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ABSTRACT

It is imperative to address credit card fraud to protect consumer trust and enhance

financial security. The primary goal of this paper is to design a reliable system which

is capable of detecting credit card fraud or non-fraud with the utmost accuracy. The

deep multilayer perceptrons, is used to facilitate the precise prediction of complex

patterns and the accurate identification of the classes of a dataset. The proposed

model consists of 12 consecutive layers, to acquire intricate patterns from transac-

tional data with a high number of dimensions. The utilization of key approaches

like feature scaling, class weighting, and dropout regularization is implemented to

improve the performance and reduce the occurrence of overfitting. The performance

of the model measures using a dataset of credit card transactions by using different

split ratios and a 10-fold cross-validation process, with considerable imbalance be-

tween fraudulent and non-fraudulent activities. The goal of this model is to help the

improvement in the detection of fraudulent activities, as evidenced by measures such

as accuracy, precision, recall, and F1-score.
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Chapter 1

INTRODUCTION

Credit card is a financial instrument that banks or credit institutions offer to enable

individuals to borrow money for a range of objectives, such as making purchases,

paying bills, or withdrawing cash. The financial institution establishes the credit

limit, a line of credit determined by the cardholder’s creditworthiness. This cred-

itworthiness is frequently evaluated using indicators such as the cardholder’s credit

score, income, and payment history. Credit cards differ from debit cards because

they allow cardholders to borrow money from the issuer to cover expenses, rather

than relying on the user’s funds. It is anticipated that the borrowed amount will be

repaid in full by a designated due date to avoid interest charges, or over time with

interest accruing on the outstanding balance. Credit cards are uniquely designed to

provide the user with the flexibility to make purchases within their credit limit and

repay the amount as required, allowing them to access a revolving line of credit. In

the modern financial landscape, credit cards have evolved into a critical component of

the ecosystem, providing much more than a mere financing mechanism [4]. A diverse

array of features and incentives are frequently included, such as reward programs,

Perks as extended warranties on purchases, purchase protection, and travel insurance
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are also included in many credit cards, providing the cardholder with additional value

and protection. Moreover, credit cards are broadly accepted worldwide, which allows

users to purchase products and services in a variety of currencies without the need to

carry a substantial amount of cash.

Credit cards provide significant advantages, particularly in the areas of financial man-

agement and security. By incorporating fraud detection mechanisms and zero-liability

protection, credit cards offer a safer alternative to currency by protecting users from

unauthorized transactions. Additional security measures, such as two-factor au-

thentication and real-time transaction alerts, guarantee that suspicious activities are

promptly resolved. Additionally, credit cards are essential for the establishment and

preservation of a robust credit history, as well as for providing security. Responsible

use and expeditious payments can enhance one’s credit score, which is crucial for

obtaining loans and mortgages at favorable rates. Conversely, your credit score may

be adversely affected by late payments or misuse. Globally, credit cards are indis-

pensable financial instruments for millions due to their adaptability and versatility,

which enables them to facilitate both routine expenditures and substantial financial

obligations.

Credit card fraud is a criminal offense that involves the illicit use of another person’s

credit card or credit card details to complete transactions, make purchases, or with-

draw money. This may occur through a variety of methods, such as card-not-present

fraud, which necessitates only the card details for online or phone transactions, or

counterfeit card fraud, in which fraudsters utilize skimming devices to extract card

data from magnetic stripes and develop counterfeit cards. Additional methods include

the use of personal information obtained from phishing or data breaches to gain ac-

cess to accounts, the fraudulent use of lost or stolen cards, and the implementation

of large-scale data breaches that target banks or retailers. There are substantial fi-
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nancial losses for both consumers and financial institutions because of each of these

fraud categories. Further complicating the financial consequences of credit card fraud

is friendly fraud, which arises when cardholders dispute legitimate charges to obtain

refunds.

Fraudulent activities flourish despite technological advancements, frequently employ-

ing the same tools that are intended to improve security. Sophisticated techniques,

including malware, phishing, and social engineering, are employed by fraudsters to

deceive consumers into contributing sensitive information. Using email or text mes-

sages that appear to be legitimate, fraudsters can impersonate trusted businesses or

government agencies, for instance. These messages could inspire users to click on links

leading to fake websites, and they are tricked into disclosing personal information,

including credit card numbers, social security numbers, or banking details. Upon ob-

taining access to this information, fraudsters can conduct unauthorized transactions,

deplete bank accounts, or even sell the data on the dark web.

Fraudsters continue to evolve by discovering new vulnerabilities to exploit, despite

the presence of advanced defenses such as encryption, two-factor authentication, and

biometric verification. Voice cloning and artificial intelligence (AI) technologies are

also being exploited to facilitate the more convincing impersonation of individuals in

online or phone interactions by fraudsters. Additionally, consumers who are careless

in their data protection efforts—such as disclosing personal information on unsecured

websites or responding to suspicious emails—unknowingly become susceptible to these

fraudulent schemes. In some instances, fraudsters persuade victims to share login

credentials or transfer money, resulting in an imminent financial loss. Thus, the

human element—trust, distraction, or a lack of awareness—continues to be a critical

vulnerability that fraudsters exploit, despite the existence of technological safeguards.
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In 2023, consumers reported losing over $10 billion to fraud, the first time losses had

reached this benchmark. This represents a 14% increase from 2022. Investment scams

led the way with more than $4.6 billion in losses, a 21% rise from the previous year,

followed by nearly $2.7 billion lost to impostor scams. Bank transfers and cryptocur-

rency were the most used methods for fraud. The Federal Trade Commission (FTC)

received 2.6 million fraud reports, with impostor scams being the most reported cate-

gory, followed by online shopping issues, prize scams, and job opportunity scams [14].

For the first time, email became the most common method scammers used to reach

consumers, surpassing text messages and phone calls. The FTC, in response to ris-

ing fraud trends, has taken comprehensive action, including a nationwide crackdown

on illegal telemarketing, proposing a ban on impersonation scams, and confronting

emerging frauds such as AI-enabled voice cloning. The FTC’s Consumer Sentinel

Network, which gathers consumer complaints, received 5.4 million reports in 2023,

including over 1 million identity theft complaints [14].

Fraud detection is essential for protecting consumers, financial institutions, and busi-

nesses from reputations injury and financial losses. The sophistication of fraud is

increasing, and it can lead to severe economic consequences, identity theft, and the

erosion of consumer trust, because of the proliferation of digital transactions. Effec-

tive fraud detection mitigates these risks by identifying and preventing unauthorized

activities before they accumulate substantial financial losses. It is also essential for

safeguarding sensitive data from misuse, ensuring compliance with regulations, and

sustaining the integrity of financial systems.

Traditional fraud detection methods frequently depend on rule-based systems that

identify suspicious transactions by comparing them to predetermined thresholds or

conditions. For instance, a transaction might be identified as potentially fraudulent

if it exceeds a specific amount or takes place in a location that is not typical. These
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systems also implement manual evaluations, which involve the examination of flagged

transactions by human analysts to ascertain whether fraud has occurred. Even though

rule-based systems have been somewhat effective, they are restricted in their ability

to address more sophisticated fraud tactics, such as account takeovers or new fraud

patterns, due to their reliance on static rules that may not evolve rapidly enough to

address emergent threats.

Machine learning (ML) and AI are employed in new fraud detection methods to ad-

dress the constraints of conventional systems. By enabling the real-time analysis of

vast datasets, these methods are more capable of adapting to changing fraud pat-

terns than rule-based systems. By analyzing transactional behaviors across a variety

of factors, such as the timing of transactions, location, purchasing patterns, and even

device-specific details like IP addresses, ML algorithms can identify anomalies. The

accuracy of these systems is enhanced over time due to their dynamic nature, which

allows them to learn from prior fraudulent activities and legitimate transactions. Fur-

thermore, new methodologies incorporate sophisticated technologies such as pattern

recognition and behavioral biometrics, which improve security by identifying aberrant

user behaviors, such as navigation patterns or typing speed, during online transac-

tions.

Traditional fraud detection methods are surpassed by ML techniques, which employ

data-driven models that learn and adapt in real time. In contrast to rule-based sys-

tems, which are based on predetermined conditions, ML models can identify intricate

fraud patterns and subtle abnormalities that may not be readily visible to human

analyzers. For instance, unsupervised learning techniques are particularly advanta-

geous for the identification of novel forms of fraud, as they can identify outliers in

transactional data without the need for labeled datasets. On the other hand, super-

vised learning employs historical fraud data to develop models that can accurately
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predict and classify future fraudulent activities. This methodology dramatically im-

proves detection rates and mitigates false positives, which are frequently encountered

in conventional methodologies. Furthermore, ML-based systems are capable of pro-

cessing substantial quantities of data from a variety of sources, such as transaction

history, customer behavior, and external data, which facilitates a more comprehensive

examination of potential fraud cases. They also facilitate scalability, which enables fi-

nancial institutions to simultaneously monitor and analyze thousands of transactions,

a task that is difficult to accomplish through manual review processes. Artificial

neural networks (ANNs) have demonstrated their efficacy in identifying non-linear

relationships in transactional data, thereby providing a greater degree of accuracy in

the identification of fraud than conventional methods [16].

My research objective is to enhance the accuracy of detection and to confront the

obstacles presented by complex and imbalanced transaction data by utilizing deep

learning models, with a particular emphasis on ANNs. Implementing an advanced

fraud detection system using deep learning models, particularly the ANN technique,

has proven to be a powerful approach to identifying intricate patterns and behav-

iors from vast amounts of transactional data [53]. One of the key architectures used

in this domain is the multilayer perceptron (MLP), a type of deep neural network

model. MLP excels at learning complex relationships between inputs and outputs

through multiple layers of neurons, each applying nonlinear transformations to cap-

ture subtle variations within the data [11] [28] [40]. This architecture is particularly

effective for fraud detection as it enables the system to learn from highly detailed,

high-dimensional datasets, which are characteristic of credit card transactions. The

model can differentiate between legitimate and fraudulent behaviors by analyzing a

variety of features, such as transaction amounts, location, timing, and user behavior

patterns over time.
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The deep MLP model is further improved by employing advanced techniques such

as feature engineering, which involves the selection and transformation of data at-

tributes to better inform the model, and class weighting, which aims to address the

inherent imbalance in fraud detection datasets, where fraudulent transactions are sig-

nificantly rarer than legitimate ones. Traditional models frequently encounter this

imbalance; however, the implementation of class weighting guarantees that fraud-

ulent transactions are prioritized during the training stage, thereby enhancing the

fraud detection capabilities of the model. Additionally, implementing sophisticated

optimization techniques and training algorithms, including early stopping, prevents

overfitting by interrupting training when the model’s performance on validation data

ceases to improve. Enabling the model to perform well on unseen data, early stopping

is essential in deep learning models, as it balances model complexity with generaliza-

tion.

This research is particularly noteworthy due to its comprehensive examination of

the numerous critical deficiencies of conventional fraud detection systems, which fre-

quently encounter the high-dimensional and imbalanced nature of credit card trans-

action data. The nuanced, evolving character of fraudulent activity may be over-

looked by these conventional systems, particularly when dealing with large, complex

datasets. In contrast, the deep multilayer perceptron is particularly well-suited to

identifying both apparent and subtle fraud patterns, as it is capable of processing

complex interactions between a variety of input features. The model’s detection ac-

curacy is considerably enhanced by its ability to adapt and improve through advanced

algorithms, rendering it a critical tool in the ongoing battle against credit card fraud.

To optimize predictive performance and remain adaptable to new and evolving fraud

patterns, the MLP-based fraud detection system employs techniques such as class

weighting and early stopping to prevent overfitting. This ensures that the model is

not biased toward the more frequent legitimate transactions.
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The following parts of the report are structured as follows. A comprehensive literature

review is presented in Chapter 2, which examines key research studies and previous

works related to credit card fraud detection. The focus is on the use of deep learning

models and ANN. Chapter 3 explores the foundational knowledge that is essential

for comprehending the methodologies employed in this project and contributions of

this research are delineated with pseudo-code and the explanation of the benefits are

given. Chapter 4 provides a comprehensive explanation of the methods employed to

develop the model, such as feature engineering, class weighting, and the architecture

of the deep MLP model. This chapter also emphasizes how these methods address

the intricacies of fraud detection in high-dimensional data. The experiments and re-

sults that were conducted during this endeavor are the focus of Chapter 5. Various

preprocessing techniques, including data missing and normalization, are discussed in

this section, which begins with the process of data preparation using a credit card

transaction dataset. The initial phase of the experiments entails the implementation

of numerous train-test segments to assess the model’s performance under a variety

of circumstances. Subsequently, stratified k-fold cross-validation is implemented to

guarantee reliable and robust outcomes, thereby reducing the likelihood of overfitting

by distributing class imbalances uniformly across each fold. In summary, Chapter

6 concludes the project by highlighting the research’s overall contribution and sum-

marizing the main findings. Furthermore, it suggests experiments that could be

conducted on a larger scale of datasets for higher accuracy or utilizing supplementary

datasets and techniques.
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Chapter 2

LITERATURE REVIEW

This chapter begins by introducing the progress of ANN, highlighting its application

in multiple domains. It then discusses deep q-networks (DQN) and deep neural

networks (DNN), followed by deep learning (DL) applications in stock analysis and

fraud detection. The chapter compares ANN with other techniques, delves into MLP,

particularly deep MLP, noting a key limitation, and concludes with similar MLP

models that leverage different features or tuning approaches relevant to the study.

The application of ANNs across various domains highlights their potential to outper-

form traditional forecasting, decision-making, and predictive analysis models. Each

study demonstrates how neural networks when properly optimized, can improve accu-

racy, profitability, and efficiency in financial forecasting, retail strategy, and marketing

decisions.

Yao and Tan’s research demonstrates ANN applications in forecasting foreign ex-

change rates, focusing on the American dollar and key currencies including the

Japanese yen, British pound, and Australian dollar [67]. The study found the neural

network to outperform traditional ARIMA models, particularly for the Australian
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Dollar, Swiss Franc, and British Pound, though less effective for the Japanese Yen

due to the efficient nature of its market. They recommend using a mix of NMSE,

gradient, and profit metrics along with periodic retraining for optimal performance.

Additionally, they argue that integrating neural network predictions with actual trad-

ing strategies, such as a ‘buy-and-hold’ approach, is beneficial [67]. Yao et al. further

applied ANNs to stock index prediction on the Kuala Lumpur Stock Exchange, us-

ing a backpropagation network [68]. The results showed ANNs’ predictive accuracy

and profitability, especially compared to ARIMA models, while also underscoring the

importance of model tuning to handle challenges like recency effects and time frame

selection [68].

In retail, Jintanasonti et al. developed an ANN model to support manufacturers in

optimizing purchasing strategies by predicting retailer behaviors [27]. Their model,

integrated into excel visual basic for applications, achieved 95% accuracy in forecast-

ing order decisions using inputs like holding costs and expected demand, suggesting

that strategic discount offers could boost profits [27]. In a marketing context, Yao et

al. utilized ANNs to create a decision support system for predicting the sales per-

formance of color TVs in Singapore, reducing input variables from eighteen to five

through sensitivity analysis [69]. Key factors like average price, screen size, and sea-

sonal effects emerged, showcasing ANNs’ potential to enhance marketing strategies.

These studies collectively highlight ANNs’ versatility and effectiveness across diverse

sectors, suggesting that with rigorous model tuning and integration with expert sys-

tems, neural networks can offer powerful insights and decision-making tools [69].

Asha and Kumar, leverage ANNs alongside k-nearest neighbor (k-NN) and sup-

port vector machine (SVM) algorithms to enhance credit card fraud detection ac-

curacy [54]. Using a dataset with 31 attributes related to transactions and consumer

details, the study demonstrates that ANNs, with hidden layers and relu activation,
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outperform other models in identifying fraudulent activity. Through pre-processing

techniques such as normalization and under-sampling, the model addresses data im-

balance, achieving high accuracy in classifying legitimate and fraudulent transactions.

This study highlights the potential of ANNs in evaluating complicated financial data

and shows their usefulness in enhancing fraud detection solutions. [54].

Recent research in credit card fraud detection has increasingly focused on utilizing DL

to enhance real-time adaptability and accuracy in prediction. Qayoom et al. propose

a real-time fraud detection system using DQN that autonomously adapts to changing

transaction patterns by learning from recent transaction histories through computed

z-scores [50]. Trained on a widely used Kaggle dataset, the DQN achieved a validation

accuracy of 97.10%, demonstrating its effectiveness. The system, built with Python,

C++, and C#, ensures scalability and easy integration within financial institutions.

Additionally, it leverages Apache Kafka for data streaming to support efficient real-

time processing, making it highly suitable for diverse financial environments [50].

Similarly, Habibpour et al. focus on enhancing credit card fraud detection with DNNs,

addressing prediction accuracy and model reliability through uncertainty quantifica-

tion techniques [18]. Recognizing that fraud tactics evolve, the study introduces the

Monte Carlo dropout, ensemble. It shows the process of assembling Monte Carlo

dropout methods to quantify uncertainty and improve decision-making. Their exper-

iments, conducted on a high-dimensional dataset with 385 categorical and numerical

features, reveal that the ensemble method most effectively captures uncertainty, thus

boosting both prediction accuracy and model confidence. Together, these studies

highlight the importance of adaptable, reliable DNN-based systems for fraud detec-

tion, suggesting that integrating uncertainty quantification techniques and real-time

adaptation can considerably increase the robustness of financial security systems [18].

Deep learning has significantly advanced financial technology, as shown by Du and
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Samuseva [8]. Their review highlights the effectiveness of models like deep MLPs, and

convolutional neural networks (CNNs). Furthermore, they showed need the for recur-

rent neural networks and Long short-term memory networks. It restricted boltzmann

machines, and auto-encoders in tasks such as stock trading, forecasting, and fraud de-

tection. While more traditional models remain widely used, emerging techniques like

deep reinforcement learning, generative adversarial networks, and capsule networks

present new opportunities. The study suggests that combining deep learning with

tools like natural language processing could further drive innovation in finance [8].

Recent studies have extensively compared various machine learning and deep learning

approaches to enhance credit card fraud detection. El-Hlouli et al. investigate the

performance of MLP and extreme learning machine classifiers, showing that while

MLP achieved a higher accuracy of 97.84%, it offered faster prediction times, making

it suitable for real-time applications [11]. Unogwu et al. further explore methods

for handling data limitations and class imbalance by using synthetic minority over-

sampling technique (SMOTE) and principal component analysis (PCA) for feature

selection, demonstrating that MLP outperformed other machine learning algorithms,

including naive bayes and random forest, on imbalanced, high-dimensional data [65].

In another study, Putrada et al. leverage an autoencoder with a novel feature se-

lection metric called mean decrease in the impurity of absolute and squared error to

enhance MLP performance. The study evaluates the performance of four classifica-

tion methods—decision tree, KNN, logistic regression, and MLP—before and after

applying the auto-encoder. This approach significantly improved the area under the

curve for MLP, highlighting the effectiveness of auto-encoders in refining feature se-

lection and reducing false positives [49]. John and Murali compared XGBoost, SVM,

and MLP for credit approval. The study focuses on building and comparing machine

learning models, particularly XGBoost, with SVM and MLP. They show the pro-
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cess of enhancing accuracy and efficiency in credit card processing. By utilizing the

credit card dataset, the research highlights the strengths of XGBoost, an advanced

gradient-boosting technique known for its ability to handle missing data, parallel pro-

cessing, and regularization to prevent overfitting. The findings reveal that XGBoost

outperforms both SVM and MLP across key metrics, achieving the highest accuracy

at 90.07%, the best recall, and the lowest false positive rate at 6.06%. While SVM

lagged in performance, MLP demonstrated competitive results but still fell short com-

pared to XGBoost [28]. Similarly, El-Naby et al. propose the oversampling with the

CNN model, which achieved superior accuracy in comparison to both MLP alone and

MLP combined with SMOTE, reaching 98% accuracy, underscoring the potential of

combining CNN with oversampling techniques for fraud detection [12].

Negi et al. also compare MLP, XGBoost, and logistic regression on a credit card

fraud detection dataset, with MLP showing the best performance across most metrics,

particularly recall, which is crucial for effective fraud detection [43]. Lastly, Raju et

al. present a DL ensemble model combining long short-term memory and gated

recurrent unit networks, with MLP as a meta-learner in a stacking framework. The

study applies a synthetic minority oversampling process and edited nearest neighbor

(SMOTE-ENN) to balance the dataset, and the results indicate that this ensemble

approach outperforms traditional ML models. Additionally, the system is deployed

in real-time using a flask framework with SQLite, enabling a practical application for

fraud prevention [53].

Advancements in DL techniques have shown promise in tackling the challenges of

credit card fraud detection, particularly in addressing class imbalance. Mienye et

al. propose a DL-based stacking ensemble framework that combines long short-term

memory and gated recurrent unit neural networks as base learners, with a MLP as

the meta-learner [38]. To manage data imbalance, the hybrid SMOTE-ENN resam-
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pling method was applied. The ensemble model achieved near-perfect performance

metrics, including a sensitivity of 1.000, specificity of 0.997, and an area under the

curve of 1.000 on the European credit card dataset, underscoring the effectiveness of

combining ensemble DL models with data resampling techniques for high-accuracy

fraud detection [38].

Conversely, Strelcenia et al. address data imbalance limitations in DL models by

introducing K-CGAN, a modified generative adversarial network (GAN) framework

that generates high-quality synthetic data for fraud detection [62]. This approach

counters the limitations observed in traditional classifiers like random forest, logis-

tic regression, and MLP, which struggle with imbalanced datasets. K-class condi-

tional generative adversarial network (K-CGAN), incorporating divergence in the

generator loss function, was compared against conventional oversampling methods

like SMOTE, borderline-SMOTE, adaptive synthetic sampling, and other generative

adversarial network-based methods. Results indicated that models trained on K-

CGAN-generated synthetic data outperformed those trained on original imbalanced

datasets, particularly in f1 score metrics, resulting in a highly effective strategy for

fraud detection [62].

In recent years, studies have increasingly focused on refining the MLP algorithm and

comparing it with other methods to enhance credit card fraud detection. Swathiga et

al. highlight the effectiveness of MLP in detecting fraudulent transactions, leveraging

Python and Jupyter for data preprocessing and classification [63]. The model demon-

strated excellent specificity and sensitivity, surpassing traditional methods. Kasasbeh

et al. further optimize MLP for fraud detection, experimenting with various hidden

layer configurations and evaluating performance through precision, sensitivity, and

f-measure [31]. Their best configuration achieved an F-measure of 84.75%, indicating

the importance of precise model tuning [31].
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Odeniyi et al. compare MLP with a 1D-convolutional neural network model, demon-

strating that both models are effective for real-time fraud detection, particularly on

large datasets [45]. They employ information gain as a feature selection method for

MLP. Show its impact on high prediction accuracy and underscoring the role of big

data in fraud detection [45]. Pillai et al. explore the impact of tuning MLP parame-

ters, including activation functions such as logistic, hyperbolic tangent, and relu [48].

Their results reveal that logistic and hyperbolic tangent functions yield high sen-

sitivity in models with multiple hidden layers, emphasizing that parameter tuning

significantly influences fraud detection performance [48].

Similarly, Sadgali et al. compare MLP with CNN and demonstrate that MLP achieves

higher accuracy when configured with 100 neurons in hidden layers and a batch size of

20 [56]. The study concludes that MLP is particularly well-suited for fraud detection

due to its adaptability to complex transaction data. These studies collectively illus-

trate that MLP, whether used independently or in combination with other architec-

tures like CNNs, remains a robust choice for detecting fraud in financial transactions.

Additionally, the research underscores the importance of tuning and configuration to

optimize the accuracy and sensitivity of fraud detection models in modern financial

applications [56].

This research addresses critical gaps in credit card fraud detection by introducing

a deep MLP model designed to handle imbalanced datasets with enhanced precision

and accuracy. Building on existing methods improves the model’s capability to detect

fraud more reliably. The integration of advanced preprocessing techniques, an opti-

mized number of hidden layers, and refined training strategies further distinguishes

this work, contributing to a more robust approach than previous models.
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Chapter 3

BACKGROUND KNOWLEDGE

Over the last few years, lightning-fast developments in DL and ML have transformed

various industries, including finance and healthcare. Artificial neural networks that

can make intelligent predictions based on vast data are at the core of these techno-

logical advancements. We begin our examination with an overview of the history of

credit card importance and usage, ML, ANN, and DL.

3.1 Invention of Credit Card

The concept of credit has its roots in ancient times; however, the modern credit

card system began to develop in the 20th century. In the early 1900s, individual

stores began issuing cards or tokens to loyal customers to enable them to purchase

products on credit. Oil companies and department stores introduced ‘charge cards’

for their customers to pay for gas or merchandise later The world’s first bank-issued

credit card, called ‘Charg-It’, was introduced by John Biggins, a Brooklyn banker, in

1946. This card permitted consumers to make local purchases. The sales slips were

deposited by merchants at the bank; however, this card was only functional in local
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areas and required that the consumer maintain an account with the issuing bank.

In 1950, Frank McNamara established Diners Club, the first independent credit card

corporation, which was the next significant development. McNamara had the idea

after forgetting his wallet during a meal, according to popular stories. The Diners

Club card was valid for use at a variety of restaurants in New York city, and cardhold-

ers were obligated to settle their entire balance at the end of each month. In 1958,

Bank of America introduced the BankAmericard in Fresno, California. This was the

first general-purpose credit card that permitted consumers to carry a balance from

month to month, thereby introducing the concept of revolving credit. This innovation

was instrumental in the widespread adoption of credit cards, and BankAmericard ul-

timately transformed into Visa The Interbank Card Association was established in

1966 by a group of banks. It is a significant milestone in the expansion of credit

card networks beyond individual banks, as it was subsequently re-branded as Master

Charge and subsequently became MasterCard [13].

During the 1970s, regulatory reforms were implemented to regulate the credit card

industry. Consumers were safeguarded by the Fair Credit Reporting Act (1970) and

the Fair Credit Invoice Act (1974), which established protocols for fraud prevention

and billing practices Advancements in computer technology were the driving force

behind the integration of credit cards into global commerce during the 1980s and

1990s. For improved security, magnetic stripes were implemented, and the chip-

and-PIN system was introduced [13]. Credit card dominance in online purchasing

was also a consequence of the Internet’s proliferation. Contactless payments, mobile

wallets, and enhanced security measures such as tokenization have all contributed to

the ongoing transformation of the credit card landscape in recent years.

In today’s economy, credit cards provide numerous benefits, offering both convenience

and valuable financial advantages to consumers. One of the primary advantages of
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credit cards is their convenience, as they enable users to make purchases online or

in-store without the need to carry cash. Additionally, they provide simple access to

funds during emergencies or while traveling. Proper utilization of credit cards can

enhance one’s credit score, which is essential for securing loans, mortgages, or other

financial products. Furthermore, numerous credit cards provide incentives, includ-

ing cashback, points, or miles, that may be redeemed for travel, purchase, or other

services. Another substantial advantage is fraud protection; credit card companies

guard against unauthorized transactions, thereby reducing the cardholder’s liability

for fraudulent activity. In addition, credit cards frequently provide an interest-free

credit period, which typically ranges from 30 to 45 days. This feature enables users to

postpone payments without incurring interest. In addition, credit cards frequently in-

clude extended warranties and purchase protection for the items they purchase, which

enhances their security. Finally, credit cards are a dependable payment method for

travelers worldwide, as they are extensively accepted on a global scale.

In addition, there are credit cards that are specifically designed for specific demo-

graphics and purposes. Student credit cards are particularly intended for college

students and frequently feature low credit limits, as well as benefits such as no an-

nual fees and rewards for responsible use. In addition to rewards for business-related

spending on items such as office supplies and travel, business credit cards provide

features that are specifically designed for small and large enterprises, such as expense

tracking, higher credit limits, and employee cards [10]. Users are required to settle

the entire balance each month with charge cards. Finally, prepaid credit cards are

distinct from traditional credit cards in that they require pre-loading funds before use

and are frequently employed by individuals who lack access to traditional banking

services.
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3.2 Machine Learning

Machine learning is a specialization of AI that concentrates on the creation of systems

that can learn and process decisions based on data without the need for explicit

programming [15] [58]. ML models predict outcomes by utilizing patterns in data

and continuously improving through experience. These models are constructed using

algorithms that can adapt to new data, identify patterns, and make informed decisions

[34]. The capability of ML to manage complex and extensive datasets is what renders

it applicable to a diverse range of industries [46].

Importance of Using ML: The significance of ML lies in its ability to automate intri-

cate tasks and the formulation of data-driven decisions, which in turn results in more

efficient processes in a variety of sectors, including finance, healthcare, and marketing.

Companies can utilize vast quantities of data to enhance consumer experiences, opti-

mize supply chains, and identify anomalies. ML enables the continuous adjustment

of predictions and the processing of real-time data, thereby facilitating quicker, more

accurate, and scalable decision-making [46].

ML in the Financial Industry: ML is essential for the improvement of fraud detec-

tion, credit assessment, and risk management. In real-time, ML models can identify

fraudulent transactions by analyzing historical transaction data and user behavior,

thereby reducing financial losses. In a similar vein, ML is employed to automate loan

approval processes by evaluating the creditworthiness of applicants using historical

and behavioral data. ML also significantly improves personalized financial services,

algorithmic trading, and risk management.The general objective of ML models is to

minimize a loss function L(ŷ, y), where:
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• ŷ is the predicted output,

• y is the true label or actual value,

• θ represents the model parameters (weights).

The optimization goal is to find the set of parameters θ∗ that minimizes the loss

function:

θ∗ = argmin
θ

L(ŷ, y) (3.1)

ML Algorithm:

1. Initialize: Start with random model parameters θ.

2. Training:

• For each data point (xi, yi):

– Predict the output: ŷi = f(xi; θ),

– Compute the loss: L(ŷi, yi),

– Update the parameters:

θ ← θ − η
∂L

∂θ

where η is the learning rate.

3. Repeat until convergence or a stopping criterion is met.
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3.3 Deep Learning

Deep learning is a subfield of ML that prioritizes the use of ANNs with numerous

layers (hence the term deep) to simulate intricate patterns and relationships in data.

Images, audio, and text are among the high-dimensional data types that these models,

frequently referred to as DNNs, are particularly adaptable at managing [32]. By

automatically learning hierarchical features from raw data, DL models can attain

state-of-the-art performance in tasks such as image classification, natural language

processing, and autonomous driving [19].

DL is crucial for tackling complex challenges that traditional ML methods struggle

to address. It excels in automatically extracting meaningful features from unstruc-

tured data, significantly reducing the need for extensive manual feature engineering.

This capability has propelled advancements in various fields, including natural lan-

guage processing, speech recognition, and computer vision [59]. DL models have

demonstrated the ability to identify objects, translate languages, and even generate

new content, showcasing their versatility [15] [39] [60]. Applications of DL span nu-

merous industries, such as image recognition, medical diagnostics, and autonomous

vehicles [7] [22]. Moreover, it is integral to speech recognition in virtual assistants

like Siri and Alexa, as well as recommendation systems used by e-commerce platforms

like Amazon and Netflix, optimizing user experiences and business outcomes [7].

DL in the Financial Industry: DL is implemented in the financial sector to facilitate

algorithmic trading, fraud detection, and risk modeling [22]. Through the acquisition

of knowledge from an extensive volume of transactional data, DL models can identify

subtle patterns that may suggest fraudulent activities. In addition, it is advantageous

for risk modeling in financial markets, as it can analyze extensive historical data to

forecast market trends [1] [10] [67] [68]. DL algorithms are also used in algorithmic
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trading to generate high-frequency trading decisions that are informed by real-time

data. The models aim to minimize the loss function similar to general ML, but

they operate on multiple layers [7]. The details of the equation of DL are provided

below [15] [52].

The loss function is defined as:

L(ŷ, y) =
1

N

N∑
i=1

L(f(xi; θ), yi) (3.2)

where N is the number of data points, f(xi; θ) represents the neural network’s pre-

diction with parameters θ, and L is the loss function.

DL Algorithm:

1. Initialize: Randomly initialize the weights θ of the network.

2. Training:

• For each input xi, compute the output ŷi = f(xi; θ),

• Calculate the loss L(ŷi, yi),

• Compute the gradient of the loss with respect to the weights: ∇θL,

• Update weights:

θ ← θ − η∇θL

where η is the learning rate.

3. Repeat until convergence or a stopping criterion is met.
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3.4 Artificial Neural Networks

The neural networks that are formed in the human brain. It serves as the inspi-

ration for computational models known as artificial neural networks [17]. An ANN

comprises one or more hidden layers, an input layer, and an output layer, which are

interconnected neurons or nodes. Every neuron in a layer receives input, which then

applies a weighted sum and an activation function before returning the output to the

subsequent layer. Classification, regression, and function approximation are all tasks

that are highly effective when ANNs are employed to model complex relationships

between inputs and outputs [35].

Importance of Using ANNs: ANNs are crucial due to their ability to acquire intricate

mappings between inputs and outputs, which makes them highly adaptable in in a

diverse array applications, including pattern recognition and decision-making [33]. In

fields such as autonomous control systems, speech recognition, and image processing,

they are particularly adept at tasks that involve a non-linear and intricate relationship

between the desired output and the input data [37].

ANNs in the Financial Industry: In finance, ANNs are employed in the prediction

of stock prices, fraud detection, consumer behavior analysis, and credit scoring. To

generate precise predictions regarding future trends or anomalies, they can learn

from historical financial data. To assist banks in making more informed lending

decisions, ANNs can be employed to analyze historical credit behavior and predict

the probability of default [24] [44]. The equation of an ANN is given below:

The output of a neuron in an ANN-

ŷ = σ

(
n∑

i=1

wixi + b

)
(3.3)
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where:

• xi are the input features,

• wi are the weights,

• b is the bias,

• σ is the activation function (e.g., sigmoid, relu).

ANNs Algorithm:

1. Initialize: Randomly initialize the weights wi and biases b.

2. Forward Pass: For each input xi, compute the output:

ŷ = σ

(
n∑

i=1

wixi + b

)

3. Loss Calculation: Compute the loss L(ŷ, y).

4. Backpropagation: Compute the gradients of the loss for the weights and biases.

5. Weight Update: Update weights and biases using gradient descent:

wi ← wi − η
∂L

∂wi

6. Repeat until convergence or stopping criteria.

3.5 Multilayer Perceptrons

A multilayer perceptron is a form of ANN. It is composed of a minimum of three

layers of nodes: an input layer, one or more hidden layers, and an output layer.
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Complex relationships between the input and output data are modeled by each node

in the network. Except for the input layer,it use a non-linear activation function. It is

widely recognized that MLPs are capable of learning non-linear decision boundaries

and are frequently employed in supervised learning tasks, including regression and

classification activities [12] [43].

Importance of Using MLP: MLPs are especially crucial when basic models, such as

linear regression, are insufficient to capture the complexity of the data. In fields such

as pattern recognition, image classification, and time-series prediction, they have

been effectively implemented in the modeling of non-linear relationships [12]. The

flexibility of MLPs enables them to address issues with multiple outputs and varying

data dimensionality.

MLP in the Financial Industry: MLPs are employed in the financial sector for algo-

rithmic trading, credit risk assessment, and fraud detection [53]. MLPs can identify

suspicious activity that may suggest deception by learning from an extensive amount

of transaction data. The complex relationships between various financial indicators

are also utilized to forecast market trends and price financial instruments. The general

equation of an MLP is stated below [64]:

a(l+1) = σ(W (l)a(l) + b(l)) (3.4)

where:

• a(l) is the activation at layer l,

• W (l) is the weight matrix for layer l,

• b(l) is the bias vector for layer l,
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• σ is the activation function.

MLPs Algorithm:

1. Initialize: Randomly initialize the weights and biases.

2. Forward Pass: Compute the activations for each layer:

a(l+1) = σ(W (l)a(l) + b(l))

3. Compute Loss: Calculate the loss L(ŷ, y).

4. Backpropagation: Compute the gradients of the loss with respect to weights

and biases.

5. Update Parameters: Use gradient descent to update weights and biases.

6. Repeat until the loss converges or a stopping condition is reached.
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Chapter 4

FRAMEWORK OF DEEP

MULTILAYER PERCEPTRONS

FOR CREDIT CARD FRAUD

DETECTION

This chapter presents the proposed solution to the problem outlined in Chapter 1.

This section will discuss the concept of deep MLPs, activation functions, class weights,

and specific network layers like dense, and dropout which are foundational elements

of the model. The proposed model’s step-by-step algorithm details are given to de-

tect credit card fraud. This contains a full explanation of the model training, data

analysis, and prediction stages, with a focus on the key computational strategies and

approaches that ensure the model’s efficacy. The presentation will also go into the

optimization and assessment procedures used to improve and analyze the model’s

performance and purpose.
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4.1 Foundational Components

4.1.1 Deep Multilayer Perceptron

A deep multilayer perceptron is a type of DNN. It has a fully connected structure,

which means each neuron in one layer is fully connected to every neuron in the

succeeding hidden layers. It follows a forward manner. It effectively models non-

linear relationships, detecting patterns and anomalies for tasks [32]. In more detail,

a deep MLP is characterized by additional concealed layers, which render it deep.

The model can learn more intricate and abstract representations from the data due

to these deep architectures. The additional layers are particularly beneficial for tasks

that involve unstructured data, such as images, audio, and text, as they aid in the

capture of higher-order relationships between input features [21] [42] [66].

Importance of Using Deep MLP: Deep MLPs are essential for addressing issues that

necessitate the extraction of complex patterns from data. The model’s ability to

represent complex functions increases as the number of layers increases, enabling it

to handle tasks that simple, shallow networks are unable to do. Deep MLPs are

a potent instrument in regions where the relationship between input and output is

highly non-linear, as they can approximate any function [6]. Some examples of it

to effectively model non-linear relationships are medical diagnosis [47], classify user

behavior on social networks [6], and detection of patterns and anomalies for tasks like

fraud detection or behavior prediction [32].

The forward pass in a deep MLP is like an MLP but with multiple hidden layers.

For each layer, the input to a neuron is a weighted sum of the outputs from the

previous layer a(l−1) (or the input data for the first hidden layer) plus a bias term.

The equation and general form of the algorithm are described below [23]:
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z(l) = W (l)a(l−1) + b(l) (4.1)

where:

• W (l) is the weight matrix for layer l,

• a(l−1) is the activation (output) of the previous layer,

• b(l) is the bias vector for layer l,

• z(l) is the net input to the neurons in layer l.

4.1.2 Dense Layer

An essential element of neural networks, particularly deep neural networks, is called

dense layers. It is also referred to as a fully connected layer. In a dense layer, each

neuron is connected to every neuron in both the preceding and succeeding layers.

This structure enables the layer to learn from all of the features of the incoming data,

making it extremely effective at capturing complex relationships [26].

Dense layers in DNNs are often used in the network’s latter stages to perform tasks

such as classification or regression [29]. These layers take the output of preced-

ing layers (for example, convolutional or recurrent layers) and combine the learned

characteristics to make final predictions. Dense layers in DL models, such as MLP,

connect input and output, allowing for more accurate and balanced predictions across

all classes, including minority ones
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4.1.3 Dropout Layer

The dropout layer is a regularization technique used to prevent overfitting in artificial

neural networks, particularly in DL models [57] [61]. During training, it randomly

drops out (sets to zero) a subset of the neurons in the layer. It forces the model to

become more robust by not depending too heavily on certain neurons. This strategy

promotes network redundancy, allowing it to more accurately generalize to previously

unseen data.

In DNNs, dropout is often used after dense layers to enhance generalization. It is

especially beneficial in minimizing overfitting when the network has a high number of

parameters as it inhibits co-adaptation among neurons [25]. Dropout is disabled dur-

ing testing (inference) to ensure that all neurons contribute to the model’s predictions.

It briefly deactivates a random collection of neurons during training to minimize over-

fitting and ensures that the model does not rely too heavily on any neurons. Dropout

layers do not result in data loss or hinder future layers from learning because:

• Dropout is random and temporary, so all neurons participate in training across

different iterations.

• It is not applied during inference, meaning all neurons are active when making

predictions.

• Output scaling compensates for the dropped neurons, ensuring the remaining

neurons contribute properly.

4.1.4 Principal Component Analysis

Principal component analysis is a widely used statistical technique in machine learning

for dimensionality reduction. It transforms large datasets with many features into a
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smaller set of uncorrelated variables called principal components. The goal of PCA is

to simplify complex datasets by minimizing the number of features while retaining as

much variance (information) as possible. This method is highly effective for analyzing

relationships among variables and representing them in a more compact form, with

minimal loss of information, making it ideal for machine learning tasks involving large

datasets [30]. The key steps are given below:

1. Data Matrix: LetX be the n×pmatrix, where n is the number of observations

and p is the number of features.

2. Mean Centering: Subtract the mean from each feature to center the data:

X̃ = X − µ (4.2)

where µ is the mean of each feature.

3. Covariance Matrix: Compute the covariance matrix:

C =
1

n− 1
X̃T X̃ (4.3)

4. Eigenvalue Decomposition: Perform eigenvalue decomposition on the co-

variance matrix to obtain eigenvectors (principal components) and eigenvalues:

Cv = λv (4.4)

where v are the eigenvectors and λ are the eigenvalues.
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5. Principal Components: Project the data onto the top k eigenvectors:

Z = XVk (4.5)

where Z is the transformed data in the reduced space.

These steps summarize PCA in a compact form, showing how it reduces dimensions

while preserving important information in the data. By transforming data into a

lower-dimensional space, PCA minimizes the complexity of ML models, often en-

hancing their efficiency and interpretability. This dimensionality reduction technique

is beneficial in preprocessing stages, where it can help mitigate overfitting by elimi-

nating redundant features.

4.2 Operational Components and Techniques

4.2.1 Activation Functions

In ANNs, an activation function is a mathematical function that introduces non-

linearity to the model. It enables the model to learn intricate data patterns. The

capacity of neural networks to address complex issues would be significantly dimin-

ished if activation functions were absent. After that, they would behave similarly to

linear models. It decides whether a neuron should be activated or not by turning

its input signal into an output that can be sent to the next layer. In DNNs, the

activation function can significantly impact the model’s performance and training ef-

ficiency [5] [9]. These are the most popular and frequently used non-linearity layers.

These functions include the logistic sigmoid, tanh, rectified linear unit (ReLU), and

exponential linear unit). Below are the details ReLU and Sigmoid are provided as

these two have been used in this project:
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ReLU Activation Function

The rectified linear unit is a popular activation function, especially in feedforward,

CNN, and other DL models. Its significance stems from its potential to alleviate the

disappearing gradient problem, which is typical in deep networks. The disappearing

gradient problem can make model training difficult by delaying or stopping learning.

Relu addresses this by enabling gradients to flow efficiently, particularly in deep ar-

chitectures, simplifying complex pattern learning and speeding up convergence during

training [2].

The relu activation function is defined as:

ReLU(x) = max(0, x) =


0 if x < 0

x if x ≥ 0

(4.6)

This means that the function outputs zero when the input is negative and returns

the input itself when the input is positive.

ReLU is extremely efficient because of its simplicity, which decreases computational

complexity. However, it is prone to the ‘dying relu’ problem, which occurs when

neurons become dormant and regularly output zero. Despite its limitations, it is

still one of the most successful activation functions for DNNs, particularly in hidden

layers.

Sigmoid Activation Function

The sigmoid function is another activation function commonly employed in the output

layer. It is used particularly for binary classification tasks. This function transforms

the input into a number between 0 and 1, making it perfect for generating proba-
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bilities. This feature makes it appropriate for applications requiring the output to

indicate probabilities or make binary judgments.

The sigmoid activation function is defined as [41]:

σ(x) =
1

1 + e−x
(4.7)

In this equation, x represents the input value, which can be any real number. The

term e−x refers to the exponential decay, where e (approximately 2.718) is raised to

the power of −x, resulting in a rapid decrease as x becomes larger. The denominator,

1 + e−x, shifts and scales the exponential output, ensuring that the function maps

values into the range [0, 1]. Finally, the normalized output, 1
1+e−x , provides a smooth

transition between 0 and 1, making it particularly useful for interpreting outputs as

probabilities.

4.2.2 Class Weights

Class weights are a crucial technique for handling imbalanced datasets in which some

classes are underrepresented in comparison to others [3]. This is typical in real-

world classification tasks such as fraud detection or medical diagnosis, where the

minority Class 0 (fraud) is frequently more difficult to predict effectively. Without

class weights, models tend to favor the dominant one, resulting in poor performance

for the minority. Class weights increase prediction accuracy by altering the loss

function. It distributes more weight to minority classes and less weight to majority

classes.

Class weights are a crucial tool for increasing a model’s overall performance.By effec-

tively treating imbalanced data, measurements such as precision, recall, and f1-score
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can be enhanced for the minority class. Furthermore, class weighting aids in the

prevention of bias, which can occur when a model gets skewed towards the majority

class, resulting in deceptive accuracy rankings. Class weights keep the model bal-

anced, allowing it to produce more accurate and fair predictions across all classes,

especially minority ones. The equations for using this is briefly described below with

an example:

Weighted Loss Function

In a binary classification problem where Class 0 is the majority and Class 1 is the

minority, the weighted version of the binary cross-entropy loss function with class

weights is designed to account for class imbalance.

• yi represents the actual values (0 or 1),

• ŷi is the predicted probability by the neural network.

The loss function is expressed as:

Loss = −
k∑

j=1

wj · (yj · log(ŷj)) (4.8)

where k is the number of classes, and wj are the class weights.

For the cost function:

Cost = − 1

n

n∑
i=1

k∑
j=1

yij · log(ĥij) (4.9)
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where:

• n is the total number of samples,

• k represents the classes (binary in this case).

4.2.3 Adam Optimizer

Adam optimizer, also called adaptive moment estimation. It is an optimization algo-

rithm employed in DL models to train ANNs. It integrates the benefits of two other

widely used optimizers: adaptive gradient algorithm, which is proficient in managing

non-stationary objectives, and root mean square propagation, which is effective with

sparse gradients. Adam’s learning rates are dynamically adjusted for each parame-

ter. It helps to compute the first and second moments (mean and variance) of the

gradients. It also ensures that it is highly adaptable to a variety of data and models.

Adam’s distinguishing qualities are noteworthy. The initial benefit is that its adaptive

learning rates enable it to modify by gradient moments, resulting in more precise up-

dates. Furthermore, adam is computationally efficient and necessitates less memory

relative to other optimizers. The final component is bias correction, which miti-

gates the potential bias that may develop during the initial phases of training when

the number of data points is restricted. Through this bias correction, the first and

second-moment estimates are rendered impartial, thereby enhancing the precision

and dependability of the training results.

The adam optimizer updates the parameters of a ANN by using estimates of the first

and second moments of the gradients, along with bias corrections. Here’s a breakdown

of the key equations for the adam optimizer:
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1. Update the first moment estimate (mean of the gradients):

mt = β1mt−1 + (1− β1)gt (4.10)

• mt is the exponentially decaying average of past gradients (first moment

estimate).

• gt is the gradient at time step t.

• β1 is the decay rate for the first moment estimate, typically set to 0.9.

2. Update the second moment estimate (uncentered variance of the gradients):

vt = β2vt−1 + (1− β2)g
2
t (4.11)

• vt is the exponentially decaying average of squared gradients (second mo-

ment estimate).

• β2 is the decay rate for the second moment estimate, typically set to 0.999.

3. Bias correction for both the first and second moments:

m̂t =
mt

1− βt
1

(4.12)

• m̂t and v̂t are bias-corrected estimates of the first and second moments.

4. Update the parameters (weights) using the following rule:

θt+1 = θt − η
m̂t√
v̂t + ϵ

(4.13)

• θt represents the model parameters (weights) at time step t.
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• η is the learning rate.

• ϵ is a small constant (usually 10−8) to avoid division by zero.

4.2.4 Binary Cross-Entropy

Binary cross-entropy is a loss function commonly used in binary classification prob-

lems. It is also called logarithmic loss. It evaluates the effectiveness of a classification

model where the result is a probability value between 0 and 1 [36] [55]. By penalizing

incorrect predictions more heavily, it encourages the model to output probabilities

closer to the true class labels, enhancing classification accuracy.

Binary cross-entropy is defined as:

• y is the true label (0 or 1),

• ŷ is the predicted probability (between 0 and 1).

The Binary cross-entropy loss for a single example is given by:

Loss = − (y · log(ŷ) + (1− y) · log(1− ŷ)) (4.14)

Furthermore,

• If y = 1 (the true label is positive):

– The loss is − log(ŷ), which penalizes the model if the predicted probability

ŷ is far from 1.

• If y = 0 (the true label is negative):

– The loss is − log(1− ŷ), for predicted probability ŷ is far from 0.
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4.3 Evaluation Matrix

An evaluation matrix is a structured table or instrument employed to evaluate and

compare the performance of a model, typically in the context of data analysis or

ML [54]. It encompasses critical performance metrics, including precision, recall,

f1-score, and accuracy, which are determined by the predictions of the model [20].

The confusion matrix, which serves as the basis for the computation of numerous

evaluation metrics, is frequently referred to as the evaluation matrix in the context

of classification tasks. The confusion matrix is a grid that deconstructs predictions

into:

• True Positives (TP): Correctly predicted positive cases.

• True Negatives (TN): Correctly predicted negative cases.

• False Positives (FP): Incorrectly predicted positive cases (false alarms).

• False Negatives (FN): Incorrectly predicted negative cases (missed instances).

Precision:

Precision measures the proportion of correctly identified fraud cases. It is calculated

from all cases that the model predicted as fraud.

Precision =
True Positive

True Positive + False Positive
(4.15)

This metric is important in cases where false positives (false alarms) need to be min-

imized, such as in fraud detection.
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Recall:

Recall measures the proportion of actual fraud cases that were correctly identified by

the model.

Recall =
True Positive

True Positive + False Negative
(4.16)

Recall is crucial when the goal is to minimize false negatives (missed fraud cases),

ensuring the model catches as many frauds as possible.

F1-Score:

The f1-score represents the harmonic mean of precision and recall. It balances the

two measures by taking into account both false positives and false negatives. It is

especially useful for circumstances when we need to avoid significant compromises

between precision and recall. The formula for the f1-score is:

F1 = 2× Precision× Recall

Precision + Recall
(4.17)

The F1 score is most useful when the dataset is imbalanced (e.g., fraud detection)

because it provides a single metric that gives equal weight to both precision and recall.

In fraud detection, it helps ensure the model is not only catching fraud cases (high

recall) but also minimizing false alarms (high precision).

Support:

Support refers to the number of actual occurrences of each class in the dataset. It

indicates how many transactions in the dataset were fraudulent and how many were

legitimate. Support helps to evaluate precision, recall, and f1-score, as a small support

value for a Class 1 (like fraud) can explain why certain metrics may be lower or higher.
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Accuracy:

Accuracy gives the overall correctness of the model by measuring the proportion of

true predictions (both fraud and non-fraud) out of the total number of predictions.

Accuracy =
True Positive + True Negative

Total Number of Predictions
(4.18)

While accuracy can give a general idea of the model’s performance, it is often mis-

leading in imbalanced datasets like fraud detection, where the majority Class 0 (non-

fraud) dominates the dataset. In such cases, metrics like precision and recall provide

better insights into the model’s effectiveness.

4.4 Proposed Architecture

The proposed deep MLP model combines the basic architecture and learning methods

of a regular feedforward technique of an MLP—such as input, hidden, and output

layers, with the enhanced depth of multiple hidden layers shown in figure below [51].

The depth allows for hierarchical feature learning, capturing complex patterns, and

enhancing generalization, making deep MLPs ideal for handling unseen data.
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Figure 4.1: Model architecture

Figure 4.1 represents a deep MLP architecture with several hidden layers, which is

ideal for a task like credit card fraud detection. The detailed architecture is described

below:

Input Layer: The architecture begins with an input layer that extracts features

from the dataset. Credit card fraud detection features include transaction attributes

such as transactional amount, time, client ID, and other relevant parameters. The

input layer has the same number of nodes as there are features in the dataset. Each

input node receives a certain feature from the transaction data and forwards it to the

network.

Hidden Layer: This deep MLP model has several hidden layers, as shown in figure

4.1. The hidden layers are the primary computational layers where the actual learn-

ing occurs. Each layer is fully linked, meaning each node (or neuron) in one layer

communicates with every node in the next. Neurons use activation functions such as

the relu to bring nonlinearity to learn more complex patterns in the data.
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Each layer processes the input from the previous layer, applies the activation function,

and then transmits the output to the next layer. This is an example of a deep learning

model, as it has numerous hidden layers. The network’s depth (the number of layers)

enables it to detect hierarchical patterns in data, which is particularly beneficial for

distinguishing between fraudulent and non-fraudulent transactions.

Activation Functions and Non-linearity: Each hidden layer has an activation

function such as relu, enabling the model to learn nonlinear relationships in the

data. relu’s nonlinearity assures that the model can generalize beyond basic linear

translations of input and output. This nonlinearity is critical for fraud detection tasks,

as the patterns that distinguish fraudulent from genuine transactions are frequently

complicated and not linearly separable.

Output Layer: The output layer is where the final prediction is generated. In

the case of binary classification (fraud vs. non-fraud), the output layer consists of

a single neuron with a Sigmoid activation function. The Sigmoid function returns a

probability between 0 and 1, which can be read as the possibility that a transaction

is fraudulent. The threshold (usually 0.5) is then used to determine whether the

transaction was fraudulent (1) or non-fraudulent (0).

Feedforward Process and Optimization: The model is developed using feedfor-

ward neural networks, the information flows in a single direction: from the input

layer to the hidden layers, and finally to the output. Each layer processes the previ-

ous layer’s input and forwards the output to the next layer. During this forward trip

through the network, the model produces predictions based on the current weight

values.

During training, the model’s prediction is compared to the actual result (fraudulent

or non-fraudulent transaction). The error (or loss) is derived by subtracting the

43



expected and actual numbers. This error is then utilized to update the weights in

the network using an optimization technique like Adam, which minimizes the loss

function (binary crossentropy). This method is iterated until the model’s predictions

improve and the error decreases.

The feedforward model passes input through the network layers, weight optimiza-

tion depends solely on the direct relationship between input features and the target

output. This configuration ensures that the network learns to accurately catego-

rize transactions without relying on backward error propagation. Hierarchical data

patterns are particularly beneficial for discriminating between fraudulent and non-

fraudulent transactions.

Regularization(Dropout): Regularization techniques like dropout can be used

on the hidden layers to prevent overfitting, which is a prevalent problem in deep

networks. Dropout a subset of neurons at random throughout each training cycle,

driving the model to acquire more resilient and broader patterns. This allows the

model to perform better on previously unknown data, which is important in fraud

detection when real-world test data may differ from the training set propagation.

Dropout helps prevent overfitting and improves the model’s ability to generalize to

real-world data.

In a nutshell, the deep MLP architecture for credit card fraud detection is made up

of an input layer that accepts transaction data, numerous hidden layers that learn

complex patterns using non-linear activation functions, and an output layer that

classifies transactions as fraudulent or non-fraudulent. The network’s depth allows

it to capture detailed patterns in the data, while regularization techniques such as

dropout maintain the model’s robustness and generalization to fresh data. The model

is trained by feedforward and optimized to reduce classification errors, making it an

effective tool for identifying fraud in credit card transactions.
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4.5 Algorithm: Credit Card Fraud Detection with

Deep Multilayer Perceptrons

The following algorithm outlines a combined approach for the feedforward training

of a deep MLP model, to detect credit card fraud. This approach uses both train-

test split ratio analysis and 10-fold old cross-validation. This algorithm states both

validation techniques and guarantees accurate data preprocessing, model compilation,

training, evaluation, and result storage.

The algorithm mentioned below provides a flexible framework for implementing both

k-fold cross-validation and train-test split ratio analysis. It ensures the ability and

accuracy of reproduction in detecting credit card fraud using a deep MLP model.

This approach allows for robust model evaluation by testing different data splits,

thus enhancing the model’s generalization to new or unseen transactions.
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Algorithm 1 Credit Card Fraud Detection with Deep Multilayer Perceptrons
1: Load dataset from ‘creditcard.csv’

2: Handle missing values using forward fill
3: Normalize the ‘Amount’ column using StandardScaler
4: Drop ‘Time’ and ‘Amount’ columns
5: Split dataset into features X and labels y
6: Create directories for 10-fold only and store in ‘output’

7: Set random seed for NumPy
8: Set random seed for TensorFlow
9: if K-fold cross-validation then
10: Initialize K-fold with 10 splits and shuffle=True
11: else
12: Split the dataset into training and testing sets using the following ratios: 90:10,

80:20, 75:25, 70:30, and 60:40.
13: end if
14: Calculate class weights based on class distribution
15: Define function to build a neural network with hidden layers and dropout layers
16: if 10-fold cross-validation then
17: for each fold do
18: Split data into training and testing for the fold
19: end for
20: else
21: Use X train,X test, y train, y test directly
22: end if
23: Compile model using Adam optimizer and binary crossentropy loss
24: Set up early stopping with a patience of 10 epochs
25: if 10-fold cross-validation then
26: for each fold do
27: Apply class weights to handle imbalance
28: end for
29: else
30: Train model using training data and validate on test data
31: Apply class weights to handle imbalance
32: end if
33: Measure training time (train-test split only)
34: if 10-fold cross-validation then
35: for each fold do
36: Make predictions on the validation set
37: Evaluate model using accuracy score and classification report
38: end for
39: else
40: Make predictions on the test set
41: Evaluate model using accuracy score and classification report
42: end if
43: if 10-fold cross-validation then
44: Save the results of each fold in a text file
45: else
46: Save the test set evaluation results in a text file
47: end if
48: Print ‘Training Finished!’ when completed
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4.6 Improvement Strategies and Benefits

The deep MLP model contributes to improved detection accuracy, resilience to imbal-

anced data, and increased computational efficiency. These innovations lead to greater

reliability and precision in identifying complex patterns, enhancing the model’s overall

performance for tasks requiring high sensitivity:

• Class imbalance handling: Class weighting is implemented to guarantee that the

model prioritizes the identification of fraudulent transactions, thereby rectifying

the substantial imbalance in the dataset.

• Dropout for regularization: Dropout layers are incorporated to prevent overfit-

ting, thereby improving the model’s capacity to detect fraud and generalize in

unseen data.

• Lower probability threshold: The output probability threshold is set to 0.5,

which increases sensitivity to fraud cases and improves detection rates at the

expense of slightly more false positives and is lower than the default 0.5.

• Early stopping for efficient training: Early stopping prevents overfitting and

ensures efficient model training by halting the process if the validation loss does

not improve after 10 epochs.

• Optimized training parameters: The model is trained for up to 100 epochs and

batch size of 256, for computational efficiency and learning effectiveness.

The model can more effectively address the distinctive challenges of credit card fraud

detection because of the innovations. It leads to improved precision, recall, and

generalization of data. By leveraging these advancements, the model minimizes false

positives and negatives, enhancing its reliability in high-stakes financial environments.
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Chapter 5

DESCRIPTION OF

IMPLEMENTATION

This chapter details the step-by-step implementation of the credit card fraud detec-

tion model. It outlines the details of data preprocessing, model architecture, and

training procedures, emphasizing techniques for handling class imbalance and en-

hancing model performance. Additionally, it discusses the tools and libraries used,

providing a comprehensive view of the methods applied to build a reliable detection

system.

5.1 System and Language Specifications

This section describes the computational setup and programming tools used for the

model’s implementation. It covers the system environment specifications, includ-

ing hardware and software configurations. Furthermore, it details the programming

languages and libraries essential for developing and executing the credit card fraud

detection model.
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Computational Environment

The computational environment for this project was based on a Dell Inspiron 16

5630 laptop, featuring a 13th Generation Intel® Core™ i7-1360P processor with a

maximum clock speed of 5.00 GHz, and 16GB of 4800MHz LPDDR5 memory. The

processor’s high-speed capabilities and multi-core architecture provided the necessary

power for handling intensive tasks like training deep learning models. The system also

included a 1TB M.2 PCIe NVMe SSD, which facilitated fast data access and reduced

the time required for data loading and saving during model training. The laptop

ran Windows 11 Home, offering a modern and stable environment compatible with

popular machine learning libraries such as TensorFlow and Keras. Additionally, the

4-cell 64WHr battery and 65W Type-C power adapter supported long computational

tasks. This setup allowed for the efficient execution of the credit card fraud detection

model and ensured smooth performance when processing large datasets.

Programming Language Specification

The credit card fraud detection model was developed using Python, a widely used

language ideal for machine learning and deep learning projects. Python offers exten-

sive libraries such as NumPy and Pandas for efficient data manipulation, allowing

structured handling of the credit card transaction dataset. Visualization libraries like

Matplotlib were utilized to explore patterns in the data, while TensorFlow and Keras

facilitated building and training the deep MLP model. These tools provided flex-

ibility for managing model layers, applying the adam optimizer, and implementing

techniques like early stopping to prevent overfitting. Python’s ecosystem also sup-

ports the evaluation of metrics like precision, recall, and f1-score, which were critical

for optimizing the model’s performance in detecting fraudulent transactions.

49



5.2 Integrated Development Environment

In this project, the robust capabilities of PyCharm 2024.2.1 were utilized as an inte-

grated development environment to enhance the project’s overall efficacy and optimize

the workflow while developing the credit card fraud detection model. The following

capabilities of PyCharm were crucial features for its selection in this project:

Data View Enhancements: The improved data view tool is employed to visualize

data with new heatmap color schemes (sequential and diverging) during the model

training process. This simplified the process of interpreting the contributions of var-

ious features in the dataset to the model’s predictions and facilitated the model’s

fine-tuning.

Debugger and Error Handling: PyCharm’s integrated debugger was particularly

helpful in identifying errors during model training, particularly when assessing metrics

such as precision, recall, and f1-score and managing data imbalance. It enabled

efficiently resolving issues, inspecting variable states, and stepping through the code.

Python 3.13 Support: The integrated development environment was able to fa-

cilitate the implementation and optimization of new functions during model devel-

opment, particularly when working with user-defined narrowed functions, because of

PyCharm 2024.2.1’s support for Python 3.13. These features included sophisticated

type inference and code completion.

5.3 Libraries and Frameworks

The libraries provide essential functionalities for data manipulation, model building,

and evaluation. Their efficient implementations support faster development and en-

hance the overall performance of the model. Here is a brief explanation of the key
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Python libraries and modules used in this project [20]:

• Pandas as pd

Pandas is a versatile data manipulation and analysis library in Python, primar-

ily used for working with structured data, such as CSV or excel files. It enables

efficient loading, preprocessing, and organization of datasets, which is essential

for preparing data for analysis. Additionally, Pandas provides powerful tools

for data exploration before feeding it into an ML model.

• NumPy as np

NumPy is a library that offers a collection of mathematical functions for manip-

ulating arrays, with support for large, multi-dimensional arrays and matrices. It

provides tools for efficient numerical computations, making it essential for data

processing and analysis. This functionality is crucial for model development,

allowing for faster and more optimized calculations.

• Time and OS

– Time: Used to measure execution time for various operations, useful in

tracking model training time.

– OS: Enables interaction with the operating system, such as handling files

and directories during data processing.

• Train-test split (from scikit-learn)

This function is used to divide the dataset into training and testing sets, facil-

itating the evaluation of model performance on unseen data. It is essential for

assessing a model’s generalization capabilities. By providing a separate dataset

for testing, it helps prevent overfitting.
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• TensorFlow and keras

TensorFlow is a robust open-source deep learning framework, while Keras, inte-

grated within TensorFlow, offers a user-friendly interface for constructing neural

networks. Together, they are used in this model to define and train the deep

MLP, incorporating layers like dense and dropout. These layers help to enhance

performance and provide regularization.

• EarlyStopping (keras callback)

This callback function monitors a specific metric, such as validation loss, during

model training. It stops the training process when the metric stops improving.

By halting training at this point, earlyStopping effectively prevents overfitting.

• Classification metrics (scikit-learn) Classification report summarizes key met-

rics like precision, recall, and f1-score for evaluating model performance.The

accuracy score provides the ratio of correctly predicted instances to total in-

stances.

• StandardScaler (scikit-learn)

StandardScaler normalizes features so they have a mean of zero and a unit

variance. This scaling is essential for algorithms sensitive to feature magnitude

differences. Standardizing feature values across different ranges improves model

performance.

• Compute class weight (scikit-learn)

This function calculates class weights to address class imbalance in datasets.

It assigns higher weights to minor classes, such as fraudulent transactions, to

make the model more responsive to these cases. Handling class imbalance in

this way helps improve model accuracy for less frequent classes.
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5.4 Data Management

In ML projects, data management is essential. The performance and reliability of

the model are directly influenced by the quality, source, and structure of the dataset.

This study’s dataset’s features, character, and the application of PCA to optimize

data processing are described in the following sections.

Source of Dataset

The dataset for this study includes credit card transactions performed by European

cardholders in September 2013. As part of a big data mining and fraud detection ef-

fort, Worldline collaborated with the machine learning group of the Université Libre

de Bruxelles to collect and analyze the data. This dataset was sourced from Kag-

gle.com. The dataset contains transactions over two days and is available through

public repositories.

Dataset Features

The dataset consists of 284,807 transactions, out of which 492 are identified as fraudu-

lent, representing only 0.172% of the transactions. It is a highly imbalanced dataset,

where the positive Class 1 (fraud) accounts for a very small portion of the total

transactions. The dataset contains only numerical features, most of which have been

transformed using PCA. There are 30 input variables in total:

• V1 to V28: These are the principal components generated by PCA from the

original data due to confidentiality restrictions.

• Time: This feature represents the time elapsed in seconds between each trans-

action and the first transaction in the dataset.

• Amount: The amount of each transaction, that is not PCA done.
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• Class: The target variable, where 1 represents fraudulent transactions and 0

represents non-fraud transactions.

Figure 5.1: Features of dataset

As shown in Figure 5.1, a collected dataset containing credit card customers’ infor-

mation while purchasing. To handle the customer information safely, PCA has been

applied for the features of V1-V28, while Time, Amount, and Class are given as they

are.

Dataset Nature

The nature of the dataset is highly imbalanced, with fraud cases representing a small

fraction (0.172%) of the total transactions. This imbalance poses a significant chal-

lenge for ML algorithms, as models tend to be biased towards the majority Class 0

(non-fraud), leading to poor detection of the minority Class 1 (fraud). To address

this, techniques such as class weighting, oversampling of the minority Class 1, or

undersampling of the majority Class 0 can be employed during model training to

improve the model’s ability to detect fraud. The original features of the dataset have

been transformed using PCA, due to confidentiality reasons. The only variables not

transformed by PCA are Time, Amount, and Class which remain in their raw form

and are used to track transaction timing and monetary values, respectively.
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5.5 Data Preprocessing

The dataset’s structure plays a vital role in effective model development. Data prepro-

cessing is crucial to ensure the dataset is ready for analysis. The following subsections

outline the techniques applied for normalization, handling missing values, and class

weighting in the credit card fraud detection model.

Normalization

In the preprocessing stage, the Amount column was normalized using the Standard-

Scaler. This was done to standardize the values, ensuring they have a mean of zero

and a standard deviation of one. This scaling is particularly useful for improving the

model’s convergence during training. After normalization, the original Amount and

Time columns were dropped as they were no longer needed, reducing unnecessary

noise in the input data.

Missing Values

Missing value is very normal in any dataset. However, addressing it individually is

sometimes time-consuming, especially for large datasets like transactional data. So,

in this model, the missing values in the dataset were handled by applying the forward

fill method. This technique replaced missing values with the last available valid entry,

ensuring data continuity without introducing significant bias, resulting in a complete

dataset with no gaps.

Class Imbalance

To handle the imbalance between fraudulent and non-fraudulent transactions, the

model required adjustment for this imbalance. Class weights were calculated using

the compute class weight function from scikit-learn. This gave greater importance to
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the minority Class 1 (fraudulent transactions), ensuring that the model learned to

detect these rare cases more effectively during training. By applying these weights,

the model could focus on identifying fraud, improving its overall sensitivity to the

minority Class 1.

5.6 Data Analysis Techniques

The model’s generalization ability and efficacy were evaluated using two different data

analysis techniques. This section outlines the methods used to split the dataset to

ensure comprehensive model assessment. Techniques like multiple data split ratios

and cross-validation were implemented to achieve robust evaluation results.

Data Splitting Method

To assess the model’s ability to generalize, the dataset was divided into multiple

training and test sets using different ratios such as 90:10, 80:20, 70:30, 75:25, and

60:40. The model was trained on the training sets to learn the underlying patterns

and relationships in the data, and then evaluated on the unseen test sets to gauge its

performance. This approach allowed for a comprehensive comparison of results across

different data splits, ensuring that the model could handle varying data distributions

effectively.

k-fold Cross-Validation Approach

The stratified k-fold cross-validation technique, with k = 10, was used to validate

the model’s accuracy. In this approach, the dataset was divided into 10 equal parts

or folds, and the model was trained and tested iteratively on each fold. For each

iteration, one fold served as the test set while the remaining nine folds were used for

training, ensuring that each part of the data contributed to both training and testing.
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This approach provided a more robust and reliable estimate of the performance.

5.7 Model Performance Assessment

The performance of the model was evaluated using the confusion matrix, which pro-

vides a detailed breakdown of the model’s classification results into four main compo-

nents: true positives, true negatives, false positives, and false negatives. These values

are crucial in calculating key metrics like precision, recall, f1-score, and accuracy,

which measure the model’s ability to identify fraudulent transactions correctly [54].

Their details are discussed below, based on the model [20]:

Using this confusion matrix, the key metrics like:

1. Precision: TP
TP+FP

– How many predicted frauds were actually fraud.

2. Recall: TP
TP+FN

– How many actual frauds were detected.

3. F1-score: 2× Precision×Recall
Precision+Recall

– A balanced metric combining precision and recall.

4. Accuracy: TP+TN
Total

– Overall correctness of the model.

In summary, after training, the model was assessed using the test data. The accuracy

score, which indicates the model’s overall accuracy, and the classification report,

which offered precise metrics such as precision, recall, and f1-score for both fraud

and non-fraud classes, were employed to evaluate predictions. These metrics were

instrumental in evaluating the model’s capacity to identify fraudulent transactions

and its performance on an imbalanced dataset.
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5.8 Flow Chart: Credit Card Fraud Detection with

Deep Multilayer Perceptrons

The flowchart below illustrates the methodology of the combined 10-fold cross-validation

and train-test split ratio analysis approach, which was implemented for a neural net-

work model that was specifically designed to detect credit card fraud.
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Figure 5.2: Flowchart of the model

Figure 5.2 represents the model implementation procedure in a flowchart diagram.

The process commences with the loading of the dataset and is followed by critical

phases such as data preprocessing, the establishment of directories for data stor-

age, and the guarantee of reproducibility using random seeds. The workflow then

diverges into two analysis processes: train-test split analysis and k-fold (k = 10)
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cross-validation. To guarantee robustness and prevent overfitting, the model is sub-

jected to numerous cycles of training, evaluation, and data storage for each fold in

the k-fold(k = 10) cross-validation path. The train-test split path, in contrast, par-

titions the dataset into training and testing sets and then conducts model training

and evaluation in a single cycle. A model evaluation is the result of both paths, as

classification reports offer comprehensive performance metrics.

5.9 Step-by-Step Model Operation

Below is a step-by-step analysis of the model algorithm, combining k-fold cross-

validation and train-test split ratio analysis for the deep MLP model. This approach

first applies k-fold cross-validation to ensure each part of the dataset contributes to

both training and testing. At last varying train-test split ratios within each fold help

further assess the model’s performance across different data distributions.

Step 1: Load Dataset

In this initial step, the dataset is loaded into a data frame for further processing. The

dataset is read from a CSV file named ‘creditcard.csv’ using the Pandas ‘read csv’

function.

df = pd.read_csv(‘creditcard.csv’)

Step 2: Data Preprocessing

The data is prepared through several preprocessing steps. Missing values are handled

by applying a forward fill method to ensure no gaps in the data. The Amount column

is normalized to have a mean of zero and unit variance using StandardScaler, which

improves model performance on numerical data. Irrelevant columns, such as Time

and Amount, are dropped after normalization. Finally, the features (X) and target

labels (y) are separated for model training.

60



df.fillna(df.ffill(), inplace=True)

scaler = StandardScaler()

df[‘NormalizedAmount’] = scaler.fit_transform(df[‘Amount’].

values.reshape(-1, 1))

df.drop([‘Time’, ‘Amount’], axis=1, inplace=True)

X = df.drop(‘Class’, axis=1).values

y = df[‘Class’].values

Step 3: Directory Setup

This step involves creating directories for storing dataset splits and model output

results. The split dir is designated for storing 10-fold cross-validation splits, while

output dir is used to store model evaluation outputs. The os.makedirs function en-

sures that the directories are created if they do not already exist.

split_dir = ‘data_splits’

output_dir = ‘output’

if not os.path.exists(output_dir):

os.makedirs(output_dir)

Step 5: Data Splitting

This step prepares the data for training and testing through two methods: 10-fold

cross-validation and train-test split ratio analysis. Initialize k-fold cross-validation

with k = 10 splits, shuffling the data and setting a fixed random seed.

kf = KFold(n_splits=10, shuffle=True, random_state=42)

For train-test split ratio analysis the key components used in data splitting include the

input features X, which represent the independent variables, and the target variable

y, which the model will predict. The train test split function divides the data
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into training and testing sets, with the parameter test size=0.20 indicating that

20% of the data is allocated for testing while 80% is used for training. After the

split, X train contains 80% of the feature data for training, and X test holds the

remaining 20% for evaluation. Similarly, y train contains 80% of the target labels

that correspond toX train, and y test holds the 20% of target labels that correspond

to X test.

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.20, random_state=42)

Step 6: Compute Class Weights

This step involves calculating class weights to address data imbalance, especially be-

tween fraudulent and non-fraudulent transactions. The compute class weight func-

tion from scikit-learn calculates weights, assigning higher values to minority classes

to help the model focus more on these instances.

class_weights = compute_class_weight(class_weight=‘balanced’,

classes=np.unique(y), y=y)

class_weights = dict(enumerate(class_weights))

Step 7: Define Model

A function is defined to build the model using Keras’ Sequential API. The model

consists of multiple hidden layers and dropout layers to improve performance and

prevent overfitting. The input shape parameter specifies the number of input features.

def build_model(input_shape)

Step 8: Split Data for Training and Validation

For each iteration in the 10-fold cross-validation, the dataset is split into training and
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testing sets. The kf.split(X) function yields indices for each fold, allowing the model

to train on one subset and validate on another, ensuring each part of the dataset

contributes to both training and testing.

for train_index, test_index in kf.split(X):

X_train, X_test = X[train_index], X[test_index]

y_train, y_test = y[train_index], y[test_index]

For train -test split ratio analysis, the predefined variables X train, X test, y train,

and y test are used directly for training and testing, based on the different ratios

defined earlier.

X train, X test, y train, and y test.

Step 9: Model Compilation

In this step, the model is built and compiled using the adam optimizer, which adjusts

the learning rate during training, and the binary cross-entropy loss function, which

is suitable for binary classification tasks. The accuracy metric is included to monitor

the model’s performance.

model.compile(optimizer=‘adam’, loss=‘binary_crossentropy’,

metrics=[‘accuracy’])

Step 10: Early Stopping Callback

Early stopping is configured to prevent overfitting by monitoring the validation loss.

If the validation loss does not improve for a specified number of epochs (patience set

to 10), training will stop automatically.

early_stopping = EarlyStopping(monitor=‘val_loss’, patience=10)
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Step 11: Train the Model

In this step, the model is trained with 10-fold cross-validation and train-test split

ratio analysis. During each iteration of 10-fold cross-validation, the model is trained

on one subset and validated on another, with class weights applied to address the

class imbalance. For example, for the train-test split, the model is trained on 80%

of the data and validated on the remaining 20%. Early stopping is utilized in both

approaches to prevent overfitting by monitoring the validation loss, with training

halting if no improvement is observed after 10 epochs.

# 10-fold Cross-Validation

model.fit(train_data, train_labels, epochs=100, batch_size=256,

verbose=2, validation_data=(test_data, test_labels),

class_weight=class_weights,callbacks=[early_stopping])

# Train-Test Split Ratio Analysis

model.fit(X_train, y_train, epochs=100, batch_size=256, verbose=2,

validation_data=(X_test, y_test), class_weight=class_weights,

callbacks=[early_stopping])

Step 12: Measure Training Time

This step calculates and prints the total time taken for the model training process.

The start time and end time variables track the beginning and end of the training

phase, and the difference between them gives the total training duration in seconds.

print(f"Training Time: {end_time - start_time} seconds")

Step 13: Evaluate the Model

After training, the model’s performance is evaluated by making predictions on the

test data. The model generates predictions on the training data during each fold of
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the 10-fold cross-validation. The predictions are converted into binary classes using

a threshold of 0.5 to classify transactions as either fraudulent or non-fraudulent. The

accuracy score function measures the model’s accuracy, while the classification report

provides additional performance metrics, such as precision, recall, and f1-score, help-

ing to evaluate the model’s effectiveness within each fold.

y_pred = (model.predict(test_data) > 0.5).astype("int32")

print(accuracy_score(test_labels, y_pred))

print(classification_report(test_labels, y_pred))

In this code, the model makes predictions on the test set by applying a threshold of

0.5 to the predicted probabilities, converting them into binary classifications. The

accuracy score function then evaluates how accurately these predictions match the

true labels, giving an overall performance metric. Finally, the classification report

provides a breakdown of the model’s effectiveness on each class by calculating preci-

sion, recall, and f1-score, offering a detailed view of its performance on unseen data.

y_test_pred = (model.predict(X_test) > 0.5).astype("int32")

print(accuracy_score(y_test, y_test_pred))

print(classification_report(y_test, y_test_pred))

Step 14: Store Results Save the results of the evaluation, including the accuracy

score and classification report, in a text file within the output directory.
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with open

(os.path.join(output_dir, f"fold_{folder_count}_output.txt"),

‘w’) as f:

f.write(f"Test Set Accuracy:{accuracy_score(y_test, y_pred)}\n")

f.write("Classification Report:\n")

f.write(classification_report(y_test, y_pred))

Step 15: Completion

Once all folds or the single train-test split are completed, a message is printed to

indicate the completion of the training process.

print("Training Finished!")
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Chapter 6

RESULTS AND EVALUATION

In this section, the experimental setup, evaluation metrics used, and the results ob-

tained from the credit card fraud detection model are described. The experiments

were conducted to validate the model’s effectiveness and to assess its ability to han-

dle the challenges posed by class imbalance, overfitting, and sensitivity in detecting

fraudulent transactions. The model was trained and evaluated using train-test split

and k-fold cross-validation approaches to ensure robustness and minimize the risk of

overfitting.

6.1 Results

This section evaluates the model’s performance on the fraud detection dataset using

precision, recall, and f1-scores across various train-test split ratios. These metrics de-

termine the model’s effectiveness in distinguishing fraudulent and legitimate transac-

tions. Additionally, the model will undergo 10-fold cross-validation, to ensure robust

and unbiased results.
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Train-Test Split Ratio: The performance metrics of the credit card fraud detection

model were evaluated across different train-test split ratios: 90:10, 80:20, 70:30, 75:25,

and 60:40. It details the precision, recall, f1-score, support for each fraud and non-

fraud, and the overall accuracy for each ratio:

Table 6.1: Performance metrics for different train-test split ratio

Ratios Class Precision Recall F1-score Support Accuracy
90:10 0 1 0.98 0.99 28435 0.997

1 0.08 0.91 0.15 46
80:20 0 1 0.98 0.99 56864 0.979

1 0.07 0.89 0.13 98
70:30 0 1 0.98 0.99 85307 0.977

1 0.06 0.92 0.11 136
75:25 0 1 0.99 0.99 71089 0.988

1 0.12 0.91 0.21 113
60:40 0 1 1 1 113732 0.995

1 0.28 0.89 0.42 191

In Table 6.1, a classification model’s precision, recall, f1-score, support, and accuracy

for Class 0 (non-fraud) and Class 1 (fraud) are assessed. For instance, with a split ratio

of 90:10, Class 0 shows good performance (precision 1.00, recall 0.98, f1-score 0.99)

with 28,435 examples, whereas Class 1 is also able to detect 46 instances successfully

achieving 99.7% accuracy.

For the 80:20 ratio, it achieves 97.9% accuracy. The next two ratios 70:30 and 75:25

get respectively 97.7% accuracy 98.80%. At last, for the 60:40 ratio, Class 0 has

ideal metrics, and Class 1 improves (precision 0.28, recall 0.89, f1-score 0.42) with

191 occurrences and 99.5% accuracy.

10-Fold Cross-Validation: 10-fold cross-validation is performed for both Class 0

(non-fraud) and Class 1 (fraud) to ensure the results are unbiased and reliable. This

approach provides further validation by testing the model’s consistency across multi-

ple data partitions.
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Table 6.2: Performance metrics for 10-fold cross-validation

No-of-Fold Class Precision Recall F1-score Support Accuracy
Fold 1 0 1 0.99 0.99 28435 0.986

1 0.12 0.87 0.22 46
Fold 2 0 1 0.99 0.99 28429 0.986

1 0.1 0.86 0.19 52
Fold 3 0 1 0.99 1 28443 0.992

1 0.18 0.85 0.3 38
Fold 4 0 1 0.99 0.99 28426 0.987

1 0.1 0.87 0.19 55
Fold 5 0 1 0.99 1 28426 0.993

1 0.17 0.87 0.29 55
Fold 6 0 1 0.99 0.99 28441 0.989

1 0.14 0.9 0.24 40
Fold 7 0 1 1 1 28433 0.998

1 0.41 0.82 0.55 48
Fold 8 0 1 0.99 0.99 28427 0.989

1 0.09 0.86 0.17 53
Fold 9 0 1 0.99 1 28428 0.99

1 0.12 0.87 0.21 52
Fold 10 0 1 1 1 28427 0.995

1 0.11 0.7 0.19 53

In Table 6.2, k-fold cross-validation results demonstrate the model’s robust perfor-

mance across 10 folds for both fraud (Class 1) and non-fraud (Class 0) cases. For

non-fraud transactions (Class 0), the model consistently achieves high precision and

recall values of 1 across all folds, with f1 scores ranging from 0.99 to 1, indicating

excellent detection of legitimate transactions. For fraud cases (Class 1), the model

shows a range in precision values, with a minimum of 0.09 and a maximum of 0.41, and

recall values between 0.7 and 0.9. Overall, the cross-validation confirms the model’s

reliability for non-fraud cases while indicating the need for further improvement in

detecting fraud cases to ensure unbiased and balanced outcomes.
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6.2 Evaluation

Train-Test Split Ratio: The below table summarizes the model’s accuracy across

various train-test split ratios, providing an overall average accuracy for performance

evaluation:

Table 6.3: Accuracy across different train-test split ratios

Split Ratio Accuracy
90:10 0.990
80:20 0.979
70:30 0.977
75:25 0.988
60:40 0.990

Average Accuracy 0.990

In Table 6.3, highlights the accuracy levels achieved for various train-test split ratios,

with an average accuracy of 0.990, demonstrating consistent and reliable model per-

formance. The highest accuracy is observed with the 60:40 and 90:10 split, indicating

its effectiveness in optimizing the model’s detection capabilities.

Figure 6.1: Classification report-based on split ratio for non-fraud (Class 0)

Figure 6.1, depicts precision, recall, and f1-score for non-fraud detection (Class 0)

at different split ratios. The model exhibits a precision and recall of 1.0 across all

splits, demonstrating its efficacy in recognizing valid transactions. The f1-score con-
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sistently ranges from 0.98 to 1.0, indicating dependable performance in non-fraud

categorization across various split ratios.

Figure 6.2: Classification report-based on split ratio for fraud (Class 1)

Figure 6.2, is a bar graph that illustrates the model’s performance metrics for fraud

detection (Class 1) at various split ratios. Recall remains elevated, consistently be-

tween 0.85 and 0.92, signifying the model’s robust capacity to identify fraud sit-

uations. Precision varies from 0.06 to 0.28, indicating inconsistency in accurately

identifying fraudulent cases. The f1-score exhibits fluctuations, ranging from 0.11 to

0.42 based on the split ratio.

Below is the comparison of precision and recall for both classes based on different

train-test split ratios:
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Figure 6.3: Comparison of precision for different ratios

Figure 6.3, Class 0 (non-fraud) maintains a precision of 1.0 across all split ratios,

showing high accuracy. Class 1 (fraud) precision varies, from 0.06 at the 70:30 split

to 0.28 at the 60:40 split.

Figure 6.4: Comparison of recall for different ratios

The above-mentioned in Figure 6.4, recall values for Class 0 (non-fraud) and Class 1

(fraud) across various split ratios. Class 0 consistently achieves a high recall, rang-

ing from 0.98 to 1.0, indicating the model’s strong capability to identify legitimate

transactions. In contrast, Class 1 shows recall values between 0.82 (75:25 split) and

0.92 (70:30 split).
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Table 6.4: Number of epochs for different split ratios

Split Ratio No of Epoch
90:10 23
80:20 23
70:30 33
75:25 31
60:40 19

This table 6.4 highlights the number of training epochs required across various train-

test split ratios. It indicates that smaller training sets, such as 60:40, generally require

fewer epochs.

10-Fold Cross-Validation: The table below presents the accuracy results from the

10-fold cross-validation performed on the model, along with the calculated average

accuracy across all folds:

Table 6.5: Accuracy across 10-fold cross-validation

No-of-Fold Accuracy
Fold 1 0.986
Fold 2 0.986
Fold 3 0.992
Fold 4 0.987
Fold 5 0.993
Fold 6 0.989
Fold 7 0.998
Fold 8 0.989
Fold 9 0.990
Fold 10 0.995

Average Accuracy 0.991

As shown in Table 6.5, it provides accuracy results for each fold in the 10-fold cross-

validation, with an average accuracy of 0.991. This consistently high accuracy across

folds indicates the model’s stability and effectiveness in handling variations in data

partitions.

73



Figure 6.5: Classification report-based on K-fold for non-fraud (Class 0)

Displayed in the Figure 6.5, are precision, recall, and f1-score values for non-fraud

detection (Class 0) across 10 k-folds. Precision and recall are consistently high, be-

tween 0.99 and 1.0, reflecting strong model accuracy. The f1-score remains stable and

close to 1.0, confirming reliable performance for non-fraud cases.

Figure 6.6: Classification report-based on K-fold for fraud (Class 1)

Figure 6.6, illustrates precision, recall, and f1-score for fraud detection (Class 1) over

10 k-folds. The recall values are high, ranging from 0.82 to 0.92, showing the model’s

effectiveness in identifying fraud cases. Precision varies between 0.1 and 0.41, indi-

cating some false positives. The f1-score ranges from 0.19 to 0.55, highlighting the

balance between precision and recall.
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Below is the comparison of precision and recall for both classes based on the 10-fold

cross-validation:

Figure 6.7: Comparison of precision for 10-fold

The given Figure 6.7, shows precision values for Class 0 (non-fraud) and Class 1

(fraud) across 10 folds. Class 0 consistently achieves a precision of 1.0 across all

folds, demonstrating strong accuracy in detecting legitimate transactions. In contrast,

Class 1 precision varies between 0.1 and 0.41, this range reflects the model’s proactive

effort to identify potential fraud cases, ensuring that most fraudulent transactions are

identified.

Figure 6.8: Comparison of recall for 10-fold

The Figure 6.8, of the bar diagram illustrates, the recall values for Class 0 (non-fraud)

and Class 1 (fraud) throughout 10 folds. Class 0 exhibits higher recall rates, between
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0.98 to 1.0, signifying efficient recognition of real transactions. The Class 1 recall

ranges from 0.82 to 0.92.

The observed low precision and high recall for Class 1 (fraud) indicate that while

the model is effective at identifying actual fraud cases (high recall, true positives),

it tends to have more false positives, which lowers precision. As false negatives are

more expensive than false positives, this trade-off is consistent in detecting as many

fraudulent activities as feasible. The model’s strong recall (few false negatives) re-

duces the probability of undetected fraud, making it useful despite its lower precision

(higher false positives). Figures 4 and 5 demonstrate consistently strong recall across

splits, alleviating concerns regarding performance in imbalanced datasets.

In a nutshell, precision and recall are key performance metrics in any model. Recall

measures a model’s ability to identify true positives. In imbalanced datasets like the

one that has been used, recall often suffers, but the proposed model achieves higher

recall than precision for Class 1. It is also successfully able to achieve higher accuracy

as proposed.
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Chapter 7

CONCLUSION

The evolution of credit cards and the corresponding increase in fraudulent activities

have necessitated the development of sophisticated detection systems. This report

explored the transition from traditional fraud detection techniques to advanced deep

learning models, specifically ANNs. The study highlighted the historical evolution

of credit cards, the methods fraudsters used, and the limitations of conventional

approaches in addressing complex and emerging fraud scenarios. By leveraging the

capabilities of DL techniques, this research aimed to enhance detection accuracy and

improve the overall security of credit card transactions, contributing to the broader

financial ecosystem’s resilience against fraud.

The motivation for this study is that people are relying more and more on digital

transactions and fraud strategies are getting smarter. Due to the flaws in rigid,

rule-based systems, it is clear that we need real-time, flexible solutions that can

identify complex fraud patterns accurately. To address these challenges, this project

was initiated to build a strong model that is based on data and can learn from

complicated transactional behaviors. The focus on deep MLPs technique makes it
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possible to identify fraud with a higher percentage of accuracy.

An original contribution of this research is the implementation of a 12-layer deep MLP

model specifically tailored to handle the complexities and high dimensionality inherent

in credit card transaction data. The results from various train-test split ratios and 10-

fold cross-validation approaches confirmed the robust performance of the model. The

research introduced advanced techniques, such as class weighting and early stopping,

to optimize the model’s performance in imbalanced datasets. These techniques, along

with feature engineering, ensured that the model was not only capable of learning

from detailed transactional data but also robust against overfitting. By prioritizing

fraudulent transactions during the training phase and dynamically adjusting training

processes, the model demonstrated significant improvements in identifying fraud cases

that traditional models often overlook.

The outcomes from different train-test split ratios and 10-fold cross-validation meth-

ods validated the model’s strong performance. The model achieved an average accu-

racy of 99%, with precision and recall values for legitimate transactions consistently

reaching 1.0 across all evaluations. For fraud detection, the model demonstrated recall

rates between 82% and 92%, effectively capturing a substantial portion of fraudulent

activities, and showcasing its sensitivity and reliability. These outcomes validate the

model’s ability to handle imbalanced data effectively and highlight its capacity to de-

liver consistent performance across different data splits. The experiments emphasize

the model’s scalability and suitability for real-world deployment, marking a significant

step forward in developing efficient credit card fraud detection systems.

To summarize, the problem outlined is effectively tackled, demonstrating that the

deep multilayer perceptron model significantly enhances the accuracy of fraud detec-

tion systems. The model’s robustness and scalability were validated through various

experiments, confirming its acceptability. Future work could focus on enhancing
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detection efficiency by integrating additional features and leveraging larger exter-

nal datasets. Exploration of alternative ANN architectures aims to enhance accu-

racy and adaptability. These efforts are essential to maintain and advance the sys-

tem’s effectiveness as fraud techniques evolve. Additionally, incorporating real-time

data streams could improve the model’s usage of emerging fraud patterns. Contin-

ued refinement of preprocessing techniques and parameter optimization will further

strengthen performance in diverse operational environments.
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