
Investigating Derivative Estimation as Applied to Smooth

Surface Interpolation

by

J. Alexander Clake

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2006

c©J. Alexander Clake 2006



I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

ii



The University of Waterloo requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

iii



Abstract

blah blah blah

iv



Acknowledgements

I’d like to thank:

Stephen Mann

for supervising me through my fear and indecision.

Wayne and Margaret Clarke, Mom and Dad,

for financial and emotional support.

Shauna and Liam Clarke

for patience and long, longsuffering.

Microsoft and Nortel, OGS, and the University of Waterloo

for scholarship contributions.

The University of Waterloo

for accepting, employing, and putting up with me.

The CGL

for helping me expand my horizons.

The Music Department at UW

for doing the same, and keeping me sane too.

GNU and their GPL concept

for wonderful free, free software.

Dr. James Mason and the University of Regina

for providing a work environment away from UW.

v



Trademarks

Duh! is a trademark of ...

vi



Contents

1 Introduction 1

2 Background 3

2.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Monomial Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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Chapter 1

Introduction

This thesis is concerned with the problem of smooth surface interpolation. More precisely, I am

interested in working on a particular solution to the following problem: given a set of points in

the plane with height values and 0 or more derivatives at each point, find a smooth surface that

interpolates the heights and all derivatives given at each point. There are several fields that are

interested in solutions to this problem including Computer Graphics which is the direction I am

approaching the problem from. Different fields look for different things from such interpolants. I

am looking primarily for good looking and predictable interpolation for sparse surfaces, the better

to model with. Other interests are accurate surface reconstruction and continuity constraints.

Nearly every field of scientific endeavor is interested in representing some data as a surface.

Whether the surface should be interpolated or approximated is a question of the reliability of the

data. If the data is known to be precise to several significant figures then interpolation is called

for. However if the data changes very rapidly and offers different measurements for the same

point or very close points a surface estimation is called for. If you want to know the shape and

direction of a concrete sidewalk you don’t measure the sidewalk on a millimetre scale, interpolate

the data and take a derivative. Rather, you might either take samples farther apart or, if you

have no choice as to the input data you use a point smoothing scheme to find trends in the data.

A similar situation occurs in computer graphics. If an artist is using an input device to draw

1



CHAPTER 1. INTRODUCTION 2

curves and sketch then high resolution input data will be approximated using a

A closely related area and one a lot of people ask, including myself, when they start looking

at it is why are you doing interpolation instead of fitting? The answer to that straight from my

supervisor was that somtimes you know the data is really really good and you don’t want to be

missing the data if the data’s extremely good and your guess is worse than the data. So were

looking to interpolate points that are extremely well defined – Say they come from extremely well

measured geological surveys. Or say you’re designing a car, CAGD, where you just want some

thing to go exactly so at certin points. ¡pure bs¿Interpolation is also used in circumstances where

data is sparse. That might be for compression reasons or whatever else and you want go right

through that data.¡/pure bs¿ Surface fitting is used in cases where you have lots of data and you

know the data is noisy so you’re looking to smooth it out so you can work out trends in the data

and the exact values are not so important even if the data is sparse and you can’t really work out

the noise you just want to figure out what the data’s about. Used a lot in economics, and physical

sciences like meterology. Surface interpolation work is also done in weather but they don’t seem

to desperately concerned with doing it. Summary, why use one over the other? Surface fitting is

to simplify a lot of data, mostly, and to expose trends in the data. Interpolation is to upsample

sparse data so that you can get good looking results out of work that you’ve invested a lot of

effort in.

In Surface interpolation your model is ultimately going to be finely rendered in some way

either its going to sculpted using machines or its going to be finely rendered on scree and used

in an animation on the screen, CG. The idea is often that the interpolation should be smooth.

So, specifically, I am working with smooth surface interpolation, Shortened SSI. The key is that

when you get in close to what you’re modelling it needs to keep its smooth aspect on that close

examination. When you carve it, it should be smooth to the touch, no wobbles or wiggles on the

surface that your finger will identify as being rough or odd. Your hands are good at telling you

what’s smooth. You can’t have discontinuities at the edges, or the boundaries between triangles

in the data that will make funny looking creases.



Chapter 2

Background

2.1 Polynomials

Polynomials are the simplest form of function. Every student of algebra is first taught how to

expand binomials, for example (x+1)(x+1) = x2 +2x+1. The expanded form is the polynomial

basis called the Monomial, or power, basis. It is an orthogonal basis for polynomial functions. A

polynomial basis consists of terms which are weighted with coefficients and summed to form the

polynomial. The terms of an orthogonal basis cannot be expressed by any combination of any

other terms. Any polynomial of degree n may be expressed by a weighted sum of the terms for

the basis for that degree. Each polynomial is unique, is uniquely represented in each basis, and

can be represented by all polynomial bases for that degree of polynomial. Some polynomial bases

have specific constructions for the terms of a polynomial that, while similar, are distinct for each

degree, while others have the terms of lower degree polynomials as subsets of the higher degree

ones. Other orthogonal bases for the polynomials include Bernstein-Bézier, Taylor, Legendre,

Chebyshev, and Lagrange. Pertinent to this thesis are the Monomial, Bernstein-Bézier, and

Taylor bases.

3



CHAPTER 2. BACKGROUND 4

2.1.1 Monomial Basis

The monomial basis is the simplest basis and so is the preferred basis for doing algebra and

calculus. For a univariate polynomial of degree n the terms are:

n
⋃

i=0

xi.

Their dth derivative can be computed as:

d

dxd
xi =











(

∏i−d
j=i i − j

)

xi−d if x ≤ i

0 otherwise

Similarly the bivariate terms are:
n
⋃

i=0

n−i
⋃

j=0

xiyj .

and their partial derivatives are:

∂

∂xkyl
xiyj =











i!
k!

j!
l! x

i−kyj−l if k < i, l < j

0 otherwise

The monomial basis is generally regarded is not optimally stable; other more stable bases such

as the Chebyshev basis are preferred for numerical algorithms. The Numerical Algorithms Group,

for instance, uses the latter for its fitters[?]. It is easy to calculate the derivative of a polynomial

in the monomial basis, making it ideal for estimating derivatives. It also possesses the useful

property that the terms of a degree n + 1 polynomial are a superset of the terms of a degree n

polynomial. For an fitter this means it is easy to show that a high order fit accurately reproduces

a low order polynomial.

2.1.2 Bernstein-Bézier Basis

The Bernstein-Bézier basis is the basis at the root of Bézier approzimation. There is a dynamic

progaming approach available to evaluate the function known as the De Castlejau’s algorithm. To
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evaluate f(t), the coefficients associated with ”neighboring” basis function are blended together

repeatedly, weighted by the relationship between t and the extremes of the domain, until a single

value is arrived at. For a more detailed discussion of this technique refer to Pyramid Algorithms[1]

pp. 194 – 198 for the univariate case, and pp. 279 – 287 for the bivariate triangular case.

The following information on explicit evaluation of the bivariate triangular domain version of

this basis comes from the aforementioned text. The degree n triangular Bézier patch T (s, t) with

control points Pijk , i + j + k = n can be written as

T (s, t) = Bn
ijk(s, t)Pijk

where

Bn
ijk(s, t) =

(

n

ijk

)

sitj(1 − s − t)k

and
(

n

ijk

)

=
n!

i!j!k!
.

The dynamic algorithm can be modified slightly to calculate derivatives. For univariate

Bernstein-B’ezier polynomials refer to pp. 243 – 247 of Pyramid Algorithms[1]. The extension of

this idea to bivariate triangular Bézier surfaces is on p. 283 of the same book.

2.1.3 Taylor Approximation

Given a point at a on a continuous function f and d derivatives at that point it is possible to

construct a degree d interpolating polynomial.

p(x) =

d
∑

n=0

fn(a)

n!
(x − a)n (2.1)

This approximation polynomial is called the Taylor polynomial. It approximates the curve with

an error at distance h = x − a bounded by O(hd+1).

The generalization of the Taylor polynomial to <n dimensions is available online from Mathworld[2].

Using notation similar to (2.1) I give a bivariate version of the Taylor polynomial here for d deriva-
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tives at f(a, b),

p(x, y) =
d

∑

n=0

{

∂n

∂x
f(a, b)

n!
(x − a) +

∂n

∂y
f(a, b)

n!
(y − b)

}n

.

Multivariate versions the Taylor polynomial are bounded by the same order of error as the

univariate given the same number of full sets of derivatives.

A good polynomial approximation to a function at a point p should produce derivatives at p

that closely match the function’s derivatives. We should also expect its error to be bounded in a

way consistent with the Taylor error. I use the first assumption in my validation and the second

in one of my weighting schemes.

2.2 Least Squares Fitting

2.2.1 Design Matrices

2.2.2 Weighting

2.2.3 Singular Value Decomposition

2.3 Old Junk, being cleaned or relocated

Locally smooth patch based surface interpolation evolved out of CAGD. The tools of the trade

were developped by the automotive industry in the late 50s and early 60s. It was at about the

time when people were looking to use the new computers to simplify the process of engineering

cars.

For most modelling cases B-splines are ideal. B-splines are a surface patch representation

that approximates a set of control points. B-splines that share control points automatically join

together smoothly. These patches are related to and easily translated to Bézier patches, another

kind of spline that interpolates its corners and is easy to work with because the curve/spline

always lies inside the convex hull formed by its control points.
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B-splines are defined such that you can hook lots of spline patches together in a way that is

continuous. Continuous means - in some way mathematically smooth. C0 continuous means that

the edges of the patches you are working with line up, no hole or gaps. C1 meas that the first

derivatives of the patches as you approach the edges at the corners are equal and C2 continuous

is the same for second derivatives and so on. C2 continuity is about the most that you likely want

because as you increase the constraints on how patches meet up you increase the degree of the

polynomial you are using and the higher the degree of polynomial you are using the more likely

you are to find wiggles which defeats the attempt to have things abstractly smooth.

B-splines are used for smooth surface interpolation because they have this continuity enforcing

property and they can be made to fit certain kinds of data easily. You can do a simple least squares

fit that forces the patches to interpolate your data. The constraint on your input data is that

it should be rectilinear or at least map to a grid. Once you lose that, you have to start fudging

things be cause B-splines are modelled on a grid. There are triangular B-patches, but they don’t

hook toghther nicely. Because B-splines map to a grid if you want to fit them to non rectangular

shapes you end up having to collapse a side to make it into a triangle. With triangles you can

model pretty much anything. The trouble is you end up with a singularity at one corner and you

get bad, unsmooth behaviour out of the singularity. See figure 2.1.

Given any set of points sampled from a surface you can generate a triangulation of those points,

so being able to smoothly interpolate a triangulated data set is sort of a holy grail. Although you

can make degenerate B-spline or Bézier patches that are triangular, the shape of these patches

is poor, and they are difficult to join together with anything more than c0 continuity. Although

some work has been done on triangular B-splines [ref DMS splines, Ingram], no reasonable method

exists for constructing triangular patches that automatically join with C1 or higher continuity in

the general case.

Moving away from local patch based techniques, there are global solvers that can do the job.

But they are very inefficient and they involve fitting high degree polynomial to the data and

attempting to minimize the energy and therefore reduce wiggliness.I’ve been told that they can

look good, but the problem is they are very inefficient. You have to recompute the whole thing,
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Figure 2.1: What happens when a square patch is used to fit a triangular area? Here we have a
square bezier patch with a degenerate side that makes it a triangle. Top left to right: triangle
with control points, triangle with non degenerate corner altered, triangle with degenerate corner
altered. Bottom row: Hull + perspective view of above patches. The patches have been positioned
so that the modified corner is pointing toward the viewer. Both modified patches have had a point
near one corner moved 2 units off the plane. Notice how a crease appears near the degenerate
corner.
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at great expense, anytime you change any part of the surface. The calculation for the surfce itself

is complex. The beauty of say cubic B-splines is that the surface is divided up into patches that

rely on no more than 42 = 16 points at a time.... conversely one point influences only 16 patches

and so recomputation is done in constant time, independant of the size of the dataset. You can

do efficient local recomputations for changes to the geometry.

Other techniques I have heard of: Thin plate splines, Iterative B-spline surface refinement,

Gaussian weighted blending stuff. (Look it up, don’t make it up.)

The local techniques are highly desired for interactive fitting, and also anykind of fitting, really.

Low order ( cubic) local techniques are probably best. Low order polynomials behave better. But

because they are low order, if you have a complex surface that isn’t sampled densely enough you

will oversimplify it. Cubic splines are generally agreed to fit the bill. If yo are given just points

you don’t have much data to work with to fit cubic patches. They require much more data that

just positions... need 5 partial derivatives ∂x, ∂y, ∂xx, ∂xy, ∂yy. You can linearly interpolate the

points but you end up with a faceted surface - not smooth at all.

More background - approaches to the local problem and high continuity Farin: Clough-Tocher

Asks for normal to the surface must be provided. Triangles in surface are subdivided into 3

triangular patches. Sets up the interior control points for these patches using the normals provided

at the vertices of the dataset then fakes the missing interior information. I don’t know if it borrows

information from surrounding triangles or if it sets them in some way he found to be good enough

through theory and experimentation.

His good enough isn’t good enough though. You end up with very flat looking patches, very

lifeless in the middle. It tends to kill what could be some nice looking functions.

Continuity issues! Bad Curvature!

Dr. Stephen Mann proposed a novel non-split domain scheme with continuity adjustments.

Rather than trying to fit 3 cubics to one patch he took a high degree surface (D5 and D9 worked

well) then he used Farin’s approach to setting interior control points using {d =order of patch

|b2d/3c} full sets of partial derivatives. By setting the interior parts based on the partial deriva-

tives he ended up with C0 continuity between patches, but C1 continuity and C2 continuity were
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not achieved. To set center control points along triangle edges, he used point blending. This point

blending breaks C1 and C2 continuity. C1 is only absent in one or two patches at the centre of

the side where blending occured. To adjust continuity he used a geometric technique to blend

control points across patch boundaries

For ≥D5 patches he could do a full C1 adjustment. For ≥D8 patches could do C2 adjustments.

Mann’s results are much better than Farin/Clough-tocher. However a lot of derivative in-

formation is needed that probably can’t be provided with the data, either because the surface is

modelled by hand and the derivatives are hard to adjust or understand or because they are difficult

to measure. That was my job - see how well I could automatically set/estimate the derivatives

for a point mesh or a point normal mesh. Getting results similar to or better that Clough Tocher

results was the desired standard. Getting it from point data only was the ideal because it would

be simplest to model.

Why is the number of complete derivatives required by Mann’s scheme a problem?

People don’t understand derivatives beyond the first derivative when they look at them and

don’t know how to set them intuitively. The Twist Vector (∂xy) was especially problematic in

early CAGD. There was a car that was designed using the twist vectors set to 0 because they

were too difficult to get to behave. The car was ugly and did not get far (find nameof car for

anecdote, procure a picture if possible).

Also there is the problem of overlarge datasets. Clough-Tocher - 5 fp values. Mann D5 - 12

fp values, Mann D9 - 30 fp values. 2-6x bigger data sets.

And lastly it is unreasonable to expect people to get so much derivative data when making

local measurements of real world phenomena. Mostly the real world is not shaped in such a way

that one can do that. Altitude of a coordinate, depth of a sample, or temperature is one thing.

Measuring how it changes in local directions is a fair bit more, but not unreasonable. But getting

even as little as b 2∗5
3 c = 3



Chapter 3

Derivative Estimation

My research objective was to find a way to smoothly interpolate a mesh using only positional

information without a split domain scheme, such as that used in the Clough/Tocher scheme. I

had at my disposal the first interpolation scheme proposed and implemented by Stephen Mann in

2000 and described above [3, 4]. This scheme requires b2n/3c derivatives. Therefor my goal was

to estimate derivative information at each point up to the required number of derivatives.

3.1 Methods

One thesis I read covered several derivation techniques[5], but most of them assume either that

the function is known but difficult to differentiate, or that more points may be acquired from a

black box. My research assumes that data acquisition is complete.

3.2 Simple Estimates

There are a few ways of arriving at estimates of the derivative of a function from discreet samples.

A look at any calculus text will demonstrate differencing as a way of estimating the tangent to a

function. In computer graphics the average of the directions polygons face surrounding a point

may be averaged to produce a normal to the implied surface. This normal can be used to get

11
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directional derivatives. Simple polynomials are often fitted to data.

3.2.1 Finite Differencing

Formulae for first derivatives are easily found in standard numerical analysis texts[6], and other

references[find some to put here, dummy]. the basic formulae are forward differencing, backward

differencing, central difference.

Forward Differencing

f ′(xi) ≈
f(xi+1) − f(xi)

xi+1 − xi

=
yi+1 − yi

xi+1 − xi

(3.1)

Backward Differencing

f ′(xi) ≈
f(xi) − f(xi−1)

xi − xi−1
=

yi − yi−1

xi+1 − xi−1
(3.2)

Central Differencing

f ′(xi) ≈
f(xi+1) − f(xi−1)

xi+1 − xi−1
=

yi+1 − yi−1

xi+1 − xi−1
(3.3)

Second derivatives are as follows More equations

3.2.2 Normal and Tangent Approximation

Given a well triangulated mesh it is possible to approximate the normal at each vertex by averaging

the cross product of all neighboring edges that are connected to the vertex. This technique is

used to perform smooth shading of arbitrary meshes in ray tracers, for example. Once one has

the normal to a surface at a point the tangents in any direction are easy to calculate by taking

the cross product of the normal and one of the axes,x or y.
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3.3 Higher Order Estimates

There are methods for estimating higher order derivatives that follow from the lower order meth-

ods.

Repeated Differentiation

Calculating higher order derivatives can be done by iterating any of the simple methods on the

derivatives arrived at by the previous steps.

It is possible to arrive at “reasonable” estimates of the derivatives by repeatedly performing

central differencing on the centre of a rectilinear mesh and doing either forward or backward

differencing on the edges. As a proof of concept I designed a matlab test and extracted results

for some surfaces. (If I have time I could generate a few samples of this.) Edge conditions are

a problem. Only forward and backward differencing can be used here. They have a higher error

that central differencing and this error propagates in from the edges as higher derivatives are

taken because the results from one step are fed into the next.

Ames[7] suggested that doing this was inherently unstable and ought to be avoided.

3.3.1 Atoms

The numerical analysis text I referred to for information on finite differencing suggested using

a schematic technique for calculating approximations of partial derivatives called atoms. The

approximations to partial derivatives are calculated using a diagram that represents the relative

placements of values in a discrete mesh. Neither that text nor its reference[7] was clear on how

atoms were constructed. My numerical analysis text did provide some examples.

3.3.2 High Order Interpolation

The idea here is to interpolate the neighbourhood of a point with a polynomial, then take di-

rectional partial derivatives. The easiest way to interpolate points with a polynomial is to do

a Lagrange interpolation. The construction is simple and is presented in detail in chapter 2 of
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Figure 3.1: left : Degree x polynomial interpolation of points. right : Equal degree Bézier approx-
imation of the same points. Notice that the polynomial interpolation bears no resemblance to
the shape suggested by the points where the Bézier curve does. The polynomial interpolation,
however, interpolates very nicely near the middle of its curve.

Pyramid Algorithms [1]. However there is no way indicated in that text, or in any other I found,

to easily find the directional derivatives of the resulting surface. This is not a problem as they

could be derived with some effort. There was a bigger problem, one that effort would not easily

solve. Lagrange polynomial interpolanting surfaces can only be constructed for points that map

to a rectangular or triangular array of points. There is no guarantee that the nearest neighbours

to a point in a scattered data set will map to either one of those.

3.3.3 High Order Approximation

One problem with polynomial interpolants is that as the order of the interpolant increases, the

interpolation becomes increasingly wiggly. The variation diminishing property of Bézier curves

would be a boon - although there is no known equivalent to the property for Bézier patches.

Consider figure 3.1 to see why I might have thought this. B-splines could also do the job.

I tried implementing this but the implementation did not go well. Portions of the code may

still be present in my code base, but I am uncertain as to how close to complete it is or how long

it would take to fix it up.

3.3.4 Least Squares Fitting

The method of choice for approximating functions is least squares fitting. Its use in United States

geological surveys in the early days of computing was noted in my introductory linear algebra

text[8] Found a paper by Hiroshi Akima, an early researcher in the field, that used it in a context

very similar to my own[9].

Least squares fitting allows a close enough approximation to the interpolating polynomial to

be made. This is what attracted me to the method at first. As I examined it further I saw that
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the data points being used could be in any configuration around the point of interest so long as

they did not degenerate into a line.

3.4 Implementation of the Least Squares Based Estimator

The derivative estimation method I eventually settled on was least squares. There were three

stages that I would need to do the fits. First I needed the nearest neighbours to the point of

interest. Next I needed to find polynomial of the degree I wanted that best represented those

points. Lastly I needed to differentiate the polynomial and calculate the derivatives at that point.

3.4.1 Nearest Neighbours

The design matrix for this application of LSF requires the solution of the k nearest neighbours

problem.

Brute Force Method

The easiest way to implement k nearest neighbours is to scan all the data and keep track of the

ten closest points found. This is a O(n) algorithm and for large datasets this becomes the largest

cost of the algorithm, though for small data sets (< 1000) it should be fine.

K-D Tree

The generally recognized efficient way to find the nearest neighbours to a point is to construct a

K-D tree. This solution has a worst case of O(n) but its average case is O(logn) which is much

faster.

My Hack

What I did was take advantage of the fact that I knew I was getting ordered arrays of points and

perform a pair of binary searches for the point I wanted then took a box of points from around
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it using array indices. This is a O(log
√

n) method and is adequate until I need something more

robust to support real scattered meshes.

3.4.2 Least Squares Fitting

Least squares fitting looked like my best option so I implemented it using LAPACK and the

monomial or power polynomial basis:

P (x, y) =
d

∑

i=0

d−i
∑

j=0

cijx
iyj

Once I had worked a few things out, the estimator produced pleasing shapes when fit to polynomial

data, and looked like it was doing well even on some of the Franke functions. In some places it even

seemed to do better that the Clough-Tocher scheme, but patches near sharp features echo that

feature. This ringing continues until the points used to estimate the surface no longer include that

feature. This meant that the fits I was doing needed to focus on the immediate neighbourhood

as much as possible.

The most obvious way to keep the focus narrow is to use no more points than necessary. For a

polynomial surface that would be just enough points to uniquely determine each of the coefficients

for the basis function being used to fit the data. For an orthonormal basis of a degree d polynomial

there are d(d+1)
2 = d2+d

2 basis functions, so that many points are needed at a minimum. My first

implementation used a box around the point of interest to construct the fitting matrix. The box

was originally d points on a side, which gave {d > 3|d2 > d2+d
2 } points. For fits of degree 3 and

lower I used a box with d + 1 points on a side. My first fits only worked for d < 4 surfaces and it

wasn’t until I saw how ill conditioned the fitting matrices were that I realized I need to seriously

overconstrain to get good results.

Th problem is in the sampling pattern. If your data is sampled too regularly - say evenly

spaced on a line for univariate data, or on a rectilinear grid for bivariate data, you end up with

an ill-conditioned matrix. Overconstraining can bring conditioning numbers down from 1017 to

104, but that involves considering points that lay far from the point of interest. Using randomly
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scattered points improves conditioning - I made a small application in Octave that generated a

specified number of random points and found that I could easily not overconstrain at all and

get conditioning numbers in the order of 103 which may be adequate. Random data, however,

highlights one of the bugaboos of spline based smooth interpolation schemes. Long thin triangles

produce artifacts. For a real world implementation it might be best to try constructing a nearly

square fitting matrix first, checking the condition number and overconstraining only to the point

where the matrix falls below a certain value.

Akima’s method to solve the conditioning problem was to use a lower degree fit with the exact

number of points needed to define the coefficients if the fitting matrix was bad. If that failed the

algorithm used the next lower degree polynomial. If a planar fit still produced an ill-conditioned

design matrix, a surface perpendicular to the triangle formed by the point of interest and its two

nearest neighbours was used as the interpolating polynomial. Akima had adhered too closely to

the datasets suggested by Franke[10] and so his method failed on regularly spaced data. The rest

of what I did was in response to these problems. Later I found a follow up on the paper that

corrected the problems[11] using solutions I had already explored.

Weighting To Improve Local Fit

If the reason for the ringing behaviour is that the surface behaved somewhere in a way that,

though possibly continuous, could not be easily represented with the basis I was using, to reduce

how far the ringing propagated I could try either to reduce the the importance of outliers in the

design matrix.

I weighted so as to emphasize the environment around the point I was examining above all

other points, so that there was at least an interpolation of the point in question and, hopefully,

all of its immediate neighbours. In my initial implementation of least squares the surface that is

fit to the data approaches but does not interpolate the points because the least squares matrix is

overconditioned. When I weighted the point being examined heavily and gave light weights to all

others it seemed to me that my results improved considerably. I tried to optimize the weighting,

but found that it was very tricky to do. By tweaking a bivariate Gaussian I was able to make
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things look better for certain values in certain situations. An earlier fake Gaussian gave me pretty

good results, I think but I’ve since lost it.

Evaluations of weighting are found throughout the results section. Based on the results it

seems weighting does not help much.

Stability and Conditioning with Alternate Polynomial Bases

I have already shown that the conditioning of a monomial least squares matrix for a regularly

spaced rectangular grid is hopeless without some degree of overconstraining. (There’s a paper I

referred to for proof that the conditioning in this case is poor. Find it Alex!!! I can’t!) Excess

overconstraining didn’t help past a certain point.

To resolve the problem I considered polynomial bases that promised to have better conditioning

than the power basis.

Chebyshev Polynomials At first the Chebyshev basis(same paper as above, also a book...

can’t remember it) looked very promising, but it turned out to have more questions than answers:

what is a bivariate Chebyshev basis, how does one differentiate the Chebyshev basis in a stable

manner, etc. I shelved the research into the topic quickly.

Bernstein Basis I then turned to the Bernstein basis which is usually used to construct Bézier

splines. I found a paper that agreed recommended it for its stability [12] and I implemented it.

There was some improvement, but only about three fold. I needed something that provided several

orders of magnitude improvement. But the implementation was simple and, for psychological

reasons, I favoured the Bernstein basis in all subsequent tests. My results suggest that there are

other factors that make the Bernstein basis, as I have implemented it, a worse choice than the

power basis.

I implemented the triangular Bernstein basis for the fitter using the explicit basis functions:

Bd
ijk(s, t) =

(

d

ijk

)

sitj(1 − s − t)k where i + j + k = d
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The Bernstein basis is stablest in the range [0..1], and is considerably stabler than the power

basis. To take advantage of this I made a simple mapping of the points being considered to fit in

the triangle x + y − 1 = 0. I found it was easiest to put a minimum bounding square around the

points and make it fit into the triangle, making the points lie in the range ([0 − 0.5], [0− 0.5]).

The difference was not big enough to make a visual difference at all, and it didn’t improve

conditioning enough for me to constrain the matrix any less.

Implementation notes: B-B basis calculations are not very stable. Taking partial derivatives

failed for D7-D9 fits when I changed my compiler to use strictly 64-bit registers instead of 80-bit

temporaries. Monomial basis did not show this problem.

Tangent/Normal Meshes

The estimation problem is the same whether it is applied to a surface or the surface described by

its derivative, so it was a simple thing to modify my existing code to take advantage of meshes

that provided either tangents or normals along with the points. A quick look at the results in

tables 4.9 to 4.16 will show that there is an order of magnitude improvement for the fits that use

tangents.

3.4.3 Derivation

Monomial Derivation

I use a simple derivation scheme. For a term T given ex = the exponent on the x variable, ey =

the exponent on the y variable, δx = the derivations on x, δy = the derivations on y and Ci is the

coefficient for the term its contribution to the δxδy derivative is

ci





ex−δx
∏

j=ex

j









ey−δy
∏

k=ey

k



x(ex−δx)y(ey−δy)

which becomes the code in figure 3.2.

Because I am using integers to hold the factorials I could run into trouble. However, as I am

only using the first six derivatives in my implementation the highest value that will result from
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/*

getDerdxdy

Returns the nxnyth derivative monomial x^Dx*y^Dy

Dx = exponent of x (Degree of x)

Dy = exponent of y (Degree of Y)

nx = number of x derivations

ny = number of y derivations

*/

double getDerdxdy(double x, double y, int xn, int yn, int Dx, int Dy)

{

double der=0,i;

int powy, powx, facx=1, facy=1;

for (i=0; i < xn; i++)

{

facx *= Dx-i;

}

for (i=0; i < yn; i++)

{

facy *= Dy-i;

}

powx = max(Dx-xn,0);

powy = max(Dy-yn,0);

der = (double)(facx*facy)*pow(x,powx)*pow(y,powy);

if (isnan(der))

{

fprintf(stderr,

"NAN: getDernxny x%lf,y%lf,xn%d,yn%d,Dx%d,Dy%d"

, x, y, xn,yn,Dx,Dy);

exit(1);

}

return der;

}

Figure 3.2: C realization of monomial term derivation equation. Its inefficiencies include the fact
that it does not perform simple checks to see if the return value is zero.
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the two factorials is (9∗8∗7∗6∗5∗4)2 = 3, 657, 830, 400 < 4, 294, 967, 296 = 232 which fits nicely

into an integer. After this I convert to double with its mantissa of 52 bits. Things should be okay

for many, but not all, cases. I thought there might be trouble with overflowing the double so I

tried to catch NANs, which helped me debug bad matrices, but the real problems will come from

loss of precision.

I could have invested more time on researching better Monomial derivation schemes and pos-

sibly have use a symbolic math package, but this one seems adequate. To test it I will use some

really outrageous coefficients on a degree nine surface.

Bernstein Derivation

I implemented the pyramid triangular Bernstein patch evaluator as promoted by Goldman[1].

The evaluator is easily modified so that it provides derivatives. It provides partial derivatives

by setting 1 − s − t → −1, s → 1, t → 0 on a number of levels equal to the derivatives in the

s direction and for the t derivatives we set 1 − s − t → −1, s → 0, t → 1. This works, though

the discusson provided by Goldman [1] only proves it for directional derivatives along s or t not

partials on both. We get derivatives on x and y by setting up the control mesh for the Bernstein

polynomial such that s and t are parameterized along those axes.

Because the numbers involved in computing the derivatives of the Bernstein basis are moderate

there should not be any numerical difficulties associated with them, except that for degree 9

Bernstein’s there are difficulties as shown in tables 4.14 and 4.13

3.5 uncategorized junk

I found a post on derivative estimation on a stats package (Splus is the name of the package)

news list, and located the author’s faculty page[13]. It pointed to the use of spline smoothing to

estimate derivatives and suggested using penalties on the magnitude of some derivatives of the

fitted curves to achieve better estimates on some lower order derivative. The technique intrigued

me and prompted me to investigate splines approximation as a method, which then led me to look
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at interpolation as a form of finite differencing. In the end it became clear that the technique was

only intended to fit a curve to noisy data, not the precise data that is assumed in this technique.

Further it seemed fairly clear that the type of estimation done by the localized least squares

variant I came up with did a better job of making smooth surfaced when applied to ‘Mann -m 1

¡ *‘



Chapter 4

Results

To evaluate my methods I will present some results that validate certain steps using simple data

sets and others that evaluate how the method performs on more complex data sets.

All the numerical tests I perform will be evaluating the error between a computable expected

result and the estimator’s result. For all tests I report at least the maximum absolute error. It has

been suggested to me that the maximum error is the only number I need to report. The minimum

error is of little value and I include it only so that the reader can judge whether the mean lies in

a reasonable place. I report the mean error here because, especially on non polynomial datasets,

the fitter often has a problem with some small portion of the data but performs well most of the

time. I also include the mean because it has been a feature of these evaluations since Franke

proposed his interpolator evaluation scheme in 1979[10].

In general I would use relative error x−x∗

x∗
where x is the estimated value and x∗ is the true

value. In the case where x∗ is very small, however, this breaks down. Much of what I will be

analyzing will be very small. ([6] p. 14) I would like to use the relative error because it can be

used to estimate the number of significant figures an estimate has:

The number x is said to approximate x∗ to t significant digits if t is the largest

23
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nonnegative integer for which

∣

∣

∣

∣

x − x∗

x∗
< 5 · 10−t

∣

∣

∣

∣

Using this definition, we see that 0.998 approximates the true solution, x∗ = 0.9986,

to three significant digits... On the other hand, 0.999 approximates the true solution,

x∗ = 0.9986, to four significant digits...([6] p. 16)

So by expressing the errors in scientific notation I have a quick way to judge the quality of an

estimate.

4.1 Validations

To validate a method is to test certain intermediate results and final results on data sets where

the results are knowable and the method should perform well. In the case of my polynomial

approximation techniques I check two things. First I test coefficient reproduction, then derivative

accuracy.

I could validate monomials of any degree interpolating any monomial of lesser or equal degree.

For brevity I demonstrate this only for 3rd,4th, 5th, and 9th degree fitters as these are used

for fit evaluation later. I show that they reproduce a linear, quadratic, cubic, quartic, quintic,

sextic, septic, octic, and nonic surface for fits done with an equal or higher degree polynomial

than the surface. For reasons discussed below, I only demonstrate coefficient reproduction for

the Bernstein basis for same degree fits. For derivative accuracy tests I include the estimated

derivatives of surfaces of higher degree than the fitting polynomial for convenience in comaprison,

though they represent evaluations and not validations.

4.1.1 Coefficient Reproduction

I am working with the assumption that when I fit a polynomial to a polynomial of the same or

lesser order I will get the same polynomial. This should be true even if the fit is overconstrained. I
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expect this result because of the uniqueness of the polynomial interpolant. For every set of points

equal to the number of coefficients in a polynomial there is a unique interpolating polynomial,

regardless of the basis used. If the points were generated using a polynomial function of equal

or lesser degree then the unique interpolating polynomial should be the same as the generating

polynomial. If the interpolation is done through more points than needed to define the generating

polynomial the interpolating polynomial should still represent the generating polynomial. All this

is true for exact mathematics. If there is a loss of precision, as in digital representation, then there

will be some error. This error will get worse as more points are interpolated. This type of error

should not be as critical with a fitter that is approximating the interpolant such as a least squares

fitter. If all the points represent the same function but suffer from discrete representation errors,

then the low degree function approximating them will likely reflect the generating function better

than one that truly interpolates the slightly wrong points with too high a degree.

When the generating function is not a polynomial, or is of higher degree than the fitting

function then the last paragraph means squat. The approximating polynomial could be completely

wrong and will change depending on how many points are being used in the approximation.

Generally the fewest points as possible is best.

To test coefficient reproduction I use functions that are generated using the same polynomial

basis that I am fitting with. I then compare the coefficients I get against the ones used to generate

the data and report their maximum, minimum, and mean errors, but the only artifacts left over

from this are the Bernstein Coefficient Reproduction tables below. This is to ensure that my

fitting technique is capable of reproducing the function that produced a data set – it has same

basis precision.

In the case of my power basis fitter I can easily test all orders of polynomials equal to or lower

than my fitting basis. This is because a polynomial in power basis contains all the exact terms

used in lower order polynomials. Producing a lower order polynomial is a simple matter of setting

coefficients for the high order basis elements to 0.

The Bernstein basis functions do not have this property so it is difficult to be sure that the

fit is reproducing a lower order polynomial accurately. One way to do the test would be to do
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a degree elevation step. Another way would be to perform a conversion or change of basis on a

lower order Monomial function. These both add needless complication to my validations. Instead

for lower order polynomial reproduction by the Bernstein fits I will rely on the derivative accuracy

tests. I should be able to do this without fear because Bernstein polynomials are able to represent

lower order polynomials. Conversions between monomial and Bernstein bases and their proofs

exist [1].

The large number of tables that would be generated were I to give a full report on all the

surfaces tested has caused me to report in one large table the one maximum coefficient error for

all estimates made on the surface for each mesh fit. See Table 4.3. Table 4.1 is a sample of a full

coefficient reproduction table for a relatively complex bernstein polynomial of high degree.
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Errors
Control Point Min Max Mean Mean Value Actual Value
007 0.00000e+00 1.59872e-14 4.82947e-15 5.00e+00 5.000000
016 1.77809e-16 1.94930e-13 6.38872e-14 5.00e-03 0.005000
025 5.77316e-15 2.02904e-12 5.79967e-13 3.00e+00 3.000000
034 1.57652e-13 1.13469e-11 3.05504e-12 2.00e+00 2.000000
043 2.18048e-13 4.56328e-11 1.17549e-11 3.00e+00 3.000000
052 7.51843e-13 1.46119e-10 3.69189e-11 4.00e+00 4.000000
061 6.36735e-12 3.96085e-10 9.95393e-11 5.00e+00 5.000000
070 2.42273e-12 9.46626e-10 2.37949e-10 1.00e-00 1.000000
106 7.10543e-15 3.91687e-13 1.04444e-13 6.00e+00 6.000000
115 8.88178e-16 4.86722e-13 1.34712e-13 7.00e+00 7.000000
124 2.66454e-14 2.36788e-12 6.20531e-13 8.00e+00 8.000000
133 7.28306e-14 1.21112e-11 2.75654e-12 9.00e+00 9.000000
142 7.01661e-14 4.46212e-11 1.03707e-11 6.00e+00 6.000000
151 5.42677e-13 1.34755e-10 3.28069e-11 7.00e+00 7.000000
160 2.58638e-12 3.55882e-10 8.96068e-11 1.11e+02 111.000000
205 1.24345e-14 2.19735e-12 6.13759e-13 8.00e+00 8.000000
214 1.77636e-15 2.55085e-12 4.80366e-13 9.00e+00 9.000000
223 4.66294e-15 3.59579e-12 7.61844e-13 1.00e-00 1.000000
232 1.19904e-14 1.01770e-11 2.65035e-12 2.00e+00 2.000000
241 3.73035e-14 3.48117e-11 9.69012e-12 3.00e+00 3.000000
250 1.59872e-13 1.10490e-10 3.06328e-11 4.00e+00 4.000000
304 4.61853e-14 1.02638e-11 2.58366e-12 3.00e+01 30.000000
313 2.66454e-15 1.38538e-11 2.51026e-12 5.00e+00 5.000000
322 1.59872e-14 1.95159e-11 2.99395e-12 6.00e+00 6.000000
331 1.69642e-13 3.17772e-11 4.63055e-12 7.00e+00 7.000000
340 1.33227e-13 4.70504e-11 1.11114e-11 1.00e+01 10.000000
403 3.09086e-13 4.42224e-11 9.27451e-12 8.00e+00 8.000000
412 1.84741e-13 6.01226e-11 1.00828e-11 9.00e+00 9.000000
421 4.07737e-13 8.18542e-11 1.15036e-11 -6.47e-12 0.000000
430 1.86073e-13 9.99336e-11 1.37040e-11 1.23e+00 1.234500
502 1.45040e-12 1.57472e-10 2.99923e-11 5.00e+00 5.000000
511 6.56444e-13 2.05262e-10 3.26794e-11 1.48e-11 0.000000
520 1.62270e-12 2.63876e-10 3.55498e-11 4.00e+00 4.000000
601 4.49418e-13 4.66215e-10 8.39634e-11 7.00e+00 7.000000
610 3.21121e-12 5.86634e-10 8.91119e-11 2.00e+00 2.000000
700 4.42801e-12 1.19451e-09 2.05288e-10 3.00e+00 3.000000

Table 4.1: These coefficient accuracy results are for a weighted septic Bernstein fit with no
tangents. The function in question is complex. See the Actual Coefficient entries in the table.
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Errors
Control Point Min Max Mean Mean Value Actual Value
009 1.46551e-21 6.81364e-19 1.96788e-19 6.56e-20 0.000000
018 1.77591e-19 4.08945e-17 1.04657e-17 -6.66e-18 0.000000
027 1.80298e-18 3.26960e-16 9.14694e-17 7.80e-17 0.000000
036 4.85228e-19 1.82184e-15 6.03416e-16 -5.79e-16 0.000000
045 3.00711e-17 8.00409e-15 3.01354e-15 2.98e-15 0.000000
054 7.32384e-16 2.94291e-14 1.17735e-14 -1.16e-14 0.000000
063 1.93124e-15 9.12922e-14 3.68829e-14 3.62e-14 0.000000
072 1.12605e-15 2.51944e-13 1.00497e-13 -9.77e-14 0.000000
081 7.48738e-16 6.39431e-13 2.48197e-13 2.37e-13 0.000000
090 5.99520e-15 1.51923e-12 5.70625e-13 1.00e-00 1.000000
108 2.68758e-20 2.28869e-17 6.12233e-18 -2.87e-19 0.000000
117 8.63603e-20 3.84652e-17 1.20269e-17 -9.23e-18 0.000000
126 1.27921e-17 2.75177e-16 1.21005e-16 1.21e-16 0.000000
135 1.40477e-16 1.62558e-15 7.33262e-16 -7.28e-16 0.000000
144 1.44292e-16 7.14961e-15 3.11977e-15 3.08e-15 0.000000
153 3.88589e-17 2.56335e-14 1.07160e-14 -1.05e-14 0.000000
162 1.85958e-15 8.12071e-14 3.19761e-14 3.07e-14 0.000000
171 2.01728e-15 2.28775e-13 8.61972e-14 -8.02e-14 0.000000
180 4.14699e-15 5.92719e-13 2.17118e-13 1.95e-13 0.000000
207 5.15609e-19 2.10942e-16 5.50911e-17 4.12e-18 0.000000
216 7.25786e-19 2.01325e-16 5.63347e-17 -2.34e-17 0.000000
225 1.22235e-18 3.26042e-16 1.40576e-16 1.32e-16 0.000000
234 3.10508e-17 1.51810e-15 6.76432e-16 -6.70e-16 0.000000
243 8.60648e-18 6.25465e-15 2.55268e-15 2.46e-15 0.000000
252 6.70908e-16 2.26979e-14 8.71479e-15 -8.04e-15 0.000000
261 5.85298e-16 7.20564e-14 2.61331e-14 2.29e-14 0.000000
270 1.78759e-17 2.10907e-13 7.54921e-14 -6.46e-14 0.000000
306 5.65265e-18 1.18288e-15 3.13697e-16 -2.73e-17 0.000000
315 5.16039e-18 1.00702e-15 3.04221e-16 5.26e-18 0.000000
324 1.05951e-17 1.12017e-15 3.43543e-16 1.42e-16 0.000000
333 7.85488e-18 1.59416e-15 5.69487e-16 -3.40e-16 0.000000
342 3.78907e-17 5.57193e-15 2.13843e-15 1.81e-15 0.000000
351 6.47163e-17 1.90905e-14 6.62571e-15 -4.61e-15 0.000000
360 1.04233e-16 6.97288e-14 2.57439e-14 2.12e-14 0.000000
405 1.35943e-17 5.09233e-15 1.40382e-15 1.15e-16 0.000000
414 9.33345e-19 4.57756e-15 1.38983e-15 -8.09e-17 0.000000
423 1.10406e-17 4.61750e-15 1.48104e-15 -2.25e-16 0.000000
432 6.67998e-17 5.44858e-15 1.70509e-15 -8.29e-16 0.000000
441 6.49219e-17 8.48592e-15 2.80054e-15 -8.51e-16 0.000000
450 1.86845e-16 3.21952e-14 1.19025e-14 -1.06e-14 0.000000
504 1.45653e-17 1.84233e-14 5.34925e-15 -3.32e-16 0.000000
513 8.03626e-17 1.74513e-14 5.36423e-15 3.91e-16 0.000000
522 6.31087e-17 1.84151e-14 5.70323e-15 1.41e-15 0.000000
531 1.81153e-18 2.03172e-14 6.76486e-15 3.46e-15 0.000000
540 2.43017e-16 3.10906e-14 1.28710e-14 1.13e-14 0.000000
603 1.87962e-16 5.71975e-14 1.76776e-14 5.71e-16 0.000000
612 2.09780e-18 5.80555e-14 1.80162e-14 -2.02e-15 0.000000
621 3.19737e-16 6.21482e-14 1.92708e-14 -6.24e-15 0.000000
630 5.87220e-16 7.08900e-14 2.50588e-14 -1.62e-14 0.000000
702 2.06743e-16 1.65976e-13 5.26020e-14 1.61e-16 0.000000
711 1.70681e-16 1.72889e-13 5.41436e-14 8.62e-15 0.000000
720 9.73354e-16 1.87511e-13 5.91750e-14 2.36e-14 0.000000
801 3.57368e-15 4.44387e-13 1.42866e-13 -5.69e-15 0.000000
810 6.63376e-15 4.68091e-13 1.47463e-13 -3.04e-14 0.000000
900 1.00985e-14 1.09893e-12 3.56773e-13 2.68e-14 0.000000

Table 4.2: These coefficient accuracy results are for a weighted nonic Bernstein fit with no tan-
gents. The function in question is f(x, y) = 1 · B090(x, y)
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Surface and Fit Bernstein Monomial
Degree Weighting No Weighting Weighting No Weighting
s1, f3 X X 1.729727e-13 1.727507e-13
s1, f4 X X 8.783221e-13 8.779101e-13
s1, f5 X X 5.477327e-12 3.326563e-12
s1, f6 X X 5.036224e-11 1.214701e-11
s1, f7 X X 6.870112e-10 2.732676e-10
s1, f8 X X 8.598440e-10 6.131475e-10
s1, f9 X X 3.384125e-09 1.142827e-09
s2, f3 X X 3.734314e-15 3.743661e-15
s2, f4 X X 7.093970e-14 7.097642e-14
s2, f5 X X 2.720550e-13 5.478508e-13
s2, f6 X X 2.812065e-12 1.600094e-12
s2, f7 X X 2.955039e-10 1.905864e-10
s2, f8 X X 5.398838e-10 5.007368e-10
s2, f9 X X 1.513012e-09 6.668481e-10
s3, f3 2.220446e-16 2.220446e-16 2.789578e-13 2.781970e-13
s3, f4 X X 2.297579e-12 2.293224e-12
s3, f5 X X 1.317813e-11 1.101230e-11
s3, f6 X X 1.034484e-10 2.838757e-11
s3, f7 X X 1.398331e-09 8.376791e-10
s3, f8 X X 1.469111e-09 1.362308e-09
s3, f9 X X 7.144527e-09 2.627218e-09
s4, f4 5.551115e-16 5.551115e-16 3.678111e-12 3.674583e-12
s4, f5 X X 3.019079e-11 1.460651e-11
s4, f6 X X 1.007205e-10 6.611730e-11
s4, f7 X X 2.309701e-09 1.379989e-09
s4, f8 X X 2.822068e-09 2.605346e-09
s4, f9 X X 1.027299e-08 3.109295e-09
s5, f5 4.440892e-16 4.440892e-16 1.632914e-11 1.159513e-11
s5, f6 X X 1.181672e-10 4.189979e-11
s5, f7 X X 1.294341e-09 6.743031e-10
s5, f8 X X 1.626215e-09 1.385765e-09
s5, f9 X X 6.002925e-09 1.611873e-09
s6, f6 8.837278e-16 8.837278e-16 7.348534e-11 2.059174e-11
s6, f7 X X 1.224705e-09 4.706192e-10
s6, f8 X X 1.502941e-09 7.177839e-10
s6, f9 X X 4.562886e-09 1.959253e-09
s7, f7 1.194511e-09 1.194511e-09 1.314382e-09 4.755068e-10
s7, f8 X X 1.048037e-09 8.278925e-10
s7, f9 X X 1.331299e-08 5.188043e-09
s8, f8 1.108102e-11 1.108102e-11 5.970250e-10 5.489429e-10
s8, f9 X X 2.986733e-09 9.668437e-10
s9, f9 1.519229e-12 1.519229e-12 8.978815e-09 4.556168e-09

Table 4.3: These coefficient reproduction results are for all point only estimation schemes. The
values in this table reflect the maximum absolute error for any coefficient in the test. Bernstein
fits were performed only for Bernstein polynomials of the same degree using a grid with degree+1
points on a side over (0, 0) − (.5, .5). Monomial fits were done using a 21 × 21 point grid over
(−1,−1)− (1, 1). The test performed is written sn-fm where n is the degree of the surface being
estimated and m is the degree of the polynomial used for fitting in the estimator.
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4.1.2 Derivative Accuracy

Having shown that the fitter correctly determines the unique polynomial interpolant of the points

in question I check to see if the derivatives I get from them are correct enough to use. Testing

the scheme involves analyzing the maximum error for 3rd,4th, 5th, and 9th degree fits on equal or

lower degree polynomials.

Because of the sheer number of tables that would be required to report all the results pertinent

to this test I have constructed tables that report only the maximum absolute error for all estimates

or highest order partial derivatives needed degree 5 surfaces: 3rd (see Tables 4.4 and 4.6), and

degree 9 surfaces: 5th (see Tables 4.5 and 4.7).
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Surface
&Fit Bernstein Monomial

Degree Weighted Plain Weighted Plain
s1-f3 2.76e-10(0.00e+00) 1.14e-12(0.00e+00) 6.67e-11(0.00e+00) 3.73e-13(0.00e+00)
s1-f4 3.71e-11(0.00e+00) 2.12e-12(0.00e+00) 2.69e-11(0.00e+00) 6.92e-13(0.00e+00)
s1-f5 8.60e-11(0.00e+00) 6.64e-12(0.00e+00) 5.06e-11(0.00e+00) 1.28e-12(0.00e+00)
s1-f9 5.48e-01(0.00e+00) 5.48e-01(0.00e+00) 4.96e-09(0.00e+00) 1.50e-10(0.00e+00)
s2-f3 3.22e-11(0.00e+00) 5.42e-13(0.00e+00) 1.21e-12(0.00e+00) 1.00e-14(0.00e+00)
s2-f4 6.61e-11(0.00e+00) 2.01e-12(0.00e+00) 2.52e-12(0.00e+00) 7.44e-14(0.00e+00)
s2-f5 1.44e-09(0.00e+00) 2.68e-12(0.00e+00) 6.76e-12(0.00e+00) 3.45e-13(0.00e+00)
s2-f9 2.07e-01(0.00e+00) 2.07e-01(0.00e+00) 2.29e-09(0.00e+00) 9.75e-11(0.00e+00)
s3-f3 1.90e-10(0.00e+00) 1.66e-12(6.00e+00) 6.47e-11(0.00e+00) 7.66e-13(6.00e+00)
s3-f4 2.46e-10(0.00e+00) 8.08e-12(6.00e+00) 3.71e-10(6.00e+00) 2.57e-12(6.00e+00)
s3-f5 1.89e-10(6.00e+00) 7.88e-12(0.00e+00) 1.25e-10(6.00e+00) 6.65e-12(6.00e+00)
s3-f9 7.38e-01(0.00e+00) 7.38e-01(0.00e+00) 6.60e-09(6.00e+00) 2.88e-10(0.00e+00)
s4-f3 2.89e+02(0.00e+00) 6.00e-01(-6.00e+00) 7.14e+01(0.00e+00) 6.00e-01(-6.00e+00)
s4-f4 3.55e-10(0.00e+00) 7.69e-12(0.00e+00) 1.73e-10(0.00e+00) 3.49e-12(0.00e+00)
s4-f5 2.83e-10(0.00e+00) 1.65e-11(0.00e+00) 4.13e-10(0.00e+00) 9.81e-12(0.00e+00)
s4-f9 1.31e+00(0.00e+00) 1.31e+00(0.00e+00) 4.46e-09(0.00e+00) 4.30e-10(0.00e+00)
s5-f3 1.02e+03(2.65e+01) 1.81e+01(-6.60e+01) 2.92e+02(1.13e+01) 1.81e+01(-6.60e+01)
s5-f4 3.42e+01(2.44e+01) 2.22e+00(-6.60e+01) 2.80e+01(-3.23e+01) 2.22e+00(-6.60e+01)
s5-f5 7.44e-10(3.05e+01) 1.43e-11(-6.38e+01) 1.39e-10(-6.02e+01) 7.89e-12(3.29e+01)
s5-f9 6.86e-01(1.80e+01) 6.86e-01(1.80e+01) 7.29e-09(3.02e+01) 1.75e-10(-6.10e+01)
s9-f3 2.14e+03(4.70e+01) 3.15e+02(5.28e+02) 6.18e+02(-2.67e+02) 3.15e+02(5.28e+02)
s9-f4 1.24e+03(2.60e+02) 1.51e+02(5.28e+02) 3.56e+02(4.87e+02) 1.51e+02(5.28e+02)
s9-f5 1.09e+02(-5.00e+02) 6.06e+01(5.28e+02) 1.72e+02(2.30e+01) 6.06e+01(5.28e+02)
s9-f9 1.09e+00(-4.98e+02) 1.09e+00(-4.98e+02) 1.10e-08(5.03e+02) 5.28e-10(-5.04e+02)

Table 4.4: These derivative accuracy results are for all point only estimation schemes. The values
in this table reflect the maximum absolute error for all 3rd partial derivatives. The correct value
is in brackets to show magnitude of the error.. The fits were done on a 21 × 21 point grid over
(−1,−1)− (1, 1). The test performed is written sn-fm where n is the degree of the surface being
estimated and m is the degree of the polynomial used for fitting in the estimator.
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Surface
&Fit Bernstein Monomial

Degree Weighted Plain Weighted Plain
s1-f3 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s1-f4 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s1-f5 2.12e-08(0.00e+00) 2.98e-10(0.00e+00) 1.08e-08(0.00e+00) 8.72e-11(0.00e+00)
s1-f9 3.64e+01(0.00e+00) 3.64e+01(0.00e+00) 1.41e-06(0.00e+00) 4.37e-08(0.00e+00)
s2-f3 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s2-f4 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s2-f5 4.58e-08(0.00e+00) 1.66e-10(0.00e+00) 2.27e-09(0.00e+00) 1.22e-11(0.00e+00)
s2-f9 1.23e+01(0.00e+00) 1.23e+01(0.00e+00) 7.57e-07(0.00e+00) 2.53e-08(0.00e+00)
s3-f3 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s3-f4 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s3-f5 4.03e-08(0.00e+00) 5.32e-10(0.00e+00) 2.27e-08(0.00e+00) 2.38e-10(0.00e+00)
s3-f9 3.38e+01(0.00e+00) 3.38e+01(0.00e+00) 1.99e-06(0.00e+00) 8.49e-08(0.00e+00)
s4-f3 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s4-f4 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s4-f5 4.74e-08(0.00e+00) 7.97e-10(0.00e+00) 4.21e-08(0.00e+00) 3.54e-10(0.00e+00)
s4-f9 2.87e+01(0.00e+00) 2.87e+01(0.00e+00) 1.26e-06(0.00e+00) 1.22e-07(0.00e+00)
s5-f3 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02)
s5-f4 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02)
s5-f5 9.88e-08(-1.20e+02) 8.76e-10(-1.20e+02) 2.81e-08(6.00e+01) 2.64e-10(6.00e+01)
s5-f9 1.98e+01(6.00e+01) 1.98e+01(6.00e+01) 2.09e-06(6.00e+01) 5.68e-08(-1.20e+02)
s9-f3 1.51e+04(1.51e+04) 1.51e+04(1.51e+04) 1.51e+04(1.51e+04) 1.51e+04(1.51e+04)
s9-f4 1.51e+04(1.51e+04) 1.51e+04(1.51e+04) 1.51e+04(1.51e+04) 1.51e+04(1.51e+04)
s9-f5 1.17e+04(-1.51e+04) 1.01e+04(1.51e+04) 1.22e+04(1.96e+03) 1.01e+04(-1.51e+04)
s9-f9 3.08e+01(0.00e+00) 3.08e+01(0.00e+00) 3.18e-06(1.51e+04) 1.62e-07(-1.51e+04)

Table 4.5: These derivative accuracy results are for all point only estimation schemes. The values
in this table reflect the maximum absolute error for all 5th partial derivatives. The correct value
is in brackets to show magnitude of the error.. The fits were done on a 21 × 21 point grid over
(−1,−1)− (1, 1). The test performed is written sn-fm where n is the degree of the surface being
estimated and m is the degree of the polynomial used for fitting in the estimator.
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Surface
&Fit Bernstein Monomial

Degree Weighted Plain Weighted Plain
s1-f3 5.55e-14(0.00e+00) 5.41e-14(0.00e+00) 1.51e-14(0.00e+00) 5.55e-15(0.00e+00)
s1-f4 1.62e-13(0.00e+00) 1.34e-13(0.00e+00) 3.60e-14(0.00e+00) 1.61e-14(0.00e+00)
s1-f5 2.54e-13(0.00e+00) 2.23e-13(0.00e+00) 1.11e-13(0.00e+00) 5.46e-14(0.00e+00)
s1-f9 6.49e-12(0.00e+00) 7.64e-12(0.00e+00) 9.96e-12(0.00e+00) 4.83e-12(0.00e+00)
s2-f3 1.28e-13(0.00e+00) 6.11e-14(0.00e+00) 1.51e-14(0.00e+00) 1.36e-14(0.00e+00)
s2-f4 2.79e-13(0.00e+00) 1.69e-13(0.00e+00) 2.80e-14(0.00e+00) 2.03e-14(0.00e+00)
s2-f5 5.23e-13(0.00e+00) 2.62e-13(0.00e+00) 1.65e-14(0.00e+00) 7.75e-14(0.00e+00)
s2-f9 9.59e-12(0.00e+00) 6.41e-12(0.00e+00) 1.27e-11(0.00e+00) 7.77e-12(0.00e+00)
s3-f3 3.34e-13(-2.00e+00) 1.63e-13(6.00e+00) 1.58e-13(-2.00e+00) 9.86e-14(6.00e+00)
s3-f4 7.96e-13(6.00e+00) 5.56e-13(6.00e+00) 2.54e-13(-2.00e+00) 1.65e-13(-2.00e+00)
s3-f5 1.24e-12(-2.00e+00) 6.41e-13(-2.00e+00) 4.26e-13(6.00e+00) 4.28e-13(6.00e+00)
s3-f9 3.37e-11(-2.00e+00) 1.30e-11(-2.00e+00) 2.44e-11(6.00e+00) 1.32e-11(6.00e+00)
s4-f3 2.47e-01(2.00e+00) 4.00e-01(2.00e+00) 2.47e-01(-6.00e+00) 4.00e-01(2.00e+00)
s4-f4 6.81e-13(0.00e+00) 5.03e-13(0.00e+00) 1.59e-13(4.00e-01) 1.35e-13(0.00e+00)
s4-f5 8.16e-13(0.00e+00) 4.71e-13(0.00e+00) 5.32e-13(0.00e+00) 3.06e-13(0.00e+00)
s4-f9 2.13e-11(2.00e+00) 1.08e-11(0.00e+00) 2.04e-11(0.00e+00) 1.39e-11(0.00e+00)
s5-f3 1.19e+01(-6.49e+01) 1.24e+01(-6.60e+01) 1.19e+01(-6.49e+01) 1.24e+01(-6.60e+01)
s5-f4 1.13e+00(-6.49e+01) 1.16e+00(-6.60e+01) 1.13e+00(-6.22e+01) 1.16e+00(-6.60e+01)
s5-f5 1.79e-12(1.80e+01) 1.19e-12(-6.60e+01) 1.05e-12(-6.60e+01) 6.82e-13(-6.60e+01)
s5-f9 2.70e-11(7.50e+00) 2.11e-11(-6.05e+01) 1.90e-11(-6.38e+01) 9.99e-12(-6.38e+01)
s9-f3 2.33e+02(5.28e+02) 2.36e+02(5.28e+02) 2.33e+02(5.28e+02) 2.36e+02(5.28e+02)
s9-f4 8.96e+01(5.28e+02) 9.08e+01(5.28e+02) 8.96e+01(5.28e+02) 9.08e+01(5.28e+02)
s9-f5 3.05e+01(5.28e+02) 3.07e+01(5.28e+02) 3.05e+01(5.28e+02) 3.07e+01(5.28e+02)
s9-f9 3.08e-11(5.03e+02) 2.43e-11(-5.04e+02) 1.06e-10(2.40e+01) 2.05e-11(8.23e+00)

Table 4.6: These derivative accuracy results are for all point only estimation schemes. The values
in this table reflect the maximum absolute error for all 3rd partial derivatives. The correct value
is in brackets to show magnitude of the error.. The fits were done on a 21 × 21 point grid over
(−1,−1)− (1, 1). The test performed is written sn-fm where n is the degree of the surface being
estimated and m is the degree of the polynomial used for fitting in the estimator.
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Surface
&Fit Bernstein Monomial

Degree Weighted Plain Weighted Plain
s1-f3 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s1-f4 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s1-f5 2.44e-11(0.00e+00) 1.60e-11(0.00e+00) 4.17e-12(0.00e+00) 9.25e-13(0.00e+00)
s1-f9 2.92e-09(0.00e+00) 3.45e-09(0.00e+00) 6.38e-09(0.00e+00) 1.79e-09(0.00e+00)
s2-f3 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s2-f4 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s2-f5 5.31e-11(0.00e+00) 1.81e-11(0.00e+00) 2.62e-12(0.00e+00) 3.65e-12(0.00e+00)
s2-f9 4.70e-09(0.00e+00) 3.17e-09(0.00e+00) 5.81e-09(0.00e+00) 3.06e-09(0.00e+00)
s3-f3 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s3-f4 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s3-f5 1.16e-10(0.00e+00) 4.34e-11(0.00e+00) 3.47e-11(0.00e+00) 2.33e-11(0.00e+00)
s3-f9 1.44e-08(0.00e+00) 6.29e-09(0.00e+00) 1.14e-08(0.00e+00) 4.88e-09(0.00e+00)
s4-f3 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s4-f4 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00) 0.00e+00(0.00e+00)
s4-f5 1.14e-10(0.00e+00) 3.74e-11(0.00e+00) 3.46e-11(0.00e+00) 1.55e-11(0.00e+00)
s4-f9 1.00e-08(0.00e+00) 4.80e-09(0.00e+00) 9.19e-09(0.00e+00) 6.69e-09(0.00e+00)
s5-f3 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02)
s5-f4 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02) 1.20e+02(-1.20e+02)
s5-f5 1.13e-10(0.00e+00) 7.37e-11(0.00e+00) 5.83e-11(-1.20e+02) 3.50e-11(-1.20e+02)
s5-f9 1.24e-08(0.00e+00) 9.68e-09(-1.20e+02) 7.42e-09(-1.20e+02) 3.97e-09(-1.20e+02)
s9-f3 1.51e+04(1.51e+04) 1.51e+04(1.51e+04) 1.51e+04(1.51e+04) 1.51e+04(1.51e+04)
s9-f4 1.51e+04(1.51e+04) 1.51e+04(1.51e+04) 1.51e+04(1.51e+04) 1.51e+04(1.51e+04)
s9-f5 8.74e+03(1.51e+04) 8.73e+03(-1.51e+04) 8.74e+03(1.51e+04) 8.73e+03(-1.51e+04)
s9-f9 1.48e-08(0.00e+00) 1.13e-08(-1.51e+04) 4.93e-08(0.00e+00) 1.11e-08(0.00e+00)

Table 4.7: These derivative accuracy results are for all point only estimation schemes. The values
in this table reflect the maximum absolute error for all 5th partial derivatives. The correct value
is in brackets to show magnitude of the error.. The fits were done on a 21 × 21 point grid over
(−1,−1)− (1, 1). The test performed is written sn-fm where n is the degree of the surface being
estimated and m is the degree of the polynomial used for fitting in the estimator.
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4.1.3 Polynomial Convergence

If an interpolation scheme is precise to a certain number of derivatives, the error for that scheme

should converges as predicted by the Taylor error term. For d precise degrees at a sample distance

of h the error term should be O(hd+1). Doubling the sampling density halves the sample spacing

and should produce a predictable ratio. For a quadratic this is

22+1

12+1
= 23 = 8

for a cubic: 16, a quartic: 32, and so on.

Some BS about why I want to show polynomial precision goes here. Hell of a lot of good

it does on non-polynomial surfaces. Talk about Taylor series in more depth? Something about

how all continuous functions are differentiable, eg. sine functions can be differentiated and give

numerical values at the derivatives. Integrating those derivatives as numbers, rather than as the

functions they came from, causes a polynomial to pop out... Assuming that derivatives mean

anything special, and I’m told they do, the polynomial that pops out is gonna be some kind of

good approximation of the non-polynomial function that produced the derivatives.

My routines only provide point positions and partial derivatives for a mesh. However my

scheme as a whole is intended to provide smooth surfaces with polynomial precision. As indicted

in Stephen Mann’s foundation work [3] the smoothness of a surface is influenced by continuity

between patch boundaries. Based on his results that show his first method achieves better polyno-

mial precision with consistently lower errors than any other method available to me[4], I will use

Mann’s first patch setting scheme with full available continuity adjustments. For a quick guide to

the relative results provided by each of Mann’s schemes refer to figure 4.8.
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method .2 .1 .05
1 d5 0.0499279 0.0031802(15.70) 3.88865e-05(81.78)
1 d9 0.0645471 0.00418636(15.42) 5.09379e-05(82.19)
2 d5 0.0476294 0.00304394(15.65) 0.00241605(1.26)
2 d9 0.0576738 0.00366265(15.75) 0.00186034(1.97)
3 d5 0.0502117 0.00318274(15.78) 3.92538e-05(81.08)
3 d9 0.0629325 0.00407998(15.42) 5.03143e-05(81.09)
1 d5 uncorrected 0.0507564 0.00328421(15.45) 3.9625e-05(82.88)
1 d9 uncorrected 0.0648539 0.00423641(15.31) 5.11935e-05(82.75)

Table 4.8: Comparison of continuity adjustors. Stephen Mann indicated that method 1 performed
best. Method 3 seems to perform nearly as well. I threw a hard function at all three continuity
adjustment methods. I chose the best one and did not permit continuity adjustments.

Conv. Theory Sample Spacing
Method Mann Clarke .1 .05 .025 .0125

Bern d5,d3 64 16 2.36287e-05 1.49613e-06(15.8) 9.38116e-08(15.95) 5.86798e-09(15.99)

Bern d5,d4 32 3.38371e-06 1.19371e-07(28.3) 3.84046e-09(31.1) 1.20882e-10(31.8)

Bern d5,d5 64 1.25028e-06 1.99334e-08(62.7) 3.13029e-10(63.7) 4.89719e-12(63.9)

Bern d5,d9 1024 1.14111e-08 1.61278e-10(70.8) 2.52565e-12(63.9) 4.03011e-14(62.7)

Bern d9,d3 1024 16 4.6304e-05 2.92444e-06(15.8) 1.83255e-07(15.96) 1.14609e-08(15.99)

Bern d9,d4 32 7.60793e-06 2.69352e-07(28.2) 8.67482e-09(31.0) 2.73717e-10(31.7)

Bern d9,d5 64 2.38743e-06 3.79773e-08(62.9) 5.96054e-10(63.7) 9.32376e-12(63.9)

Bern d9,d9 1024 5.42704e-09 5.11147e-12(1061.7) 5.88418e-15(868.68) 1.77636e-15(3.3)

Table 4.9: Maximum error convergence rates on surface S1 over [0,1] using point and tangent
information. The estimator used was Bernstein basis with weighting.

Conv. Theory Sample Spacing
Method Mann Clarke .1 .05 .025 .0125

Bern d5,d3 64 16 1.79469e-05 1.13618e-06(15.8) 7.12388e-08(15.95) 4.45599e-09(15.99)

Bern d5,d4 32 1.72714e-06 6.06271e-08(28.5) 1.94834e-09(31.1) 6.1309e-11(31.77)

Bern d5,d5 64 6.07531e-07 9.67932e-09(62.8) 1.51976e-10(63.7) 2.37743e-12(63.9)

Bern d5,d9 1024 1.03161e-08 1.61576e-10(63.8) 2.52609e-12(63.96) 4.03011e-14(62.7)

Bern d9,d3 1024 16 3.49058e-05 2.20386e-06(15.8) 1.3809e-07(15.96) 8.6361e-09(15.99)

Bern d9,d4 32 3.51633e-06 1.24111e-07(28.3) 3.99456e-09(31.1) 1.25767e-10(31.8)

Bern d9,d5 64 1.15969e-06 1.84303e-08(62.9) 2.89197e-10(63.7) 4.52371e-12(63.93)

Bern d9,d9 1024 1.42045e-09 1.43352e-12(990.9) 2.77556e-15(516.5) 1.77636e-15(1.6)

Table 4.10: Maximum error convergence rates on surface S1 over [0,1] using point and tangent
information. The estimator used was Bernstein basis with no weighting.
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Conv. Theory Sample Spacing
Method Mann Clarke .1 .05 .025 .0125

Mono d5,d3 64 16 2.36287e-05 1.49613e-06(15.8) 9.38116e-08(15.95) 5.86798e-09(15.99)

Mono d5,d4 64 32 3.38371e-06 1.19371e-07(28.3) 3.84046e-09(31.1) 1.20882e-10(31.8)

Mono d5,d5 64 64 1.25028e-06 1.99334e-08(62.7) 3.13029e-10(63.7) 4.89719e-12(63.9)

Mono d5,d9 64 1024 1.14111e-08 1.61278e-10(70.6) 2.52565e-12(63.9) 4.03011e-14(62.7)

Mono d9,d3 1024 16 4.6304e-05 2.92444e-06(15.8) 1.83255e-07(15.96) 1.14609e-08(15.99)

Mono d9,d4 1024 32 7.60793e-06 2.69352e-07(28.2) 8.67482e-09(31.0) 2.73717e-10(31.7)

Mono d9,d5 1024 64 2.38743e-06 3.79773e-08(62.9) 5.96054e-10(63.7) 9.32376e-12(63.9)

Mono d9,d9 1024 1024 5.42704e-09 5.11147e-12(1061.7) 5.88418e-15(868.7) 1.77636e-15(3.3)

Table 4.11: Maximum error convergence rates on surface S1 over [0,1] using point and tangent
information. The estimator used was monomial basis with weighting.

Conv. Theory Sample Spacing
Method Mann Clarke .1 .05 .025 .0125

Mono d5,d3 64 16 1.79469e-05 1.13618e-06(15.8) 7.12388e-08(15.95) 4.45599e-09(15.99)

Mono d5,d4 32 1.72714e-06 6.06271e-08(28.5) 1.94834e-09(31.1) 6.1309e-11(31.8)

Mono d5,d5 64 6.07531e-07 9.67932e-09(62.8) 1.51976e-10(63.7) 2.37743e-12(63.92)

Mono d5,d9 1024 1.03161e-08 1.61576e-10(63.8) 2.52609e-12(63.96) 4.03011e-14(62.7)

Mono d9,d3 1024 16 3.49058e-05 2.20386e-06(15.8) 1.3809e-07(15.96) 8.6361e-09(15.99)

Mono d9,d4 32 3.51633e-06 1.24111e-07(28.3) 3.99456e-09(31.1) 1.25767e-10(31.8)

Mono d9,d5 64 1.15969e-06 1.84303e-08(62.92) 2.89197e-10(63.7) 4.52371e-12(63.9)

Mono d9,d9 1024 1.42045e-09 1.43352e-12(990.9) 2.77556e-15(516.5) 1.77636e-15(1.6)

Table 4.12: Maximum error convergence rates on surface S1 over [0,1] using point and tangent
information. The estimator used was monomial basis with no weighting.

Conv. Theory Sample Spacing
Method Mann Clarke .1 .05 .025 .0125

Bern d5,d3 0.000104692 6.42587e-06(16.3) 3.97045e-07(16.2) 2.46607e-08(16.1)

Bern d5,d4 1.44673e-05 5.39269e-07(26.8) 1.75728e-08(30.7) 5.55013e-10(31.7)

Bern d5,d5 3.64209e-06 4.42408e-08(82.3) 6.11082e-10(72.4) 8.73623e-12(70.0)

Bern d5,d9 5.12957e-05 4.3973e-05(1.2) 4.55502e-05(0.97) 4.66068e-05(0.98)

Bern d9,d3 0.000105462 6.42715e-06(16.4) 3.97091e-07(16.2) 2.46624e-08(16.1)

Bern d9,d4 1.48727e-05 5.52515e-07(26.9) 1.79893e-08(30.7) 5.68019e-10(31.7)

Bern d9,d5 4.11277e-06 5.28212e-08(77.9) 8.04821e-10(65.6) 1.11341e-11(72.3)

Bern d9,d9 7.09052e-05 6.08017e-05(1.2) 6.30212e-05(0.96) 6.45157e-05(0.98)

Table 4.13: Maximum error convergence rates on surface S1 over [0,1] using point position infor-
mation only. The estimator used was Bernstein basis with weighting.
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Conv. Theory Sample Spacing
Method Mann Clarke .1 .05 .025 .0125

Bern d5,d3 64 16 0.000104607 6.42424e-06(16.3) 3.97066e-07(16.2) 2.46659e-08(16.1)

Bern d5,d4 32 1.44766e-05 5.39606e-07(26.8) 1.75835e-08(30.7) 5.55348e-10(31.7)

Bern d5,d5 64 3.47381e-06 5.3333e-08(82.3) 8.21002e-10(72.4) 1.27168e-11(70.0)

Bern d5,d9 1024 5.12675e-05 4.3973e-05(1.2) 4.55502e-05(0.97) 4.66068e-05(0.98)

Bern d9,d3 1024 16 0.000105326 6.42424e-06(16.4) 3.97066e-07(16.2) 2.46659e-08(16.1)

Bern d9,d4 32 1.48837e-05 5.52897e-07(26.9) 1.80013e-08(30.7) 5.68393e-10(31.7)

Bern d9,d5 64 3.49611e-06 5.35896e-08(77.9) 8.2343e-10(65.6) 1.27405e-11(72.3)

Bern d9,d9 1024 7.0871e-05 6.08017e-05(1.2) 6.30212e-05(0.96) 6.45157e-05(0.98)

Table 4.14: Maximum error convergence rates on surface S1 over [0,1] using point position infor-
mation only. The estimator used was Bernstein basis with no weighting.

Conv. Theory Sample Spacing
Method Mann Clarke .1 .05 .025 .0125

Mono d5,d3 0.000104692 6.42587e-06(16.3) 3.97045e-07(16.2) 2.46607e-08(16.1)

Mono d5,d4 1.44673e-05 5.39269e-07(26.8) 1.75728e-08(30.7) 5.55013e-10(31.7)

Mono d5,d5 4.38879e-06 6.75571e-08(65.0) 1.00747e-09(67.1) 1.57635e-11(63.91)

Mono d5,d9 1.96729e-08 1.66155e-10(118.4) 2.54008e-12(65.4) 4.03011e-14(63.0)

Mono d9,d3 0.000105462 6.42715e-06(16.4) 3.97091e-07(16.2) 2.46624e-08(16.1)

Mono d9,d4 1.48727e-05 5.52515e-07(26.9) 1.79893e-08(30.7) 5.68019e-10(31.7)

Mono d9,d5 4.92451e-06 7.17008e-08(68.7) 1.06923e-09(67.1) 1.64412e-11(65.0)

Mono d9,d9 1.64732e-08 1.42563e-11(1155.5) 1.62093e-14(879.5) 2.44249e-15(6.6)

Table 4.15: Maximum error convergence rates on surface S1 over [0,1] using point position infor-
mation only. The estimator used was monomial basis with weighting.

Conv. Theory Sample Spacing
Method Mann Clarke .1 .05 .025 .0125

Mono d5,d3 64 16 0.000104607 6.42424E-06(16.3) 3.97066E-07(16.2) 2.46659E-08(16.1)

Mono d5,d4 32 1.44766E-05 5.39606E-07(26.8) 1.75835E-08(30.7) 5.55348E-10(31.7)

Mono d5,d5 64 3.47381E-06 5.3333E-08(65.1) 8.21002E-10(65.0) 1.27168E-11(64.6)

Mono d5,d9 1024 1.44815E-08 1.65667E-10(87.4) 2.52942E-12(65.5) 4.03011E-14(62.8)

Mono d9,d3 1024 16 0.000105326 6.42424E-06(16.4) 3.97066E-07(16.2) 2.46659E-08(16.1)

Mono d9,d4 32 1.48837E-05 5.52897E-07(26.9) 1.80013E-08(30.7) 5.68393E-10(31.7)

Mono d9,d5 64 3.49611E-06 5.35896E-08(65.3) 8.2343E-10(65.1) 1.27405E-11(64.6)

Mono d9,d9 1024 6.50887E-09 4.3161E-12(1508.0) 4.44089E-15(971.9) 1.88738E-15(2.4)

Table 4.16: Maximum error convergence rates on surface S1 over [0,1] using point position infor-
mation only. The estimator used was monomial basis without weighting.
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Figure 4.1: This figure should help visualize when polynomial convergence begins to kick in.
Errors and convergence rates for these surfaces are, from left to right, h0 = 6 : 0.201997; h1 =
11 : 0.179627, h0

h1

= 1.1; h2 = 21 : 0.045317, h1

h2

= 4; h3 = 41 : 0.00429185, h0

h1

= 10.6; h4 = 81 :

0.000377487, h0

h1

= 11.4; h5 = 161 : 2.5479e− 05, h0

h1

= 14.8

Note: to get the Polynomial Convergence behaviour from a polynomial derivative estimator

we need all significant surface features to be present at the sampling densities we’re using. Maybe

I’ll produce an example of a rapidly varying sine function at densities that are too sparse say

c ∗ sin( 2∗x∗π∗5
y+1 ) sampled 6, 11, 21, 41, and 81 times on (0, 0)− (1, 1). That sounds like fun. Here

goes! In figure 4.1 see at y = 0 that there are 5 full periods on x and at y = 1 there are only 2.5.

There are two features per period, a high and a low. So we should begin to see convergence once

we pass 1 sample per feature (that’s recognizability on the big end at between 6 and 11 samples),

and once we pass 2 samples per feature we should be converging well (small end at 21 to 41

samples). I suspect that full convergence won’t begin until all the fitting points are working on

the same feature. I’m doing a degree 3 fit, so look for convergence around 4 samples per feature

(samples > 81, until we’re out of machine precision, or time, or memory.
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Sample Spacing
Method .1 .05 .025 .0125

mono d5-d3 0.00432878 0.000620344(6.98) 6.20037e-05(10.00) 4.41299e-06(14.05)
mono d5-d4 0.00314496 0.000336009(9.36) 1.57898e-05(21.28) 5.21906e-07(30.25)
mono d5-d5 0.00368548 0.000178879(20.60) 5.76456e-06(31.03) 1.11661e-07(51.63)
mono d5-d9 0.00887377 5.95236e-05(149.08) 3.82512e-07(155.61) 8.07125e-09(47.39)
mono d9-d3 0.00791327 0.00137463(5.76) 0.000121984(11.27) 8.51518e-06(14.33)
mono d9-d4 0.00610741 0.000809075(7.55) 3.39616e-05(23.82) 1.06651e-06(31.84)
mono d9-d5 0.00647368 0.000440846(14.68) 1.17647e-05(37.47) 2.19638e-07(53.56)
mono d9-d9 0.0122225 9.70491e-05(125.94) 2.91801e-07(332.59) 2.94602e-09(99.05)

MFarin 0.00996975 0.000880518(11.32) 6.01092e-05(14.65) 3.92236e-06(15.32)

Table 4.17: Franke 1: Comparison of point and 1st derivative interpolant errors for variants of
the monomial based derivative estimation scheme and Clough-Tocher.

4.2 Evaluations

4.2.1 Clarke-Mann vs Clough-Tocher

The most widely recognized spline based interpolator is the Clough-Tocher method. While others

exist, this one works well and other methods in the category compare themselves to it. The

best Clough-Tocher type interpolator is a modified Farin implementation. I will compare some

maximum surface errors and visuals between Clarke-Mann and Clough-Tocher.

4.2.2 Franke

My driver programs are not currently up to the task of reading an arbitrary set of points, trian-

gulating it and estimating it yet. The reader would be easy, the triangulator probably already

exists, and I’d need to implement k-Nearest-Neighbours in some form or another. So I will not

run my method on Franke’s datasets and compare my results to what is reported in [9]. Instead

checked the error of some randomized triangulations of F1–F6,rendered some Gouraud shaded

pics, and rendered some Gaussian curvature pictures to show how the estimator performs. See

table ?? and figures 4.2 to 4.13.
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Sample Spacing
Method .1 .05 .025 .0125

mono d5-d3 0.00170322 0.000256699(6.64) 2.53832e-05(10.11) 2.12314e-06(11.96)
mono d5-d4 0.00175063 0.000202246(8.66) 6.5928e-06(30.68) 3.95031e-07(16.69)
mono d5-d5 0.00123908 0.000135379(9.15) 2.7135e-06(49.89) 7.76718e-08(34.94)
mono d5-d9 0.00218724 8.48791e-05(25.77) 1.09502e-06(77.51) 1.50975e-07(7.25)
mono d9-d3 0.00264042 0.00049046(5.38) 5.06427e-05(9.68) 3.85502e-06(13.14)
mono d9-d4 0.00309595 0.000290028(10.67) 1.67764e-05(17.29) 7.65487e-07(21.92)
mono d9-d5 0.00157835 0.000170945(9.23) 6.82677e-06(25.04) 1.68101e-07(40.61)
mono d9-d9 0.00372608 0.000115018(32.4) 1.05864e-06(108.65) 2.33066e-07(4.54)

MFarin 0.00473717 0.000665899(7.11) 4.62304e-05(14.40) 2.96625e-06(15.58)

Table 4.18: Franke 2: Comparison of point and 1st derivative interpolant errors for variants of
the monomial based derivative estimation scheme and Clough-Tocher.

Sample Spacing
Method .1 .05 .025 .0125

mono d5-d3 0.000267408 2.60948e-05(10.25) 1.83419e-06(14.23) 1.17885e-07(15.56)
mono d5-d4 0.000146329 6.46967e-06(22.62) 2.39649e-07(27) 7.9054e-09(30.31)
mono d5-d5 7.54483e-05 2.48541e-06(30.36) 4.73975e-08(52.44) 8.00403e-10(59.22)
mono d5-d9 0.000119095 3.12423e-07(381.2) 1.68873e-09(185) 3.15267e-11(53.57)
mono d9-d3 0.000562004 5.2576e-05(10.69) 3.54928e-06(14.81) 2.28211e-07(15.55)
mono d9-d4 0.000276995 1.35193e-05(20.49) 4.92449e-07(27.45) 1.61921e-08(30.41)
mono d9-d5 0.00015102 5.29267e-06(28.53) 9.9474e-08(53.21) 1.6723e-09(59.48)
mono d9-d9 0.000177508 4.69597e-07(378) 6.0791e-10(772.48) 1.83019e-11(33.22)

MFarin 0.00543834 0.00246574(2.21) 0.00120089(2.05) 0.000598596(2.01)

Table 4.19: Franke 3: Comparison of point and 1st derivative interpolant errors for variants of
the monomial based derivative estimation scheme and Clough-Tocher.

Sample Spacing
Method .1 .05 .025 .0125

mono d5-d3 0.000104485 7.3783e-06(14.16) 4.75466e-07(15.52) 2.99449e-08(15.88)
mono d5-d4 2.56497e-05 8.77194e-07(29.24) 2.70853e-08(32.39) 8.36648e-10(32.37)
mono d5-d5 9.64182e-06 1.85394e-07(52.01) 3.0519e-09(60.75) 4.83025e-11(63.18)
mono d5-d9 7.42968e-07 1.34346e-08(55.3) 2.17189e-10(61.86) 3.4191e-12(63.52)
mono d9-d3 0.000205303 1.42129e-05(14.44) 9.1146e-07(15.59) 5.73344e-08(15.9)
mono d9-d4 5.5852e-05 1.80047e-06(31.02) 5.44702e-08(33.05) 1.66035e-09(32.81)
mono d9-d5 1.95357e-05 3.63733e-07(53.71) 5.95089e-09(61.12) 9.40517e-11(63.27)
mono d9-d9 5.27489e-07 1.33398e-09(395.42) 8.18401e-13(1629.98) 2.49911e-13(3.27)

MFarin 0.000101986 6.57157e-06(15.52) 4.13864e-07(15.88) 2.59158e-08(15.96)

Table 4.20: Franke 4: Comparison of point and 1st derivative interpolant errors for variants of
the monomial based derivative estimation scheme and Clough-Tocher.
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Sample Spacing
Method .1 .05 .025 .0125

mono d5-d3 0.00102744 0.000104485(9.83) 7.3783e-06(14.16) 4.75466e-07(15.52)
mono d5-d4 0.00055346 2.56497e-05(21.58) 8.77194e-07(29.24) 2.70853e-08(32.39)
mono d5-d5 0.000287575 9.64182e-06(29.83) 1.85394e-07(52.01) 3.0519e-09(60.75)
mono d5-d9 0.000187556 6.46111e-07(290.28) 1.34346e-08(48.09) 2.17186e-10(61.86)
mono d9-d3 0.0022028 0.000205303(10.73) 1.42129e-05(14.44) 9.1146e-07(15.59)
mono d9-d4 0.00137759 5.5852e-05(24.67) 1.80047e-06(31.02) 5.44702e-08(33.05)
mono d9-d5 0.00066024 1.95357e-05(33.8) 3.63733e-07(53.71) 5.95089e-09(61.12)
mono d9-d9 0.000251441 4.87334e-07(515.95) 7.00285e-10(695.91) 4.44719e-12(157.47)

MFarin 0.00144386 0.000101986(14.16) 6.57157e-06(15.52) 4.13864e-07(15.87)

Table 4.21: Franke 5: Comparison of point and 1st derivative interpolant errors for variants of
the monomial based derivative estimation scheme and Clough-Tocher.

Sample Spacing
Method .1 .05 .025 .0125

mono d5-d3 5.18267e-05 7.42746e-06(6.98) 8.14952e-07(9.11) 7.21177e-08(11.3)
mono d5-d4 1.37625e-05 1.38569e-06(9.93) 9.48247e-08(14.61) 4.80545e-09(19.73)
mono d5-d5 3.72578e-06 2.71837e-07(13.71) 1.17137e-08(23.21) 3.80598e-10(30.78)
mono d5-d9 8.23377e-07 5.93807e-08(13.87) 2.55885e-09(23.21) 9.24133e-11(27.69)
mono d9-d3 8.64031e-05 1.26899e-05(6.81) 1.40828e-06(9.01) 1.27124e-07(11.08)
mono d9-d4 2.02062e-05 2.13135e-06(9.48) 1.51828e-07(14.04) 8.03468e-09(18.9)
mono d9-d5 5.03416e-06 4.07762e-07(12.35) 2.01967e-08(20.19) 7.32635e-10(27.57)
mono d9-d9 2.18172e-07 7.47774e-09(29.18) 1.02085e-10(73.25) 8.00395e-11(1.28)

MFarin 3.75679e-05 6.73025e-06(5.58) 8.41358e-07(8.00) 7.93016e-08(10.61)

Table 4.22: Franke 6: Comparison of point and 1st derivative interpolant errors for variants of
the monomial based derivative estimation scheme and Clough-Tocher.
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Figure 4.2: Franke 1: Comparison of the tangent fitting scheme using the Monomial basis at
degree 5 to the Clough-Tocher scheme. Each pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (−1,−1)− (1, 1): 11× 11, 21× 21 and 41× 41
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Figure 4.3: Franke 2: Comparison of the tangent fitting scheme using the Monomial basis at
degree 5 to the Clough-Tocher scheme. Each pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (−1,−1)− (1, 1): 11× 11, 21× 21 and 41× 41
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Figure 4.4: Franke 3: Comparison of the tangent fitting scheme using the Monomial basis at
degree 5 to the Clough-Tocher scheme. Each pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (−1,−1)− (1, 1): 11× 11, 21× 21 and 41× 41
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Figure 4.5: Franke 4: Comparison of the tangent fitting scheme using the Monomial basis at
degree 5 to the Clough-Tocher scheme. Each pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (−1,−1)− (1, 1): 11× 11, 21× 21 and 41× 41
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Figure 4.6: Franke 5: Comparison of the tangent fitting scheme using the Monomial basis at
degree 5 to the Clough-Tocher scheme. Each pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (−1,−1)− (1, 1): 11× 11, 21× 21 and 41× 41
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Figure 4.7: Franke 6: Comparison of the tangent fitting scheme using the Monomial basis at
degree 5 to the Clough-Tocher scheme. Each pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (−1,−1)− (1, 1): 11× 11, 21× 21 and 41× 41
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Figure 4.8: Franke 1: Randomized mesh comparison of the tangent fitting scheme using the
Monomial basis at degree 5 to the Clough-Tocher scheme. The top row shows an overhead view
of the randomized mesh. Each subsequent pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (0, 0) − (1, 1): 11× 11, 21× 21 and 41 × 41
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Figure 4.9: Franke 2: Randomized mesh comparison of the tangent fitting scheme using the
Monomial basis at degree 5 to the Clough-Tocher scheme. The top row shows an overhead view
of the randomized mesh. Each subsequent pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (0, 0) − (1, 1): 11× 11, 21× 21 and 41 × 41
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Figure 4.10: Franke 3: Randomized mesh comparison of the tangent fitting scheme using the
Monomial basis at degree 5 to the Clough-Tocher scheme. The top row shows an overhead view
of the randomized mesh. Each subsequent pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (0, 0) − (1, 1): 11× 11, 21× 21 and 41 × 41
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Figure 4.11: Franke 4: Randomized mesh comparison of the tangent fitting scheme using the
Monomial basis at degree 5 to the Clough-Tocher scheme. The top row shows an overhead view
of the randomized mesh. Each subsequent pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (0, 0) − (1, 1): 11× 11, 21× 21 and 41 × 41
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Figure 4.12: Franke 5: Randomized mesh comparison of the tangent fitting scheme using the
Monomial basis at degree 5 to the Clough-Tocher scheme. The top row shows an overhead view
of the randomized mesh. Each subsequent pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (0, 0) − (1, 1): 11× 11, 21× 21 and 41 × 41
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Figure 4.13: Franke 6: Randomized mesh comparison of the tangent fitting scheme using the
Monomial basis at degree 5 to the Clough-Tocher scheme. The top row shows an overhead view
of the randomized mesh. Each subsequent pair of rows represents a scheme, first shaded, then
coloured with Gaussian curvature to highlight discontinuities. The first rows are a Monomial
degree 5 fitter feeding Mann’s degree 5 method 1 continuity adjuster. The next are the same
fitter with the degree 9 adjuster. The last two rows are the Clough-Tocher interpolation. All
columns use the same sample density over (0, 0) − (1, 1): 11× 11, 21× 21 and 41 × 41
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Conclusions

The derivative estimation technique works.

It reproduces polynomials accurately.

When the derivatives are fed into the patch setter/continuity adjuster the resulting surfaces

show polynomial precision for all schemes except Bernstein Point only schemes at degree 9(tables

4.9 to 4.16). The problems seem to occur because of the range remapping step used to get best

stability for the bernstein basis. Degree 9 fitting should never be called for as degree 5 fitting

provides aduquate results when used in degree 9 patches.

The tangent based scheme shows better precision than Clough-Tocher in all tests except degree

3 surface fitting tests for both degree 5 and 9 interpolating surfaces. For degree 3 surface fitting

the scheme shows similar convergence to Clough-Tocher. See tables 4.17 to 4.22.

The same scheme also showed visually similar or better results on shaded and gaussian curva-

ture coloured renderings at three sample densities. See figures 4.2 to 4.13.

The C2 continuity adjustments show problems when applied to randomly scattered data for

certain surfaces. See figures 4.10 and 4.13 middle pair of rows, note that the shaded surface

shows no defect. Defects are difficult to see even when an interactive model is examined, but

they are faintly visible at some angles. The second continuity adjustment method shows critical

problems (fig. 5.1). However the estimator is able to provide accurate enough derivatives to
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Figure 5.1: Franke 3: rendered at 19 samples per patch from a jittered 21 × 21 mesh over
(0, 0)−(1, 1) with degree 5 monomial based point and tangent fitting and degree 9 C2 adjustments
using the 2nd continuity adjusting method.

Figure 5.2: Franke 3: rendered with the same fitting and point information as 5.1 and degree 9
C0 adjustments.
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produce smooth looking gaussian curvature shaded images when sampling is fine enough and no

continuity adjustments are made (fig. 5.2).

Further work is needed to make the scheme practical. A mesh reader should be added to my

estimator. The problem shown in 5.1 should be looked into to see if C2 polynomial precision

interpolants can be achieved for more general triangulations.
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