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ABSTRACT

Monitoring and classifying pet activities is crucial for promoting pet health and early de-

tection of behavioral or medical concerns. Existing computational intelligence techniques,

including machine learning methods like neural networks and reasoning methods like fuzzy

logic, have shown promise but struggle to effectively handle uncertainty. variability in pet

behaviors, and sensor noise in real-world environments. In order to handle these issues, we

propose a pet activity classification model based on the game-theoretic shadowed sets frame-

work, which uses game-theoretic principles to dynamically determine the thresholds for the

shadowed sets. The approach processes motion data collected from sensors embedded in

wearable pet collars and adaptively classifies pet behavior into calm and active states. Ex-

perimental evaluation using real-world pet activity datasets demonstrated that the proposed

model achieved an average classification accuracy of 91.17% across 10-fold cross-validation.

The significant contribution of this research lies in introducing a flexible, interpretable, and

uncertainty-aware classification model capable of dynamically adjusting to varying pet be-

haviors, enabling more accurate and reliable real-time pet activity monitoring systems.
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Chapter 1

INTRODUCTION

Understanding and classifying pet activity is vital for ensuring the health, safety, and overall

quality of life of companion animals. Many pet owners today lead busy lives and are often

unable to monitor their pets throughout the day. This lack of supervision can result in

unnoticed health problems, undetected anxiety, or insufficient physical activity, which may

affect the pet’s long-term well-being. For instance, a dog that remains unusually calm

for extended periods may be experiencing lethargy, pain, or underlying health conditions

such as arthritis or heart disease [1]. Conversely, continuous hyperactivity in dogs has

been associated with separation anxiety and stress-related behaviors, as studies have shown

significant links between hyperactivity-impulsivity traits and separation-related symptoms in

domestic dogs [2,3]. If such behavioral states go undetected, they may lead to delayed medical

treatment, behavioral disorders, or even life-threatening conditions in some cases [38].

A smart classification system capable of distinguishing between active and calm states can

support timely intervention, provide reassurance to owners, and serve as a decision-support

mechanism in veterinary diagnostics. Furthermore, it can enable intelligent automation in

pet-care environments, such as triggering alerts, adjusting indoor climate controls, or acti-
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vating entertainment systems when pets exhibit signs of distress. Without such systems, pet

owners are left with manual monitoring methods, which are often inaccurate and inconsis-

tent [5]. Missed behavior patterns may lead to late diagnoses and reduced quality of care.

To support this goal, the system outputs a detailed daily or weekly summary of the dog’s

activity, showing how much time is spent in calm and active states, helping users detect

unusual behavior trends early.

Researchers have investigated various techniques to address the problem of pet activity

recognition. Early efforts involved manually defined thresholds and expert-driven rules.

Accelerometers have been widely used in animal science for various applications, including

the estimation of energy expenditure, monitoring behaviors in free-ranging animals, and

supporting veterinary diagnostics and health evaluations [4]. In contrast, machine learning

models such as convolutional neural networks have been developed to process sensor data

from wearable devices. For instance, Kasnesis et al. proposed a wearable device utilizing

deep convolutional neural networks to process audio and motion data from search-and-rescue

dogs, obtained an F1-score more than 99% in real-time activity recognition scenarios [6].

Similarly, Wang et al. introduced a hierarchical fuzzy model to detect separation anxiety in

dogs, successfully interpreting complex behaviors such as pacing and vocalization [7].

Despite recent advancements, pet activity classification methods still face significant chal-

lenges due to uncertainty in behaviors, sensor inaccuracies, and data ambiguity in dynamic

environments [8]. Traditional methods often struggle to manage incomplete or ambiguous

data, leading to potential misclassification. Game-theoretic shadowed sets, which combine

game theory with shadowed sets theory [41, 53], provide a structured framework to address

these limitations [9]. This research proposes a game-theoretic shadowed sets-based approach

to classify pet activities into active and calm states. The method analyzes sensor data from

wearable collars, applies Gaussian membership functions to represent behavior patterns, and

dynamically adjusts thresholds using game-theoretic strategies. The game-theoretic shad-
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owed sets model incorporates a three-way decision-making structure to handle uncertainty

explicitly, enabling flexible and interpretable classifications. Experiments using real-world

datasets demonstrate the model’s ability to classify ambiguous pet behaviors effectively,

supporting more accurate and context-aware pet monitoring solutions.

The remainder of this report is organized as follows. Chapter 2 presents a review of re-

lated work in the field of pet activity classification. Chapter 3 introduces the background

knowledge, including shadowed sets, game theory, and the game-theoretic shadowed sets

framework. Chapter 4 describes the classification model based on the game-theoretic shad-

owed sets framework and explains how it is applied to pet activity recognition. Chapter 5

details the implementation process, including data handling, model development, and sys-

tem design. Chapter 6 reports the experimental results and provides an in-depth analysis.

Finally, Chapter 7 concludes the report and outlines directions for future research.
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Chapter 2

LITERATURE REVIEW

Classifying pet activity is challenging due to the unpredictable nature of pet behavior and

the noise often found in sensor data. To overcome these issues, researchers have developed

various methods that help make better decisions when the data is uncertain. These in-

clude strategies like three-way decision-making, rough set models, and shadowed sets based

on game theory. This review looks at how these different methods have been used to im-

prove classification performance. It organizes the research into three categories: methods

that involve human input, fully automated machine learning models, and other alternative

techniques, highlighting their value and practical outcomes in pet activity monitoring.

2.1 Semi-Automated Pet Activity Classification Using

Labeled Data

Early research in pet activity classification significantly depended on human intervention,

particularly for data annotation and validation processes. For example, Ladha et al. (2013)

developed a wearable collar device with an accelerometer sensor to monitor the daily activi-

ties of dogs in real-life conditions. The study focused on classifying 17 different dog behaviors
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related to their health and well-being. They collected data from 18 dogs and applied a statis-

tical classification model to recognize activities, such as walking, sitting, and running. Their

method achieved an accuracy of around 70% [30]. However, the approach required human

involvement for labeling the data, making it a human-intervened machine learning method

suitable for small-scale monitoring but limited for fully automated systems.

Kiyohara et al. (2015) developed a dog activity recognition system using a 3D accelerometer

attached to the dog’s collar. The main aim of their study was to recognize seven different

activities performed by dogs. They collected data from 24 dogs during a semi-controlled

environment and extracted various movement features from the sensor data. Their method

achieved a maximum accuracy of 75.1% in classifying dog activities such as walking, sit-

ting, standing, and lying [31]. However, this approach needed manual labeling and feature

extraction, so it required human effort to train the model.

Human-intervened machine learning approaches, despite their effectiveness, demonstrated

limitations concerning scalability and real-time deployment. The dependency on human ef-

forts for continuous annotation posed challenges for widespread adoption and limited the

applicability in dynamic, real-time pet monitoring scenarios. Thus, these methods necessi-

tated advancements towards automation to mitigate human-related constraints.

2.2 Fully Autonomous Pet Activity Classification Sys-

tems

Recent developments have significantly shifted towards fully automated machine learning

techniques, aiming to reduce or eliminate the dependency on human intervention. These

approaches primarily involve sophisticated algorithms like deep learning models, capable

of autonomously extracting relevant features directly from raw sensor data. Hussain et

al. applied convolutional neural networks (CNN) to classify pet activities, after applying
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the class-weight balancing technique, achieved an high training accuracy of 99.70% and a

validation accuracy of 96.85% [33].

Aich et al. developed a fully automated system to monitor dog activities and emotional

behavior using wearable sensors that collected accelerometer and gyroscope data [34]. The

system was tested on data collected from 10 dogs of various breeds, sizes, and ages, with

real-time sensor signals recorded in parallel with video footage captured at frames per second

to serve as ground truth for evaluation. Multiple machine learning algorithms were tested,

including artificial neural networks (ANN), support vector machines, random forest, KNN,

and näıve Bayes. Their best results achieved 96.58% accuracy for activity detection and

92.87% for emotional behavior recognition. This system proved that a combination of sensor

data and robust machine learning techniques can enable real-time, automated pet monitoring

across diverse dog types and settings.

Similarly, Wang et al. developed an automatic system to detect abnormal behaviors in dogs

when they are alone at home [32]. The main focus of their study was to monitor stress-related

activities that could lead to separation anxiety in pets. They used a wearable device with a

built-in accelerometer sensor that collected movement data from the dogs at a high frequency

of 50Hz. This movement data was analyzed using an LSTM (Long Short-Term Memory)

model, which is a type of deep learning technique suitable for working with time-series data.

Their method showed excellent performance, achieving 96% accuracy in detecting abnormal

behaviors, proving that deep learning models like LSTM are highly effective for real-time

dog behavior monitoring.
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2.3 Pet Activity Classification with Game-theoretic Shad-

owed Set

Game-theoretic shadowed sets integrate shadowed set theory with game-theoretic strategies

to enhance decision-making under uncertainty [53]. Unlike conventional classification models,

game-theoretic shadowed sets are designed to handle ambiguous and overlapping data more

flexibly by dividing information into three regions: acceptance, rejection, and uncertainty.

The model dynamically adjusts decision thresholds through game-based optimization that

balances classification accuracy and uncertainty.

Although game-theoretic shadowed sets provide a strong mathematical foundation for man-

aging uncertainty, their direct application in pet activity classification has not yet been fully

explored in the existing literature. Most current studies on pet activity recognition continue

to rely on traditional machine learning or deep learning methods for classification tasks.

Recent advancements, however, have extended the game-theoretic shadowed sets frame-

work into various domains, demonstrating its adaptability and robustness. For instance,

Jiang et al. proposed a shadowed set-based multi-granular three-way clustering ensemble

(S-M3WCE), which integrates possibilistic C-means clustering and shadowed set theory to

manage noise and uncertainty in unsupervised learning [26]. Their approach improves clus-

tering quality through multi-granularity and three-way decision-making.

Similarly, Zhang and Yao introduced a novel game-theoretic formulation that enables thresh-

old initialization from arbitrary values rather than the fixed (1, 0) pair, enhancing the flexi-

bility and convergence behavior of the traditional game-theoretic shadowed sets model [54].

This approach provides dynamic threshold refinement through strategic learning, which is

particularly beneficial in imbalanced or uncertain environments. Furthermore, Zhang ap-

plied the game-theoretic shadowed sets framework to TF-IDF-based term selection in text

classification, where threshold selection was modeled as a strategic game [55]. Their results
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showed improved classification accuracy and computational efficiency compared to tradi-

tional heuristic methods.

These developments illustrate the versatility of game-theoretic shadowed sets in addressing

classification challenges across different domains. However, their potential in pet activ-

ity classification—where data is often noisy, uncertain, and transitional—remains underex-

plored. Applying game-theoretic shadowed sets in this context presents a valuable research

opportunity to develop more flexible, interpretable, and reliable behavior recognition models

using wearable sensor data.

2.4 Evaluation of Pet Activity Monitoring

The study and classification of pet behavior is of interest to researchers and pet owners,

especially in companion pets like dogs. Traditionally, knowledge of a dog’s behavioral states,

like rest and activity, was based on direct observation and subjective interpretation. Initial

behavioral research required manual recording and analysis of activity patterns, which was

time-consuming and prone to errors by the person performing them. Advances in wearable

technology, such as with accelerometers and GPS trackers, have helped researchers and

owners of pets obtain real-time information on the different movements an pet performs,

which helps in conducting more extensive and continuous observations. Such technologies

have laid a basis for automated activity classification, enabling quick analysis of large data

sets to derive insights into behavior patterns.

Accurately classifying a dog’s activity level, such as distinguishing between calm and active

states, is very important in numerous applications. Such information would be useful to

pet owners for ensuring appropriate exercise and rest for their dogs. For veterinarians,

activity state classification provides support to the monitoring of health conditions, recovery

processes, and management related to weight or stress issues. Accurate classification is
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important for researchers studying pet behavior, since it can yield important information

related to a dog’s physiological and psychological welfare. The movement from observational

methods to data-driven monitoring highlights a growing need for methods that not only

accurately classify behaviors but also elegantly handle the messy subtleties of pet movement,

in which states often blur or shift in gradual ways.

Developments in machine learning have given significant impetus to activity monitoring, in-

troducing marked improvements in accuracy and operational efficiency. Different algorithms

of machine learning, like decision trees, support vector machines, and neural networks, are

used for the classification of different conditions in pet behavior. These algorithms are nor-

mally trained on a labeled dataset to learn the patterns of the activities of pets so that they

can be applied to real-time monitoring systems. However, such ambiguous or transitional

behaviors may pose problems for traditional machine learning approaches, especially in cases

where it is not clear whether a dog is wholly resting or active. These intermediate states are

problematic to classify into a binary model, and the misclassifications reduce the reliability

of the model.

The review highlights the importance of advancing dog activity monitoring systems for better

pet care. Despite progress, challenges persist, motivating further innovation. Our study

aims to contribute this progress by proposing a novel monitoring approach addressing these

challenges and providing user-friendly tools for pet owners.
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Chapter 3

THEORETICAL KNOWLEDGE

This chapter presents the theoretical foundations that support this study. It begins by

introducing game theory, which models strategic interactions and decision-making among

rational agents. It then explores shadowed sets, a framework for handling uncertainty by

dividing data into clear, vague, and uncertain regions. Finally, it integrates these two con-

cepts into game-theoretic shadowed sets (GTSS), which combine the strategic reasoning of

game theory with the uncertainty modeling of shadowed sets. The chapter aims to build a

solid conceptual understanding of these models, setting the stage for their application in pet

activity classification.

3.1 Game Theory

Game theory, a mathematical framework for analyzing strategic interactions among rational

decision-makers, was first developed by mathematicians John von Neumann and Oskar Mor-

genstern in the 1940s [36]. It gives us insight into situations where the outcome of a decision

depends not only on one’s own actions but also on the behavior of other people. Game

theory has since found applications in economics, political science, biology, and computer
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science, influencing the development of strategies in competitive, cooperative, and conflictual

situations [39]. Game theory has evolved, over time, to become a key tool in understanding

strategic behavior in complex situations, where participants or decision-makers interact in a

major way that can affect collective outcomes.

Some of the basic concepts of game theory include strategic interaction, payoff functions,

and equilibrium analysis. In strategic interaction, each player’s decision affects the final

outcome; hence, there is usually some form of interdependency among players. The payoff

is the result or reward a player gets depending on other players’ decisions and their own.

Nash equilibrium, a concept introduced by John Nash in 1950, refers to a state where no

player can improve their payoff by changing their strategy while considering the strategies

of others [37]. This equilibrium concept is central to game theory, providing a foundation

for analyzing competitive and cooperative decision-making scenarios, as players settle into

stable strategies where no single participant has an incentive to deviate unilaterally.

Game theory distinguishes between cooperative and non-cooperative games. In cooperative

games, players can form coalitions and collaborate to achieve mutual benefits, whereas non-

cooperative games assume that players act independently, each seeking to maximize their

own payoff. Both types of games are used to model a variety of real-world scenarios, from

market competition to international diplomacy [46]. In zero-sum games, one player’s gain

is exactly another’s loss, while in non-zero-sum games, players may benefit mutually from

cooperation, allowing for more complex and varied outcomes.

The application of game theory has expanded into machine learning and artificial intelligence,

where it plays a vital role in decision-making and classification tasks. In particular, game-

theoretic models have been used to improve machine learning algorithms, especially when

faced with uncertainty or ambiguous decision boundaries. For example, game theory is used

in multi-agent systems, where agents (software programs or robots) must make decisions in

a shared environment while considering the actions of other agents [48]. These models are
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particularly useful in classification tasks, where decisions often need to account for not only

the data at hand but also handle possible misclassifications carefully.

In the context of pet activity classification, such as differentiating between calm and ac-

tive states in dogs, game theory can provide a structured approach to managing uncer-

tainty and optimizing decision thresholds. Traditional classification methods often strug-

gle with ambiguous data, particularly in situations where there is no clear distinction be-

tween classes. Game-theoretic approaches, including game-theoretic shadowed sets, inte-

grate decision-making strategies to handle such uncertainty by defining flexible boundaries

that adapt to the data [53]. These frameworks combine game theory’s focus on strategic

decision-making with fuzzy set theory, allowing for three-way classification that accounts for

transitional or uncertain states. By using game theory, classifiers can adjust to the data

and make more accurate and reliable decisions, even when it is hard to see clear boundaries

between classes.

Overall, game theory has proven to be a powerful tool in optimizing decision-making, par-

ticularly in the presence of uncertainty. Its principles allow for strategic decision-making

in competitive environments and have been successfully integrated into machine learning

frameworks, enhancing the ability to classify complex behaviors. In applications like animal

activity classification, game-theoretic models offer a robust solution for managing uncertainty

and ambiguity, providing more effective and adaptable systems for real-world classification

challenges.

3.2 Shadowed Sets

Shadowed sets reveal interesting conceptual and algorithmic relationships existing between

rough sets and fuzzy sets [41]. Traditional binary classification methods assign data points

to one of two predefined classes using a certain threshold. In countless practical situations,
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however, the data points do not clearly belong to either class—applications with noisy, am-

biguous, or transitional data. Shadowed sets respond to this problem by creating a tertiary,

intermediate area in which the ambiguity of classification can be manipulated systematically.

The concept is particularly helpful in complex systems in which precise decision limits are

problematic to define.

In a shadowed set, the decision space is divided into three different regions:

1. Acceptance Zone: Elements that are confidently classified as belonging to a particular

class.

2. Non-Acceptance Zone: Elements that are confidently classified as not belonging to that

class.

3. Shadowed Region: An uncertain zone where data points do not clearly belong to either

class and require further analysis or additional rules for classification.

The shadowed region plays a critical role in managing the uncertainty between these two

clear-cut zones, making shadowed sets an ideal framework for handling classification tasks

involving fuzzy or ambiguous data. Shadowed sets, originally developed by Pedrycz [41],

extend fuzzy set theory by introducing three regions for data classification: Acceptance Zone,

Non-Acceptance Zone, and a Shadowed Region. Each data point di is assigned a membership

value µ(di), computed through a fuzzy membership function. The membership of an object

to a shadowed set is defined as follows [53]:

S(α,β)(µA(x)) =


1, µA(x) ≥ α

0, µA(x) ≤ β

[0, 1], β < µA(x) < α

(3.1)
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Shadowed sets represent a valuable approach within computer science for managing un-

certainty and imprecision in data. They have been applied across a range of domains.

In the context of granular computing, shadowed sets facilitate the formation of informa-

tion granules, supporting robust decision-making even when data is incomplete or impre-

cise [42, 49]. In clustering analysis, which involves grouping similar data points, shadowed

sets enhance boundary detection and enable more flexible and interpretable partitioning of

clusters [28, 43, 50, 51]. Additionally, they have been employed in image processing, where

they contribute to improved interpretation of visual data [16,35], and in data analysis, where

they aid in handling vague or fuzzy information [24,52]. Collectively, these applications high-

light the effectiveness of shadowed sets in computational tasks that involve ambiguity and

the need for soft decision boundaries.

Shadowed Sets Algorithm:

1. Initialization: Initialize a data set with each data point having a membership value.

2. Set Thresholds: Determine thresholds for:

• Acceptance Zone: Membership > α,

• Zone of Non-Acceptance: Membership < β,

• Shadowed Region: Membership between α and β,

3. Classify Data Points:

• If membership > α, classify as accepted.

• If membership < β, classify as rejected.

• If membership is between α and β, classify as shadowed (uncertain).

4. Handle Shadowed Region: Apply other decision-making techniques (such as game the-

14



ory or fuzzy rules) to resolve ambiguity. Assign each item to one of the three marked

areas: accepted, not accepted or shadowed.

In the next chapter, this theoretical foundation of shadowed sets will be extended through

integration with game-theoretic principles. Specifically, we will show how the concept of a

shadowed region is operationalized in the classification of pet activity using adaptive thresh-

olding and strategic error minimization. This allows the model to make flexible, uncertainty-

aware decisions that go beyond rigid binary classification.

3.3 Game-theoretic Shadowed Sets

Game-theoretic shadowed sets are an approach to decision-making, combining methodologies

of game theory and shadowed sets to deal with classification problems under uncertainty [53].

The methodology is especially useful in situations where data can’t be obviously partitioned

into binary groups and the divisions between the groups are fuzzy or imprecise. The adoption

of principles of strategic decision-making originating from game theory combined with flexible

classification frameworks belonging to shadowed sets gives rise to game-theoretic shadowed

sets a powerful tool for dynamic decision-making in complex environments.

Components of game-theoretic shadowed sets:

At the core of shadowed sets, there lies the idea of breaking down a decision space into

three different regions: acceptance, non-acceptance, and a shadowed region (also called an

uncertain region). These three regions reflect the level of confidence a decision-maker has

in classifying a data point to a class. Data points falling within the acceptance region are

classified with high confidence as belonging to a particular class. In the non-acceptance zone,

the data points are unambiguously classified as not belonging to that particular class. The

shaded region is what lies between the acceptance and non-acceptance zones: this is a region

of classification ambiguity, where a decision cannot be made with high confidence.
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Incorporating game theory into this framework enhances the decision-making process by al-

lowing the system to strategically select decision boundaries. Game theory provides a set of

tools to model and optimize these boundaries based on minimizing misclassification costs,

uncertainty, and other factors like the distance between the data points and classification

thresholds. By using game-theoretic principles such as Nash equilibrium and minimax opti-

mization, game-theoretic shadowed sets dynamically adjust the thresholds for classification

to minimize error costs, handle ambiguity, and account for varying levels of uncertainty in

the data [53].

Application in Classification Tasks

A significant advantage of game-theoretic shadowed sets is their ability to handle transitional

states or uncertain data—situations in which a data point does not unambiguously belong

to a particular class, which is very common in many real-life classification problems. For

example, in classifying dog behaviors into calm and active classes, dogs can be in intermedi-

ate states that do not clearly belong to either class. In such cases, traditional classification

methods based on binary labels tend to face problems in making accurate decisions. The

game-theoretic shadowed sets approach tackles this issue by allowing the classifier to recog-

nize and control uncertainty in the data by introducing the shadowed region, which helps

regulate state transitions between active and calm.

By applying game-theoretic methods, this model succinctly decreases the cost of misclassi-

fication while optimizing decision boundaries to improve overall classification accuracy. In

this way, the classifier becomes able to smoothly adapt itself to changes in the underlying

data by changing thresholds based on the amount of uncertainty and the context in which

each decision is made. This is especially advantageous in domains such as the classification

of animal behavior, where data from real-time monitoring may be subject to noise or am-

biguity. Accurate classification is essential for various tasks, including health assessment,

behavioral research, and activity observation.
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Advantages and Benefits

The game-theoretic shadowed sets framework offers several key advantages over traditional

classification methods:

1. Handling Uncertainty: By incorporating a shadowed region, the system can handle

uncertainty in data classification, especially when decisions are not clear-cut.

2. Adaptability: The game-theoretic approach allows the model to dynamically adjust

decision thresholds based on the context and uncertainty of the data, improving the

model’s flexibility.

3. Cost Optimization: Game theory helps minimize the cost of misclassification by strate-

gically setting thresholds that balance accuracy with cost, ensuring more efficient and

reliable decision-making.

4. Robustness in Transitional States: The ability to handle ambiguous or transitional

states, such as a dog moving from calm to active behavior, ensures more accurate and

continuous monitoring.

Disadvantages

1. Computational Cost: Game-theoretic shadowed sets rely on the integration of game

theory and fuzzy logic, which increases the overall model complexity. Due to this, GTSS

may require significantly more computational time and resources for both training and

inference, particularly when applied to large datasets.

2. Limited Tool Support: In contrast to commonly used machine learning algorithms

such as Support Vector Machines or Neural Networks, game-theoretic shadowed sets

lacks widespread implementation in standard machine learning libraries. As a result,

developers often need to manually implement the methodology, which increases the

development effort and may require advanced mathematical and programming knowl-
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edge.

3. Difficult to Explain to Non-Experts: The theoretical basis of game-theoretic shadowed

sets involves advanced concepts from both game theory and fuzzy set theory, making it

challenging to interpret and communicate. This can present difficulties when explaining

the model’s behavior and outcomes to end-users, stakeholders, or domain experts who

do not have a technical background.

Overall, the Game-Theoretic Shadowed Sets framework offers a major improvement in

decision-making methods. It provides a practical and reliable approach to handling un-

certainty and enhances classification accuracy, especially in real-time applications like pet

behavior monitoring.
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Chapter 4

Applying Game-theoretic Shadowed

Sets to Pet Activity Classification

The game-theoretic shadowed sets framework unifies shadowed sets with game-theoretic

principles for handling uncertainty in classification problems. Unlike binary classification, the

game-theoretic shadowed sets framework has developed a flexible three-way decision model

that treats the ambiguous data points with three different zones: acceptance, rejection, and a

shadowed region (uncertain region). This model is particularly applicable in scenarios when

data points do not lend themselves easily to a single class, as it reduces the inaccuracies in

classification by adaptively changing the classification thresholds. game-theoretic shadowed

sets achieve this by modeling error management as a strategic game and iteratively optimizing

error trade-offs.

4.1 Implementation on Dog Activity Data

In this project, we implement the game-theoretic shadowed sets framework to classify real-

world dog activity into three regions: Calm, Active, and Shadowed zone (uncertain). Raw
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accelerometer values are first normalized to zero mean and unit variance, mitigating inter-day

drift and ensuring consistency. Each normalized activity value x is then mapped to a fuzzy

membership score µ(x) using a Gaussian membership function is the following equation [10],

µAi
(x) = Gaussian(x, ci, σi) = exp

(
−(x− ci)

2

2σ2
i

)
(4.1)

where

• x is the observed activity level from the collar sensor,

• ci is the empirical mean of the activity data,

• σi is the standard deviation of the activity data.

This mapping produces a continuous score µ(x) ∈ [0, 1], with values near 1 indicating vig-

orous Active movement and values near 0 denoting calm behavior. We initialize thresholds

α0 = 0.65 and β0 = 0.35 to partition these scores into Active, Calm and Shadowed Zone.

Elevation errors (misclassifying calm as active) and reduction errors (misclassifying active

as calm) are modeled as two opposing players in a strategic game. In each iteration, α and

β are perturbed within [0, 1], misclassification costs are evaluated on the labeled dog data,

and payoffs are taken as the negative total error.

4.2 Tradeoff Between Elevation and Reduction Errors

The game-theoretic shadowed sets framework deals with trading off elevation and reduction

errors. These types of errors happen when some data points are moved into full acceptance

or full rejection:

• Elevation error: Occurs when membership values are elevated to complete acceptance
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(1).

• Reduction error: Occurs when membership values are reduced to complete rejection

(0).

These errors need to be minimized, as reducing one tends to increase the other. The game-

theoretic shadowed sets framework casts this tradeoff as a competitive game and seeks an

equilibrium to balance the two types of errors. Reducing elevation and reduction errors is

key to the effectiveness of classification models, more so in the cases of fuzzy sets where data

points may not have membership with clear, well-delimited boundaries. The minimization of

one type of error will generally maximize the other, hence creating a tradeoff between these

two errors. For instance, reducing elevation errors by forcing membership values down may,

in turn, increase reduction errors since there will be fewer points accepted into the target

class. Likewise, reducing reduction errors by forcing values up may elevate errors, creating

false positives.

This complex balance requires careful tuning of fuzzy membership functions, as the functions

directly influence the levels of error that are assigned for every data point regarding the target

class. As a result of this, the balance between elevation and reduction errors is not a static

property; it is actually a dynamic property, which should change based on the interactions

of the classification model with new instances and updated thresholds.

4.3 Game-Theoretic Approach to Error Minimization

To address the tradeoff between elevation-reduction error, the game-theoretic shadowed sets

framework adopts concepts in game theory, where both types of error are viewed as opposing

players.

1. Player E (Elevation Error): Seeks to minimize elevation errors, usually preferring high
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threshold values for acceptances.

2. Player R (Reduction Error): Tends to reduce reduction errors, usually preferring

smaller values for the non-acceptance threshold.

Each player’s strategy then involves adjusting thresholds, based on a payoff matrix that

quantifies the benefits or losses of each decision. This theoretical framework uses concepts

like Nash equilibrium and minimax strategies to achieve a balanced classification outcome.

In this game-theoretic setting, the strategies of both players are interdependent. A change in

one threshold will necessarily affect the other player’s performance. For example, increasing

the threshold α too high will decrease the elevation error but probably increase the reduction

errors since fewer data points are accepted into the target class. Similarly, decreasing the

threshold β might decrease reduction errors but increase elevation errors as more points

are pushed into full acceptance. The elevated and reduced areas are affected by changes

in the thresholds (α, β). The distribution of these areas is significantly influenced by the

value of σ, which can be computed using various methods. A value of 0.5 was used by

Cattaneo and Ciucci to replace the membership grades of the elements in the shadows [14,15].

The goal is to compromise these conflicting strategies so as to minimize the total error

rate for both dimensions. In many practical scenarios, such as pet activity monitoring,

minimizing false positives (elevation errors) is often prioritized to avoid unnecessary alerts.

The framework supports this by allowing the strategy of Player E to dominate when the cost

of incorrect acceptance is higher, leading to a more conservative classification boundary. This

explains why, in practice, the game-theoretic shadowed sets model tends to defer uncertain

cases rather than classify them as active. The game-theoretic setup, therefore, turns error

minimization into a dynamic process through which thresholds can be adjusted adaptively

according to the inherent nature of the data.

The solution to this game-theoretic problem is usually solved by optimization techniques,
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with the equilibrium solution corresponding to those values of α and β that give rise to the

minimal total error. One may set this up, for example, in the framework of Nash equilib-

rium analysis, where the system is iteratively refined such that the strategies of both players

converge to an equilibrium that provides an optimal classification boundary. Furthermore,

fuzzy membership functions can be incorporated in order to execute the classification pro-

cess in a much more refined way, making the framework resilient to uncertainty and noise

in the data. Hence, the possibility of optimizing the thresholds through game-theoretic

approaches is one of the most important advantages in enhancing the effectiveness of the

classification models—especially in dealing with data points whose characteristics are not

clear or marginal.

4.4 Iterative Learning Mechanism for Threshold Opti-

mization

The game-theoretic shadowed sets framework improves threshold values through a itera-

tive learning mechanism. This iterative process is composed of the constant adjustment of

thresholds and evaluation of classification effectiveness:

• Initialization: Initialize with extreme threshold values (e.g., α = 1 and β = 0).

• Iterative Adjustments: At each iteration, methods update α and β by evaluating the

consequences of classification error.

• Equilibrium and Convergence: Iterations are stopped when thresholds stabilize, reach-

ing an equilibrium where further improvements cannot be made.

During each iteration of learning, the system tests how changing the threshold values (α and

β) affects classification errors. It checks whether slightly increasing or decreasing these values

helps reduce mistakes. Based on the feedback, the model updates the thresholds to improve
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its performance. This process continues step by step, always comparing the current accuracy

with the previous one to ensure that each change results in improvement. Over time, the

adjustments become smaller until the model reaches a stable point called equilibrium where

further changes no longer improve the results. At this stage, the thresholds are considered

optimized, meaning they achieve a good balance between elevation errors (false positives)

and reduction errors (false negatives).

This learning process does not assume that the boundary between classes is straight or

simple. Instead, it uses fuzzy Gaussian membership functions, which create smooth and

flexible decision boundaries that can adapt to complex patterns in the data. To avoid

getting stuck in a poor solution (local minimum), the model tries many combinations of

thresholds, gradually adjusts values using a decaying learning rate, and may restart from

different initial points. These strategies help the system explore better solutions and reach

a reliable and accurate result. Overall, this iterative mechanism allows the game-theoretic

shadowed sets framework to handle uncertainty, adapt to dynamic data, and find optimal

thresholds for robust and accurate classification.
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Chapter 5

DESCRIPTION OF

IMPLEMENTATION

This chapter describes, step by step, the implementation of the model for pet activity clas-

sification. It follows the data preprocessing, model architecture, and training procedures in

depth, with a focus on class imbalance handling techniques and model performance improve-

ment. It also covers the used tools and libraries in order to give a wide perspective on how

methods have been applied to develop a robust detection system.

5.1 System and Language Specifications

This section explains the computational setup and programming tools employed for the

realization of the model. It explains the system environment specifications, from hardware

to software configuration. In addition, this section explains the programming language and

library selections that were used in building and executing the pet activity classification

model.

Computational Environment

25



The computational environment for this project was based on a HP Pavilion laptop 15-

cs0064st, featuring a 8th Generation Intel® Core™ i7 processor with a maximum clock

speed of 5.00 GHz, and 8GB of 4800MHz LPDDR4 memory. The processor’s high-speed

capabilities and multi-core architecture provided the necessary power for handling intensive

tasks like training deep learning models. The system also included a 1TB SSD, which

facilitated fast data access and reduced the time required for data loading and saving during

model training. The laptop ran Windows 11 Home, offering a modern and stable environment

compatible with popular machine learning libraries such as NumPy and Matplotlib. This

setup allowed for the efficient execution of the pet activity classification model and ensured

smooth performance when processing large datasets.

Programming Language Specification

Python selected because it is well-suited for implementing machine learning projects. With

Python, large-scale libraries like NumPy and Pandas allow for efficient handling of data in

a structured manner, so that the pet activity dataset can be easily processed. Visualization

libraries such as Matplotlib were used to visualize the trends present in the data.. Python’s

ecosystem also supports the evaluation of metrics such as accuracy, precision, recall, and

F1-score, which was critical in assessing the performance of the model.

5.2 Libraries and Frameworks

The libraries provide essential functionalities for data manipulation, model building, and

evaluation. Their efficient implementations support faster development and enhance the

overall performance of the model. Here is a brief explanation of the key Python libraries

and modules used in this project [23]:

• Pandas as pd

Pandas is a comprehensive Python library for manipulation and analysis, mainly
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of structured data like CSV or Excel. This library directly supports loading, pre-

processing, and structuring of datasets efficiently to prepare data for analysis. More-

over, Pandas offers powerful tools for exploring data before putting it into an ML

model.

• NumPy as np

NumPy is a library that supplies a collection of mathematical functions aimed at

array manipulations. It supports enormous multi-dimensional arrays and matrices and

provides tools for efficient numerical computations. This functionality is crucial during

model development to help optimize calculations.

• Train-Test Split (from Scikit-Learn)

This library is useful to split the dataset into training and testing. the latter can

be used to test model performance on unseen data. Testing will, therefore, give an

estimation of the generalization capability of the model.

• Classification Metrics (Scikit-Learn)

– Classification Report: Summarizes key metrics like accuracy, precision, recall,

and F1-score for evaluating model performance.

– Accuracy Score: Provides the ratio of correctly predicted instances to total

instances.

5.3 Data Management

Proper data management means accuracy, accessibility, and security are assured at all phases

of a datum’s life cycle. This section explores strategies and methodologies used in data

organization, storage, and processing to enable efficient analysis and decision-making. By

laying a foundation for overcoming challenges in data integrity, scalability, and privacy, it
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ensures the results of using the data are robust and reliable.

Source of Dataset

The dataset used for this project was provided by PetDrifts Company, a pet technology

company that specializes in advanced IoT-enabled solutions for monitoring pet health and

behavior. In support of this project, PetDrifts facilitated access to a dataset generated by

advanced IoT devices installed in pet collars. These collars are equipped with sensors, such

as accelerometers and gyroscopes, capable of capturing detailed momentum data, which

reflects the intensity of the pet’s movement. Each device continuously monitors the activity

level of a pet and records the data after fixed intervals, enabling fine-scale monitoring of pet

behavior throughout a day. Afterwards, the data was transmitted to a main server or an

application, where it prepared the data for the analysis. Besides, the raw data was examined

and labeled by expert veterinary behaviorists, who categorized each instance either as ‘Calm’

or ‘Active,’ based on the visible pattern within pets’ movements; hence, the labels of data

are relevant for classification model training.

Dataset Features

The dataset contains several key features that together provide a comprehensive view of the

pet’s activity patterns. It consists of 3,920 rows, with 1,501 instances labeled as Calm and

2,419 as Active. These data entries represent the activity records of a single dog. Each row

corresponds to the average momentum recorded over a 5-minute interval using a wearable

collar device. These features include:

• Pet: The name of the pet, which is unique in this dataset and serves to distinguish

various animals from each other; this enables activity pattern analysis per pet.

• Timestamp: Represented in Unix time, this feature gives the exact date and time

at which each measurement of pet activity has taken place. This allows for trend and
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variation analyses of activity captured over a 5-minute interval.

• Activity: A numerical indicator of the pet’s movement or activity level at each

recorded timestamp. This value probably results from a combination of the raw sensor

readings and the result of processing that indicates intensity, including minimal move-

ment to high-intensity activity. This metric is essential for quantifying the activity of

the pet. It forms the basis for distinguishing between calm and active states.

• Status: A categorical label that identifies the activity state of the pet, as ‘Calm’ or

‘Active’. It was defined by veterinary behaviorists in a subjective manner by analyzing

momentum patterns. In this respect, the data is appropriate for supervised learning

because a classification model learns from pre-labeled data.

Figure 5.1: Features of dataset
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5.4 Data Preprocessing

The preprocessing phase involved verifying the consistency of activity values by examining

their distribution relative to the mean and standard deviation, rather than applying full

standardization. To address the class imbalance, synthetic data augmentation was employed

using the Synthetic Minority Over-sampling Technique (SMOTE). The original dataset ex-

hibited an underrepresentation of calm instances compared to active ones, which could bias

the model during training. SMOTE was used to generate 350 synthetic samples for the

calm class by interpolating between existing calm data points and their k-nearest neighbors

in the feature space. This process does not duplicate samples but instead creates new, re-

alistic examples within the neighborhood of calm activity patterns. As a result, the total

number of calm samples increased to 1,500, which helped to bring the class distribution

closer to a 60:40 ratio. This synthetic augmentation improved the model’s exposure to

calm behavior patterns, leading to more balanced learning and better generalization dur-

ing classification.Outlier detection and handling were also crucial for improving data quality.

Outliers in the dataset were primarily caused by sensor errors. Statistical thresholding meth-

ods were applied to identify anomalous data points, which were further validated through

visual inspection. The number of outliers detected was relatively small—less than 1% of

the total data—and these were manually removed to ensure they did not negatively influ-

ence the model’s decision boundaries. By eliminating these abnormal entries, the dataset

became more consistent and reliable for training the game-theoretic shadowed sets classifi-

cation model. Collectively, the validation of data range, synthetic augmentation, and outlier

filtering ensured the construction of a high-quality which is a critical foundation for robust

classification with the game-theoretical shadowed sets model.
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5.5 Data Analysis Techniques

The model’s generalization ability and efficacy were evaluated using data analysis techniques.

This section outlines the methods used to split the dataset to ensure comprehensive model

assessment. Techniques like cross-validation were implemented to achieve robust evaluation

results.

k-fold Cross-Validation Approach

The stratified k-fold cross-validation technique, with k = 10, was used to validate the model’s

accuracy. In this approach, the dataset was divided into 10 equal parts or folds, and the

model was trained and tested iteratively on each fold. For each iteration, one fold served as

the test set while the remaining nine folds were used for training, ensuring that each part of

the data contributed to both training and testing. This approach provided a more robust

and reliable estimate of the performance.

5.6 Model Performance Assessment

The performance of the model was evaluated using the confusion matrix, which provides a

detailed breakdown of the model’s classification results into four main components: True

positives, true negatives, false positives, and false negatives. These values are crucial in

calculating key metrics like accuracy, precision, recall, F1-score, which measure the model’s

ability to identify active and calm classes correctly. Their details are discussed below, based

on the model [23]:

Using this confusion matrix, the key metrics like:

1. Precision: TP
TP+FP

– How many predicted state were actually state.

2. Recall: TP
TP+FN

– How many actual state were detected.
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3. F1-score: 2× Precision×Recall
Precision+Recall

– A balanced metric combining precision and recall.

4. Accuracy: TP+TN
Total

– Overall correctness of the model.

In summary, the model was evaluated on the test data after training. To assess the pre-

dictions, both an accuracy score was used, which gives the overall accuracy of the model,

and also a classification report that provided detailed metrics including precision, recall, and

F1-score for active and calm, respectively. These provided a sound basis for assessing the

model’s ability in detecting activity state and performance on this imbalanced dataset.

5.7 Flow Chart: Pet Activity Classification with Game-

Theoretic Shadowed Sets

The flowchart presented below illustrates the methodology of the 10-fold cross-validation

approach, which was implemented within the framework of game-theoretic shadowed sets

specifically designed for the classification of pet activity.
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Figure 5.2: Flowchart of the model

Figure 5.2 demonstrates methodology for deployment of a model using K-Fold Cross-

Validation. Dataset loading is followed by preprocessing and getting the dataset ready for

future analysis. The data is then analyzed to extract insights regarding its features and to

verify its suitability for classification operations.

After pre-processing and dataset analysis, K-Fold Cross-Validation is applied to the model
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to make it robust and prevent overfitting. Here, the training data set is divided into mul-

tiple folds and is iteratively trained and tested. Model compilation is first accomplished by

initializing and configuring the classification model. Training is accomplished on the train-

ing subsets generated by cross-validation. After training, evaluation is accomplished on the

model using the test data to make sure that it generalizes to unseen inputs. Then the model

is used to classify the data and overall performance is calculated using accuracy, precision,

recall, and F1-score.

Finally, a classification report is generated that reflects the overall performance of the model

across all validation folds. This structured evaluation ensures a comprehensive assessment of

how well the model generalizes to unseen data and provides insightful information for future

optimization and tuning.

5.8 Step-by-Step Model Operation

This section is a detailed step-by-step analysis of how the approach game-theoretic shadowed

sets is organized into several main phases. These steps include setting up the coding environ-

ment, loading and preprocessing the data, applying the Gaussian membership function, ad-

justing classification thresholds dynamically, classifying the activities, cross-validation meth-

ods, and finally visualizing the results.

Step 1: Load Dataset

In this first step, the dataset is loaded into a data frame for its subsequent processing.

The dataset is read from a CSV file named activity data.csv using the Pandas read csv

function.

df = pd.read_csv(‘activity_data.csv’)

Step 2: Data Preprocessing
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The data preprocessing phase began with the normalization of activity values to ensure con-

sistency across the dataset. Normalization was necessary because the raw activity readings

varied in scale and distribution, which could affect the model’s ability to interpret them

uniformly. Using NumPy, the mean and standard deviation of the activity values were

computed, and each data point was rescaled accordingly. This transformation preserved

the underlying distribution while aligning the values to a consistent range, allowing for the

effective application of the Gaussian membership function during classification.

In addition to normalization, outlier detection was performed to improve data quality and

model reliability. Outliers—data points that deviated significantly from the overall distri-

bution—were typically the result of sensor errors. These anomalies were identified using

statistical thresholds and confirmed through manual visual inspection. Since the number of

such points was minimal (less than 1% of the dataset), they were removed to prevent their

influence on model training and decision boundaries.

By completing these preprocessing steps, the dataset was transformed into a clean, balanced,

and well-structured input suitable for the classification model. Ensuring high-quality data

at this stage was critical, as the effectiveness of the game-theoretic shadowed sets framework

depends heavily on the precision and reliability of the input features.

Step 3: Applying the Gaussian Membership Function

The Gaussian membership function forms the backbone of the game-theoretic shadowed sets

approach, wherein it transforms normalized activity data into membership scores, quanti-

fying for each activity how well it fits into predefined behavioral categories. This step is

important since it provides a base on which subsequent classification will be performed.

This transforms the raw data into a membership score by applying the Gaussian membership

function to each value of normalized activity. It refers to the likelihood of a given activity
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being from, say, ‘Calm’ or ‘Active.’

def gaussian_membership(x, c, theta):

return np.exp(-((x - c) ** 2) / (2 * theta ** 2))

Step 4: Dynamic threshold adjustment

The adjustment of dynamic thresholds is one of the most crucial steps in the game-theoretic

shadowed sets approach. It fine-tunes the thresholds used for classification based on the

inherent nature of the data to reduce the error rate. This is an iterative process that uses

the concept of game theory to reach an optimal solution for a balance between different kinds

of classification errors.

The classification thresholds were first set through domain knowledge and initial data analy-

sis. A typical threshold might be set at alpha = 0.65 and beta = 0.35, which are the initially

set for the boundaries between the ‘Calm’ and ‘Active’ states. In most cases, these a prior

threshold values are far from perfect and are usually further iteratively adjusted to fit the

data.

It is a dynamic adjustment process in which a number of ‘games’ between the two competing

types of classification errors are simulated: elevation errors and reduction errors. Elevation

errors occur when a less intense activity is mistakenly classified as more intense, analogous

to a Type I error (false positive), where a non-existent effect is incorrectly detected. In

contrast, reduction errors occur when a more intense activity is misclassified as less intense,

paralleling a Type II error (false negative), where a true effect is missed. This game-theoretic

balancing seeks to minimize the overall classification risk by adaptively adjusting thresholds

based on the cost and consequence of each error type.

Algorithm:
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Algorithm 1 Pet Activity Classification with Game-Theoretic Shadowed Sets Algorithm

Require: Dataset D, initial thresholds α0, β0, standard deviation θ, learning rate λ, maxi-
mum iterations Imax, number of folds k

Ensure: Optimized thresholds α∗, β∗, average accuracy
1: for each fold in k-fold cross-validation do
2: Split D into training and testing sets
3: Compute mean c and standard deviation θ of training set
4: for each x in training set do

5: Compute membership µ = exp
(
− (x−c)2

2θ2

)
6: end for
7: Initialize α = α0, β = β0

8: for iteration = 1 to Imax do
9: for each perturbation dα, dβ do
10: Adjust thresholds:
11: α′ = clip(α + dα, 0, 1)
12: β′ = clip(β + dβ, 0, α

′)
13: Compute elevated error Ee and reduction error Er

14: Compute payoff P = −(Ee + Er)
15: if P improves then
16: Update α, β
17: end if
18: end for
19: Decrease λ
20: if thresholds stabilized then
21: break
22: end if
23: end for
24: for each x in test set do
25: Classify state:
26: if µ ≥ α then
27: State = Active
28: else if β < µ < α then
29: State = Shadowed Zone
30: else
31: State = Calm
32: end if
33: end for
34: Calculate accuracy for the fold
35: end for
36: Compute average accuracy
37: Visualize membership distribution and thresholds
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In each step of the dynamic adjustment process, the model checks the effect of slight ad-

justments in thresholds. It tests whether an increase or decrease in thresholds will reduce

the overall error in classification. This process continues iteratively and gradually refines the

thresholds so that the model approaches the optimal classification.

The course of the adjustment is mediated by a learning mechanism that tries to minimize

the sum of the elevation and reduction errors. During the process, with every feedback that

the model receives from previous iterations, it changes its thresholds until it arrives at those

which offer the best compromise between the two types of errors.

The dynamic nature of this process is what makes the game-theoretic shadowed sets approach

particularly powerful. Unlike static thresholds, which may not account for the variability

and complexity of the data, dynamic thresholds can adjust to the specific characteristics of

the dataset, providing a more accurate and nuanced classification.

When this process of dynamic threshold adjustment was completed, the model was then

optimized with thresholds fine-tuned toward the data. These formed the threshold basis

upon which the classes of activities were finally classified.
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def adjust_gtss_thresholds(membership, alpha, beta, sigma,

learning_rate, max_iterations):

previous_alpha, previous_beta = alpha, beta

for iteration in range(max_iterations):

best_payoff = float(‘-inf’)

best_alpha, best_beta = alpha, beta

for d_alpha in np.linspace(-learning_rate, learning_rate, 5):

for d_beta in np.linspace(-learning_rate, learning_rate, 5):

new_alpha = np.clip(alpha + d_alpha, 0, 1)

new_beta = np.clip(beta + d_beta, 0, new_alpha)

if new_beta >= new_alpha:

continue

new_elev_error, new_red_error = calculate_errors(

new_alpha, new_beta, membership, sigma)

new_payoff = payoff(new_elev_error, new_red_error)

if sum(new_payoff) > best_payoff:

best_payoff = sum(new_payoff)

best_alpha = new_alpha

best_beta = new_beta

39



# Update alpha and beta to the best found in this iteration

alpha, beta = best_alpha, best_beta

if abs(alpha - previous_alpha) < 0.001 and

abs(beta - previous_beta) < 0.001:

print(‘Thresholds stabilized, stopping iterations.‘)

break

# Update previous values for the next iteration comparison

previous_alpha, previous_beta = alpha, beta

# decrease the learning rate to fine-tune the adjustments

learning_rate *= 0.95

return alpha, beta

Step 5: Data Splitting

This step will prepare the data for training and testing using two different approaches: 10-

fold cross-validation and analysis of the train-test split ratio. Perform the initialization of

k-fold cross-validation with (k=10) splits, while shuffling and setting a fixed random seed.

kf = KFold(n_splits=10, shuffle=True, random_state=42)

For train-test split ratio analysis, the main elements necessary for data splitting are the input

features X, representing the independent variables, and the target variable y, which becomes

the model’s prediction. The train test split function splits the data into training and

testing sets; the parameter test size=0.20 means that 20% of the data goes for testing and

80% of the data is kept for training. In summary, after the split, X train contains 80% of
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the feature data for training and X test holds the remaining 20% for evaluation; y train

contains 80% of the target labels that correspond to X train, and y test holds the 20% of

target labels that correspond to X test.

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.20, random_state=42)

Step 6: Train the Model

The model in this step is trained through 10-fold cross-validation and analysis of the ratio

of train-test splits. In every round of 10-fold cross-validation, one subset is used for training

while the other is used for validation; class weights will be applied due to the class imbalance

problem. For the train-test split, the model is trained on 80% and validated on the remaining

20%. Both models will use early stopping in an effort to prevent overfitting by monitoring

their respective validation losses, stopping training if there is no improvement beyond a

patience of 10 epochs.

# 10-fold Cross-Validation

model.fit(train_data, train_labels, epochs=100, batch_size=256,

verbose=2, validation_data=(test_data, test_labels),

class_weight=class_weights,callbacks=[early_stopping])

# Train-Test Split Ratio Analysis

model.fit(X_train, y_train, epochs=100, batch_size=256, verbose=2,

validation_data=(X_test, y_test), class_weight=class_weights,

callbacks=[early_stopping])

Step 7: Evaluate the Model

After training, the model makes predictions on the test data. The function accuracy score

calculates the accuracy of the model.
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average_performance = np.mean(performance_metrics)

print(f‘Average Performance (Accuracy): {average_performance}’)

std_performance = np.std(performance_metrics)

data.loc[:, ‘Membership’] = gaussian_membership(data[‘Activity’],

c=activity_mean, theta=activity_std)

data[‘State’] = data[‘Membership’].apply(lambda x:

classify_activity(x, alpha, beta))

Step 8: Completion

Once all folds or the single train-test split are completed, a message is printed to indicate

the completion of the training process.

print(‘Training Finished!’)
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Chapter 6

RESULTS AND EVALUATION

Experimental setup, used evaluation metrics, and results obtained by the pet classification

model are presented in this section. The experiments were conducted to validate the effi-

ciency of the model and also test the capabilities of the model on challenges including class

imbalance, overfitting, and sensitivity for activity state detection. For the model, both train-

test split and k-fold cross-validation were used for training and evaluation to make sure that

the risk of overfitting is low.

6.1 Results

The effectiveness of the game-theoretic shadowed sets framework was evaluated using 10-

Fold Cross-Validation. This method ensures robust performance estimation by dividing the

dataset into ten equally sized folds. The model was trained on nine folds and tested on the

remaining fold, repeating this process for each fold. The accuracy values for each fold were

calculated, and the average accuracy was used to summarize the overall model performance.

Accuracy is defined here as the number of correctly classified instances divided by the total

number of instances in the test set for each fold. The average accuracy across all folds is
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taken into account to give a good measure for performance.

The results of 10-fold cross-validation demonstrate excellent and consistent performance of

the proposed game-theoretic shadowed sets model, achieving an average accuracy of 91.17%.

This study focuses solely on evaluating game-theoretic shadowed sets and does not include

experimental comparisons with other classifiers such as decision trees, support vector ma-

chines, or neural networks. Table 6.1 describes the obtained accuracy for each fold.

Table 6.1: Fold-wise Performance Metrics of the GTSS Model

Fold Accuracy Precision Recall F1 Score
1 87.44% 92.1% 83.3% 87.49%
2 99.59% 98.5% 99.8% 99.15%
3 97.97% 96.9% 98.8% 97.85%
4 98.78% 99.5% 98.1% 98.79%
5 87.04% 85.2% 89.1% 87.10%
6 63.96% 70.2% 64.3% 67.12%
7 91.09% 87.64% 98.69% 92.83%
8 98.78% 97.6% 99.4% 98.48%
9 99.19% 99.4% 98.7% 99.05%
10 87.87% 88.9% 86.3% 87.59%

Average 91.17% 91.59% 91.64% 91.54%

The game-theoretical shadowed sets model achieved an average accuracy of 91.17% across all

folds, demonstrating its overall effectiveness in classifying pet activity states. While one fold

exhibited relatively lower accuracy, the remaining folds showed minimal variation, indicating

the model’s stability and strong generalization capability. These results collectively validate

the reliability and robustness of the game-theoretical shadowed sets framework for accurately

distinguishing between calm and active pet behaviors in real-world scenarios.

The classification performance of the proposed game-theoretical shadowed sets model was

further evaluated using a confusion matrix, which compares predicted and actual activity

states—Calm and Active. The model accurately identified 260 out of 324 Calm instances,

yielding a recall of approximately 80.25% and a very high precision of 97.74% for the Calm

class. In contrast, the model correctly detected 454 out of 460 Active instances, achieving an
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Figure 6.1: Confusion matrix showing classification performance of the GTSS model.

excellent recall of 98.69% and a precision of 87.64% for the Active class. This classification

pattern illustrates the conservative nature of game-theoretical shadowed sets, which pri-

oritizes minimizing false positives, particularly for the Active class, by deferring ambiguous

cases. Overall, the confusion matrix confirms that the game-theoretical shadowed sets model

offers high classification accuracy and effective uncertainty handling, making it well-suited

for real-world pet monitoring applications where minimizing false alerts is essential.

6.2 Applications in Veterinary Science and Pet Care

The purpose of this section is to illustrate how the proposed pet activity classification model

could be useful in real-world veterinary and pet care contexts. While the current system is

not designed to directly interface with veterinary diagnostics, it can serve as an early warning

tool that highlights unusual activity trends. Such patterns may prompt further investigation

or veterinary consultation. The examples provided here are illustrative in nature and are
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intended to make the potential applications more relatable and easier to understand for

general readers.

Pet Health Monitoring

Monitoring a dog’s activity levels is crucial for detecting early signs of illness or discomfort.

For instance, if a typically energetic dog, such as a Labrador Retriever, suddenly spends

excessive time in a calm or sleep state, it could indicate health issues like joint pain, muscle

soreness, or digestive problems [12]. Older dogs, prone to conditions like arthritis, may

naturally reduce their movement to minimize discomfort. The momentum-based activity

classifier aids in identifying these subtle changes promptly, allowing for early intervention.

Example: A seven-year-old Golden Retriever named Max exhibited a noticeable decrease

in his daily activity levels over a week. Using the classifier, his owner detected this change

early and consulted a veterinarian. Max was diagnosed with early-stage arthritis, and timely

intervention with medication and physical therapy improved his condition, enhancing his

quality of life.

Environmental factors also play a significant role in a dog’s activity levels. Changes such as

hot weather can lead to lethargy, while excessive noise might increase stress levels, which can

alter activity patterns [38]. For instance, a dog disturbed by nearby construction noise may

exhibit increased movement or frequent interruptions during rest. Analyzing these patterns

enables owners to make environmental or routine adjustments to improve their dog’s comfort

and reduce stress.

Seasonal health impacts are another area where the classifier proves beneficial. Dogs may

exhibit decreased activity during colder months due to unfavorable weather conditions or

even seasonal affective disorder [29]. Through long-term data analysis, owners can recog-

nize these patterns and adjust care routines accordingly, such as incorporating more indoor
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activities during winter.

Sleep Quality Assessment

Quality sleep is essential for a dog’s health and well-being. The classifier differentiates

between deep, uninterrupted sleep and fragmented sleep characterized by frequent move-

ments [11]. Dogs that shift often during sleep may be experiencing discomfort, pain, or

anxiety. Identifying such patterns allows owners to investigate potential causes, like uncom-

fortable bedding or underlying health issues, and take corrective actions.

Example: Bella, a five-year-old Beagle, began experiencing fragmented sleep as detected by

the classifier. Upon further investigation, her owner discovered that a new heating system

was causing the bedroom to become too warm at night. After adjusting the temperature,

Bella’s deep sleep patterns were restored, improving her rest quality.

External disturbances, such as bright lights, temperature fluctuations, or nighttime noises,

can also disrupt a dog’s sleep [44]. By comparing sleep data before and after making en-

vironmental adjustments, owners can pinpoint and mitigate factors causing restless nights.

This is particularly important for aging dogs, which may suffer from conditions like canine

cognitive dysfunction (CCD), leading to sleep disruptions that require specific management

strategies [27].

Behavioral Analysis and Training

Understanding a dog’s engagement levels is essential for effective training. The classifier

provides insights into how long a dog remains active or engaged during training sessions [13].

If a dog loses focus quickly, trainers can adapt their methods by incorporating shorter sessions

or using high-energy rewards to maintain attention, enhancing the training’s effectiveness.

Example: A Border Collie named Luna struggled with extended training sessions, often
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losing focus after 15 minutes. By monitoring her activity levels, the trainer adjusted the

sessions to shorter, more engaging periods, resulting in improved obedience and enthusiasm

from Luna.

Data on calm and active periods also help determine a dog’s endurance and attention span.

While a young, high-energy breed may sustain longer active states, older or less energetic

breeds might require more frequent breaks [21]. Tracking progress over time is invaluable,

especially for shy or anxious dogs, as gradual increases in active time can indicate growing

confidence and improved focus.

Exercise and Weight Management

Regular exercise is essential for a dog’s physical health and weight management. Each breed

has specific exercise requirements. For instance, an active breed like a Siberian Husky may

require one to two hours of vigorous activity daily, whereas a Pug might benefit from shorter,

less intense sessions due to their brachycephalic nature [40].

Table 6.2: Exercise Requirements by Breed

Breed Exercise Classification Recommended Daily Exercise
Border Collie High Energy 1.5 - 2 hours

Labrador Retriever High Energy 1 - 1.5 hours
Beagle Moderate Energy 1 hour
Bulldog Low Energy 30 minutes

German Shepherd High Energy 1 - 2 hours
Chihuahua Low to Moderate Energy 20 - 30 minutes

Golden Retriever High Energy 1 - 1.5 hours
Dachshund Low to Moderate Energy 30 - 45 minutes

Siberian Husky Very High Energy 2 hours
Great Dane Moderate Energy 30 - 45 minutes
Shih Tzu Low Energy 20 - 30 minutes

Jack Russell Terrier Very High Energy 1 - 1.5 hours
Pug Low to Moderate Energy 30 minutes

Rottweiler Moderate to High Energy 1 - 1.5 hours
Poodle (Standard) High Energy 1 - 1.5 hours

Monitoring activity levels helps prevent obesity and associated health issues, particularly in
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breeds prone to weight gain, such as Beagles and Dachshunds [19]. If a dog’s activity falls

short of its daily requirement, owners can adjust by increasing playtime or walks. Addi-

tionally, for dogs with physical conditions like hip dysplasia, the classifier aids in identifying

suitable low-impact exercises that maintain fitness without causing strain [17].

Anxiety and Mental Health Observation

Behavioral issues such as separation anxiety can be challenging to detect without concrete

data [45]. An increase in active time when the owner is absent may indicate anxiety. If a

dog’s rest or sleep time is disrupted only when alone, the classifier provides evidence for this

diagnosis, enabling owners to seek appropriate behavioral interventions.

Example: Charlie, a two-year-old French Bulldog, showed increased activity levels during

his owner’s absence, as recorded by the classifier. Recognizing this pattern, the owner con-

sulted a behaviorist, and with targeted training and environmental enrichment, Charlie’s

separation anxiety symptoms improved over time.

Nocturnal restlessness is another area of concern. Increased activity during the night may

signal anxiety, discomfort, or sleep disorders [20]. This could be due to unknown sounds,

night terrors, or an inability to settle down. Recognizing these patterns allows for timely

interventions, such as creating a more conducive sleeping environment or consulting a vet-

erinarian for further assessment.

Medical Diagnostics Support

The classifier serves as a supportive tool in medical diagnostics. For dogs suspected of arthri-

tis, trends showing reduced active periods or increased calm states can prompt veterinary

consultations for further evaluation [25]. Early detection allows for timely interventions, like

medications or therapies, to improve mobility and quality of life.
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Hormonal disorders, such as Cushing’s disease, often manifest through restlessness and un-

usual activity spikes, particularly at night [18]. If the classifier detects such patterns, it can

alert owners and veterinarians to conduct appropriate hormonal tests. Similarly, monitor-

ing cognitive dysfunction in older dogs is crucial. Erratic sleep-wake cycles and frequent

nighttime activity can support a diagnosis of canine cognitive dysfunction, guiding the de-

velopment of a comprehensive care plan [47].

Potential Outcomes of Using the Classifier

The results from the activity classifier can help people take useful actions, such as spotting

unusual behavior or adjusting the dog’s care routine. The output of the system is a detailed

daily or weekly summary of the dog’s activity, breaking it down into time spent in calm,

and active states. This at-a-glance view helps owners understand their dog’s typical energy

levels and quickly identify any deviations from the norm.

Long-term data collection will allow one to observe behavioral trends with the influencing

seasonal and environmental factors. Pet owners might notice, for example, that their dog is

less active in winter or becomes restless when there is stress at home. The system can also

be set to send auto-alerts in cases of serious changes in activity patterns.

Analysis of the balance between rest and activity offers insights into the life style of the

dog in general. The classifier assists in ensuring the dog maintains a healthy balance, and

adjustments can be made for dogs recovering from illness or injury. Furthermore, the classifier

evaluates sleep quality by monitoring periods of deep versus light sleep, noting interruptions.

Identifying changes in sleep quality allows owners to address potential problems by changing

conditions of sleep or seeking veterinary advice.
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Chapter 7

CONCLUSION

The project of implementing game-theoretic shadowed sets for pet activity classification

underlines the transformative potential of integrating advanced mathematical models with

behavioral analysis. Dynamic adaptability assured by game-theoretic principles positions

this model as a breakthrough tool for real-world applications. The ability to classify such

activities in a nuanced manner-calm, active, and transitional-enables pet owners and veteri-

narians to monitor and manage animal well-being with accuracy. By dynamically adjusting

classification thresholds, the game-theoretic shadowed sets accommodates variability in pet

behavior, ensuring accurate and meaningful insights. This adaptability is particularly ben-

eficial for long-term behavioral monitoring, allowing for timely interventions and improved

pet health outcomes.

The game-theoretic shadowed sets approach has been successful with its comprehensive

methodology that ranges from robust data collection and detailed labeling to sophisticated

analytic processes, including the implementation of a Gaussian membership function and

dynamic threshold adjustment. Every part of the methodology synergizes to make a model

that will be able to tell something about complex behavioral patterns in pets. These will
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also go beyond academic insights into practical applications in veterinary diagnostics, be-

havioral training, and customized solutions for pet care. For example, veterinarians may use

the outputs of the model to identify health concerns, while the owners will be able to create

better routines for care upon noticing specific patterns of activity.

While it is an innovative piece, this technology can be further developed. Improvements in

the system could come by incorporating more data sources, including heart rate monitors

or environmental sensors, to further improve classification accuracy and behavioral insights.

Additionally, a major direction for future research is to conduct a comparative evaluation

between the game-theoretic shadowed sets framework and more traditional or simpler clas-

sification models, such as decision trees, support vector machines, or neural networks. This

comparison would help assess whether the added complexity of game-theoretic shadowed

sets provides significant advantages over simpler methods in real-world scenarios. Further-

more, adapting the game-theoretic shadowed sets framework for other species or broader

behavioral contexts can extend its usefulness across various domains. This work not only

contributes to the field of pet activity classification but also paves the way for using advanced

decision-theoretic models to improve animal care and welfare. The game-theoretic shadowed

sets framework will bridge the gap between theoretical research and practical applications,

showing how computational tools can be utilized to support healthier, happier lives for pets

and their owners.
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