannot

capture the hierarchical structure within an HTML web page or can only present the

structure at a low level.

In this thesis, we describe HTML-QS, a web-based query service for HTML doc-

uments. In previous research, Liu and Ling proposed HTML-CM, a conceptual data

model for HTML, and HTML-QL, a rule-based query language. HTML-QS is the first

implementation of HTML-CM and HTML-QL. Although HTML-CM has only a few

constructs, it is powerful enough to capture the complex hierarchical structure within

a HTML web page in a way that is close to the human visualization of the web page.

Based on the HTML-CM conceptual data model, HTML-QL is able to query not

only the intra-document structure, which is the structure within a single HTML doc-

ument, but also the inter-document structure, which is the structure among groups of

HTML documents. The results of such a query can be restructured and presented to

the user in the manner specified in the query. The HTML-QS system provides a high

level view of the structures and data in HTML documents. This prototype system
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demonstrates that a rule-based query language can integrate features of a database

query language and a logic programming language.
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Chapter 1

Introduction

In this chapter, an introduction to the thesis is given. The problem addressed in

this thesis is discussed in Section 1.1. Section 1.2 describes several approaches to the

problem and introduces our approach. Section 1.3 outlines the thesis document and

lists its contributions to research.

1.1 Problem Statement

This section describes the problem addressed in this thesis. First, background

information on the Internet and World Wide Web is presented in Section 1.1.1, and

then the use of databases for database management is described in Section 1.1.2. Next

the nature of semi-structured data is explained in Section 1.1.3. Finally, in Section

1.1.4, we present the problem to which this thesis is trying to provide a better solution:

querying semi-structured data.

1.1.1 The Internet and the World Wide Web

What is now known as the Internet began in 1969 as a U.S. Defense Department

network called the Advanced Research Projects Agency network (ARPAnet). This

network was designed for military purposes [25]. The network was opened for public

use in the 1970s and flourished in the late 1980s, when most universities and many

companies around the world were connected to it. After Berners-Lee proposed the

World Wide Web project in 1990, the Internet grew even more rapidly and a new era
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of computer communications began [3].

Many applications and services are based on the Internet, including Telnet, Secure

Shell, File Transfer Protocol (FTP), newsgroups, and E-Mail, as well as the World

Wide Web. The World Wide Web 1 (also known as WWW, the web, or W3 ) has

been described as “the universe of network-accessible information, the embodiment

of human knowledge” [48]. From the above description, we can imagine that there is

a huge amount of information on the web. In fact, the web is many things [9].

(1) A concept: The World Wide Web was conceived as a seamless world in which

all information, from any source, can be accessed in a consistent and simple

way.

(2) A set of protocols: The protocols that define web communication include the

Uniform Resource Locator (URL), the Hypertext Transfer Protocol (HTTP),

and the HyperText Markup Language (HTML).

(3) A collection of software: The software that enables web connections between

client software, such as web browsers, and server software, such as HTTP server

applications.

(4) The universe of online information: The complete set of information avail-

able on the web is stored on many servers of a variety of types. Each type

of server provides a number of different services. For example, an FTP server

provides archives for download, and an HTTP server provides hypertext infor-

mation for browsing. Both the archives and the hypertext information are part

of the universe of online information.

The number of web sites and web pages on the web has increased incredibly. At the

end of 2004, Google (www.google.com), one of the most comprehensive search engines

on the Internet, claimed that it had indexed more than 8 billion web pages [19]. In

August 2005, Yahoo!, another popular search engine, claimed to have indexed over

19.2 billion web pages [34]. The web has indeed become a world wide information

center. It contains abundant information across various areas. The problem of finding

useful information efficiently in the billions of web pages has become a major concern.

1In this thesis, italics are used to indicate the defining occurrence of a technical term.
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HTML is perhaps the most commonly used language used for web presentation

on the Internet today. For example, Microsoft and Google both are using HTML in

their web sites at the time of the writing of this thesis. Although newer standard

web markup languages, such as XHTML, are becoming increasingly popular, they

are based on HTML. Another language used on the Internet is XML. XML is a

self-describing language and is widely used for data exchange. Some other related

languages are XQuery [10], XML-QL [14], and XML-GL [13]. In this thesis, we focus

on HTML. Finding an effective way of extracting and analyzing HTML documents

remains crucial to the goal of querying the web.

1.1.2 Data Management

Commercial and institutional data is commonly managed using Database Man-

agement Systems. A Database Management System (DBMS) is a software system

that manages one or more databases. DBMSs were first developed in the 1960’s [47].

DBMSs were designed to process large amounts of data, typically via a series of

transactions, while maintaining the integrity of the underlying database.

The earliest DBMSs did not support high level query languages [47]. After Codd

introduced the relational model in 1970 [51], commercial relational database man-

agement systems (RDBMSs) developed rapidly. The most important contribution of

RDBMSs was the Structured Query Language (SQL), which is the language recom-

mended by the American National Standards Institute (ANSI) for relational database

definition and manipulation. SQL is both a data definition language and a data ma-

nipulation language. RDBMSs have been applied by large corporations and institu-

tions all over the world to process huge amounts of data.

Intuitively, a RDBMS might provide an effective way of querying web documents

if we could treat the web as a huge database. However, traditional RDBMSs require

a strict table-based data format and a schema defined in advance. For example,

an electronic transaction record for a retail store might include the store number,

the cashier name, the transaction number, the total, the date, the time, and a list of

items. Each item on the list might then have attributes, such as name, code, and price.
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Because the structure of every transaction record at the store is exactly the same, this

type of transaction data is well-structured and strictly typed. Therefore, a schema

can easily be defined based upon the structure. Although object-oriented database

(OODB) management systems allow more types of structures than relational systems,

they still require predefined schemas. Now let’s take a look at the web. Most web

pages are written in HyperText Markup Language (HTML). Can we define a schema

for HTML? Unfortunately, the answer is “no”, because HTML documents are not

fully structured. Neither, however, are they completely formless raw data because

there are about 100 elements in HTML that are used to formalize web pages. The

characteristics of HTML documents make them fall into a category of data called

semi-structured data.

1.1.3 Semi-Structured Data

Roughly speaking, semi-structured data are data that are neither raw data nor

strictly typed data as would be found in a conventional database system [1]. This is

only a rough definition, because the same data that are originally considered unstruc-

tured may become highly structured after an analysis has been performed. A weak

structuring primitive, called a tag, exists in HTML documents. A tag is an HTML

keyword enclosed in angle brackets, such as <title> or <table>. A string of HTML

code embedded between a starting tag, such as <title>, and a matching ending tag,

such as </title>, is called an HTML element. For example, <title> My Thesis

</title> is a TITLE HTML element. For some elements, such as the PARAGRAPH

element, which starts with <p>, the corresponding ending tag </p> is optional. The

<a> and </a> tags are used to identify links in HTML. A link is some HTML code

that indicates a connection either to another part of the same HTML document or to

a different document. The destination of a link is defined immediately after the href

attribute in the starting tag. For example, <a href="http://www.w3.org/">W3C

Web site</a> is a link, and “http://wwww.w3.org/” is the destination of the link.

HTML documents are not well-structured, because no fixed schema can be de-

fined in advance. For example, let’s consider Ley’s DBLP Bibliography web page at
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http://www.informatik.uni-trier.de/∼ley/db. The contents of this page on August 4,

2005 were as shown in Figure 1.1.

This page has five sections, with different types of items in each section. Searching

methods such as “Author”, “Title”, and “Advanced” are listed in the Search section,

while types of reference material, such as conferences, journals, and books, are listed

in the Bibliographies section. Having these five sections makes the page partially

structured, compared to a fully structured table composed of rows and columns.

Some other information, such as the list of mirror sites, does not belong to any

section, which makes the structure irregular. Section titles, such as Search and Links

are presented in boldface in a larger font than the other text, which often implies that

the following content provides more detailed information related to the section titles.

To summarize, the main characteristics of semi-structured data are:

(1) the structure is irregular,

(2) the structure is implicit, and

(3) the structure is partial.

1.1.4 Querying Semi-Structured Data

From the point of view of a database researcher, the web can be regarded as a

huge database, and the HTML documents are data in the database. In a conventional

database system, we can define schema for data, create a database, and then query the

database using SQL or the Object Query Language (OQL) [6]. If the web is treated

as a database, conventional database systems cannot be applied, because HTML

documents are semi-structured and they do not have a fixed schema. Therefore, we

have to find other approaches to query HTML documents.

Liu and Ling suggested a general approach [30, 31, 32] to querying HTML docu-

ments in a simple way that they argue is close to human conceptualization. The goal

of this thesis is to confirm that this approach can be implemented and the imple-

mented approach functions as expected. To do so, we have implemented a prototype

system that demonstrates the distinct features of this approach.
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Figure 1.1: Ley’s DBLP Bibliography
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1.2 Approach

Two approaches to the problem of querying HTML documents have been devel-

oped. The first approach, which is introduced in Section 1.2.1, uses a search engine to

find specific terms in HTML documents. The second approach, which is introduced

in Section 1.2.2, defines queries in a web query language.

1.2.1 Search Engines

A search engine is a computer program that searches a database and reports

information that contains or is related to specified terms [38]. The common user

interface to a search engine is a web site where a user can enter keywords, click on

any returned link, and browse the linked web pages.

Search engines first appeared on the Internet approximately a decade ago. Two pi-

oneering search engines, the World Wide Web Worm or WWWW (wwww.cs.colorado.

edu/wwww) and Yahoo! (www.yahoo.com), both started in 1994. Since then, many

other search engines, such as Alta Vista, Infoseek, FastSearch, and Google, have been

developed. Over time, some of them have survived, and some have disappeared, which

reflects the intense competition and rapid technological development of the Internet.

The scale of search engines, in terms of the number of web pages that they index,

has been increasing significantly. Figure 1.2 shows the number of web pages indexed

by the Google search engine (www.google.com) between 2001 and 2004.

Search engines can be divided into three types: true search engines, subject di-

rectories, and meta-search engines. True search engines and subject directories have

their own indexes for users to search while meta-search engines do not have their own

indexes. Where indexes are present, the methods that the search engines use to build

their indexes are the key to classifying the search engines. One method of building an

index is to use an automated program to search the web for new or updated pages.

A search engine built this way is called a true search engine. We call it a true search

engine, because it actually searches the indexed web pages for matches. Another

method is to have people build indexes of web pages. A search engine built this way
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is called a subject directory.

Generally speaking, a true search engine consists of three major components: a

spider, an index, and search engine software. An example of a true search engine is

Google. We discuss its architecture in detail in Chapter 2.

A subject directory is a catalog of sites collected and organized by people. An

example of a subject directory is Yahoo!, as it was originally implemented. Subject

directories are often called subject trees, because they start with a few main categories

and then branch into subcategories, topics, and subtopics.

Subject directories are helpful for finding information on a topic when a user does

not have a precise idea of what he or she wants. Large directories, such as Yahoo!,

also provide an option for keyword searching, which can eliminate the need to work

through numerous levels of topics and subtopics.

A subject directory can be regarded as a database system that accumulates data

by means of manual entry. A web site owner submits a URL along with information

required by the directory, such as the title and a short summary of the web site. An

editor then writes a description for the site. A search initiated by a user looks for
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matches only in the submitted descriptions.

The third type of search engine is called a meta-search engine (also known as a

parallel search engine or a multiple search engine). A meta-search engine takes the

keywords entered by a user, simultaneously sends the query to a number of search

engines (true search engines or subject directories), and then presents the search

results returned by those search engines to the users. This type of search engine does

not have an index or a database other than its list of search engines. An example of

a meta-search engine is MetaCrawler (www.metacrawler.com).

1.2.2 Web Query Languages

A web query language is a query language designed to query the web. Its purpose

is similar to that of SQL, which was designed to query an RDBMS. As discussed

in the previous section, a search engine generally seeks only textual matches and

does not take into account either the intra-document structure, which is the struc-

ture within a single HTML document, or the inter-document structure, which is the

structure among groups of HTML documents. The Google search engine allows one

to specify that the search terms must appear in the title or link of the web pages,

which enables Google to recognize a few aspects of the internal structure of the web

pages. Nonetheless, it does not regard a whole web page as a structured document.

As Frank Halasz states [21]:

“Content search ignores the structure of a hypermedia network. In con-

trast, structure search specifically examines the hypermedia structure for

subnetworks that match a given pattern.”

To make use of structure, a number of structural web query languages and systems

have been developed over approximately the last decade. Web query languages have

been classified into two generations [18]. The first generation includes W3QL [24],

WebSQL [5], and WebLog [27]. First generation web query languages allow queries

that combine conditions of text patterns appearing within documents with graph

patterns describing the link structure. They treat a web page as an indivisible object

9



with two properties. The first property is whether or not the web page contains certain

text patterns. The second property is that the web page points to other objects by

link attributes. These languages take inter-document structure into account, but they

do not consider intra-document structure.

The second generation web query languages are called “web data manipulation

languages” [18]. They include WebOQL [4], STRUQL [16], NetQL [20, 29], and

Florid [22]. These languages have two significant enhancements compared with the

first generation languages. First, they provide access to the structure of the web

objects that they manipulate. Unlike the first-generation languages, they model the

intra-document structure of web documents, as well as the external links that con-

nect web documents. Some of these languages support references, which allow them

to model hyperlinks, and some of them support ordered objects, which allow them

to represent data in a natural fashion. However, there are many HTML elements

that these languages do not support, as will be discussed in Chapter 2. Secondly,

except for NetQL, these languages provide the ability to create complex structures to

represent the results of queries. Since data on the web are commonly unstructured

or semi-structured, the design of these languages emphasizes the ability to support

semi-structured features.

Recently, Liu and Ling proposed a conceptual data model and rule-based query

language for structuring and querying HTML documents [30, 31, 32]. In general, a

data model is a logical data structure that describes, in an abstract way, how data

are organized and represented. A conceptual data model (or more simply a conceptual

model) is a data model of the conceptual structure within some data. A conceptual

model for an HTML document is a visual representation of a HTML document. Liu

and Ling’s conceptual model is called HTML-CM, which stands for HTML Conceptual

Model. HTML-CM has only a few simple constructs, but it is able to represent the

complex hierarchical structure within an HTML document at a level which is claimed

to be close to the human conceptualization of the document.

Based on this conceptual model, Liu and Ling proposed a rule-based language,

called HTML-QL, for querying HTML documents over the Internet [30, 31, 32]. This
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language provides a simple but effective way to query both intra-document structures

and inter-document structures and allows the query results to be restructured. Being

rule-based, it naturally supports negation and recursion, and therefore, it is more

expressive than the SQL-based web query languages.

1.3 Contributions and Outline

This thesis describes the first implementation of HTML-QS, an approach to web

search and inference based on HTML-CM and HTML-QL. The system is intended to

provide a high level view of structures and data that are stored in HTML format. One

of the key contributions of this prototype system is that it demonstrates how a rule-

based query language can integrate features of database query languages and logic

programming languages. The system is implemented using the Java programming

language and is available online at http://www.scs.carleton.ca/∼mengchi/HTML-

QL.

The remainder of the thesis is organized as follows.

Chapter 2 presents background material relevant to search engines and web query

languages. A detailed discussion of the system architecture of Google is provided.

Other web query languages are surveyed as well, including three first-generation lan-

guages, WebSQL, W3QL, and WebLog, and two second-generation languages, Web-

OQL, STRUQL, and NetQL.

Chapter 3 describes our approach by explaining the HTML-CM conceptual model

and the rule-based HTML-QL query language. Examples of how to convert HTML

documents to HTML-CM web objects, and how to query HTML documents using

the HTML-QL query language, are presented.

Chapter 4 presents the high level system architecture of the HTML-QS prototype

system, followed by the details of our implementation of HTML-QS. Some components

and procedures that presented difficulties during the design and implementation are

also discussed. Evidence that HTML-QS correctly implements the approach is given

in the form of results for a comprehensive set of test queries.
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Chapter 5 concludes the thesis and summarizes the contributions of this research.

Open issues, including memory management, robustness, and extensibility, are dis-

cussed as well. Appendix A gives the full set of rules for converting HTML documents

to HTML-QS web objects.
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Chapter 2

Background

This chapter is organized as follows. In Section 2.1 we discuss the architecture of

Google, an example of a true search engine. Section 2.2 introduces related research

on web query languages.

2.1 Google, An Example of a True Search Engine

As mentioned in Chapter 1, Google is a true search engine. We discuss this type of

search engine, because it is closely related to our research on querying the structure

of HTML documents. Google has powerful strong searching and ranking abilities,

but these are not focuses of our research. We evaluate Google only with respect to its

ability to query the structure of HTML documents. Changes made to Google after

mid 2005 were not considered in this thesis.

Competitive pressures prevent the developers of commercial true search engines

from publishing the details of their system architectures, but an introductory article,

describing the original architecture of Google, is available [11]. The article was written

when Google was still a research project.

A true search engine utilizes several computer programs in order to obtain web

documents and build its database. As mentioned in Chapter 1, a typical true search

engine consists of three key components [43], a spider, an index, and the search engine

software.

The spider (also called the crawler or the robot) downloads web pages to the
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search engine, which in turn provides lists of URLs that need to be fetched by the

spider. A spider uses HTTP to send requests and receive responses. In 1998, it

was reported that a spider could crawl twenty five pages per second [11], which is

equivalent to more than two million pages a day. Everything the spider finds goes

into the index. The index is a huge catalog, and it can be regarded as a database

holding web pages. The search engine software is the program that searches through

the millions of pages stored in the index in order to find matches to a query and rank

them in order of their apparent relevance to this query.

As a true search engine, Google has the three components just described. Google

is the most frequently used search engine on the Internet [44], because, in addition,

it utilizes a few novel techniques in order to enhance its search ability. The four key

features of Google are the use of the PageRank algorithm, the use of anchor text, the

utilization of visual presentation details, and the storage of full, raw HTML for the

pages. These features are now discussed.

The single most important feature of Google is the PageRank algorithm. The

PageRank algorithm relies on the democratic nature of the Internet by using its

massive link structure as an indicator of an individual page’s value. In essence,

Google interprets a link from page A to page B as a vote, by page A, for page B.

Furthermore, Google takes into account not only the number of votes a page receives,

but also analyzes the page that casts the vote. Votes cast by pages that are themselves

“important” weigh more heavily and help to make other pages “important.” [45]. A

web page’s PageRank is an objective measure of its importance that corresponds

well with people’s subjective idea of importance. Because of this correspondence,

PageRank is the best known way to prioritize search results [11, 39]. The PageRank

of a web page, W , is defined as follows. Assuming that pages T1, T2, ..., Tn have links

pointing to W , that d is a damping factor between 0 and 1, usually set to 0.85 (a

detailed discussion of d can be found in [11]), and that C(Ti) is the outdegree of page

Ti, i.e., the number of links going out of page Ti, the PageRank of W is:

PageRank(W ) = (1-d) + d(PageRank(T1)/C(T1) + ... + PageRank(Tn)/C(Tn))

For example, consider the small set of interconnected pages shown in Figure 2.1.
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Figure 2.1: A Set of Interconnected Pages

Using the formula defined above, we can calculate the PageRank of all five pages.

For example, for page P5, because no links point to it, we obtain:

PageRank(P5) = (1 - 0.85) = 0.15

For page P2, we obtain:

PageRank(P2) = (1 - 0.85) + 0.85(PageRank(P3)/C(P3)

+ PageRank(P5)/C(P5))

The outdegree values for the pages can be obtained by inspection of the graph in

Figure 2.1. These values are recorded in the second column of Table 2.1. From

Figure 2.1, we obtain:

C(P3) = 2, C(P5) = 2

After substituting values for PageRank(P5), C(P3), and C(P5) into the equation for

PageRank(P2) , we obtain:

PageRank(P2) = 0.15 + 0.85(PageRank(P3)/2 + 0.15/2)

To determine PageRank(P2), we need to calculate PageRank(P3) first. After several

substitutions, we obtain the results shown in the third column of Table 2.1.

Table 2.1: PageRank Scores for Five Web Pages

Web Page T C(T) PageRank(T)

P1 0 0.41121
P2 2 (P1, P3) 0.61460
P3 2 (P2, P4) 0.94318
P4 1 (P3) 0.55085
P5 2 (P2, P3) 0.15000

Page P3 has the highest PageRank, because three pages, namely P2, P4, and P5,
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point to it, which is the highest number in this small set. This high PageRank is

interpreted to mean that this page is the most important. Page P5 has the lowest

PageRank, because no page points to it, which is interpreted to mean that it is the

least important.

The second key feature of Google is that it considers the visual presentation of

the HTML pages when computing the PageRank. Words in a larger font or bold face

are weighted higher than other words, because web page designers use these visual

effects to emphasize the important parts of their text.

Thirdly, Google makes extensive use of anchor text, which is the text or label

associated with a link to another page. Most search engines associate the text of

a link with the page that the link is on. In addition, Google associates the text of

a link with the page the link points to. This approach has two advantages. First,

the anchors often provide more accurate descriptions of web pages than do the pages

themselves. Secondly, anchors may exist for documents which cannot be indexed by

a text-based search engine, such as images and databases. Thus, associating the text

of a link with the page being linked to makes it possible to return web pages which

have not actually been crawled.

Fourthly, Google has a repository in which full HTML web pages are compressed

and stored. The repository is the basis for further indexing. It also makes it possible

to support a function for viewing cached pages. Thus, a user can open a cached

web page in the repository when the web page cannot be opened from its original

server due to reasons such as unexpected server shutdown or the disappearance of the

requested page.

2.1.1 Google System Architecture

An overview of Google is shown in Figure 2.2 [11]. The URL Server sends lists

of URLs that need to be fetched to several distributed spiders called Crawlers. The

Crawlers open connections to the URLs, send requests, read responses, and save web

pages to the Store Server. The Store Server compresses web pages and stores them in

the Repository. The Repository contains the compressed versions of the full HTML
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document of every web page, one after the other. Each page has an identifying number

called the document identifier or the docID.

Figure 2.2: The High Level System Architecture of Google [11]

The Indexer reads the repository, decompresses the documents, and parses them.

Each document is transformed to sets of word occurrences. For every word, the

Indexer finds the corresponding wordID from the Lexicon, and then creates a hit list

in which each item, called a hit, contains this word’s position in the document, and

its font size and capitalization. All hits are distributed into a set of Barrels. A Barrel

is a data container that holds a range a wordIDs. The indexer also parses all links in

each web page and stores them in an Anchors file, which contains information, such

as the label of a link, which page it is in, and which page it points to.
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The Doc Index contains information about every document, such as the docu-

ment’s status, pointers into the Repository, and various statistics. The Doc Index is

ordered by docID. The Lexicon contains a list of words. As each document is parsed,

every word is converted to a wordID using the Lexicon. The URL Resolver reads the

Anchors file and converts URLs to docIDs. It also generates the Links database, each

entry of which is a pair of docIDs representing the source and destination page of the

link. The Sorter sorts the wordIDs in the Barrels to generate an index that is used

to locate the docIDs by searching the wordIDs. The PageRank of each web page, the

most important part of Google, is calculated based on the Links database.

2.2 Survey of Web Query Languages

In this section, we discuss several web query languages that have been developed,

namely WebSQL [5, 36, 35], W3QL [24], WebOQL [4], WebLog [27], STRUQL [16, 15,

17], and NetQL [20, 29]. Our discussion of these languages focuses on their data mod-

els, their language styles, and their abilities to query inter-document structure and

intra-document structure. Three other web query languages that are not discussed in

detail are Florid, Lorel, and UnQL. Florid [22] is an implementation of the deductive

and object-oriented database language F-Logic [23]. The web is modeled using two

classes, called url and webdoc. Its data model is very similar to that of WebSQL.

Lorel [2, 41] and UnQL [12] are general purpose query languages for semi-structured

data. They use tree-based and graph-based models to represent the web, but they

do not model the intra-document structure in HTML documents. At the end of this

section, we present a summary of languages we have studied in detail.

2.2.1 WebSQL

WebSQL is an SQL-like web query language designed to query inter-document

structure. In WebSQL [5, 36, 35], the web is viewed as a virtual graph where the

nodes are web documents and the edges are hypertext links between the documents.

WebSQL models the web as a relational database with two relations: Document and
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Anchor. The Document relation has one tuple for each HTML web page, as shown

in Table 2.2 (adapted from [5]). In the table, the rows represent the pages, and the

columns represent attributes of the pages, including the title, textual content, length

in bytes, type, and modification date of the pages. Among all the attributes in the

Document relation, only the TITLE attribute refers to an HTML element, namely

TITLE. The Anchor relation has one tuple for each anchor in each HTML web page,

as shown in Table 2.3 (adapted from [5]). In each row of the table, the first column

gives the URL of the page where the anchor is located, and the second column gives

the label of the anchor. The third column gives the URL of the destination page,

i.e., the page where the anchor is pointing to. The LABEL and HREF attributes

are derived from the links in the HTML web pages. The remaining attributes in the

two relations are attributes of the web pages. Parsing the links in HTML web pages

provides full access to the inter-document structure, while parsing the TITLE HTML

elements provides only limited access to the intra-document structure.

Table 2.2: The Document Relation in WebSQL (adapted from [5])

URL TITLE TEXT LENGTH TYPE MODIF

http://www... title1 text1 1234 text 1-1-2005
http://www... title2 text2 2345 text 2-3-2005
http://www... title3 text3 3456 text 3-4-2005

... ... ... ... ... ...

Table 2.3: The Anchor Relation in WebSQL (adapted from [5])

BASE LABEL HREF

http://www... label1 http://www...
http://www... label2 http://www...
http://www... label3 http://www...

... ... ...

The following example WebSQL query returns all pairs of URLs of documents

that have the same title and that both contain the words City of Calgary. Using the
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MENTIONS keyword triggers the running of a tool to use a search engine to fetch web

pages that include the words “City of Calgary”.

SELECT d1.url, d2.url

FROM Document d1 SUCH THAT d1 MENTIONS "City of Calgary",

Document d2 SUCH THAT d2 MENTIONS "City of Calgary"

WHERE d1.title = d2.title AND NOT ( d1.url = d2.url)

A shortcoming of WebSQL is that it regards the full text of an HTML page as

one value of an attribute in a tuple, which limits its analysis and interpretation to

simple text matching. WebSQL only recognizes two HTML elements, TITLE and

LINK. Thus, it focuses on the inter-document structure, but it also retrieves the

small portion of the intra-document structure that relates to TITLEs. Many other

HTML elements that relate to intra-document structures, such as LISTs, SECTIONs,

and TABLEs, are not considered by WebSQL.

2.2.2 W3QL

W3QL [24] is similar to WebSQL. It also models the web as a graph in which

each URL constitutes a node, and each link in one node pointing to another node

constitutes an edge. The most obvious difference between W3QL and WebSQL is

that W3QL uses external programs for specifying content conditions on files, while

WebSQL implements all the functions in an internal Java package. For example, the

following query searches for HTML pages that have a title of Calgary Flames.

SELECT cp n2/* result;

FROM n1,l1,n2;

WHERE

n1 in Myindexes.url;

SQLCOND ( n2.format=HTML) AND ( n2.title="Calgary Flames");

The query visits every URL listed in the Myindexes.url file, which is denoted n1

in the query, and creates query results n2 in the result folder. The SQLCOND keyword
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is followed by the required condition for any result for the query. As with WebSQL,

the only HTML elements that W3QL recognize are TITLE and LINK, and therefore,

the majority of the intra-document structure is unavailable for querying.

2.2.3 WebOQL

WebOQL [4] models the web as a forest of hypertrees. A hypertree is an ordered

arc-labeled tree. The two types of arcs in a hypertree are internal arcs and external

arcs. An internal arc represents an object in the document modeled by a hypertree,

and an external arc represents a hyperlink among documents. Arcs are given labels

that identify attributes of the object, such as Tag, Text, Source, and Url.

For example, let’s consider Ley’s DBLP Bibliography web page at http://www.

informatik.uni-trier.de/∼ley/db. The contents of this page on August 4, 2005 were

as shown in Figure 1.1. The HTML code of the page is as follows (pieces of HTML

code referring to irrelevant aspects, such as color and script, have been removed in

order to make this example more concise):

<html>

<head><title>DBLP Bibliography</title></head>

<h2>Search</h2>

<ul>

<li><a href="indices/a-tree/index.html">Author</a>

<a href="indices/t-form.html">Title</a>

<a href="http://... .../query.html">Advanced</a>

</ul>

<h2>Bibliographies</h2>

<ul>

<li><a href="conf/indexa.html">Conferences</a>:

<a href="conf/sigmod/index.html">SIGMOD</a>,

<a href="conf/vldb/index.html">VLDB</a>,

<a href="conf/pods/index.html">PODS</a>,
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...

�

[Tag:LI,

Source:<li>Conferences �,

Text: Conferences �]

�

[Tag:A,

Source:<a href= �,

Text: Title,

Url: indices/t-form.html]

[Tag:H2,

Source:<h2>Search �,

Text: Search]

[Tag:TITLE,

Source:<title>DBLP �,

Text: DBLP Bibliography �]

[Tag:HEAD,

Source:<head><title>DBLP �,

Text: DBLP Bibliography �]

[Tag:HTML,

Source:<html><head><title> �,

Text: DBLP Bibliography �]

[Tag:UL,

Source:<ul>Author �,

Text: Author �]

[Tag:LI,

Source:<li>Author �,

Text: Author �]

[Tag:A,

Source:<a href= �,

Text: Author,

Url: indices/�/index.html]

[Tag:H2,

Source:<h2>�,

Text: Bibliographies]
[Tag:UL,

Source:<ul>Conferences �,

Text: Conferences �]

[Tag:A,

Source:<a href= �,

Text: Conferences,

Url: conf/indexa.html]

�

Figure 2.3: A Hypertree in WebOQL

The hypertree created from the above HTML code is shown in Figure 2.3. It

has a number of internal arcs and external arcs that are labeled with three or four

attribute-value pairs. The value of the Tag attribute is the HTML tag that this arc

represents. The value of the Source attribute is the HTML source code between the

beginning of the tag and the end of the tag, including the tag itself. The value of

the Text attribute is the actual text information that is displayed on the screen. For

example, for the arc labeled with the <title>, the value of the Source attribute is
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"<title> DBLP Bibliography </title>". The value of the Text attribute is "DBLP

Bibliography". All internal arcs have the above three labels. External arcs have an

extra label, Url, that has the URL as its value.

Like WebSQL and W3QL, WebOQL is an SQL-like web query language. For

example, the following query searches for the Text attributes of objects in page

index.html with tag H2.

SELECT [ n.Text ]

FROM n in "index.html" via ^* [ Tag = "H2" ]

In this query, the “ˆ” symbol is a predicate that is true if the arc is internal. The

“*” symbol is an operator that applies the logical AND operation to two predicates. A

query in WebOQL is a function that maps one hypertree to another hypertree. For

example, the query result of the above example query is another hypertree similar

to the hypertree shown in Figure 2.3 except that the arcs in the resulting hypertree

are all labeled "[ Text: ", followed by the actual Text attribute of objects that

match the query conditions, followed by "]". Thus, WebOQL can also restructure

HTML documents. This feature makes it quite different from WebSQL and W3QL.

However, although WebOQL translates all HTML tags to its hypertree data model,

it treats the HTML tags as textual content and uses them only for text matching.

The intra-document structure is not considered.

2.2.4 WebLog

WebLog [27] is a declarative logic-based query language, which was inspired by

SchemaLog [26], a logic language proposed for interoperability in multidatabase sys-

tems. WebLog uses deductive rules based on a conceptual model that represents the

conceptual structures of HTML documents. WebLog defines “a group of related in-

formation” within an HTML page as a unit of related information called a rel infon.

Thus, an HTML document is a set of rel infons. A rel infon has several attributes.

Two major attributes are strings “occurs” and “hlink”. Other attributes correspond
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to HTML elements used to enhance the appearance of a web page, such as the ele-

ments associated with the <title> and <b> tags.

For example, consider the HTML source code for Ley’s DBLP Bibliography page,

as shown in Section 2.2.3. The text within a <h2> ... </h2> segment can be re-

garded as a rel infon. The attributes are mapped to string values, except for the

HLINK attribute, which is mapped to an hlink-id, a unique identifier associated with

a hyperlink. For string processing, WebLog also provides built-in predicates and pro-

gramming predicates, which are implemented by calling external programs. WebLog

supports restructuring of the query result by defining the output format in the head

part of a rule.

For example, the following WebLog query finds all hyperlinks in Ley’s DBLP

Bibliography page, as shown in Figure 1.1, and the titles of the web pages that those

hyperlinks point to.

ans.html [title −→ "all links", hlink −→→ L, occurs −→→ T ]

←− ley DBLP url [hlink −→→ L], href(L,U), U[title −→ T]

In this query, variable L ranges over all links in Ley’s DBLP Bibliography page.

Variable U is the URL that L points to. href() is a built-in predicate that is used to

navigate from page L to page U. Variable T is the title of page U. The query result

is stored in an HTML document, called ans.html, with a title of “all links”.

The data model of WebLog treats HTML elements other than TITLE and LINK

as text for matching purposes only. For example, the following query searches for the

years that papers about Coral (a deductive database system) were published in the

VLDB Journal.

ans(Y) ←− ley DBLP url(U),

U[title −→ "coral", occurs −→→ S],

substring(S, "VLDB Journal"),

substring(S, Y), isa(Y, year)

In this query, U is the set of URLs on Ley’s DBLP Bibliography page. The query goes

through each URL in U to search for pages with titles that include the word “coral”.
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S is the textual content of the web page. The built-in predicate substring(S, "VLDB

Journal") is used to search for the string “VLDB Journal” in S. The built-in predicate

isa(Y, year) is used to determine if Y is an instance of the year type. In this

example, title is an attribute that can be queried, while the other information S in

page U is just a string that can be searched for certain keywords, such as “VLDB

Journal” in the above example. The intra-document structure is for the most part

not represented.

2.2.5 STRUQL

STRUQL [16, 15, 17] is the SQL-like web query language of the STRUDEL web site

management system. It provides a data model in the form of a data graph to model all

data sources uniformly, and it also provides a query language for both data integration

and view definition. The data graph describes the logical structure of all information

available at a site. It is a labeled directed graph similar to the Object Exchange

Model (OEM) [40]. In this graph, nodes represent objects or values, and edges are

labeled with attribute names. For example, nodes can represent integer, real, string,

or Boolean values, while edges are typically labeled with strings. The STRUDEL data

graph model also supports several atomic types that commonly appear on the web,

such as URLs, PostScript files, images, and HTML files. In addition, the STRUDEL

data model provides collections, where a collection is a set of nodes (objects).

For example, the following query searches for links with an attribute called “Con-

ferences” in Ley’s DBLP Bibliography page.

where HomePages(ley DBLP url), p → "Conferences" → q

collect ConferenceLinks(q)

HomePages is a collection, which in this case contains only one object, namely

ley DBLP url. p → "Conferences" → q is a condition meaning that there exists

an edge labeled “Conferences” from p to q. The query result is a new collection,

called ConferenceLinks, which contains all the answers.
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In STRUDEL, STRUQL serves two purposes: querying heterogeneous sources to in-

tegrate them into a data graph, and querying this data graph to produce a site graph.

The limitation of STRUQL is that it only considers links in the HTML documents.

The issue of intra-document structure for the most part is not addressed.

2.2.6 NetQL

Guan et al. developed and implemented an approach, called NetQL, for using

structure-based querying to find web pages [20, 29]. The NetQL approach has three

main features. First, NetQL permits similarity based matching on words contained

in text by using natural language processing to find the stems of words, such as

“program” from “programs”, and WordNet [37] to identify synonyms.

Secondly, NetQL allows restrictions to be placed on the time required to answer

a query, the number of results returned, the number of levels of hyperlinks to follow,

and the portion of the web to search. Thirdly, NetQL converts HTML pages to

hypertrees to allow querying within the pages.

The last of these features is most relevant to this thesis. In more detail, informa-

tion is extracted by treating each web page as either an index page or a content page

or a hybrid mixture of both. Guan et al. do not state how to distinguish the three

types of pages, but it may be done based on the number of links present. Each of

the three types of pages is converted to a tree, by applying a single conversion. The

conversions are not applied recursively.

An index page is converted to a tree using the appearance of any <h1>, <h2>, ...,

<h6>, <menu>, or <em> tag as an indication that a new section is beginning. Each

such section is converted to a top-level branch of the tree, and any list following such

a tag is converted to a subtree under the main branch. The label associated with the

tag is used to label the branch of the tree.

A content page is converted to a tree using the appearance of any <p>, <hr>, or

<br> tag as an indication of a new section, which is converted to a top-level branch

of the tree. If a paragraph begins with a <strong>, <b>, or <i> tag, the associated

text is used to label the branch of the tree, otherwise, apparently, the complete text
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is used to label the branch.

A hybrid page is first divided into sections, based on the appearance of <p> and

<br> tags. Each section is treated in the same manner as a page by classifying it

either as an index section, a content section, or a hybrid section, and processing it as

described above.

Some conversions are also performed for HTML tables. In particular, the <th>,

<tr>, and <td> tags are used to identify the major components of a table and convert

them to a tree with a branch for each row of the table. Embedded tables are not

handled.

After converting HTML documents to trees, NetQL can search them for exact or

approximate matches. As output, NetQL produces an HTML document beginning

with the text “The search result is:” that contains links to pages containing relevant

information. NetQL does not extract the relevant information from the pages. Over-

all, NetQL extracts some intra-document structure, but it does not handle recursive

structures such as subsections within sections or tables embedded in other tables.

2.2.7 Summary

Table 2.4: Summary of Web Query Languages

Inter-document Intra-document
Language Data Model Structure (LINK) Structure

Support Support

WebSQL relational Yes Partial (TITLE Only)
W3QL graphs Yes Partial (TITLE Only)

WebOQL hypertrees Yes No
WebLog relational Yes Partial (TITLE Only)
STRUQL graphs Yes No
NetQL hypertrees Yes One level

Table 2.4 presents a summary of the six web query languages discussed in detail in

this section. As shown in the table, these web query languages use either a relational

data model or a graph data model (hypertrees can be regarded as graphs at a higher

27



level). All six web query languages we studied in detail recognize links in HTML doc-

uments and use them as attributes, which enables them to query the inter-document

structure of HTML documents. Three of these six languages recognize the TITLE

HTML element and use it as an attribute on which to perform queries. Of these six

languages, only WebOQL and NetQL recognize HTML elements other than TITLE.

WebOQL uses such elements only for text matching purposes. NetQL extracts some

intra-document structure, but it does not handle recursive structures. Thus, with

these languages, little of the intra-document structure of HTML documents is taken

into account for querying purposes.

The next chapter presents an approach that takes the intra-document structure

into account when performing querying.
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Chapter 3

Approach

In this chapter, we describe HTML-QL, a rule-based language for querying HTML

documents. We also present the structure of HTML-CM, a conceptual model for

HTML documents, and give examples of how to convert HTML web pages to HTML-

CM web objects. The syntax of HTML-QL is briefly presented as well. Examples of

how to utilize this query language to answer high level queries are provided. Based

on HTML-CM, HTML-QL is able to query both the inter-document structure and

the intra-document structure of HTML documents.

There are two logical components in the HTML-QL language, the language itself

and the HTML-CM conceptual model that the language is based on. To use the

HTML-QL language for querying, the HTML documents are first converted to web

objects that are instances of the HTML-CM conceptual model, and then the queries

are performed. In Section 3.1, the HTML-CM conceptual model is described, and

in Section 3.2, we present rules for converting HTML documents to web objects

defined in HTML-CM. In Section 3.3, we present HTML-QL and provide examples

showing how to use HTML-QL to query both the inter-document structure and the

intra-document structure of HTML documents.
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3.1 The HTML-CM Conceptual Model for HTML

Liu and Ling proposed HTML-CM, a novel conceptual model [30, 31, 32] for

HTML. Recall from Chapter 1 that a conceptual model is a data model of the con-

ceptual structure within some data. It is a representation that explicitly shows the

relationships among the data. A conceptual model for an HTML document explicitly

represents the overall structure of the HTML document and provides high-level infor-

mation about the structure of the data in the HTML document. Liu and Ling argue

that HTML-CM allows the information in an HTML document to be queried and

viewed in a way that is close to human conceptualization and visualization. HTML-

CM is defined by a set of the correspondences between elements of HTML documents

and HTML-CM web objects. An instance of the HTML-CM is a list of web objects

that together describe the conceptual structure of an HTML document.

Let us first define some terminology adapted from Liu and Ling’s work [30, 31, 32].

Let U be a set of URLs, and let C be a set of constants.

A lexical object is a string of constant text such as "The City of Calgary" or

"digital cell phone". The contents of the set C are lexical objects.

A linking object consists of two components, a label followed by a URL. The

label is the description of the URL, and the URL points to the web page where

detailed information of description is provided. Two examples of linking objects

are Contact<contact.html> and About Google<http://www.google.ca/intl/en/

about.html>.

An attributed object also consists of two components, an attribute followed by the

value of the attributed object, with an arrow symbol in between. An example of an

attributed object is Title => Google.

A list object is a list of any conformation of lexical objects, linking objects, or

attributed objects, surrounded by braces. The following is an example of a list object:

{Contact <contact.html>,

About Google <http://www.google.ca/intl/en/about.html>}
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3.2 Converting HTML Documents to HTML-CM Objects

By studying HTML documents, one may discover that most of them are con-

structed in a way that is close to the way people conceptualize the information while

looking at the corresponding web page. For example, the order of items in an HTML

document closely matches the order in which items are shown when this HTML doc-

ument is browsed. Also, the hierarchically structured groups of items in an HTML

file reflect the hierarchical structure of the information shown on the web page. To

represent the underlying conceptualization of the information, we use the HTML-CM

model. Liu and Ling devised a set of rules that can be used to convert an HTML

document to an instance of the HTML-CM data model. The conversion is based on

HTML 4.01 [42].

Since our primary focus is the textual information that HTML documents deliver,

the visualization tags in HTML, such as font type and size, styles, and colors, are

ignored during conversion. While in general we assume that input HTML documents

are syntactically correct, our system is robust enough to handle problems such as the

absence of one of a pair of tags.

The definition of the conversion rules for HTML-CM can be found in [30, 31, 32].

For easy reference, they are also given in Appendix B. The following examples cover

and explain all the rules.

A typical HTML document starts with an <html> tag and ends with an </html>

tag. Most HTML tags are paired, such as <html> </html> and <body> </body>. An

HTML document usually consists of a head, embedded between <head> and </head>

tags, followed by a body, embedded between <body> and </body> tags. The head

usually states the title of the document, which is specified between a pair of <title>

and </title> tags. The body is the content of the document. Detailed information,

such as text and tables, appears in the body.

The major HTML elements that provide conceptual structure in HTML docu-

ments are titles, sections, paragraphs, links, images, lists, tables, forms, and framesets.

In the remainder of this section, we describe how each is converted to an HTML-CM
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web object.

Titles: The title located in the head of the HTML document is converted to an

attributed object in the HTML-CM conceptual model. For example, consider the

following HTML code.

<title>The City of Calgary</title>

The converted attributed object is as follows.

Title ⇒ The City of Calgary

Sections: A section in an HTML document is converted to an attributed object.

The heading of the section is converted to an attribute and the rest of the section is

converted to a value for this attribute. Consider the following HTML code:

<h2>Mission</h2>

To provide outstanding services to the community.

This code is converted to the following attributed object.

Mission ⇒ To provide outstanding services to the community

Paragraphs: A paragraph is the content after a <p> tag up to a </p> tag or another

<p> tag. As mentioned in Chapter 1, the </p> tag is optional. If a paragraph has

some boldface or italic words or some words preceding a colon at the beginning, then

the paragraph is converted to an attributed object, and otherwise it is converted to a

list object. A sequence of multiple paragraphs is converted to a list object too. The

following is an example.

<p>

<b>Location:</b> Northern North America

<p>

<b>Geographic coordinates:</b> 60 00 N, 95 00 W
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The converted list object is as follows.

{ Location ⇒ Northern North America,

Geographic coordinates ⇒ 60 00 N, 95 00 W }

Links: A link in an HTML document is converted to a linking object, which consists

of a label and an anchor. The label is the text presented and the anchor is the

destination of the link, which can refer to another HTML document, a PDF file, a

video/audio clip, etc. The following is an example.

<a href="intro.html">Introduction</a>

The converted linking object is as follows.

Introduction <intro.html>

Images: A reference to an image document in an HTML document is converted to

an attributed object using the Image keyword as the attribute and the destination of

the link to the image as the value. The following is an example.

<img src=cityhall.jpg alt="Municipal Building">

After conversion, the following object is obtained.

Image ⇒ Municipal Building <cityhall.jpg>

Lists: There are three types of lists in HTML: ordered lists, unordered lists and

definition lists. An ordered list is a list between <ol> and </ol> tags. An unordered

list is a list between <ul> and </ul> tags. Each item in an ordered list or unordered

list is specified by a non-paired <li> tag. A definition list is a list between <dl> and

</dl> tags. Information after a non-paired <dt> tag specifies the term that is being

defined, and the content after a non-paired <dd> tag provides the definition. A list

can be nested inside another list.

The following piece of HTML code shows all three types of lists.
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<ol>

<li>Artificial Intelligence

<ul>

<li>Cognitive Science <li>Linguistics <li>Reasoning

</ul>

<li>Database Systems

<ul>

<li>Query Processing <li>Data Models <li>Active DB

</ul>

</ol>

<dl>

<dt>General Information

<dd>The department was established in 1970.

<dt>Programs of Study

<dd>It offers M.Sc. and Ph.D. degrees in Computer Science

<dt>Financial Support

<dd>A variety of scholarships are available

<dt>Facilities

<dd>The research labs have all kinds of state-of-the-art equipment

</dl>

Items of ordered or unordered lists are converted to constants. A nested list

is converted to an attributed object with the outermost items as attributes and the

innermost items as values. A definition list is converted to a list object, which consists

of attributed objects, by using the information immediately after the <dt> tags as

attributes and the information immediately after the <dd> tags as values. Therefore,

for the example HTML code, the following objects are produced.

{ Title ⇒ CS Department Research

Research Areas ⇒ {

Artificial Intelligence ⇒ {
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Cognitive Science,

Linguistics,

Reasoning}

Database Systems ⇒ {

Query Processing,

Data Models,

Active DB}}

General Information ⇒ The department was established in 1970,

Programs of Study ⇒ It offers M.Sc. and Ph.D. degrees in ...,

Financial Support ⇒ A variety of scholarships are available,

Facilities ⇒ The research labs have all kinds of ...

}

Tables: Tables in HTML are used either to display tabular information or to provide

visitors with a better visual layout. A table begins with a <table> tag and ends with

a </table> tag. A table that has a caption embedded between <caption> and

</caption> tags is converted to an attributed object by using the caption as the

attribute and the rest of the table’s contents as the value. The content of the table,

ignoring the caption, consists of rows and columns of cells. The <tr> tag shows the

beginning of a new row. The <td> tag shows the beginning of a cell. The </tr>

and </td> tags can be used to end rows and cells, respectively, but they are not

mandatory. Both rows and columns can have headings that are specified by <th>

tags. The set of cells in a row are converted to either a single list object if there are

no row headings, or an attributed object if there are row headings. If a table has

column headings, each cell is converted to an attributed object using the heading of

the column as the attribute and the content of the cell as the value. If a table does

not have column headings, each cell is converted to a lexical object.

The following example gives an HTML table with captions and headings.

<table>

<caption align = top> Video Format </caption>
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<tr>

<td> <br> <th> Resolution <th> Size <th> Codec

<tr> <th> DVD <td> 720x480 <td> 70M/min <td> MPEG-2

<tr> <th> VCD <td> 352x240 <td> 10M/min <td> MPEG-1

<tr> <th> SVCD <td> 480x480 <td> 20M/min <td> MPEG-2

<tr> <th> miniDV <td> 720x480 <td> 215M/min <td> DV

</table>

After conversion, this table appears as follows.

Video Format ⇒{

DVD ⇒{Resolution ⇒720x480, Size ⇒70M/min, Codec ⇒MPEG-2},

VCD ⇒{Resolution ⇒352x288, Size ⇒10M/min, Codec ⇒MPEG-1},

SVCD ⇒{Resolution ⇒720x480, Size ⇒20M/min, Codec ⇒MPEG-2},

miniDV⇒{Resolution ⇒720x480, Size ⇒210M/min,Codec ⇒DV }

}

The following example gives the HTML code for a one row, three column table

without captions or headings.

<h2 align=center> Research Interests </h2>

<table border="0" cellpadding=3 cellspacing=3 align=center>

<tr>

<td colspan=50% align=left>

<a href="urban.html">Urban Planning</A>

<td colspan=50% align=left>

<a href="3d.html">3D Visualization</A>

<td colspan=50% align=left>

<a href="gis.html">GIS</A>

</table>

After conversion, this table appears as follows.

Research Interests ⇒{

Urban Planning <urban.html>,
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3D Visulization <3d.html>,

GIS <gis.html>

}

Forms: An HTML form is used to display data and receive input from the user. A

form begins with <form> and ends with </form>. An HTML form is converted to

a single attributed object. HTML forms have many special elements called controls.

Some example controls are text input, checkbox, button, radio button, and menu.

Although the visualizations of these controls are quite different, they all have three

common attributes, specifically, names, values, and types. The name specifies the

data being displayed as output, the value is the data that are stored in the HTML

document, and the type determines the type of value being received as input.

The two methods of sending information from a form to the server are GET and

POST. The major difference between them is the way that they organize and send

information to the server. The GET method sends the information as name-value pairs.

It has a limitation on how long the string can be, which makes it good for sending

short information. The POST method first places the name-value pairs together in a

file and then sends the file to the server. There is no limit on the size of the file.

The two special types of buttons in HTML forms are SUBMIT and RESET. Activating

a SUBMIT button sends information entered so far on the form, while activating a RESET

button removes any information entered by the user from the form and prepares the

form for new entries.

A text input control in an HTML form is specified by the <input ...> tag

and is converted to an attributed object whose value consists of a list of attributed

objects. For example, consider the following portion of a form.

<form method=post action="script"><br>

<p>Username:

<input type="Text" name="Name" value="Enter a name here">

</form>
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From this portion of a form, the following objects are obtained.

Form ⇒ {

Text Field ⇒ {

Label ⇒ Username,

Name ⇒ Name,

Type ⇒ Text,

Value ⇒ Enter a name here }

}

A radio button control in an HTML form provides a selection of options from

which a visitor can only select one. A group of adjacent radio buttons is converted

to an attributed object using the radio button keyword as the attribute. The value

of the object consists of three attributed objects which have the Label, Name, and

Option keywords as their attributes. The title or description of the group of buttons

is converted to the value of the Label attribute. The value of the Name attribute is

determined by the value associated with the Name keyword in the HTML code. The

value of the Option attribute consists of another list of pairs of attributed objects,

one of which has a Label attribute with the label displayed to a user as the value,

and the other has a Value attribute with information specified by the Value keyword

in the HTML code as the value.

Consider the following HTML code fragment.

<p>Computer:

<input type = "radio" name = "kind" value = "desktop">Desktop

<input type = "radio" name = "kind" value = "laptop">Laptop <br>

From this fragment, the following objects are obtained.

Radio Button ⇒ {

Label ⇒ Computer,

Name ⇒ Kind,
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Options ⇒ {

{Label ⇒ Desktop, Value ⇒ desktop},

{Label ⇒ Laptop, Value ⇒ laptop}}

}

A checkbox control in an HTML form allow multiple choices. A checkbox is

similar to a radio button control, but it allows several options to be selected simul-

taneously instead of only one. A checkbox is converted to a web object similarly to

how a radio button is converted.

A Menu control provides functionality similar to that of a radio button or a

checkbox, but it uses much less screen space because it hides its items in a click

open menu. In HTML, a Menu is specified as a series of options embedded between

<select> and </select> tags.

An example of a Menu is as follows.

<p>Age Category:

<select name = "Category">

<option value = "teenager">13-19

<option value = "adult">20-60

<option value = "senior">over 60

</select>

This menu is converted to the following objects.

Menu ⇒{

Label ⇒Age Category,

Name ⇒Category,

Options ⇒{

{Label ⇒13-19, Value ⇒teenager},

{Label ⇒20-60, Value ⇒adult},

{Label ⇒over 60, Value ⇒senior}

}
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Documents: We classify HTML documents as either regular or frame-based. A

frame-based HTML document is a type of HTML document that does not have a

body. Instead, it has one or more framesets, each of which consists of several frames

that each link to an HTML document. For the purpose of this discusssion, all other

documents are regular documents.

Frame-based documents: A frame-based HTML document is converted to a sin-

gle list object, containing attributed objects. If a title is present in the frame-based

document, it is converted to an attributed object. Each frameset as a whole is con-

verted to an attributed object. Each frame in the frameset is converted to a linking

object. For instance, consider the following HTML document.

<html><head><title> A Frameset Document </title></head>

<frameset cols="20%,80%">

<frame name="content1" src="content_of_frame1.html">

<frame name="content2" src="content_of_frame2.html">

</frameset>

</html>

This document is converted to the following list object in an HTML-CM model.

{

Title ⇒ A Frameset Document

Frameset ⇒

{content1 <content of frame1.html>}

{content2 <content of frame2.html>}

}

Regular documents: After all pieces of an HTML document are converted to

various web objects, a single list object is created from these web objects. Thus,

the overall form of the HTML-CM structure corresponding to a regular HTML doc-

ument is a list object. Figure 3.1 shows Dr. Robert J. Hilderman’s homepage at
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http://www2.cs.uregina.ca/∼hilder. It is converted to the following object.

{

Title ⇒ Robert J. Hilderman Home Page

Robert J. Hilderman ⇒ {

photos/me.jpg<http://www2..../photo page.html>

...

}

CONTACT INFORMATION ⇒ {

Office ⇒ CW308.23, 3rd Floor, College West

Phone ⇒ (306) 585-4061

Fax ⇒ (306) 585-4745

e-Mail ⇒ robert.hilderman@uregina.ca <mailto:...>

WWW ⇒ http://www.cs.uregina.ca/ hilder <http:...>

}

RESEARCH INTERESTS ⇒ {

Knowledge Discovery and Data Mining <http://...>

Parallel and Distributed Computing <http://...>

Software Engineering <http://...>

Human-Computer Interaction <http://...>

}

...

}

3.3 A Rule-based Query Language for HTML Documents

HTML-QL is a rule-based query language for HTML documents. It is a declarative

language and is similar to logic programming languages such as Prolog [7]. Each query

statement is specified as a rule, which consists of two parts, a rule body and a rule

head. The rule body specifies the source of the information, while the rule head

specifies the structure of the query result. HTML-QL employs the mechanism of

variable binding to specify the result. By binding each variable with the appropriate
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Figure 3.1: Dr. Robert J. Hilderman’s Homepage
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value retrieved from an HTML document, HTML-QL can specify a result that is

consistent with the structure specified in the rule head.

Considering only data, an HTML document can be regarded as a deductive

database, consisting of two parts, an extensional database, which stores the facts,

and an intentional database, which is created by applying the rules in the exten-

sional database. A major difference between query processing in HTML-QL and

Prolog, which also uses a deductive database, is the mechanism by which variables

are bound. In Prolog, after each variable in the body is bound using a fact, a result

is obtained instantly in the head. However, with HTML-QL, because reconstructions

are needed to create the result, the head of the rule is not decided until all necessary

information for building the result is found. The goal of HTML-QL is to specify, in

a declarative way, the extracting of structure from HTML documents.

Logical variables are used in HTML-QL for querying and constructing the result.

Terms are defined in HTML-QL to represent the various objects in HTML-CM that

were specified in the previous section. A primary variable in HTML-QL consists of

a dollar sign symbol ($) followed by a possibly empty string. Examples are $X, $,

and $Label. An anonymous primary variable is denoted by a lone $ symbol or a “*”

symbol. One type of HTML-QL term is defined for each type of object in HTML-CM.

A lexical term represents a lexical object, which is a constant string. For instance,

Faculty is a lexical term. A linking term represents a linking object. Examples

of linking terms are Faculty <fac.html> and $Label <$URL>. The components of

terms such as anchors or labels can be either variable or constant. A linking term

without a URL is called a label term. A linking term without a label is called an

anchor term. For example, $X<> is a label term while <$Y> is an anchor term. An

attributed term represents an attributed object. An example is Answer⇒$X. A set

term represents a list object. {$X,$Y} is a set term. A variable can be either a

primary variable, a lexical term, a linking term, an anchor term, a label term, an

attributed term, or a set term.

If U is a variable or a URL and T is a term, then U : T is called a positive

expression. Two examples of positive expressions are u : $X and $U : $V. An
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expression containing a negated URL, i.e., ¬U : T, is called a negative expression.

An example of a negative expression is ¬u : Faculty<>, which means that URL u

cannot have an anchor term Faculty<>. The URL u in both the positive expression

and negative expression functions is a predicate.

A rule consists of two parts, a head and a body, with a :– symbol in between. A

head is a positive expression, and a body is a positive expression, a negative expression,

an arithmetic expression, a string, or a set operation expression. A set of rules forms

a query.

The following are some examples of queries. The DBLP web page located at

http://www.informatik.uni-trier.de/∼ley/db is the source HTML document for all

these examples (see Figure 1.1). To simplify the query statements, we use ul to

denote the actual long URL and uo to denote the output URL, which is the name of

a local file for these examples.

Example 1: Copy the content of the HTML document at ul to a local file uo.

uo : $X :– ul : $X

This query performs a strict data duplication from ul to uo, with no other data

processing whatsoever. Therefore, the structure of the HTML code is not needed, so

it is not retrieved.

To capture the structure of the HTML document at ul, the following query is

used.

Example 2: Retrieve the internal structure of the HTML document at ul to a local

file uo.

uo : {$X} :– ul : {$X}

This query looks very similar to the previous one, but their meanings are quite differ-

ent. This query returns the structure of the HTML document at ul. The {$X} term

in the body of the query forces the retrieval of the structure of the source HTML

document and the {$X} term in the head of the query means that the query result

is a copy of the {$X} term in the query body. The query result is stored in a local
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file uo.

Example 3: Obtain web objects under attribute “Title”.

uo : {Answer ⇒$X} :– ul : {Title ⇒$X}

This query goes through every attributed object at ul until it finds an attributed

object with attribute “Title”, and then returns the value of the object, which can be

either one object or a list of objects. The result then is restructured to an attributed

object with an attribute of “Answer” and the returned query result as the value.

Attribute “Title” is special because title is also an HTML element. The next example

is a more generic query.

Example 4: Obtain web objects under attribute “Search”.

uo : {Answer ⇒$X} :– ul : {Search ⇒$X}

Similar to Example 3, this query seeks an attributed object with attribute “Search”.

This example shows HTML-QL’s capability in extracting generic intra-document

structure in addition to the attribute title.

Example 5: Retrieve all URLs under attribute “Search”.

uo : {Answer⇒{$X}} :– ul : {Search ⇒{<$X>}}

This query goes through the HTML document at ul and looks for an attributed object

whose attribute is “Search”. Then it looks for all URLs in the value part of the object

and returns them.

Example 6: List labels of linking objects under the attribute “Search”.

uo : {Answer ⇒{$X}} :– ul : {Search ⇒{$X<>}}

Similar to Example 5, this query returns only the labels of all linking objects that it

find under attribute “Search”.

Example 7: List all attributes at the first and second levels.

uo : {Answer ⇒{$X}} :– ul : {$X ⇒$Y}

uo : {Answer ⇒{$Y}} :– ul : {$X ⇒$Y ⇒$Z}

Detailed description of level can be found in Section 4.3.

Example 8: Search for the label “TODS” and return its URL.
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uo : {Answer ⇒$X} :– ul : {∗TODS<$X>}

This query examines all linking objects until it finds the first linking object whose

label is “TODS”. It then returns the URL of the object.

Example 9: Retrieve all URLs.

uo : {Answer⇒{$U}} :– ul : {∗<$U>}

Similarly to the last example, this query examines all linking objects and collects all

URLs.

Example 10: Obtain all URLs that are reachable from page ul.

ur : {$X} :– ul : {∗<$X>}

ur : {$X} :– ur : {$Y}, $Y: {∗<$X>}

This query is recursive, because the result object specified in the first rule is used in

the body of the second rule. It also involves more than one web object. This query

returns the URL only. If one wishes to see the labels as well, the following query is

required.

Example 11: Obtain the URLs and the corresponding labels for all URLs that are

reachable from page ul.

ur : {$L<$U>} :– ul : {∗$L<$U>}

ur : {$L<$U>} :– ur : {∗$L<$U>}, $U: {∗$L<$U>}

The World Factbook at http://www.odci.gov/cia/publications/factbook/index.html

provides information about every country in the world, including information, such

as location, population, land boundaries, and gross domestic product. This web site

is well suited to demonstrating the ability of HTML-QL to obtain useful information.

Figure 3.2 shows a screen capture of the page about Canada, as displayed in a web

browser. Figure 3.3 shows the converted web objects corresponding to the web page

shown in Figure 3.2.

We now present four example queries based on the World Factbook HTML doc-

ument. For the purpose of these examples, a country is defined as an administrative
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Figure 3.2: Page about Canada in the World Factbook at www.odci.gov
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http://www.odci.gov/cia/publications/factbook/geos/ca.html: {
Title ⇒CIA - The World Factbook -- Canada

Canada ⇒{
Background ⇒{A land of vast distance and ...}
Geography ⇒{

Location ⇒{Northern North America, ...}
Geographic coordinates ⇒{60 00 N, 95 00 W}
Map references ⇒{North America}
...
Land boundaries ⇒{

border countries ⇒{US}
...

}}}}

Figure 3.3: Converted HTML-CM for the Factbook page on Canada

unit that has its own page in the World Factbook.

Example 12: Find countries that border both Germany and France. A country X

is said to border another country Y if Y is one of the border countries listed in the

World Factbook page for country X. Roughly, this statement corresponds to cases

where two countries share a land border. A country does not border itself.

uo : {Answer ⇒{$N}} :– $U : {Title ⇒$N,

∗border country ⇒{Germany, France}}

Example 13: Find countries that border Germany but not France.

uo : {Answer ⇒{$N}} :– $U : {Title ⇒$N,

∗border country ⇒{Germany},

¬ ∗border country ⇒{France}}

Note that this query involves negation.

Example 14: Obtain pairs of countries that border exactly the same set of countries.

uo : {Answer⇒{{Country1⇒$N1, Country2⇒$N2}}} :–

$U1 : {Title ⇒$N1, ∗border countries ⇒$Cs},

$U2 : {Title ⇒$N2, ∗border countries ⇒$Cs},
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N1 != N2

Example 15: Find countries that directly or indirectly border Canada.

This query is recursive. It returns all the countries that directly or indirectly border

Canada according to the World Factbook, which roughly means that they can be

reached from Canada by ground.

ur : {Answer⇒{$C}} :– $U : {Title ⇒Canada,

∗border countries ⇒{$C}}

ur : {Answer⇒{$C}} :– ur : {Answer ⇒{$X}},

$U : {Title ⇒$X, ∗border countries ⇒{$C}}

The result is shown in Section 4.3.

Because HTML-QL is a rule-based query language, a typical person may take some

time to learn the syntax of the language and understand how to use the language to

formulate complex queries. To used HTML-QL to query the intra-document structure

of an HTML document, it is helpful to know something about the content and the

structure of the document.

To summarize this chapter, the HTML-CM conceptual model provides a solid

foundation to capture both the internal and external structure of HTML documents,

and the HTML-QL query language takes advantage of the data model and provides

functionalities to query both structures.
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Chapter 4

System Architecture and Results

Based on the conceptual data model and web query language presented in the

previous chapters, we developed a prototype system, called HTML-QS, for performing

queries on HTML documents on the web. In this chapter, we present the design and

implementation of HTML-QS. We introduce the high level architecture of HTML-QS

in Section 4.1, and we discuss the implementation of some of the system’s modular

components in Section 4.2. In Section 4.3, we describe the results of applying HTML-

QS to the example queries described in Section 3.3. HTML-QS fully implements Liu

and Ling’s model for HTML-CM and HTML-QL, except results for recursive queries

are limited to a specified number of levels of recursion to constrain memory usage.

4.1 High Level System Architecture

The high level architecture of the HTML-QS system has four layers, as shown in

Figure 4.1. The use of layers in the architecture makes the system easier to design,

implement, test, and extend.

The top layer is the User Interface. A command line textual interface was imple-

mented in order to provide a simple yet powerful way for the user to enter queries

and display results. Query statements are stored in a text file, which can be edited

using any text editing tool. Query results can either be saved to a text file or be

displayed on the screen. From the command line, query statements are forwarded to

the second layer of the system.
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Figure 4.1: The HTML-QS System Architecture
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The second highest layer of the system is the Query and Inference Processor. It is

a communication layer between the User Interface and the third layer, the Intelligent

Wrapper. It communicates with the User Interface layer to accept user inputs, val-

idates query statements, visits the Internet or the Local Data Repository, retrieves

web documents, and returns query results to the User Interface layer. For recursive

queries, it uses iterative computation with a maximum depth to generate the result,

as explained in Section 4.2.2.

The third highest layer consists of the Intelligent Wrapper and the Local Data

Repository. It is the most complex component of the system. By design, the Intel-

ligent Wrapper contains the Web Crawler module, the HTML Parsing module, and

the Object Processors. The Web Crawler module in the wrapper accesses the World

Wide Web and fetches HTML documents. The HTML Parser parses HTML docu-

ments, calls Object Processors, and converts HTML documents to HTML-CM web

objects.

The Local Data Repository is the disk space where the query system stores data.

It contains a URL list. The URL list provides URLs for the Robot to use while

navigating the Internet. This list is updated by the Robot whenever it encounters a

new URL.

The fourth layer of HTML-QS is the World Wide Web. This layer is the source

of data for the system. The system can process standard HTML documents that

conform to the HTML 4.01 specifications [42].

4.2 Implementation

In this section, we explain how HTML-QS is implemented using the Java program-

ming language. This section is organized as follows. Section 4.2.1 explains why we

chose Java. Section 4.2.2 discusses the implementation, including system procedures,

system components, and important data structures.
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4.2.1 Reasons for Selecting Java

We chose Java because it is object-oriented, platform independent, and convenient

for network programming. We discuss these features in this section.

Object-oriented: Java is a pure object-oriented (OO) programming language. Us-

ing object-oriented design (OOD) makes all phases of software development more

manageable. OOD has many advantages, such as encapsulation, inheritance, poly-

morphism, and abstraction. These features make it easier to produce modular and

reusable code.

Platform Independent: Java is platform-independent, both at the source level

and at the binary level. In other words, it runs on diverse operating systems and

processors. Java’s foundation class libraries make it easy to write code that can

be moved from platform to platform without rewriting it to work with particular

platforms. Java binary files are also platform-independent and can run on multiple

platforms without the need to recompile the source, provided that the target operating

system has available a compatible Java interpreter, known as a Java Virtual Machine

(JVM).

Convenient for Network Programming: There are many pre-defined classes

of network programming in Java’s foundation class libraries, allowing programmers

to concentrate only on program control, and not on the construction of basic data

structures. Specifically, Java’s foundation class libraries make writing networking

code much simpler than with other well known programming languages. Java also

provides an easy way to support client/server computing. Using a Java Applet greatly

simplifies the development of online computing applications.

4.2.2 Modular Components

As described in Section 4.1, the HTML-QS system consists of four layers. The

two most important layers are the Intelligent Wrapper and the Query and Inference
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Processor. The Intelligent Wrapper consists of the Web Crawler, the HTML Parser,

and the Object Processor. These three components work together in order to convert

HTML documents to HTML-CM web objects. The Query and Inference Processor

consists of the Query Parser, the Query Manager, and the Result Processor.

URLs

HTML Documents 

Parsed HTML Elements 

URLs

Query Result

Token List 

Result Table 

User

User Interface 

Query

Query Parser 

Query Manager 

Local Data Repository Web Crawler 

HTML Parser 

Object Processors 

HTML-CM Web Object Tree 

Result Processor 

Figure 4.2: The Control Flow During Query Processing

The flow of control among these components is shown in Figure 4.2. First, a user

enters a query through the User Interface. Then the query is sent to the Query Parser,

which stores the parsed query in a token list. The Query Manager accesses the token
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list, checks whether the URLs exist in the Local Data Repository (LDR), and updates

the LDR if it does not contain the URLs. Although conceptually the LDR is designed

to store cached HTML documents, the current implementation has only a text file

that stores the URLs that have been visited by the system. The Query Manager then

calls the Web Crawler to obtain the HTML documents. Given a URL, a single thread

of the Web Crawler visits the web page, retrieves an HTML document, and sends it

back to the server. The HTML parser reads through the HTML documents, identi-

fies the HTML elements, and calls the corresponding Object Processors to perform

conversions. The converted HTML-CM objects are then sent to the Query Manager.

Once the Query Manager has collected the necessary information, it begins to build

a Result Table where the raw results of the queries are stored. The Result Table is

sent to the Result Processor, which then displays the results to users.

In the remainder of this section, the components mentioned in the preceding

paragraph are discussed in detail.

User Interface: As mentioned in Section 4.1, the User Interface layer is a simple

command line interface where users can either enter a single query or edit a number

of queries in a text batch file.

Query Parser: Given a query, the Query Parser first checks whether any syntax

errors exist in the query. If not, it then builds token lists. Each token is a basic

element of the query that cannot be divided any further. A list of pre-defined tokens

is shown in Table 4.1. As well, a constant string is a token, and a variable is also a

token. As mentioned in Chapter 3, a query consists of a set of rules, where each rule

consists of a head and a body, and both of these consist of expressions. Therefore,

two token lists are built, the head list and the body list. The head list is used to

detect if a variable in the body is free or bound and to format the results for display.

The body list defines the pattern that should be searched for during the query.

Query Manager Step 1: Collecting Information: The Query Manager has

two major roles in HTML-QS. Here we discuss its role in collecting information. The
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Table 4.1: Predefined Tokens in the Query Parser

Token Name Description

CONST Constant String
VAR $X
STAR ∗

LEFTDKH {
LEFTJKH [

RIGHTDKH }
RIGHTJKH ]

IMPLY =>

URL FILE http://www.........
LOCAL FILE Local file

LDR Local data repository
MH :
DH ,
TH !

EQUAL ==
NOTEQUAL !=

G >

GE >=
L <

LE <=
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Query Manager is the query control center. Its input is the two token lists built by

the HTML Parser. It reads through the body token list, obtains the URL token,

sends out Web Crawlers to get HTML documents, and calls the HTML Parser, which

in turn calls the Object Processors to convert HTML documents to HTML-CM web

objects. The head token list is used in the final step when formatting the results for

display.

Web Crawler: A Web Crawler receives a URL as input. It builds and opens a

network connection with the URL and retrieves web pages. Some URLs may be

inaccurate or correspond to web sites that have disappeared or servers that are tem-

porarily or permanently inactive. The Web Crawler is threaded, with a new thread

created for each URL. If a thread of the crawler cannot connect to the server within

a specific waiting period, then it is terminated.

HTML Parser: The HTML Parser reads the HTML document retrieved by the

Web Crawler. Not all HTML pages on the Internet conform to HTML 4.01 speci-

fications. For example, web pages written by people often are missing some HTML

tags, resulting in unpaired tags in the document. Secondly, because individual peo-

ple have different ideas as to how to use HTML tags in order to achieve a desired

appearance, some HTML tags may be used only for their visual presentation without

regard for their original semantic meaning. The HTML Parser is designed to handle

these difficulties. As it reads, the Parser removes comments and scripts, since they

do not affect the retrieval of the internal structure of an HTML document, and then

starts analyzing the HTML code. When the Parser encounters a beginning HTML

tag, it determines which Object Processor should be selected. Table 4.2 gives the list

of Object Processors defined in HTML-QS, along with the tasks they perform. The

Parser keeps reading the HTML code until it finds the ending tag corresponding to

the beginning tag. If the ending tag is not mandatory by the HTML standard, the

parser stops at the next new beginning tag of any type. Some examples where the

ending tag is not required are the </p> tag for paragraphs, the </li> tags for list
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items, and the </td>, </tr>, and </th> tags for tables, so in these cases, the parser

looks for any type of tag. After the Parser has found two tags, it sends everything

between them to the selected Object Processor to process the object. When the Ob-

ject Processor has finished its task, the Parser resumes reading the HTML code until

another beginning tag is found, and the process repeats. The Parser recognizes and

processes one HTML element in each iteration until the end of the HTML document

is reached.

Table 4.2: List of Object Processors

Object Processor Task Description

bold processes boldface <b> ... </b>

href processes links <a href=....> ... </a>

image processes images <img ....>

olist processes ordered lists <ol> ... </ol>

ulist processes unordered lists <ul> ... </ul>

table processes tables <table> ... </table>

select processes selects <select> ... </select>

Overall, step 1 of the Query Manager creates an HTML-CM web object tree for

each HTML document. For example, consider the following HTML code:

<html><head>

<title> Computer Science Department </title></head>

<h2>People</h2>

<ul><li><a href=fac.html> Faculty </a>

<li><a href=staff.html> Staff </a>

<li><a href=studens.html> Students </a>

</ul>

<h2>Programs</h2>

<ul><li><a href= phd.html> Ph.D. Program </a >

<li><a href= msc.html> M.Sc. Program </a >

<li><a href= bsc.html> B.Sc. Program </a>

</ul>
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<h2><a href=research.html> Research </a></h2>

</html>

The HTML-CM tree generated by the Query Manager for this code is shown in

Figure 4.3.

URL:

http://www.cs.uregina.ca

People Programs ResearchTitle

Computer

�

Faculty

�

Staff

�

Students

�

Ph.D.

�

M.Sc.

�

B.Sc.

�

Figure 4.3: The HTML-CM Tree

The root of an HTML-CM tree is the URL of the web page that the tree represents.

An attributed object is presented as a sub-tree with the attribute as the sub-root and

the value as branches from the sub-root. Other objects are presented as leaf nodes.

Object Processors: The Object Processors implemented in the system are listed in

Table 4.2. Most of the Object Processors function similarly. Based on the conversion

rules introduced in Chapter 3, a processor converts a part of the input, which is a

portion of an HTML document, to the corresponding part of an HTML-CM web

object. Object Processors create branches of HTML-CM web objects, which are

attached to the HTML-CM tree.

The most difficult part of converting HTML documents to HTML-CM web objects

is the processing of HTML code for Tables. Processing tables is complicated, because

a table can contain nested tables. The Table Object Processor builds a tree while
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processing a table, and adds a subtree to this tree for each nested table, as will be

explained shortly. The nodes in the tree have the following structure:

class table node {

int attr;

String cell content;

table node next cell;

table node next table;

table node next row;

}

The integer variable attr in the node structure identifies the type of this node.

The types of attributes implemented in HTML-QS are TABLE, TR, TD, TH, and

CAPTION. The tree for a two-dimensional table with one nested table is shown in

Figure 4.4. The root of the table tree is given by the variable called Table root.

This variable points to a table node Row1, which is the root of the first row in the

table. For each row in the table, there is a root node called Rowj, which contains two

pointers. One pointer points to the first cell Cellj,1 in Rowj, which points to the next

cell Cellj,2 in the row, and so on. The other pointer in root node Rowj points to the

root node Rowj+1, which points to the root node of the next row, and so on. Any

two dimensional unnested table can be represented using this type of tree structure.

If there are nested tables, a third type of pointer is used. For example, for a nested

table contained in Cellj,i, a pointer in this cell node points to the root of the first row

of the nested table, which starts a subtree similar in structure to the main tree. The

tree representing a table can be navigated easily and processed efficiently.

After the table tree is created, an algorithm, called Table process, is used in order

to process the table tree. Table process is a recursive algorithm. It performs a top

down traversal of the table tree, corresponding to processing the table row by row.

The Table process algorithm is given in pseudocode as follows.

Table_process(Table_element, Table_root)

{
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Figure 4.4: The Tree for Processing a Table

if (Table_root is NULL)

{

return;

}

if (Table_element is a data cell)

{

Process the content of the current cell;

Table_process(Table_element->next_cell);

}

else if (Table_element is a cell at the beginning of a row)

{

Table_process(Table_element->next_cell);

Table_process(Table_element->next_row);

}

else if (Table_element contains a nested table)
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{

Table_process(Table_element->next_table);

Table_process(Table_element->next_cell);

}

}

An HTML element, such as TABLE, TR, TD, TH, or CAPTION, is stored as the

content of a cell and is processed when the cell containing it is encountered during

the traversal of the tree.

The tree for the table shown in Figure 4.4 is added as a branch of the overall

HTML-CM tree for the HTML document containing the table.

Query Manager Step 2: Building the Result Table Once the HTML-CM

tree has been created, the Query Manager starts building the Result Table. The data

structure used to represent the Result Table is shown in Figure 4.5.

For every expression in the body of the query, the Query Manager creates an

expression root node and an expression node in the Result Table. The expression

root nodes form a dynamic linking table. The root pointer of the Result Table points

to the first expression root node Expression1. Each expression root node has two

pointers, one pointing to the root node of the next expression in the linking table,

and the other pointing to an expression node. In each expression node, there is

another linking table, which consists of nodes for the variables used in the expression

corresponding to that expression node. The variables in a single expression node must

be unique, although the same variable may appear in more than one expression node.

Each node for a variable contains a string representing the variable and a vector of

search results. All the vectors together can be viewed as a table. This table is much

like a table in a relational database. The combination of the ith records in all vectors

corresponds to a tuple. All of the tuples form a database table, which can be used

in further query processing. For normal variables, the element of a vector stores the

string result of a query. For constant expressions that are also considered to be special

variables, the elements of each vector store a boolean value of True or False.
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Figure 4.5: The Data Structure for the Result Table
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Recursive Query: When a recursive query is performed, HTML-QS applies an

iterative method to repeatedly execute the same query on different HTML documents

until no more new results can be produced or the the maximum depth is reached.

The maximum depth is the total number of levels of URL links that the system will

try to reach from the current web page. For example, when querying the link objects

that can be reached from the current web page, a default maximum depth of 5 is

used to stop the system from going any further. We chose 5 for the default vaule,

because that was the maximum depth that the HTML-QS system could run on the

computer we used for testing before it ran out of memory. The maximum depth can

be adjusted according to the hardware resources available on the computer.

Result Processor: Once the result table has been generated, the Query Manager

passes it to the Result Processor. The Result Processor first prunes the result table

by removing all tuples with False values. The Result Processor then starts building a

Head Result List, which is a dynamic linking table that will later be used to construct

a visual representation of the query result. The structure of the Head Result List is

shown in Figure 4.6.

Figure 4.6: The Head Result List

For every variable shown in the query head, the Result Processor adds an item to
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the Head Result List. It then searches the result table, finds the matching variable,

makes a copy of the result list for that variable, and links this list to the newly inserted

item. The final step of the Result Processor is to display output from the Head Result

List by iterating through all variables and result lists.

4.3 Evaluation and Comparision

In this section, we provide a comprehensive comparison and evaluation of the

HTML-QS system. We discussed 15 example queries in Chapter 3 to show the ca-

pabilities of HTML-QL. To evaluate the HTML-QS system, we tested it on these 15

queries. The results of this testing are presented in this section. Where possible, we

also present a comparison of these results with those obtained by the Google search

engine and those that would have been obtained using the five of the web query lan-

guages described in Section 2.2, namely WebSQL, W3QL, WebOQL, WebLog, and

STRUQL.

Example 1: Copy the contents of the HTML document at www2.cs.uregina.ca/

∼pwlfong to file a1.

a1 : $X :- http://www2.cs.uregina.ca/~pwlfong : $X

The following is the contents of file a1 after running this HTML-QL query:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

... ... ...

<HEAD><TITLE>Philip W. L. Fong</TITLE>

... ... ...

<BODY>

<H1>Philip W. L. Fong</H1>

<P>

<IMG alt=Photo src="http://www2.cs.uregina.ca/~pwlfong/photo.jpg">

... ... ...

</BODY></HTML>
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When searching for “http://www2.cs.uregina.ca/∼pwlfong” in Google, Google re-

turns a message indicating no information is available for the URL. However, it also

suggests that the user should click on a provided link, pointing to http://www2.cs.

uregina.ca/∼pwlfong, to visit the web page if the user thinks the URL is valid. None

of the web query languages we described in Chapter 2 can perform this query.

To test HTML-QS on Examples 2 to 10, we use Ley’s DBLP bibliography web

page at http://www.informatik.uni-trier.de/∼ley/db as an example HTML document

for the queries.

Example 2: Retrieve the intra-document structure of Ley’s DBLP bibliography web

page to file a2.

a2 : {$X} :- http://www.informatik.uni-trier.de/~ley/db : {$X}

The following is the resulting contents of file a2:

{

Title=>DBLP Bibliography

...

Search=>{

Author<http://www.informatik.../a-tree/index.html>

Title<http://www.informatik.../indices/t-form.html>

Advanced<http://www.informatik.../indices/query.html>

}

Bibliographies=>{

Conferences<http://www.informatik.../conf/indexa.html>=>{

...

}

Journals<http://www.informatik.../journals/index.html>=>{

CACM<http://www.informatik.../cacm/index.html>

TODS<http://www.informatik.../tods/index.html>

...
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}

...

}

HTML-QS converts the whole HTML document to a list object, but we only show

some objects above to keep the results concise. Neither Google nor the five web query

languages from Chapter 2 can extract this kind of intra-document structure from an

HTML document.

Example 3: Obtain the web objects that occur under the attribute “title” and save

the results to file a3.

a3 : {Answer=>$X} :-

http://www.informatik.uni-trier.de/~ley/db : {title=>$X}

The following is the resulting contents of file a3:

{Answer=>

DBLP Bibliography

}

In HTML-CM, the TITLE HTML element is converted to an attribute object.

This query returns the value of the attribute object, which is a text string. In Google,

one can search for some keywords that only appear in the title of the web pages.

Therefore, if we search “DBLP Bibliography” and indicate that only titles are to be

searched, Google returns web page http://www.informatik.uni-trier.de/∼ley/db as

the first result. However, this querying with Google is done in the opposite way from

what was defined. One needs to know the “value” of the Title first and then Google

can find the web page. In HTML-QS, one can start with the web page and then query

for the “value” of Title. The WebSQL, W3QL, and WebLog web query languages

can perform a query on the Title attribute, while the five web query languages from

Chapter 2 either can only search for <title> tag or cannot perform this type of query.

WebSQL, W3QL, and WebLog can perform this query, because TITLE is a special
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HTML element, However, they cannot perform queries on other attributes, as shown

by the following example.

Example 4: Obtain the web objects that occur under the attribute “search” and

save the results to file a4.

a4 : {Answer=>$X} :-

http://www.informatik.uni-trier.de/~ley/db : {*search=>$X}

The symbol “*” before “search” means HTML-QS will search for attributed ob-

jects at any level, as will be explained with reference to Example 6. This query is

similar to the one in Example 3, but it queries for the “search” attribute instead of

the Title attribute. From the results for Example 2, we see there is an attributed

object whose attribute is “search”, and value of this attributed object is two link

objects. The results for Example 4 are as follows:

{Answer=>

Author<http://www.informatik.../a-tree/index.html>

Title<http://www.informatik.../indices/t-form.html>

Advanced<http://www.informatik.../indices/query.html>

}

Google can search for the “search” keyword from a given site or domain, but it cannot

regard “search” as an attribute and therefore it cannot search for the value of the

“search” attribute. None of five web query languages from Chapter 2 can do search

in this manner either.

Example 5: Retrieve all URLs under attribute “search” to file a5.

a5 : {Answer=>$X} :-

http://www.informatik.uni-trier.de/~/db : {*search=>{<$X>}}

As with Example 4, this query searches for the “search” attribute, but only URLs

in the value of the attribute are to be returned. This query touches the intra-document
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structure of an HTML document other than the Title. Neither Google nor any of the

five web query languages from Chapter 2 can specify this type of query.

The following is the resulting contents of file a5:

{Answer=>{

http://www.informatik..../a-tree/index.html

http://www.informatik..../indices/t-form.html

http://www.informatik..../indices/query.html

}}

Comparing file a5 with file a3, we can see that the two anchors in a5 are exactly

all the anchors listed in file a3. HTML-QS does exactly what it is supposed to do.

Neither Google nor any of the five web query languages from Chapter 2 can do this.

Example 6: List labels of linking objects under the attribute “search”.

a6 : {Answer=>{$X}} :-

http://www.informatik.uni-trier.de/~ley/db : {*search=>{$X<>}}

As with Example 5, this query only searches for labels of linking objects. The

following is the resulting contents of file a6:

{Answer=>{

Author

Title

Advanced

}}

Example 7: List all attributes at the first and second levels.

a7 : {Answer=>$X} :-

http://www.informatik.uni-trier.de/~ley/db : {$X=>$Y}

a7 : {Answer=>$Y} :-

http://www.informatik.uni-trier.de/~ley/db : {$X=>$Y=>$Z}

69



The level is the depth from the root at which objects are located in an HTML-CM

tree. In the HTML-CM tree shown in Figure 4.3, the objects at level 1 are those at

the bottom ends of the branches emerging directly from the root, such as Title and

People. The following is the resulting contents of file a7:

{Answer=>

Title

Mirrors

Search

Bibliographies

Full Text

Links

DBLP News (February 2006)

Conferences<http://www.informatik.../conf/indexa.html>

...

}

Example 8: We know there is a journal called TODS. We want to know the URL

of this journal. HTML-QS can search for the label “TODS” and return its URL.

a8 : {Answer=>$X} :-

http://www.informatik.uni-trier.de/~ley/db : {*TODS<$X>}

The following is the resulting contents of file a8:

{Answer=>

http://www.informatik.../tods/index.html

}

If we look at the query result of Example 2, we can see a linking object under at-

tributed object Journal whose label is TODS and its URL is exactly what HTML-QS
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returned. This query relates to links in the HTML documents. As discussed in Chap-

ter 2, Google and the five web query languages from Chapter 2 can perform this type

of query.

Example 9: Retrieve all URLs in the DBLP Bibliography web page.

a9 : {Answer=>{$Y}} :-

http://www.informatik.uni-trier.de/~ley/db : {*<$Y>}

The following is the resulting contents of file a9:

{Answer=>{

http://www.informatik.uni-trier.de/~ley/db/index.html

http://dblp.uni-trier.de/

http://www.uni-trier.de/

http://www.informatik.uni-trier.de/~ley/

http://www.informatik.uni-trier.de/~ley/db/welcome.html

http://www.informatik.uni-trier.de/~ley/db/about/faq.html

http://www.acm.org/sigmod/dblp/db/index.html

http://www.vldb.org/dblp/db/index.html

http://sunsite.informatik.rwth-aachen.de/dblp/db/

http://www.informatik..../a-tree/index.html

...

(72 URLs in total)

}

Because this query looks for inter-document structure, all web query languages

we studied can handle this query in one way or another. Google can return links to

web pages as search results, but it cannot return all links on one page.

Example 10: Obtain all URLs that are reachable from the DBLP Bibliography web

page.

a10 : {$X} :- http://www.informatik.uni-trier.de/~ley/db : {*<$X>}

a10 : {$X} :- a10 : {<$V>} , $V : {*<$X>}

71



The first query statement is identical to query Example 9. The second query

statement uses the output of the first query which is file a10, as an input, and continues

retrieving URLs by following the URLs in file a10. This query extends Example 9

and tracks down URLs in the DBLP Bibliography web page. This query is recursive,

and stops at a depth of 5. It finds more than 3600 URLs. A detailed discussion of

depth can be found in Section 4.2.2.

The following is the resulting contents of file a10:

{

http://www.informatik.uni-trier.de/~ley/db/index.html

http://dblp.uni-trier.de/

http://www.uni-trier.de/

http://www.informatik.uni-trier.de/~ley/

http://www.informatik.uni-trier.de/~ley/db/welcome.html

http://www.informatik.uni-trier.de/~ley/db/about/faq.html

http://www.acm.org/sigmod/dblp/db/index.html

http://www.vldb.org/dblp/db/index.html

http://sunsite.informatik.rwth-aachen.de/dblp/db/

http://www.informatik.../a-tree/index.html

...

(3601 URLs in total)

}

Example 11: Obtain the URLs and the corresponding labels for all URLs that are

reachable from the DBLP Bibliography web page.

a11 : {$X<$Y>} :-

http://www.informatik.uni-trier.de/~ley/db : {*$X<$Y>}

a11 : {$X<$Y>} :-a11 : {$U<$V>} , $V : {*$X<$Y>}

As with Example 10, this query not only searches for URLs but also for the

corresponding labels of the URLs. The following is the resulting contents of file a11:
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{

dblp.uni-trier.de<Logo.gif><http://www.informatik.../index.html>

dblp.uni-trier.de<url.gif><http://dblp.uni-trier.de/>

UNIVERSITT TRIER<ut.gif><http://www.uni-trier.de/>

Michael Ley<http://www.informatik.uni-trier.de/~ley/>

Welcome<http://www.informatik.uni-trier.de/~ley/db/welcome.html>

FAQ<http://www.informatik.uni-trier.de/~ley/db/about/faq.html>

ACM SIGMOD<http://www.acm.org/sigmod/dblp/db/index.html>

VLDB Endow.<http://www.vldb.org/dblp/db/index.html>

SunSITE Central Europe<http://sunsite.informatik.../dblp/db/>

Author<http://www.informatik.../a-tree/index.html>

...

(2349 rows in total)

}

The total number of label-URL pairs in file a11 is less than the total number of

URLs in file a10 for Example 10. A quick investigation shows that some URLs do

not have labels. Examples 10 and 11 both search for inter-document structure, and

all web query languages we studied can handle this query in one way or another.

For Examples 12 to 15, we use the World Factbook web site at http://www.odci.

gov/cia/publications/factbook/index.html as a source of HTML documents. The

queries for these examples search the intra-document structure created by converting

HTML documents to HTML-CM web objects. Neither Google nor any of the five

web query languages from Chapter 2 can perform any of these queries.

Example 12: Find countries that border both Germany and France.

a12 : {Answer=>{$N}} :-

$U : {Title=>$N , *border countries=>{Germany, France}}

The following is the resulting contents of file a12:

{Answer=>{
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Belgium

Switzerland

Luxembourg

}}

Example 13: Find countries that border Germany but not France.

a13 : {Answer=>{$N}} :-

$U : {Title=>$N , *border countries=>{Germany},

!*border countries=>{France}}

The following is the resulting contents of file a13:

{Answer=>{

Czech Republic

Denmark

France

Netherlands

Poland

Austria

}}

Example 14: Obtain pairs of countries that border exactly the same set of countries.

a14 : {Answer=>{$A,$B}} :-

$U : {Title=>$A , *border countries=>$C},

$V : {Title=>$B , *border countries=>$C},$A!=$B

The following is the resulting contents of file a14:

{Answer=>{

Bhutan,Nepal

Gibraltar,Portugal

Holy See (Vatican City),San Marino

}}
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Example 15: Find countries that directly or indirectly border Canada. In other

words, find countries that can be reached from Canada by ground.

a15 : {Answer=>{$C}} :-

$U : {Title=>canada , *border countries=>{$C}}

a15 : {Answer=>{$C}} :-

a15 : {Answer=>{$X}},

$U : {Title=>$X , *border countries=>{$C}}

The following is the resulting contents of file a15:

{Answer=>{

US

Canada

Mexico

Belize

Guatemala

El Salvador

Honduras

Nicaragua

Costa Rica

Panama

Colombia

Brazil

Ecuador

Peru

Venezuela

Argentina

Bolivia

French Guiana

75



Guyana

Paraguay

Suriname

Uruguay

Chile

}}

Twenty-three countries, including Canada itself, were found.

Table 4.3 shows the elapsed times for all 15 example queries. These elapsed

times were recorded on Grendel, a twenty processor Unix server in the Department

of Computer Science, University of Regina. Only a single processor was used to

handle each query. Most of the queries were handled quickly. The retrieval times for

Examples 12 through 15 were long. In particular, the elapsed time for Example 15

was more than five hours. These longer times were expected, because many hundreds

of web pages had to be retrieved and processed. Building a local data cache to store

web pages and the corresponding converted HTML-CM web objects would improve

the system performance greatly for such queries, as discussed in Chapter 5.

Table 4.3: Elapsed Time for Example Queries (seconds)

Test
Elapsed Time 

(second) 

1 1.1 

2 2.3 

3 1.3 

4 1.1 

5 1.0 

6 1.0 

7 2.0 

8 1.5 

9 1.7 

10 229.3 (3.8 minutes) 

11 185.7 (3 minutes) 

12 4478 (1.2 hours) 

13 5424 (1.5 hours) 

14 6660 (1.9 hours) 

15 19176 (5.3 hours) 

Table 4.4 summarizes the results described in this section. HTML-QS performed

very well in processing all types of queries. The results are correct in every case.
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Table 4.4: Summarization of Testing Example Queries

Example
Numbers 

HTML-QS 
Can Do 

Google 
Can Do 

Other Web Query 
Languages 

Can Do 

Inter-document
structure query 

1, 9, 10, 11 Y Partly Y 

Intra-document
structure query 

(Title)
3 Y Partly Some(3 of 5) 

Intra-document
structure query 

(non-Title) 

2, 4, 5, 6, 7, 
8, 12, 13, 14, 

15
Y N N 

In contrast, Google can perform important aspects of queries related to the inter-

document structure. It can also perform important apsects of queries related to

the intra-document structure as long as they relate to the Title attribute. It cannot

perform queries related to other aspects of the intra-document structure. As described

in Chapter 2, the other web query languages can perform queries related to the inter-

document structure and some queries related to the intra-document structure. The

effectiveness of the HTML-QS system on these 15 queries provide good evidence that

it can handle a wide variety of queries. These results also provide evidence for the

usefulness of the HTML-CM conceptual model and the HTML-QL query language.
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Chapter 5

Conclusions and Future Research

We present the conclusions of the thesis in Section 5.1, with emphasis on the

major contributions. We discuss some open issues for future research in Section 5.2.

5.1 Conclusions

The HTML-CM conceptual model and the HTML-QL web query language pro-

vide a methodology for finding intra-document structure of HTML documents and

performing high level queries on such documents. The other approaches studied in

Chapter 2, namely WebSQL, W3QL, WebOQL, WebLog, STRUQL, and NetQL, em-

phasizethe inter-document structure, such as hyperlinks between HTML documents.

As described in Chapter 3, the HTML-CM conceptual model captures both the intra-

document and inter-document structure relevant to an HTML document. HTML-QL,

which is also described in Chapter 3, allows querying based on this conceptual model.

The major original contribution of this thesis is the design and implementation of

a prototype system called HTML-QS. The HTML-QS query system supports data ex-

traction, transformation, and integration over HTML documents based on the HTML-

CM data model and the HTML-QL query language. All features of HTML-CM and

HTML-QL were implemented in HTML-QS, except results for recursive queries were

limited to a specified number of levels of recursion. In Chapter 4, we described how

the system is designed to perform these functions. The purpose of implementing

the HTML-QS query system was twofold: to investigate the feasibility of converting
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HTML documents to HTML-CM and performing queries using HTML-QL, and to

gain sufficient application experience using the HTML-QL language to identify any

needs for improvement.

The second major original contribution of this thesis was a comprehensive eval-

uation of the HTML-QS system. The implementation of HTML-QS was completed

in approximately one year. It performs as expected. The existence of the implemen-

tation proves the feasibility of using the HTML-CM data model and the HTML-QL

query language. All examples shown in Chapter 3 have been tested in the system and

successful results have been obtained as shown in Section 4.3. By comparison with

the Google search engine and several other web query languages, we demonstrated

the advantages of HTML-QL for the 15 example queries.

5.2 Future Research

This section discusses open issues related to the research described in this thesis.

The five aspects considered are data management, memory management, compatibil-

ity and extensibility, robustness, script languages, and web query engines.

Data Management: In our prototype system, the Local Data Repository consists

of flat text files. A better method of data management might be to store the ini-

tially retrieved HTML documents and converted web objects in relational tables in

a database management system. Our system could then take advantage of database

functionality, such as searching and indexing. Because modern database systems are

designed to handle huge amounts of data, the performance of the HTML-QS system

might be significantly improved.

Memory Management: The current implementation of HTML-QS uses the Java

programming language to access and process the HTML documents. Unlike the C

programming language, Java does not have a memory allocation function that pro-

grammers can call to allocate memory for a variable. Instead, programmers claim and

initialize a variable when needed, and Java itself takes care of allocating and releasing
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memory. Java provides a garbage collector that collects memory that is not being

used anymore. This function frees the programmer from spending a great amount of

time writing code to manage memory. However, it does have some drawbacks. When

a recursive query is being processed, Java’s built-in garbage collector does not act

soon enough to free memory occupied by queries handled by earlier recursive passes.

Therefore, the maximum depth of recursion is sharply limited. A new algorithm or

memory management tool might be able to reduce the severity of this problem. One

option is to pause the process and save the intermediate result into a file and then

resume the process when enough memory has been released.

Compatibility and Extensibility: Although HTML is still the most widely used

web construction language, a variety of related standards and recommendations for

constructing web sites have emerged in the last decade, such as Extensible Hyper Text

Markup Language (XHTML) [49], Dynamic HTML (DHTML) [28], and Extensible

Markup Language (XML) [50]. XML’s fast spread suggests that more languages will

be designed.

Both the XHTML and DHTML languages can be regarded as extensions to

HTML. XHTML is based on a standard defined by W3C, while DHTML is defined

by Netscape and Microsoft. XHTML and DHTML include all tags present in HTML,

but they also include some new tags or scripts that support new features for mak-

ing the presentation of web pages more attractive. For instance, in DHTML, one

can add transition effects between web pages similar to those found between slides

in Microsoft PowerPoint presentations. These extensions do not affect the textual

information that the web pages convey, so they will not affect HTML-QS’s retrieval

of the structure of these web pages. However, new filters should be developed and

deployed in the Intelligent Wrapper to handle the new tags in XHTML and DHTML.

XML is a widely used language for data representation and exchange. It does

not support the HTML tag set but instead it provides a facility to define tags. Liu

has already proposed a preliminary outline of a rule-based XML query system [33]

that is similar to HTML-QS. A system that generalizes Liu’s XML query system and
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HTML-QS could be developed.

Robustness: In the prototype system, we used a layered design to make the system

relatively robust. This layered design can capture most types of errors at the layer

where they occur and return meaningful information for further investigation. The

Query Processor captures syntax errors in query statements. The improper use of

query constructs is the most frequently seen error. For example, the “>” symbol may

be missing from an attributed object. Logic errors occur when users of HTML-QS

fail to use the HTML-QL language in the way that it is intended. An error of this

type may not cause HTML-QS to crash, but it may instead produce results that differ

from what users expect. Logic errors can be complicated and of a great variety. In

general, logic errors can be reduced by further study of the syntax and semantics of

languages, so further study of HTML-QL might reduce such errors. A comparison of

sample queries and results might also reduce the number of logic errors.

The Intelligent Wrapper finds errors in HTML documents and attempts to handle

them without quitting the current query. For example, a missing ending tag is added

automatically while an unrecognized tag is reported to the user.

Bugs in the code and other unexpected operations can occasionally cause the

HTML-QS system to fail. We use the exception mechanism of Java to handle these

failures. When an error occurs, the system captures the exception and reports an

error message to the user. For example, the following problem was encountered. The

same Java source code was compiled on two different platforms, Microsoft Windows

XP Professional and Unix. When a query was submitted on the Unix platform,

the system failed. However, when the same query was submitted on the Windows

XP platform, the system performed as expected. Further investigation showed that

these two platforms had two different versions of the Java JDK and JVM installed.

Functions that are deprecated in one version but not in another version might cause

problems.

In some cases, however, the error messages are difficult to understand neither or

misleading about the actual error. In order to use error messages to narrow down
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the sources of problems, we need to characterize the various types of error-causing

situations and identify them with more specific error messages.

Script Languages: In the current implementation, scripts written in Java Script or

VB Script, are filtered out. However, given the popularity of using scripts to beautify

web pages, an increasing amount of information is being embedded in scripts. For

example, a flashing text string may denote something important. A further study of

scripting languages is necessary in order to extract the information embedded within

scripts.

Web Query Engines: The HTML-QS query system and a search engine could

be combined to create a web query engine. The search engine component would

focus on searching the Internet, matching keywords, and ranking the relevant HTML

documents. The HTML-QS component would focus on querying the structure of

the HTML documents. Therefore, such a web query engine could take advantage of

the searching and ranking abilities of a search engine, and also be able to perform

queries on both the inter-document structure and inter-document structure of HTML

documents. Web crawlers and local data repositories in the two components could

be consolidated to improve efficiency.
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Appendix A

Conversion Rules

The following conversion rules are adapted from Liu and Ling’s description of

HTML-QL [30, 31, 32].

Rule 1 Let DF be a frame-based document with frames or nested framesets F1, ..., Fn

in its body:

DF = <html><head><title> T </title></head>

<frameset ...> F1, ..., Fn </frameset> </html>

and ] be list concatenation operator. Then DF is converted into a list of two at-

tributed objects using the operator C as follows:

C(DF ) = {T itle⇒ T, Frameset⇒ C(F1) ] ... ] C(Fn)}

Rule 2 Let F = <frame name = "N" src = "U"> be a frame, where N is the

name and U is the URL of the frame. Then C(F ) = {N〈U〉}.

Rule 3 Let Fs = <frameset ...>F1, ..., Fn</frameset> be a frame set, where each

Fi for 1 ≤ i ≤ n is a frame or a nested frameset. Then C(Fs) = C(F1) ] ... ]C(Fn).

Rule 4 Let DR be a regular document with sections S1, ..., Sn in its body:

DR =<html><head><title> T </title></head>

<body> S1 ... Sn </body> </html>

Then C(DR) = {T itle⇒ T, C(S1), ..., C(Sn)}.
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Rule 5 Let S = <hn> H </hn> T be a section with a heading H and contents T and

S ′ = T ′ a section without a heading. Then C(S) = C(H)⇒ C(T ), C(S ′) = C(T ′).

Rule 6 Let P = <t>B</t> : R or P = <t>B : </t>R be a paragraph with an

emphasized beginning and P ′ = R a paragraph without an emphasized beginning,

where t is either b, i, em, or strong. Then C(P ) = C(B) ⇒ C(R), and C(P ′) =

C(R). If R has logical parts R1, ..., Rn with n ≥ 1, then

C(R) = {C(R1), ..., C(Rn)} if n > 1

C(R) = C(R1) if n = 1

Each logical part Ri for 1 ≤ i ≤ n is converted as a paragraph recursively.

Rule 7 Let I = <img src = "U" alt="T"> be an image link, where U is a URL

and T is a string. Then C(I) = Image ⇒ T 〈U〉. When the alt field is missing, we

treat it as alt="".

Rule 8 Let H = <a href = "U"> T </a> be a hypertext link, where U is a URL

and T is a string. Then C(H) = C(T )〈U〉.

Rule 9 Let S be a character string. Then C(S) = S.

Rule 10 Let L = <t><li>L1...<li>Ln</t> be an ordered or unordered list, where

t is either ol or ul. Then

C(L) = {C(L1), ..., C(Ln)} when n > 1

C(L) = C(L1) when n = 1

Rule 11 Let LD = <dl><dt>N1<dd>L1 ...<dt>Nm<dd>Lm </dl> be a definition

list. Then

C(LD) = {C(N1)⇒ C(L1), ..., C(Nm)⇒ C(Lm)} when n > 1

C(LD) = C(N1)⇒ C(L1) when n = 1

Rule 12 Let I = T<t><li>T1 ...<li>Tm</t> be a nested ordered or unordered list

item where t is either ol or ul. Then

C(I) = C(T )⇒ {C(T1), ..., C(Tm)}
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Rule 13 Let T = <table><caption>H</caption>TC</table> be a table with a

caption and T ′ = <table>TC</table> be a table without a caption, where H is the

caption and TC is the table contents. Then

C(T ) = C(H)⇒ C(TC)

C(T ′) = C(TC).

Let R1, ..., Rn be rows other than the row for column headings in the table contents

TC. Then C(TC) = {C(R1), ..., C(Rn)}. For each row Ri with 1 ≤ i ≤ n:

(1) if the table has column headings H1, ..., Hn and each row Ri has a row heading

H : Ri = <tr><th>H<td>C1...<td>Cn, then

C(Ri) = C(H)⇒ {C(H1)⇒ C(C1), ..., C(Hn)⇒ C(Cn)}

(2) if the table has column headings H1, ..., Hn, but each row Ri has no row

heading: Ri = <tr><td>C1...<td>Cn, then

C(Ri) = {C(H1)⇒ C(C1), ..., C(Hn)⇒ C(Cn)}

(3) if the table does not have column headings but each row Ri has a row heading:

Ri = <tr><th>H<td>C1...<td>Cn, then

C(R) = C(H)⇒ {C(C1), ..., C(Cn)}

(4) if the table has neither column nor row headings, then for each row Ri =

<td>C1...<td>Cn, C(R) = {C(C1), ..., C(Cn)}

Rule 14 Let F be a form as follows where E1, ..., En are the elements in the form.

F = <form ...>

E1, ..., En

<input type = "submit" ...>

<input type = "reset"...>

</form>

Then C(F ) = Form ⇒{C(E1), ..., C(En)}.

Rule 15 Let TF = L:<input type="T" name="N" value="V "> be a text field,

where L is the label visible to the user, T is the type for the input text, N is the

name for the text field that is not visible to the user, and V is the default value. Then

C(TF ) = Text Field ⇒{Label ⇒L, Name ⇒N , Type ⇒T , Value ⇒V }.
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Rule 16 Let R be a group of radio buttons with the same name of the following

form, where L is the label for the group, N is the name, Vi is the value, and Li is the

label visible to the user.

R = L : <input type = "radio" name = "N1" value = "V1">L1

...

<input type = "radio" name = "Nm" value = "Vm">Lm

Then C(R) = Radio Buttons ⇒{Label ⇒L, Name ⇒N ,

Options ⇒{{Label ⇒L1,Value ⇒V1},

...

{Label ⇒Ln,Value ⇒Vn}}

Rule 17 Let M be a menu of the following form, where L is the label for the menu

visible to the user, N is the name for the menu, Vi is the value, and Li is the label

visible to the user.

M = L <select name = "N" ...>

<option value = "V1">L1

...

<option value = "Vn">Ln

</select>

Then C(M) = Menu ⇒{Label ⇒L, Name ⇒N

Options ⇒{{Label ⇒L1, Value ⇒V1},

...

{Label ⇒Ln, Value ⇒Vn}}
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