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Abstract

Our aim in this paper is to maintain the global consistency of a
constraint satisfaction problem involving temporal constraints
anytime a new constraint is added. This problem is of practical
relevance since it is often required to check whether a solution
to a CSP continues to be a solution when a new constraint is
added and if not, whether a new solution satisfying the old and
new constraints can be found.

The two methods that we will present here are respectively
a complete search technique based on constraint propagation
and an approximation method based on stochastic local search.
The goal of both methods is to check whether the existence of
a solution is maintained anytime a new constraint is added.
The approximation method does not guarantee the complete-
ness of the solution provided, but is of interest for those prob-
lems where it is impossible or impractical to find a complete
solution. This is the case of real time applications where a
solution should be returned within a given deadline and over
constrained problems where a complete solution does not ex-
ist.
Keywords: Temporal Reasoning, Constraint Satisfaction, Plan-
ning and Scheduling.

1 INTRODUCTION

In any constraint satisfaction problem (CSP) there is a col-
lection of variables which all have to be assigned values
from their discrete domains, subject to specified constraints.
Because of the importance of these problems in so many
different fields, a wide variety of techniques and programming
languages from artificial intelligence, operations research
and discrete mathematics are being developed to tackle
problems of this kind. An important issue when dealing with a
constraint satisfaction problem in the real world is the ability
of maintaining the consistency of the problem in a dynamic
environment i.e anytime there is a constraint restriction or
relaxation. Indeed, in the case of constraint restriction, this
change may affect the solution already obtained with the
old constraints. In the past decade several algorithms based
on constraint propagation have been proposed to enforce a
particular case of local consistency, called arc consistency (or
2-consistency), in a dynamic environment. Our goal in this

paper is to maintain the global consistency, in a dynamic
environment, of a constraint satisfaction problem involving
qualitative and quantitative temporal constraints. This is of
practical relevance for many real world applications such as
reactive scheduling and planning. In scheduling problems, for
example, a solution corresponding to an ordering of tasks to
be processed can no longer be consistent if a given machine
becomes unavailable. We have then to look for another
solution (ordering of tasks) satisfying the old constraints and
taking into account the new information.

In a previous work[1], we have developed a temporal model,
TemPro, based on the interval algebra, to express numeric and
symbolic time information in terms of qualitative and quantita-
tive temporal constraints. More precisely, TemPro translates an
application involving temporal information into a binary Con-
straint Satisfaction Problem1 where constraints are temporal
relations. We call it Temporal Constraint Satisfaction Prob-
lem (TCSP)2. Managing temporal information consists then of
maintaining the consistency of the related TCSP using con-
straint satisfaction techniques. Local consistency is enforced
by applying the arc consistency for numeric constraints and the
path consistency for symbolic relations. Global consistency is
then obtained by using a backtrack search algorithm to look
for a possible solution. Note that for some TCSPs local consis-
tency implies global consistency[3].

In order to check for the global consistency of a TCSP in a
dynamic environment, we have adapted the above local consis-
tency techniques and backtrack search in order to handle the
addition of constraints in an efficient way. This method has
the advantage to be complete, however for large size problems
it suffers from the exponential time complexity of the back-
track search algorithm. This motivates us to develop another
incremental technique based on stochastic local search. Indeed
the underlying local search paradigm is well suited for recover-
ing solutions after local changes (addition of constraints) of the
problem occur. Also, the stochastic local search method is well
suited for real time and over-constrained problems. Indeed, in
the case where it is impossible or impractical to find a complete

1A binary CSP involves a list of variables defined on finite domains of
values and a list of binary relations between variables.

2Note that this name and the corresponding acronym was used in [2]. A
comparison of the approach proposed in this later paper and our model TemPro
is described in [1].



solution, these techniques have the ability to provide a partial
one with a quality proportional to the allocated time. The qual-
ity corresponds here to the number of solved constraints.

The rest of the paper is organized as follows : in the next sec-
tion, we will present the notion of TCSPs in general and in the
case of dynamic environment. The two methods for maintain-
ing the global consistency of TCSPs in a dynamic environment
are then presented respectively in sections 3 and 4. Section 5
is dedicated to the experimental evaluation on randomly gen-
erated TCSPs of the two methods we propose. Concluding re-
marks and possible perspectives of our work are then presented
in section 6.

2 TCSPs AND DYNAMIC TCSPs

2.1 Temporal Constraint Satisfaction Prob-
lems (TCSPs)

We define a TCSP as :

• a list of temporal variables (events) defined on domains
of possible values (numeric intervals) that each event can
take,

• and a list of of binary temporal relations between variables
defined as disjunctions of Allen primitives (see table 1 for
the definition of the 13 Allen primitives).

Table 1:Allen primitives
Relation Symbol Inverse Meaning
X precedes Y P P^ XXX YYY
X equals Y E E XXX

YYY
X meets Y M M^ XXXYYY
X overlaps Y O O^ XXXX

YYYY
X during y D D^ XXX

YYYYYY
X starts Y S Ŝ XXX

YYYYY
X finishes Y F F^ XXX

YYYYY

Let us consider the following example3.

Example 1

John, Mary and Wendyseparatelyrode to the soccer
game. It takes John30 minutes, Mary 20 minutes
and Wendy50 minutes to get to the soccer game.
John eitherstarted or arrived just as Marystarted.

3This problem is basically taken from an example presented by Ligozat,
Guesgen and Anger at the tutorial : Tractability in Qualitative Spatial and
Temporal Reasoning, IJCAI’01. We have added numeric constraints for the
purpose of our work.
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Figure 1:A Temporal Constraint Satisfaction Problem.

John left homebetween 7:00 and 7:10. Mary ar-
rived at workbetween 7:55 and 8:00. Wendy left
homebetween 7:00 and 7:10. John’s trip over-
lapped the soccer game. Mary’s trip took placedur-
ing the game or else the game took placeduring her
trip. The soccer gamestarts at 7:30 and lasts 105
minutes.

Using our model TemPro [1], the above example is trans-
formed to the TCSP represented by the graph in figure 1.

2.2 Dynamic Temporal Constraint Satisfaction
Problems (DTCSPs)

A dynamic temporal constraint satisfaction problem (DTCSP)
is a sequence of static TCSPs :TCSP0, . . . , TCSPi , TCSPi+1,
. . . ,TCSPn each resulting from a change in the preceding one
imposed by the “outside world”. This change corresponds to
a constraint restriction or relaxation. In this paper we will fo-
cus only on constraint restriction. More precisely, in the case
of constraint restriction,TCSPi+1 is obtained by performing a
restriction onTCSPi . We consider thatTCSP0 (initial TCSP)
has an empty set of constraints. A restriction can be obtained
by removing one or more Allen primitives from a given con-
straint. A particular case is when the initial constraint is equal
to the disjunction of the 13 primitives (we call it the universal
relationI ) which means that the constraint does not exist (there
is no information about the relation between the two involved
events). In this particular case, removing one or more Allen
primitives from the universal relation is equivalent to adding a
new constraint.

3 DYNAMIC MAINTENANCE OF GLOBAL

CONSISTENCY USING CONSTRAINT PROP-

AGATION

Given that we start from a consistent TCSP, the goal of the
resolution method we present here consists of maintaining the
global consistency (existence of a solution) anytime a new con-
straint is added (constraint restriction). Anytime a new con-
straint is added (disjunction of some Allen primitives), the
method works as follows :



1. Compute the intersection of the new constraint with the
corresponding constraint in the consistent graph.

If the result of the intersection is not an empty relation
then

(a) Replace the current constraint of the graph by
the result of the intersection.

(b) If the new constraint is inconsistent with the
current solutionthen

i. Perform the numeric→ symbolic conver-
sion for the updated constraint. If the
symbolic relation becomes empty then the
new constraint cannot be added. The nu-
meric→ symbolic conversion works as fol-
lows : from the numeric information, we
can extract the corresponding symbolic re-
lation. An intersection of this relation
with the given qualitative information will
reduce the size of the latter which sim-
plifies the size of the original problem.
Although the exact algorithm that con-
verts numeric to symbolic time information
requiresO(e(Max( supi−in fi−di

si
))2) in time

wheree is the number of qualitative con-
straints, we have defined a method that ex-
tracts most of the primitives within a rela-
tion between each pair of events in constant
time reducing the complexity toO(e). The
method consists of using the information
concerning the lower bound, upper bound
and duration of the event temporal window
instead of its occurrences. For example :

• if in fi > supj then ei P^ ej ,

• if di > d j then E,S,F,D cannot belong to
the relation betweenei andej ,

• . . .etc.

ei and ej are two events andin fi , supj ,
di andd j are respectively the earliest start
time of ei , latest end time ofej , duration of
ei and duration ofej .

ii. Perform dynamic path consistency (DPC)
in order to propagate the update of the con-
straint to the rest of the graph. If the re-
sulting graph is not path consistent then the
new constraint cannot be added.

iii. Perform dynamic arc consistency (DAC)
starting with the updated constraints. If the
new graph is not arc consistent then the new
constraint cannot be added.

iv. Perform the backtrack search algorithm in
order to look for a new solution to the prob-
lem. The backtrack search will start here
from the point (resume point) it stopped in
the previous search when it succeeded to
find a complete assignment satisfying all
the constraints. This way the part of the

search space already explored in the previ-
ous searches will be avoided. The search
will explore the rest of the search space. If
a solution is found then the point where the
backtrack search stopped is saved as new
resume point and the new solution is re-
turned. Otherwise the graph is inconsis-
tent (when adding the new constraint). The
new constraint cannot be added.

Else the new constraint cannot be added otherwise it will
violate the consistency of the graph.

DPC it the path consistency algorithm PC-2[5] we have
adapted to handle constraint additions in an incremental way.
DAC is the new arc consistency algorithm AC-3[6, 7] we have
adapted for temporal constraints in a dynamic environment. A
detailed description ofDAC can be found in [8].

Example 2 :

The top right graph of figure 2 is the consistent TCSP obtained
after performing our resolution method to the constraints of ex-
ample 1 . Note that the constraint (M^ ∨O^ ∨P^) between
the soccer game and Wendy is an implicit constraint deduced
after the numeric→ symbolic conversion and the path consis-
tency phases (same for the constraint between John and Wendy,
and the constraint between Mary and Wendy). The numeric so-
lution obtained is :{John : (5,35), Mary : (35,55), Soccer:
(30,135), Wendy: (0,50)}. Let us assume now that we have
the following constraint restrictions :

1. John eitherstarted or arrived just as Wendystarted.

2. Mary and Wendyarrived together but started at differ-
ent times.

3. Wendyarrived just as the soccer gamestarted.

Figure 2 shows the application of our resolution method
when adding each of the above first two constraints.

The first operation corresponds to the addition of the relation
S∨ Ŝ ∨M∨E between John and Wendy. The intersection of
this relation with the current constraint between the two events
will lead to the relationS. After applying the dynamic arc, path
consistency and backtrack search the new solution obtained is :
{John : (5,35), Mary : (35,55), Soccer: (30,135), Wendy:
(5,55)}.

The second operation corresponds to the addition of the re-
lation F ∨F^ between Mary and Wendy. The intersection of
this relation with the current constraint between the two events
will lead to the relationF . The relationF does not conflict with
the global solution obtained so far. Thus the consistency of the
graph is maintained.

The third operation corresponds to the addition of the rela-
tion P between Wendy and soccer game. The intersection of
this relation with the current constraint between the two events
will lead to an empty relation. Thus this third constraint cannot
be added.
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Figure 2:Maintaining the global consistency of a TCSP

4 DYNAMIC MAINTENANCE OF
GLOBAL CONSISTENCY USING
STOCHASTIC LOCAL SEARCH

In this section we present the way to solve dynamic TCSPs us-
ing stochastic local search methods. We will use the following
terms:

State : one possible assignment of all events i.e set of couples
(evi ,occj), whereevi is an event andoccj is a possible
interval belonging to the domain ofevi ; the number of
states is equal to the product of domains sizes.

State or solution quality : the number of constraint viola-
tions of the state or the solution.

Neighbor : the state which is obtained from the current state
by changing one event value.

Local-minimum : the state that is not a solution and the evalu-
ation values of all of its neighbors are larger than or equal
to the evaluation value of this state.

Strict local-minimum : the state that is not a solution and the
quality of all of its neighbors are larger than the evaluation
value of this state.

The three algorithms that we will consider in the following
are based on a common idea known under the notion of local
search. In local search, an initial configuration (assignment of
events) is generated randomly and the algorithm moves from
the current configuration to a neighborhood configurations un-
til a complete solution or a good one has been found. When a
new constraint is added, the algorithm restarts the search from
the point corresponding to the last solution obtained, and iter-
ates until a new solution respecting the old constraints and the
new one is found. Note that this iterative algorithm can be in-
terrupted at any time (case or real time problems) and provides
a partial solution with a quality proportional to the allocated
time. Also, in the case where a complete solution does not ex-
ist, the algorithm returns a partial one with the maximum of
solved constraints.

4.1 Min-Conflict-Random-Walk method (MCRW)

After an initial configuration is randomly generated, the Min-
conflicts method chooses randomly any conflicting event, i.e.,
the event that is involved in any unsatisfied constraint, and then
picks a value (numeric interval) which minimizes the number
of violated constraints (break ties randomly). If no such value
exists, it picks randomly one value that does not increase the
number of violated constraints (the current value of the event
is picked only if all the other values increase the number of
violated constraints). The problem of this method is that it is
not able to leave local-minimum. In addition, if the algorithm
achieves a strict local-minimum it does not perform any move
at all and, consequently, it does not terminate. Thus, noise
strategies should be introduced. Among them, the random-
walk strategy that works as follows : for a given conflicting
event, the random-walk strategy picks randomly a value with
probability p, and apply the Min Conflict heuristic with prob-
ability 1− p. In the worst case, the time cost required in each
move corresponds to the time needed to determine the value
that minimizes the number of violated constraints. This time is
of orderO(N Max1≤i≤N( supi−in fi−di

si
)) whereN is the number

of variables andsupi , in fi ,si anddi are respectively the latest
end time, earliest start time, duration and step of a given event
evti . Max is the function that returns the maximum of a list of
numbers.

4.2 Steepest-Descent-Random-Walk (SDRW)

In the Steepest-Descent method, instead of selecting the event
in conflict randomly, this algorithm explores the whole neigh-
borhood of the current configuration and selects the best neigh-
bor (neighbor with the best quality). This algorithm can be ran-
domized by using the random-walk strategy in the same man-
ner as for Min-Conflicts to avoid getting stuck at ”local op-
tima”. The time cost required in each iteration corresponds
to the time needed to find the best neighbor and is of order
O(N2Max1≤i≤N( supi−in fi−di

si
)) in the worst case.



4.3 Tabu Search (TS)

This method is based on the notion of Tabu list used to main-
tain a selective history, composed of previously encountered
configurations in order to prevent Tabu from being trapped
in short term cycling and allows the search process to go be-
yond local optima. In each iteration of the algorithm, a couple
< event, intv > that does not belong to the Tabu list and cor-
responding to the best performance is selected and considered
as an assignment of the current configuration.< event, intv >
will then replace the oldest move in the Tabu list. The time
cost required in each iteration is the same as for SDRW, i.e
O(N2Max1≤i≤N( supi−in fi−di

si
)) in the worst case.

5 EXPERIMENTATION

In order to evaluate the performance of the two methods we
propose, we have performed experimental tests on randomly
generated DTCSPs. The criteria used to evaluate the two differ-
ent methods is the running time needed to maintain the global
consistency of the DTCSP. The experiments are performed on
a SUN SPARC Ultra 5 station. All the procedures are coded in
C/C++.

5.1 Comparison Criteria

We use two criteria to compare the different methods. The first
one is the quality of the solution, i.e the minimum number of
violated constraints of the solution provided by the method.
The second criterion is the computing effort needed by an al-
gorithm to find its best solution. This last criterion is measured
by the running time in seconds required by each algorithm.

5.2 Generated Instances

Each generated problem is characterized by two parameters :N
the number of events andHorizon the parameter before which
all events must be processed. In the following we will describe
the generation of consistent and inconsistent problems.

Consistent problems of sizeN are those having at least one
complete numeric solution (set ofN numeric intervals satisfy-
ing all the constraints of the problem). Thus, to generate a
consistent problem we first randomly generate a numeric solu-
tion and then add other numeric and symbolic information to it.
More precisely the generation is performed using the following
steps.

1. Generation of the numeric solution Randomly pick
N pairs (x,y) of integers such thatx < y and
x,y ∈ [0, . . . ,Horizon] (Horizon is the parameter be-
fore which all events must be processed). This set
of N pairs forms the initial solution where each pair
corresponds to a time interval.

2. Generation of the numeric constraints For each interval
(x,y) randomly pick an interval contained within
[0..Horizon] and containing the interval(x,y). This newly
generated interval defines the SOPO of the corresponding
variable.

3. Generation of the symbolic constraints Compute the ba-
sic Allen primitives that can hold between each interval
pair of the initial solution. Add to each relation a ran-
dom number in the interval[0,Nr] (1≤ Nr ≤ 13) of cho-
sen Allen primitives.

Example 3 :

Let us assume we want to generate a consistent problem with
N = 3 andHorizon= 10.

1. First a numeric solution is generated : S ={(1 4), (2 8), (5
7)}.

2. Numeric constraints (SOPOs) are then randomly gener-
ated from the numeric solution.

Numeric Interval Corresponding SOPO
(1 4) → [2 9]
(2 8) → [2 10]
(5 7) → [3 8]

3. The Allen primitives are then computed from the pairs of
intervals of the numeric solution :

(1 4) and(2 8) → Overlaps (O)
(1 4) and(5 7) → Overlaps (O)
(2 8) and(5 7) → During inverse (D^)

and finally the symbolic constraints are generated from
the above Allen primitives.

O → POM
O → DD^EO
D^ → FSDD̂ PE

Each inconsistent problem of sizeN (N is the number of vari-
ables) is generated using the following steps.

1. Generation of numeric constraints Randomly
pick N pairs of ordered values(x,y) such that
x,y ∈ [0, . . . ,Horizon]. x and y are respectively con-
sidered the earliest start time and the latest end time of a
given event. For each pair of value(x,y), randomly pick
a numberd ∈ [1. . .y−x]. d is considered the duration of
the event.

2. Generation of symbolic constraints Randomly generate
C constraints between theN events whereC ∈
[1. . . N(N−1)

2 ] (C = N(N−1)
2 in the case of a complete graph

of constraints). Each constraintC is a disjunction of a
random numberNb(Nb∈ [1. . .13]) of relations chosen
randomly from the set of the 13 Allen primitives.

3. Consistency check of the generated problem Perform a
backtrack search method on the generated problem. If a
solution is foundgoto 1 otherwise the problem is incon-
sistent.



Table 2: Comparative tests on randomly generated DTC-
SPs.

N C Constraint Propagation MCRW
20 95 0.10 0.11
40 390 0.35 0.22
60 885 1.02 0.79
80 1580 2.58 1.24
100 2475 6.10 1.89
200 9950 28 2.23

The generated problems are characterized by their tightness,
which can be measured, as shown in [9], by the fraction of
all possible pairs of values from the domain of two variables
that are not allowed by the constraint. The tightness depends
in our case on the parametersHorizon(time before which all
tasks should be processed),Nr (the maximal number of Allen
primitives per symbolic constraint) and the density of the prob-
lem ( 2C

N(N−1) whereC is the number of constraints of the prob-
lem).

5.3 Results

After a random consistent TCSP is generated, each of the two
resolution techniques will process the list of temporal relations
in an incremental way. Preliminary experiments comparing
the stochastic local search methods we have seen in section
4, namely MCRW, SDRW and Tabu have demonstrated the ef-
ficiency of the MCRW over the other two methods to deal with
dynamic TCSPs. This is justified by the fact that, as we men-
tioned in section 4, the cost in time of a move, from one state
to another, in the case of Tabu Search and SDRW is equal to
N times the cost of a move in the case of the MCRW method,
whereN is the number of variables (events).

Table 2 presents the results of tests (time in seconds) per-
formed on randomly generated TCSPs defined by the number
of variablesN and the number of constraintsC. As we can
easily see, the approximation method is faster than the exact
one. This is justified by the fact that the systematic method
is based on a backtracking algorithm with an exponential time
cost while the two approximation methods are based polyno-
mial time iterative algorithms. However, as we said in intro-
duction, the approximation method does not guarantee in gen-
eral the completeness of the solution provided at each time.

6 CONCLUSION AND FUTURE WORK

In this paper we have presented two different ways for main-
taining in a dynamic environment, the global consistency of
a temporal constraint satisfaction problem. The methods are
of interest for any application where qualitative and numeric
temporal information should be managed in an evolutive envi-
ronment. This can be the case of real world applications such
as reactive scheduling and planning where any new informa-
tion corresponding to a constraint restriction should be handled
in an efficient way. Although the approximation method does

not guarantee the completeness of the solution returned, it is
of interest when an answer needs to be returned within a given
deadline (case of real time problems) and also when a complete
solution does not exist (case of over constrained problems). In
both cases, a solution maximizing the number of constraints to
be satisfied is returned.

One perspective of our work is to handle the relaxation of
constraints during the resolution process. For example, sup-
pose that during the search a given constraint is removed.
Would it be worthwhile to find those values removed previ-
ously because of this constraint and to put them back in the
search space or would it be more costly than just continuing on
with search without considering these values. Another ques-
tion to consider in the case of the approximation methods is
whether, when processing a list of new constraints in an incre-
mental way, is it better to start search with the best solution
found for the previous problem or to start with a random initial
assignment.
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