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Abstract

This dissertation presents a critical rethinking of the Java bytecode verification archi-

tecture from the perspective of a software engineer. In existing commercial implemen-

tations of the Java Virtual Machine, there is a tight coupling between the dynamic

linking process and the bytecode verifier. This leads to delocalized and interleaving

program plans, making the verifier difficult to maintain and comprehend. A modular

mobile code verification architecture, called Proof Linking, is proposed. By establish-

ing explicit verification interfaces in the form of proof obligations and commitments,

and by careful scheduling of linking events, Proof Linking supports the construction

of bytecode verifier as a separate engineering component, fully decoupled from Java’s

dynamic linking process. This turns out to have two additional benefits: (1) Modu-

larization enables distributed verification protocols, in which part of the verification

burden can be safely offloaded to remote sites; (2) Alternative static analyses can now

be integrated into Java’s dynamic linking process with ease, thereby making it conve-

nient to extend the protection mechanism of Java. These benefits make Proof Linking

a competitive verification architecture for mobile code systems. A prototype of the

Proof Linking Architecture has been implemented in an open source Java Virtual

Machine, the Aegis VM (http://aegisvm.sourceforge.net).

On the theoretical side, the soundness of Proof Linking was captured in three

correctness conditions: Safety, Monotonicity and Completion. Java instantiations of

Proof Linking with increasing complexity have been shown to satisfy all the three

correctness conditions. The correctness proof had been formally verified by the PVS

proof checker.
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Chapter 1

Introduction

1.1 Motivation

Recent years have witnessed a significant growth of interest in mobile code, particu-

larly in the form of active contents (e.g., web-browser applets), also known by some as

code-on-demand [31]. A key factor in this growth has been the development of suitable

security mechanisms for the protection of host computer systems against the threat

of executing untrusted code. As a distributed system architecture, a mobile code sys-

tem usually involves two (or more) processes, namely, a code producer process (e.g., a

web server process such as httpd) and a code consumer process (e.g., a web browser).

Code migration occurs when the producer process sends to the consumer process an

open program (e.g., a Java applet), which describes side effects to be produced on

the consumer side (e.g., accessing a local file). Upon arrival at the destination, the

program is then dynamically linked into the consumer process’s address space, with

its open variables bound to resources owned by the consumer process. Execution of

the linked program thus produces the desired side effects on the consumer process.

Such an arrangement gives rise to serious security threats. If there is no control on

the kind of mobile programs that can be executed in the consumer process, then arbi-

trary side effects might compromise data confidentiality, system integrity and resource

availability.

1
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The Java programming language [14] and its associated support technologies have

achieved considerable success through a strong protection mechanism implemented

within the Java Virtual Machine (JVM). As Java bytecode is downloaded from an

untrusted origin, the JVM subjects it to a verification step [130, Chapter 5] in order

to ensure that it cannot affect the host machine in an undesirable way. Specifically,

the bytecode verifier performs dataflow and structural analyses to guarantee that

untrusted bytecode can be linked into the JVM without producing type confusion. As

some authors have pointed out, Java’s access control mechanism, namely, the security

manager, is protected by the type system [49]. So long as downloaded bytecode obeys

the typing rules of Java, the security manager should be tamperproof.

This work represents a critical rethinking of the existing verification architecture

of the JVM from the point of view of a software engineer sensitive to the specific

security requirements of mobile code systems. A thorough introduction to the issues

motivating this research is given in the following sections.

1.1.1 Stand-alone Verification Module

Relying on a link-time verifier to protect a host computer system has the problem that

the verifier itself may be flawed. If so, designers of malicious code may well be able to

exploit the vulnerability to produce type confusion. In fact, several security breaches

have been discovered in major Java implementations [49, 135, 107, 108, 157]. These

vulnerabilities may be attributed, in part, to the inherent complexity of bytecode

verification, involving both dataflow and structural analyses.

Additional complexity in verifier implementation may arise through the combi-

nation of verification in an incremental process with lazy, dynamic linking. This

complexity becomes manifest in two problematic architectural features of the Sun

JVM:

1. Interleaved logic. The Sun implementation of JVM interleaves bytecode veri-

fication and loading. Java programs are composed of classes, each being loaded

into the JVM separately. In the middle of verifying a class X, a new class Y
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may need to be loaded in order to provide enough information for the verifi-

cation of class X to proceed. For example, in order for the verifier to make

sure that a method may throw an exception of class ArithmeticException, it

must check whether ArithmeticException is a subclass of the class Throwable.

As a result, the loader has to be invoked to bring in ArithmeticException and

all its superclasses. Moreover, since the loader cannot trust the bytecode of

ArithmeticException (and its superclasses) to be well-formed, part of the veri-

fication work must be carried out by the loader. As a result, verification and

loading logic are interleaved in the Sun JVM.

2. Delocalized implementation. The Sun bytecode verifier has a four-pass ar-

chitecture. Pass one is the verification logic performed by the loader. Passes

two and three, performed by the bytecode verifier at class preparation time

[130, Section 5.4.2], check for the well-formedness of bytecode files and carry

out dataflow analysis to type check methods of the underlying classes. Pass

four is invoked at run time, whenever symbolic references need to be resolved.

Consequently, security checks are scattered throughout the run-time system,

again adding complexity to the task of analyzing the verification logic.

In the program understanding literature, it is well known that interleaving and delo-

calized program plans lead to programs that are difficult to comprehend [169, 126].

This so-called “scattershot security” [135] adds considerable complexity to the task

of implementing, validating and maintaining a reliable verifier.

Nevertheless, one may understand the rationale for current JVM architectures by

considering the need to accommodate a lazy, dynamic linking strategy. Such a strategy

seeks to defer expensive computations that may never be needed. For example, a class

may be parsed but not further analyzed when only its interface is needed (pass one).

Subsequently, its internal structure may be checked when code is linked in (passes

two and three), but external references may be left unresolved in the event they

are not needed. Finally, these external dependencies may be resolved individually

as necessary at run time (pass four). Although such a strategy is not required by



CHAPTER 1. INTRODUCTION 4

the JVM specification, the performance advantages should be easy to understand,

particularly for classes with strong static coupling but weak dynamic coupling.

The above analysis reveals a software engineering challenge that is common to all

dynamically-linked languages with both security and efficiency concerns. In partic-

ular, for mobile code systems which incorporate a protection mechanism based on

link-time, static analysis, one has to determine how loading, verification, and linking

interact with each other so that the following goals are achieved simultaneously.

1. Laziness: loading, verification, and linking can be deferred as long as possible.

2. Safety: all necessary verification checks are performed before any code is exe-

cuted.

3. Comprehensibility: the resulting system architecture can easily be under-

stood and thus verified.

As described previously, an ad hoc implementation of laziness dramatically increases

the interleaving and delocalization of program plans within the system. This degrades

comprehensibility, which may in turn lead to the loss of safety. A well-designed mobile

code architecture should achieve the goals of safety and comprehensibility by localizing

all the security-related code into a stand-alone verification module free of loading and

linking logic. In particular, it should allow one to specify, craft, understand, and

evaluate the mobile code verifier as an individual engineering component, independent

of the loading and linking procedures.

1.1.2 Distributed Verification

As mentioned above, the verification of incoming, untrusted bytecode is performed

by the JVM at link time. I call this protection mechanism, in which a static code

verification procedure is invoked dynamically by the runtime environment, proof-on-

demand. Proof-on-demand is conceptually simple. It allows the JVM to take full

responsibility for assuring type safety even in the presence of dynamically generated
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code — a feature essential for implementing protection mechanisms based on dynamic

code rewriting [59, 201, 202, 215, 220, 167, 168]. However, proof-on-demand imposes

a considerable computational burden on the JVM. The link-time overhead is signifi-

cant enough that some authors hyperbolically compare it to a denial-of-service attack

[135, p. 110]. Compounding these concerns, the architectural complexity of link-time

bytecode verification also adds significantly to the JVM’s memory footprint [193, Sec.

5.3.1].

Future computational platforms will likely include a vast array of small information

appliances that have limited computational resources and demanding response-time

requirements. Downloaded mobile code will continue to be popular to provide short-

lived system extensions1. With its stability and widespread acceptance, the Java plat-

form — and specifically realizations thereof based on the Connected, Limited Device

Configuration (CLDC) specification [193] and the Connected Device Configuration

(CDC) specification [194] — will likely become a major infrastructure for hosting

mobile programs in small devices2. In these contexts, however, the high resource

requirements and architectural complexity of proof-on-demand implementations may

become intolerable. The CLDC specification has hence rejected the proof-on-demand

approach.

To address these issues, some or all of the verification burden may be offloaded

to parties other than the mobile code hosting environment. This gives rise to a

distributed verification system, in which a mobile code runtime environment shares

some or all of its verification burden with certain remotely located facilities. Each

facility interacts with the hosting environment by means of a verification protocol. A

distributed verification system may in fact employ distinct verification protocols for

different code units provided that an overall framework for protocol interoperability is

defined. An individual verification protocol is thus a fixed scheme that orchestrates the

communication and division of labor among the parties involved in the distributed

1For example, consider the mobile code language WMLScript [218] for the Wireless Application
Protocol.

2Consider, for example, the Java TV API, the Web Services API, Mobile Media API, just to
name a few.
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verification of a code unit. For example, proof-on-demand is a trivial verification

protocol that assigns the entire verification burden to the host environment.

In a distributed verification system, the party hosting the mobile code runtime

environment is called the code consumer. The party responsible for construction and

distribution of mobile programs is the code producer. Code producers and consumers

interact in various ways to define a verification protocol. As an alternative to proof-

on-demand, two families of verification protocols have been proposed in the related

literature.

1. Self-Certifying Code. The first protocol family involves annotating the un-

trusted code to make it self-certifying. This approach is exemplified in the work

on proof-carrying code [144, 143, 44]. The protocol proceeds as follows. (i) The

code consumers, or possibly an authority representing them, publish a safety

policy in the form of a verification-condition generator. Given any mobile pro-

gram, the generator computes a verification condition that must be shown to

be true if the code is to be accepted as safe by consumers. (ii) To distribute

a program, a code producer computes the verification condition from the code,

proves the condition, and then attaches the proof to the program code when it

is distributed. (iii) Upon receiving a mobile program, a consumer recomputes

the verification condition, and then checks if the attached proof indeed estab-

lishes the verification condition. Execution is granted if proof checking succeeds.

Since proof checking is often substantially easier than proof generation, this pro-

tocol induces less link-time overhead than proof-on-demand. Furthermore, since

proof generation may now be performed once and for all on the producer side,

difficult-to-prove safety properties may consequently become affordable.

In application to Java, the essential idea behind proof-carrying code is that the

code producer can annotate a mobile program with static analysis results, so

that a consumer may use the annotations to avoid performing a full bytecode

verification. This idea has been applied to the verification of Java bytecode in

various forms [165, 119, 44], and has further been incorporated in the stack map

method of the CLDC specification [193, Sec. 5.3].
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2. Signature-based Methods. A second family of distributed verification pro-

tocols is based on a very efficient and well-understood mechanism, namely, sig-

nature checking. Execution is granted to code that is signed by a trusted party.

A major objection to these protocols is that, unlike a proof (or other kinds of

annotations), the semantics of a signature may not be well defined. Thus, there

may be no protection against the possibility that signing authorities miscertify.

Moreover, celebrity is required in the certification of mobile programs, making

it hard for non-established developers to inspire trust.

These objections are nicely addressed by a protocol which I call proof delegation

[54, 55]. The protocol proceeds as follow. (i) The code consumers, or more likely

an authority representing them, publish a safety policy in the form of a static

program analyzer that checks if a given mobile program is safe. The analyzer

is encapsulated in a trusted coprocessor, for example, having the form factor of

a PCMCIA card or a PCI card [101]. Attempts to physically tamper with the

encapsulated analyzer or to extract the private encryption key in the hardware

will render the hardware dysfunctional, or perhaps clear its memory [63]. The

hardware is then distributed to code producers. (ii) To distribute software, a

code producer submits mobile programs to the trusted program analyzer, which

verifies the safety of the code, and digitally signs it. (iii) Upon arrival at a

consumer site, the signature attached to the program code will be authenti-

cated. The bytecode verification of the proof-on-demand protocol is replaced

by a simple and efficient signature-checking primitive. Using trusted coproces-

sors, proof delegation physically binds the signature to the formal properties

enforced by a static program analyzer, thereby giving a well-defined semantics

to the signature3.

In order to support distributed verification protocols in a mobile code system as

complex as the JVM, two further issues must be addressed:

3When combined with a public key management infrastructure, signature-based verification pro-
tocols also enable a very flexible configuration management solution, in which software releases
known to be flawed can be disabled remotely [54, 55].
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1. Conditional Certification. When a Java classfile is verified remotely, it is only

checked against the classes on the producer side. However, Java type safety is

a link-time notion, and a classfile is safe only if it is checked against the loaded

classes on the consumer side. For example, suppose a classfile is safe only if it

can be shown that class X is a subclass of class Y . Suppose further that this

relation does not hold on the consumer side. A malicious code producer could

forge a class hierarchy in which the subclassing relation holds, and then use it

to trick a remote verifier into certifying the classfile in question. Trusting the

certificate generated by the remote verifier, the consumer executes the code in

the classfile, and type confusion happens as a result. To protect against such

attacks, a conditional semantics for certificates is needed. That is, a conditional

certificate guarantees that a classfile is safe if specified external dependencies

are further validated on the consumer side at link time. This issue is especially

pressing in the case of signature-based verification protocol: even though the

external dependencies may be computed on the fly by the code consumer, the

computation itself may have a complexity comparable to that of self-certifying

code, thereby nullifying the efficiency advantage of a signature-based verification

protocol.

2. Protocol Interoperability. A Java developer may use some off-the-shelf com-

ponents, and write “glue” code to orchestrate their interaction. A possible

scenario may be that the prefabricated components are already certified us-

ing efficient signature-based protocols, while the home-grown connection code

is certified by CLDC-style stack maps. A JVM hosting this program will not

only need to be fluent in both signature-based and on-demand protocols, but

also need to combine the two different kinds of certificate (signatures and stack

maps) when assessing the safety of the whole program. What is needed, then,

is a mechanism to hide the details of a code unit’s certificate, and examine

only its certification interface, which offers us a safe mechanism for combining

certificates.

The current architecture of the JVM offers no support for addressing the two
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issues above. Neither the Java classfile format [130, Chapter 4] nor the Java Archive

(JAR) [192] file format offers provision for expressing the conditional semantics of

a certification. In essence, the existing mobile code transport infrastructure in the

Java platform lacks a way to express an explicit certification interface. Without such

an interface, it is difficult to work through the complex interdependencies between

verification and dynamic linking in order to support the interoperability of verification

protocols.

1.1.3 Augmented Type Systems

Future systems will likely see additional forms of run-time verification to provide en-

hanced levels of protection. As the pervasiveness of mobile code hosting environments

increases, so too do the vulnerabilities and the potential consequences of these vulner-

abilities. To counteract this, attention will turn to safety properties that go beyond

simple “type safety” in ensuring system security. These application-specific safety

properties are usually formulated as augmented type systems on top of the base type

system of a mobile code language. While the literature about such augmented type

systems is vast, two particularly interesting bodies of work are summarized here:

1. Information Flow Control. The US military’s multilevel security model, in

which documents are classified into a finite set of security levels such as un-

classified, restricted, confidential, secret, and top secret, is an incarnation of

the more general security model proposed by Bell and La Padula [20, 124].

Under such a model, a subject may only read objects with classification level

no higher than its clearance, but may only write to objects with classification

level no lower than its clearance. Information is always unidirectionally flow-

ing from low classification source to high classification destination. Denning

[50, 52, 51] first applied this idea to the control of information flow in high

level programming languages through static analysis. Subsequent developments

have been constantly reported [171], among which the work of Volpano and

Smith [213, 209, 208, 186, 210, 187, 211, 212, 207, 184, 185] has recently at-

tracted considerable attention from the mobile code community. They defined
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an augmented type system on a prototypical high level imperative programming

language, so that programmers may decorate a variable by a discrete security

level. They have proven a form of noninterference property [81], so that, in

a well-typed program, the values of more sensitive variables never “interfere”

with the values of less sensitive variables. Realization of such a type system in

a mobile code programming language will address a significant aspect of confi-

dentiality in mobile code systems.

2. Alias Control. Reasoning about side effects is difficult in object-oriented sys-

tems in which writable aliases could be created in an unrestrained manner [100].

Augmented type systems have been proposed to control the effect of aliasing.

They achieve this by adopting one or both of the following strategies:

• Alias prevention: Alias creation is avoided by either using unique types

[17, 138, 27, 6] or placing constraints on the connectivity of the object

graph [100, 8, 40, 6].

• Access control: Side effects resulted from aliases is controlled by either

tagging aliases to be read-only [100, 122, 182] or imposing other forms of

access control [121, 150, 28].

As these type systems are effectively access control constraints, they could be

applied to enforce safety policies [206, 26, 25].

One critique of the research mentioned above is that the notion of type safety

is often formulated as a compile-time property, administrated by the code producer,

performed against source programs at the time of code generation. However, as men-

tioned before, in a mobile code environment in which code units bind via lazy, dynamic

linking, type safety is in fact a link-time notion. Code units that are checked to be

type safe within the compilation environment may no longer be type safe when they

are linked against the code units found in the mobile code hosting environment. For

augmented type systems to become a viable mobile code protection mechanism, type

compatibility between individual code units must be enforced at link time. Unfor-

tunately, given the inherent complexity of the lazy, dynamic linking process, and its
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tight coupling with the static type verification component, the programming cost is

likely to be prohibitive if one is to augment the existing type checking procedure of

a production mobile code environment such as the JVM. This explains why it is very

rare to see any of the mentioned work implemented in a realistic mobile code system.

In summary, the lack of modularity in the verification procedure prohibits a mobile

code system from being extended to incorporate alternative protection mechanisms

that are based on link-time static analysis.

1.2 Thesis Statement

Despite the apparent diversity of the three problems discussed in the previous sec-

tion, they share a common crux: the lack of modularity in the verification archi-

tectures of mobile code systems. Consider the motivation behind the adoption of

Pluggable Authentication Modules (PAM) for modularizing authentication services.

So long as an application is written into the PAM API, system administrators can

conveniently replace its out-dated authentication technology by a more modern one

(e.g., replacing the use of the /etc/passwd file by a shadow password file), adopt

an alternative authentication protocol (e.g., strong authentication with Kerberos or

one-time passwords), or even authenticate with alternative semantics (e.g., biometric

authentication). Thanks to modularity, these improvements can be injected into an

application without changing a single line of its code. What PAM does to authenti-

cation services, a “Pluggable Verification Module” architecture can do to verification

services. Modularization allows the verification service to evolve independently from

the mobile code hosting environment, provides freedom in the adoption of alternative

verification protocols, and supports the introduction of new verification semantics.

This dissertation advocates the adoption of a language-independent architecture

for building dynamically-linked mobile code systems in order to address the issues

of stand-alone verification modules, distributed verification, and augmented type sys-

tems. By design of this architecture, the verification logic of the run-time environment

is localized in a stand-alone module fully decoupled from loading and linking, while
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the laziness of dynamic linking is preserved. To achieve this, the verifier eschews

the loading of classes to validate external dependencies. Instead, it converts each

dependency into a proof obligation, which constitutes the safety precondition for en-

dorsing that dependency. Each proof obligation is scheduled to be discharged when

the linking primitive responsible for materializing the said dependency is executed by

the run-time environment. The run-time environment is responsible for tracking and

discharging proof obligations, and for scheduling the execution of linking primitives

according to a fixed linking strategy. I coin the term Proof Linking to refer to this

modular verification architecture.

The goal of this study is to bring concrete evidence, in the context of the Java

programming language environment, to the following theses:

TS1 (Modeling Adequacy and Soundness): The Proof Linking architecture can be in-

stantiated to adequately model the semantic complexity of a production mobile

code system, and to do so in a provably sound manner.

TS2 (Implementation Feasibility): The Proof Linking architecture can be feasibly

realized to provide support for stand-alone verification modules, distributed

verification and augmented type systems.

1.3 Dissertation Overview

The rest of this dissertation is structured as follows:

Chapter 2 Viewer Discretion

This chapter surveys the security requirements and protection mechanisms for

existing mobile code systems. It paints an intellectual backdrop for subsequent

chapters, and identifies works that this research converse with. This chapter

can be read independently of the rest of the dissertation.

Chapter 3 The Proof Linking Architecture
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This chapter describes the key components of the generic Proof Linking archi-

tecture. It specifies three formal correctness conditions, namely, Safety, Mono-

tonicity and Completion, to which any language-specific instantiation of Proof

Linking should conform. A brief description of how the architecture addresses

the issues of stand-alone verification modules, distributed verification and aug-

mented type systems is also given. A number of concrete research problems are

identified.

Chapter 4 Lazy, Dynamic Linking

This chapter presents a Java instantiation of the Proof Linking architecture that

accounts for the complexity of lazy, dynamic linking. The three correctness con-

ditions introduced in Chapter 3 are shown to be preserved in this instantiation.

Chapter 5 Multiple Classloaders

This chapter introduces another level of complexity into the Proof Linking model

presented in Chapter 4, namely, that of the presence of multiple classloaders.

Again, the correctness conditions were shown to be preserved.

Chapter 6 The Aegis VM

This chapter presents a realization of Proof Linking in an open source Java

Virtual Machine, the Aegis VM. It describes the design and implementation

of an extensible protection mechanism, Pluggable Verification Module, which

embodies the Proof Linking architecture. The data structures and programming

interfaces for handling proof obligations and commitments are described.

Chapter 7 Application: Java Access Control

The generality and utility of the framework presented in Chapter 6 is evaluated

in a specific verification domain, namely, that of the augmented type system

JAC [122].

Chapter 8 Conclusion
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This chapter compares and contrasts Proof Linking with related works, sum-

marizes the contributions and limitations of this research, and highlights any

future research directions.



Chapter 2

Viewer Discretion

2.1 Introduction

Mobile code computation is a relatively new paradigm for structuring distributed

systems [31]. Mobile programs migrate from remote sites to a host, and interact

with the resources and facilities local to that host. This new mode of distributed

computation promises great opportunities for electronic commerce, mobile computing,

and information harvesting. There has been a general consensus that security is the

key to the success of mobile code computation. In this chapter, the issues surrounding

the protection of a host from potentially hostile mobile programs are surveyed.

Decades of research in operating systems and computer security have provided sig-

nificant experience and insight into the nature of system security. Yet, the advent of

mobile code systems has presented new security challenges that push the boundaries

of previous security technologies. In this chapter, the distinctive security challenges

of mobile code computation are captured in three security requirements, namely, the

establishment of anonymous trust (establishing trust with programs from unfamil-

iar origin), layered protection (establishing protection boundaries among mutually-

distrusting components of the same process), and implicit acquisition (coping with

the implicit nature of mobile code acquisition).

15
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This chapter also surveys existing approaches to protection in mobile code sys-

tems. Mobile code system protection mechanisms are classified into four categories,

namely, discretion, verification, transformation, and arbitration. Each category is

evaluated by the degree to which they address the security requirements of mobile

code computation.

The chapter begins with an introduction to mobile code systems (Section 2.2).

Section 2.3 describes the distinct security challenges of mobile code computation.

Section 2.4 surveys four major categories of protection approaches in existing mobile

code systems, namely, discretion, verification, transformation, and arbitration.

2.2 The Nature of Code Mobility

2.2.1 Code Mobility

Mobile code is an architectural paradigm for structuring distributed software systems

[31]. In general, one can always construct distributed systems by writing socket code

using a client-server architecture. What is interesting about mobile code systems is

the notion of code mobility: instead of simply passing data messages, communicating

processes in mobile code systems exchange program code. Here, it is wise to distin-

guish between strong mobility and weak mobility [46]. Strong mobility is the mobility

of computation: an entire thread of computation (or a group of threads), including

both its code and its state (e.g., binding environment, stack, etc) are transported.

Weak mobility describes the motion of code only. For instance, various forms of

active contents (e.g., Java applets [14]) are examples of weak mobility.

Weak Mobility

A weak mobility system has a typical architecture as depicted in Figure 2.1. A client

process C (or the code producer) and a server process S (or the code consumer) run

in two different machines. The server process S has access to some resource R on the

server machine (Figure 2.1(a)). Resource R could be a data structure, some service
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routines, or simply computer cycles. Attempting to access resource R in the server

machine, the client process C sends a program fragment P to the server process S

(Figure 2.1(b)). Upon arrival, code fragment P is dynamically linked into process

S. S then invokes the code in P (Figure 2.1(c)), enabling P to access resource R on

behalf of process C. The result of accessing R is communicated back to C if necessary.

To make the above abstract description more concrete, think of S being a web browser

process (e.g., netscape), with access to local windowing system and terminal display

(resource R), and think of C being a web server process (e.g., httpd). The code

fragment P could be a Java applet.

Carzaniga et al [31] identify two variants of the above architecture:

Code-on-Demand: The server process S initiates communication. It requests client

C to send it program fragment P . Various forms of active contents, including

Java applets [14], ActiveX controls [137], and JavaScript [147] are commercial

examples of code-on-demand.

Remote Evaluation: The client process C initiates the communication. It sends

code fragment P to server S, requesting S to evaluate P on its behalf. Stamos

and Gifford [189] were the first to envision this architecture. MIME Tcl ex-

tension [24], active packets [98, 139, 99] and various forms of active/intelligent

disks [3, 114, 163] are examples of remote evaluation.

Strong Mobility

Strong mobility is commonly known as mobile agents [31]. A typical mobile agent

architecture is depicted in Figure 2.2. A group of coordinating threads T is originally

running in a process C on the client machine, and accessing the resources therein

(Figure 2.2(a)). At a certain point, thread group T attempts to access resource R

that is owned by a process S running on a remote machine. To do so, thread group T

requests its parent process C to transport it to remote process S. Process C suspends

T , and then marshals T into an encoding P that encapsulates both the code T is

executing and the dynamic state of T . The encoding P is then sent off to process S
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(Figure 2.2(b)). Upon arrival, the encoding P is dynamically linked into process S,

and the execution of T is resumed, thereby allowing T to interact with resource R

(Figure 2.2(c)). T remains in S until there is a need to access remote resource again.

Another motivation for agent migration is to create opportunities for multiple

agents to interact with each other at a rendezvous point. Typical applications include

online auction [173, 226, 13, 95] and other e-commerce domains [134].

Generalization

Let us ponder again on the two architectures laid out in Figures 2.1 and 2.2. The mo-

tivation of exchanging code in both cases is for an external party to access the remote

resource R located in the server machine. In every mobile code system, there is a com-

puting platform, called a host, that offers external access to a selected set of computing

resources that it owns. The resources are managed by a process called a computing

environment (CE), which defines a controlled interface between the resources and ex-

ternal parties who want to access the resources. In the previous example, process S

fills this role of a computing environment.

When an external party attempts to access the facilities managed by the comput-

ing environment, it sends off a mobile code unit which corresponds to either a code

fragment (as in the case of weak mobility) or an encoding of some threads (as in the

case of strong mobility). The program code in the mobile code units will then be dy-

namically linked into the computing environment process. One or more threads will

be started to carry out the computation prescribed by the downloaded mobile code

unit, that is, to access the resources of interest on behalf of the external party. These

threads might in turn start some other threads. Together these threads constitute a

recognizable application program that carry out a single job. Such a group of threads

is called an execution unit. An execution unit is a direct analogue of a process in a

traditional operating system, just as the computing environment is an analogue of

the operating system itself. From a security perspective, no execution unit should be

allowed to access host resources except in conformance to the protocol imposed by a
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computing environment. Notice that a host may serve multiple computing environ-

ments, while each computing environment may in turn host one or more execution

units.

Consider Java as an example. The Java Virtual Machine (JVM) is the computing

environment of Java. As an interpreter, it creates a sandbox in which interaction

between Java threads and the underlying operating system can be controlled. Multiple

JVMs can coexist at a single host. Migration occurs when a Java classloader retrieves

mobile code units, called Java classfiles, from, say, a remote web server process. The

classfiles are verified and then dynamically linked into the JVM. Finally, the JVM

spawns off an applet thread that invokes the linked code. An applet is therefore an

execution unit in Java.

2.2.2 Motivation of Code Mobility

Motivation for adopting the mobile code paradigm has been surveyed in great de-

tail in the literature [120, 35, 36, 31, 199]. The following list summarizes several

representative applications:

1. Real-time interaction with remote resources: Most computing resources,

like databases, file systems, or even physical displays, are not transportable. If

such resources are located at a remote site, then computation that requires real-

time interaction with the resources has to happen where the resources reside.

Code mobility allows one to prescribe the location of computation, so as to make

real-time interaction possible. For example, active contents like Java applets

prescribe interactive presentation that is to be rendered on the browser side.

2. Reduction of Communication Traffic: Mobile computers (e.g., hand-held

computers or intelligent mobile phones) usually interact with servers through

unreliable, low-bandwidth, high-latency, high-cost networks. Mobile programs

become an attractive alternative because network traffic can be reduced by

migrating the client program to the server side, thus avoiding the potential

cross-network communication bottlenecks.
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3. Customization and extension of server capabilities: Valuable hardware

resources are usually managed by server software (e.g., an operating system).

Such server software usually defines access policies that are extremely general,

and tend to ignore the specific needs of individual clients. Recently, various

proposals have been made to allow application-specific extension code to be

downloaded dynamically into server software, so as to customize its access poli-

cies to meet the specific needs of clients. Typical examples include extensible

operating systems [22, 58, 110, 178], active networks [198, 34], active/intelligent

disks [3, 114, 163], and many others.

4. Avoiding distribution of state: In traditional client-server applications, the

state of computation is distributed among servers and clients. As a consequence,

it is difficult to maintain consistency of the distributed states, and to articulate

the correctness of the computation. Mobile code systems localize computation

states in a single process. They offer a better abstraction that makes the crafting

of distributed software a more manageable task.

Chess et al [36] fairly pointed out that any application that can be crafted under the

mobile code paradigm can also be structured as a client-server application. However,

mobile code systems offer many engineering advantages that its client-server counter-

parts may lack. Recently, Carzaniga et al [31] propose an abstract model for evaluating

the potential benefit of adopting various mobile code paradigms. The result suggests

that the advantages pay off only for certain kinds of application domains.

2.2.3 Code Mobility, Dynamic Linking, and Binding Envi-

ronment

The essence of code mobility is the ability to transport some resource-accessing mo-

bile code units from one host to another, and then execute those code units on the

resource-bearing host. In order for the resource-accessing mobile code unit to do

so, it must contain some free variables that refer to the resources it is interested in.

Therefore, upon arrival, all mobile code units must go through a phase of integrating
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into the computing environment, and that integration usually takes the form of dy-

namic linking, that is, linking the free variables in the mobile code units to the actual

resources owned by the computing environment.

Viewing from a programming language perspective, mobile code units are basically

code that contains free variables. A computing environment is in fact a binding

environment that defines bindings for the free variables in mobile code units. Code

migration, then, is the dynamic specification of the binding environment in which

an open program is to be executed. This view, first advocated by Queinnec and De

Roure [161], can be illustrated in the following way.

The signature of a typical metacircular Scheme interpreter1 [2] has the following

form:

(eval form env)

Given a Scheme form (an open program) and a binding environment, the eval inter-

preter computes the value of form, using the bindings in env whenever free variables

in form are to be resolved. If we see a computing environment as a binding envi-

ronment that supplies bindings for the free variables occurring in a mobile code unit,

then code mobility can be viewed as the explicit identification of the binding envi-

ronment in which a form is to be evaluated. It is this dynamic linking aspect that

makes computation “occur at another site”. In this manner, remote evaluation can

be understood as the evaluation of a form in a remote environment:

(eval form network-locator-for-environment)

Here, network-locator-for-environment names the binding environment in which

form will be evaluated. Code-on-demand can be understood similarly:

(eval network-locator-for-program local-environment)

1A metacircular Scheme interpreter is a Scheme interpreter written in the Scheme language itself.
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Here, network-locator-for-program names the remote program that is to be brought

in for execution.

Mobile agents are not easily understood in such a framework. In the studying

of code sharing via the internet, Queinnec and De Roure [161] propose the following

special form that captures various forms of code mobility:

(import (v1 v2 ...) env form)

The import special form composes an environment, and then evaluates form in this

environment. The target environment is composed by taking the current environ-

ment (the lexical environment import is in) and then overshadowing the definition of

variables v1, v2, . . . by those in the first-class environment env. If env represents a

remote host, then the target environment will be composed of both the bindings in

the remote host and the current state of computation. Strong mobility is thus given

a very clean model.

Realizing that dynamic linking and dynamic specification of binding environment

are the underlying reality of mobile code computing is crucial for the following reason:

there is a very subtle analogy between a protection domain and a name space (a

binding environment).

2.2.4 Viewer Discretion: The Security Challenge

PostScript files [196] could be seen as a form of mobile programs [199]. As a stack-

based, page-description language, it offers a very compact description of documents.

When PostScript documents are sent to printers, the documents are interpreted to

generate printout. This setup off-loads some of the document rendering burden from

the printing hosts to the printers. Because of its simplicity, one does not usually

expect this incarnation of remote evaluation to go wrong.

As PostScript gradually gained its popularity as a portable document description

language, it became a standard medium for document distribution on the internet.

Recognizing it as a MIME type, web browsers automatically spawn off a viewer process
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as a Postscript file is downloaded. In 1995, the CERT coordination center discovered

that some older versions of postscript viewers allow Postscript programs to access the

local file system in an unsafe manner [32]. This presents a potentially serious threat

to the web browsing system, for the vulnerability can be abused by malevolent pro-

grammers “intentionally embedding commands within an otherwise harmless image

so that when displaying that image the PostScript viewer may perform malicious file

creations or deletions.” [32]

With the emergence of rogue applets [123, 135] and other forms of malicious active

contents, users of mobile code systems are now more aware of the security threats

associated with mobile code computation. A rogue mobile code unit may overwrite

valuable data on local disks, covertly transmit private information to another party,

hang the hosting browsers, or masquerade as another trusted application.

Unfortunately, mobile code units may originate from unfamiliar sources, making it

difficult for users to determine if a given code unit should be granted execution rights.

A naive response would to be turn off all mobile code capabilities. This option,

however, is not desirable due to the fact that increasingly software infrastructures

are built around mobile code technologies. The crux of the problem then is not

one of avoiding mobile code technologies, but of protecting users from unsafe mobile

programs.

Security is also the most challenging aspect in the crafting of mobile code hosting

environment. For one, it is difficult to articulate exactly what it means for a mobile

code system to be secure. The next section delineates the distinct security needs of

mobile code systems.

2.3 The Distinct Security Requirements of Mobile

Code Systems

There are two classes of security issues in mobile code computing:

• Host security is concerned with the protection of a host from untrusted mobile

programs, and with the avoidance of mutual interference among execution units.
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• Application security is concerned with the assurance of correctness and confi-

dentiality for the computation that is delegated to a remote host. When an

untrusted host carries out a computation on behalf of a client, the host may

maliciously corrupt or expose the internal state of the client’s execution units.

Application security goes by other names like code security [210].

This chapter is mainly devoted to the exploration of issues concerning host security.

Readers interested in application security may consult [61, 204, 106, 105, 39].

Viewing from the perspective of host security, mobile code systems share many

similarities with an operating system. In particular, security issues arise in both

kinds of systems when they attempt to address the need of multiprogramming, and

specifically, the need for safe resource sharing. A multiprogramming system allows

multiple execution units to coexist on a host. It is desirable to ensure that no single

execution unit has total monopoly of the host’s resources. As a result, individual

execution units must be guarded from interfering with each other, and from undesired

exploitation of the host’s resources and facilities. To this end, various protection

mechanisms are built into an operating system. Silberschatz and Galvin [180, p 431]

understand the entire business of protection as one of providing safe sharing of name

spaces:

Protection was originally conceived as an adjunct to multiprogramming

operating systems, so that untrustworthy users might safely share a com-

mon logical name space, such as a directory of files, or share a common

physical name space, such as memory.

Given the common security goal of safe resource sharing, it is then important

to question why the existing protection mechanisms in operating systems cannot be

directly transplanted to mobile code systems to address similar security needs. In

other words, we need to articulate in clear and precise terms an answer to the following

question:

Question of Distinction: What makes the security needs of mobile code

computing different from those of traditional multiprogramming op-

erating systems?
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This section attempts to answer the above question.

Sections 2.3.1–2.3.2 give a brief survey of the security requirements and protec-

tion mechanisms in traditional multiprogramming systems. Details can be found in

standard textbooks on operating systems [180], computer architecture [97], computer

security [23] and network security [113]. Readers already familiar with these topics

may skip the mentioned sections. Section 2.3.3 describes three distinctive challenges

in mobile code security. Section 2.3.4 then articulates why software-based solutions

to such challenges should be sought.

2.3.1 Ingredients of Host Security

There are three aspects to the security of a computing system:

Integrity: System resources should be protected from unauthorized modification,

deletion, or other means of tampering.

Confidentiality: Sensitive information should be protected from leaking through

unauthorized channels. Confidentiality goes by other names such as privacy or

secrecy.

Availability: The computing system should be protected from interference that af-

fects its normal operation and availability of service.

In order to establish and evaluate the security of a computing system, one has to

refine the above criteria, and lay out exactly what the security requirements are in

concrete terms. A policy is a well-defined, consistent, and implementable statement of

the security one expects the system to enforce. It is an administrative decision about

what should constitute a breach of security.

There are several well-known types of threat that may compromise integrity, con-

fidentiality or availability.

Corruption. Execution units may modify or erase important data. Others may tam-

per with the internal state of the system, rendering the system state incoherent.
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Typical examples of such attacks include various forms of computer virus that

cause damage to host’s data. Such attacks compromise the integrity of the

system.

Leakage. Execution units may actively release sensitive information to an outside

party. Others may engage in data processing activities from which malicious

third parties can infer information that is supposed to be classified (i.e., covert

channels). For example, an unguarded Java applet may access personal finan-

cial records on an unsuspecting PC’s hard drive, and then send the information

back to the attacker via a socket connection. Such attacks violate system con-

fidentiality.

Denial of service. Execution units may monopolize shared resources like the termi-

nal screen (creating a window so huge that it covers everything on your terminal

screen), CPU time (raising its own priority above all other threads), threading

services (killing all threads other than itself), etc. Such attacks compromise the

availability of the system.

Masquerading. A rogue execution unit may masquerade as a legitimate application

by faking the user interface of the latter, thus fooling the users into entrusting

it with critical resources (e.g., stealing CPU time for factoring an integer) and

data (e.g., asking users for their passwords). Execution units may also pretend

to originate from a trusted origin (e.g., various spoofing attacks). An execution

unit may even fool the type system by appearing to be of another type (e.g.,

type confusion in Java), thus gaining access to the internal state of the system.

Masquerading is a very subtle form of attack that could potentially lead to the

compromising of integrity, confidentiality, and availability.

These types of threat have long been of concern in traditional computing environ-

ments. Mobile code systems such as Java are also subject to threats of these kinds

[123, 135, 64, 154].
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2.3.2 Traditional Protection Mechanisms

Two relevant protection mechanisms in traditional operating systems are memory

protection and access control2.

Memory Protection

Memory protection seeks to ensure that execution units interfere neither with the

execution states of other units nor with the state of the global host. In general,

this requires that control can flow outside of the execution unit only through some

well-defined interface provided by the computing environment. In short, the goal of

memory protection is to avoid the malfunctioning of one execution unit from contam-

inating other execution units or even the host itself. Memory protection also goes by

other names in the mobile code literature, namely, low level security [225] or simply

safety [112].

In traditional operating systems, memory protection is achieved by three mecha-

nisms in combination:

1. Processes are placed in separate address spaces. At run-time, every address

reference, be it a data reference or a control transfer, is checked by the hardware

to see if the referenced location belongs to the address space of the running

process. If not, a memory fault will be generated to halt the process and return

control to the operating system.

2. The CPU offers two mode of execution, namely, the kernel mode and the user

mode. User processes are always executed in the user mode. Instructions that

set the boundary of address space are protected, and can only be executed in the

kernel mode. User processes are then protected from redefining the boundary

of their address spaces.

2In fact, competent operating systems offer other kinds of protection mechanisms, including CPU
protection, instruction protection, I/O protection, etc. In a mobile code system, execution units
usually execute inside a user process, and thus are already protected from monopolizing the CPU(s),
executing privileged instructions, and directly accessing any I/O channels. Therefore, these issues
will not be touched on in the remainder.
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3. Control flowing outside of the address space must pass through a special interface

of the operating system kernel. This is usually achieved by providing a set of pre-

defined system calls accessible by a special TRAP instruction. When a system

call is invoked, the CPU switches to kernel mode, and control is transferred to

the operating system, which in turn processes the system call on behalf of the

user process.

Instead of a simple dichotomy of kernel and user modes, some operating systems

provide multiple, concentric rings of security levels. Code running in the more trusted

rings may access data and code in the less trusted ring, but not vice versa. Less

trusted code may transfer control to the more trusted code via special entry points

called gates. Generally, these arrangements require special hardware and operating

system support.

Access Control

In traditional operating systems, resources of the host are modeled as objects, while

user processes are modeled as subjects. A subject can perform operations on an

object. The permission to perform a certain operation on an object is said to be an

access right. Security policies are expressed as an assignment of rights to subjects. A

protection domain is a collection of access rights. A user process acquires its access

rights by being associated to a protection domain.

Access rights in a multiprogramming system can be expressed as an access ma-

trix. Every row in the matrix represents a protection domain, while every column

represents an object. By labeling an entry in the matrix with access operations, one

effectively defines what rights are given to a protection domain (row) for the accessing

of an object (column). In traditional operating systems, an access matrix is usually

implemented in one of two ways. The first approach is the access control list. Associ-

ated with every system resource is a list of 〈subject, right〉 pairs. Whenever a resource

is accessed, its associated list is checked to see if the accessing subject is on the list

and is granted appropriate access right. A second approach is that of capability. A
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capability is an unforgeable pointer to a system resource. By acquiring the pointer, a

subject is then granted the right to access the object. In a sense, capability controls

access through visibility — if a system resource is not even visible to a process, then

there is no way the process can access it.

In traditional operating systems, access control presumes two related mechanisms:

authentication and authorization. Authentication is the process of establishing the

identity of a user. Authorization is the process of translating the result of authen-

tication into decisions of what access right is granted to authenticated users. Under

such a system, whether a user has right to perform an operation is largely dependent

on his/her identity, or, more precisely, on the operating system’s knowledge about

him/her.

2.3.3 Distinctiveness of Mobile Code Security

What then distinguishes mobile code computing from multiprogramming in tradi-

tional operating systems? Why cannot the traditional protection mechanisms satisfy

the security needs of mobile code computing? This work advocates the perspective

that the mobile code phenomenon is distinctive in the following way:

Distinctiveness of Code Mobility: Subject only to time-bounded, au-

tomatable checking, code originating from any arbitrary source may

be executed in an environment that exposes access to shared re-

sources.

Here, the three key phrases are “time-bounded, automatable checking”, “any arbitrary

source”, and “exposes access to shared resources”, details of each will be given in the

following.

Anonymous Trust

Traditional discretionary access control [172] is based on trusted identities. A user is

a known party. Based on one’s trust with the user’s identity, and based on notions
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like resource ownership, one then authorizes access to system resources. A direct

translation of this idea to mobile code security is to attach to every mobile code unit

a digital signature that signifies its origin. In this view, the source of the mobile

code unit is treated as a user in a traditional operating system, and authorization of

access rights is based on the familiarity of the code unit’s origin. This approach works

well when the mobile program is developed by a well-known brand name, or when

it is sent from a trusted source. Yet, the approach breaks down when the foreign

code is written by an unknown author and sent from an obscure origin. The very

spirit of WWW computing is that any party can freely share information or active

content with others who have access to the internet. It is conceivable that in the

future an increasing number of useful mobile programs are going to be developed

and distributed by parties unknown to the average users. Security that is based

solely on identity cannot account for such phenomena. In such an approach, the only

completely safe practice will be to throw the baby out with the bath water, and reject

all untrusted code. This difficulty was first articulated by Ousterhout et al [153], and

then found its full expression in a paper of Chess [37], in which he discusses the fallacy

of the “Identity Assumption”.

The most important assumption that mobile code systems violate is:

Whenever a program attempts some action, we can easily iden-

tify a person to whom that action can be attributed, and it is

safe to assume that that person intends the action to be taken.

For all intents and purposes, that is, every program that you run may be

treated as though it were an extension of yourself.

The above discussion illustrates a fundamental challenge in mobile code security:

Anonymous Trust: How can users establish trust for a mobile code unit

sent from an unknown origin and developed by an unknown party?

Given the above, security engineers should not rely solely on identity or origin in-

formation to authorize access. A competent security infrastructure should accept
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trustworthy mobile programs even if they are anonymous. Therefore, it is accepted as

an axiom that mobile programs from any origin will be downloaded into a computing

environment:

Axiom of Anonymity: Code from any arbitrary origin will be down-

loaded.

Two implications follow from the Axiom of Anonymity. Firstly, mandatory access

control is particularly relevant to mobile code security. Secondly, with the emergence

of the web, the model of software distribution has changed. No longer can users

establish trust solely by means of brand names and well known vendors, for everyone

may now distribute software. It is necessary to put tools and techniques into the hands

of this new breed of anonymous programmers so that they can construct software

that inspires trust in hosts. Devanbu et al call such an endeavor trusted software

engineering [55].

Layered Protection

Another fundamental aspect of mobile code computing is that a mobile code system

defines a complete multiprogramming environment on top of the existing operating

system. The mobile code computing environment may define its own computing

model, maintain its own resources, provide its own set of services, and hence define

its own security model. Consequently, it is usually not realistic to simply treat an

execution unit as just another process in the operating system, running in just an-

other protection domain. The desire for platform independence (Section 2.3.4) further

discourages non-portable adherence to the security model of a particular operating

system.

In addition, as one of the users in the underlying platform, a mobile code comput-

ing environment may expose some of the operating system resources to the visiting

execution units. The mobile code security model must honor the security constraints

imposed by the operating system.
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A typical arrangement in existing mobile code systems is to have the computing

environment running as an operating system process, while treating execution units

as secondary threads executing within that process. For example, a web browser is

a single process containing a Java Virtual Machine, in which Java applets are run.

A Java web server is also a single process. Servlets run within the server process as

secondary threads, thus avoiding costly CGI-based solutions. Since a process defines

both the boundary for memory protection and the protection domain for access con-

trol, execution units are protected from exploiting resources outside of the computing

environment.

Protection within a computing environment is less trivial. Mobile code units are

linked into the computing environment process. Sharing the same address space and

protection domain, the execution units and the computing environment process are

indistinguishable from the point of view of the operating system, which must rely on

process boundary to enforce protection. This creates an embarrassing situation, in

which code fragments within a single application process do not trust each other3. As

a result, the computing environment process has to enforce memory protection and

access control4 within the process itself.

The security model of the operating system and the security model of the mobile

code system then form a parent-child relationship. Providing mechanisms for defining

child protection domains inside a single process becomes the second fundamental

challenge to mobile code security:

3It is revealing to read a passage in a standard operating systems text [180, p 112]:

However, unlike processes, threads are not independent of one another. Because all
threads can access every address in the task, a thread can read or write over any other
thread’s stacks. This [multi-threading] structure does not provide protection between
threads. Such protection, however, should not be necessary. Whereas processes may
originate from different users, and may be hostile to one another, only a single user can
own an individual task with multiple threads. The threads, in this case, probably would
be designed to assist one another, and therefore would not require mutual protection.

The introduction of mobile code computing environment definitely falsifies the above assumption.
4Again, one could point out the need to avoid the monopolization of the process’s time slice by a

secondary task. This is easily achieved if a competent scheduling mechanism is in place. Therefore we
will leave the issue here. For those interested in having more control on Java’s scheduling mechanism,
consult [125, section 8.3].
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Layered Protection: How can protection be established among mutually-

distrusting execution units coexisting in a single application process?

An alternative articulation of this problem is what Rees [162, p 16] called the safe

invocation problem:

When a program is invoked, it inherits all of the privileges of the invoker.

The assumption is that every program that a user runs is absolutely trust-

worthy. . . . It is remarkable that we get by without secure cooperation. We

do so only because people who use programs place such a high level of trust

in the people who write those programs.

What Rees refers to by secure cooperation is the ability to invoke an unfamiliar routine

without granting it all the invoker’s rights. To achieve this, one needs to be able to

hierarchically construct a child protection domain for executing untrusted code within

the invoker’s process.

Layered protection is a characteristic feature in single-address-space operating

systems like OPAL [33] and Mungi [96], and extensible operating systems like SPIN

[22], VINO [178], and Exokernel [58, 110]. In such operating systems, untrusted

code may be (dynamically) introduced into a privileged protection domain (e.g., the

kernel). One wants to avoid the untrusted code units from exploiting the resources in

that domain. More recent works [38, 103, 195] from the Operating System community

attempt to address the need for intra-address-space protection mechanisms motivated

by software plug-ins, device drivers and data-driven security threats.

Implicit Acquisition

Code mobility defines a new model of software acquisition. Traditionally, acquisition

of commercial-off-the-shelf software involves a slow, manual, and explicit process.

Alternatives are reviewed and tested. Impact analysis is conducted. Deployment is

planned and staged. System administrators know exactly what packages are installed

on the system. Potential impact is announced to users.
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Software acquisition is completely different in a mobile code system. As De Paoli

et al [154] put it:

Conventional computing paradigms assume that programs are installed and

configured once on any and every machine and that these programs only

exchange data. This means that a user can make all possible checks over

a new program before running it. This assumption, however, is no longer

valid for open and mobile environments, such as Java and the Web.

A mobile code unit may arrive even without the knowledge of the users. Simply by

browsing a web page or opening an email will invoke the installation of active content.

Acquisition is therefore implicit. It is actually a design goal that the entire acquisi-

tion process be invisible to the users. In such an acquisition process, only automatable

checks are allowed, be it signature checking, program analysis, type-checking, etc. All

such checking should take only a limited time to complete. It is this time constraint

that makes code mobility a completely new model for software acquisition. The tradi-

tional acquisition process establishes trust gradually. Yet, with the time constraint, a

computing environment is forced to establish the trustworthiness of a program with-

out going through the traditional evaluation cycle. In fact, the time spent on trust

establishment should be only a small fraction of the brief execution time of the exe-

cution unit. Therefore, the third fundamental challenge of mobile code security is the

following:

Implicit Acquisition: In the absence of an explicit acquisition process,

how can trust be established automatically within a limited time

frame?

2.3.4 Software-based Solutions

There is a misconception that hardware-based protection mechanisms are the only

way to enforce memory protection [21]. Although some of the security requirements

of mobile code systems can potentially be addressed by a hardware solution, the
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following sections focus on software-based solutions implementing logical separation.

This perspective is adopted for the following reasons.

1. Portability. Execution units might migrate to a heterogeneous array of com-

puting platforms. Adopting a hardware solution either limits the platforms on

which a mobile program can be deployed, or else requires the mobile code units

to be explicitly ported to interoperate with the peculiarities of the target plat-

forms. It is therefore preferable to have mobile code protection mechanisms

that can be implemented in general-purpose processors, on typical operating

systems.

2. Performance. Numerous reports [214, 183, 216] confirm that memory pro-

tection schemes based on hardware-enforced address space boundaries incur

significant performance penalties for cross-boundary procedure calls. Software-

based memory protection mechanisms such as Software-based Fault Isolation

[214], Proof-Carrying Code [144], and type-safe languages [22] are found to be

significantly more efficient than hardware-based mechanisms. Even interpreted

languages such as Java are also found to exhibit adequate performance for sys-

tem programming [164]. All these suggest that software-based solutions can

be as adequate as, and at times even more competitive than, hardware-based

solutions.

3. Ease of Experimentation. A software solution is usually easier to implement

and modify. It can then be easily distributed to or reproduced by the computing

community, who in turn may iteratively review and improve the solution.

4. Expressiveness. Although memory protection naturally invites a hardware

solution, it is not obvious how hardware protection can be employed to en-

force high-level access control, especially when application-specific security is

concerned.

The following discussion will therefore focus on software-based protection mechanisms

for mobile code security.
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2.4 Protection Mechanisms for Mobile Code Sys-

tems

This section outlines four software-based approaches for protection: discretion, veri-

fication, transformation, and arbitration. The approaches presented here are comple-

mentary. In fact, most of the protection mechanisms of existing mobile code systems

can be understood as a combination of the four approaches.

2.4.1 Discretion

Discretion refers to protection mechanisms that rely on “tokens” of trust to make

security decisions. In particular, it refer to the use of various authentication techniques

[136, 177] for establishing trust. Every mobile code unit is associated with some digital

signature(s). Whenever a foreign mobile code unit arrives at a host, its signature is

authenticated, and a (mechanical) process of authorization will translate the result

of authentication into access privileges. In such systems, signature authentication

is assumed to be very efficient. Because of its inherent simplicity and the efficiency

of signature authentication, discretion-based protection addresses the challenge of

implicit acquisition very well. As a result, it has been studied as a general protection

infrastructure [60, 104] and is implemented in many existing mobile code systems (e.g.,

Java [86, 84, 85, 87, 88, 18], Telescript [221, 197], Agent Tcl [90], ActiveX [137, 158],

etc).

At the heart of the discretion approach is the semantics of the signature. What a

signature means determines the kind of access rights granted. In the following, issues

surrounding the assignment of meaning to a signature are surveyed.

Denotation of Signatures

A digital signature is an unforgeable token that denotes a security property of the

signed code unit. Three potential denotations can be attached to signatures of mobile

code units.
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Identity/Origin Semantics: The signature of a mobile code unit identifies its

author or origin. A computing environment maintains a mapping between known

signatures and their associated rights. This method is a direct translation of the

traditional discretionary access control found in many operating systems. As discussed

in Section 2.3.3, schemes that are based on knowing the owners or authors of programs

do not work well in the establishment of anonymous trust.

Authoritative Endorsement Semantics: Signing a mobile code unit means that

the signing party endorses the unit as being “safe”, usually in an informal sense.

In such an approach, some trusted authority will be responsible for certifying mobile

code units. A developer submits his/her mobile program to the certification authority

before the program’s publication. Usually, what it means to be “safe” is defined

informally, if it is properly defined at all. In such approaches, a signature signifies

nothing more than the endorsement of the mobile code unit by a certain party. Such

endorsement has no formal semantics — it cannot be reduced to formally defined

security properties. Endorsement is based on trust. Security is then a relative property

depending on the extent to which the signing party is trustworthy.

Program-Analytic Semantics: The signature denotes a formal program-analytic

property such as type safety or invariance of a particular assertion (program invariant).

A signature is attached to the mobile code unit only when the corresponding formal

property is found in the unit. The attachment of signature can result from three

possibilities:

1. Code is trusted because it is generated by a trusted compiler [166, 145].

2. Code is trusted because it has been properly rewritten by a trusted program

transformer [214, 178].

3. Code is trusted because it has been certified by a trusted program analyzer [55].

A program-analytic semantics may be more reliable than informal endorsement, be-

cause trust is placed on a formally defined, publicly available program certifying
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algorithm instead of mere human judgment [158]. Unfortunately, not many security

properties have been formalized into program-analytic terms. Memory safety and con-

fidentiality are the rare cases that has been formalized (see Section 2.4.2). Works on

the translation of security properties into program-analytic terms will definite further

the feasibility of this approach.

There are two inherent challenges to adopting a program-analytic semantics for

digital signatures:

• Suppose a flaw is found in a widely accessible implementation of a program cer-

tifying algorithm, or, say, such an implementation no longer reflects the evolved

security policy. In such cases, mechanism should be in place to revoke the key

that generates the signature.

• Signatures must not be forgeable. That is, only a trusted program certifier

may sign mobile code units. This problem is more complicated than it seems,

especially when such trusted program certifiers are to be distributed into the

hands of untrusted programmers. How can one be sure that the certifier is not

tampered with?

See Section 2.4.2 for a discussion on how trusted hardware and key-management

schemes can be employed to address the above challenges.

Multiple Trust Levels

An authorization procedure maps signatures to a space of meaning. The granularity

of control depends on the size of the meaning space. A large meaning space results

in finer-grained control. This is illustrated by the following example.

The ActiveX approach [137, 158] relies solely on authentication to enforce security.

ActiveX controls are native mobile code. An ActiveX control is transported with a

signature that identifies its origin. It is up to the user to decide if the signature is

trusted, and, in cases when the foreign control is trusted, it will be granted full access

to the host.
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Authentication technologies, both cryptographic and non-cryptographic [136, 177],

are well established. In addition to its inherent simplicity, the ActiveX approach re-

sults in minimal interference and allows execution units to have maximal capability.

This represents a property of nearly all discretion-based protection mechanisms: sig-

nature checking reduces the need for run-time or link-time interference.

The ActiveX approach grants trusted code with unlimited access to the entire host

environment. This represents an “all-or-nothing” model of security. In many cases,

this inflexibility is absolutely unacceptable. For example, one might want to grant

an execution unit rights to read local files as long as it is forbidden to open socket

connection to remote sites (and thus disclose contents of local files). Therefore, when

talking about security, there are actually different levels of trust. Based on the result

of authentication, one might want to grant certain execution units more capabilities,

while granting less to the less trusted execution units. A discretion-based protection

mechanism must provide fine-grained authorization mechanisms.

The need for fine-grained access control is epitomized by the evolution of the

sandbox model in Java [84, 85, 87]. In the 1.0.2 version of the Java Development Kit

(JDK), all code is untrusted unless it is loaded from the local disk. Untrusted code

is executed in a “sandbox” in which access to most system resources is prohibited. In

JDK 1.1, signed applets are introduced. Applets associated with a trusted signature

are given full access to the system, while the untrusted applets remain in the sand-

box. In JDK 1.2, an extensive access domain architecture is incorporated within the

security infrastructure, allowing the selective mapping of signatures to collections of

permissions. Thus, one may define “playgrounds” of different access restrictions, and

put applets of various trust levels into appropriate playgrounds.

2.4.2 Verification

A firewall [23] is a first degree approximation to the static verification approach. A

firewall is a computer that sits between a local network and the rest of the global

network. It filters packets as they go by, according to various criteria which can be
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configured. Packets that appear unsafe are rejected before they can do any harm to

the protected network.

In the verification approach to mobile code security, security policies are formu-

lated as program analytic properties. Incoming mobile code units must pass through a

trusted program analyzer before reaching the computation environment. The trusted

program analyzer, usually called a verifier, filters out potentially unsafe programs.

The execution units that can reach the computation environment are guaranteed to

satisfy certain security properties. Usually, there is no further need for the compu-

tation environment to provide any countermeasure to enforce the checked properties.

Because of this, static verification is an attractive protection mechanism when the

program property of interest is expensive to enforce dynamically (e.g., dynamic type

checking).

Verification for Memory Protection

To date, the most successful application of the verification approach is for memory

protection. This is illustrated in the following three examples.

Typed Intermediate Language. In the Java language [89], memory protection

is achieved by the use of a safe intermediate language. Java source programs are

compiled into Java Virtual Machine (JVM) bytecode [130]. The bytecode representa-

tion is specially designed to protect execution units from interfering with each other

and from accessing the JVM’s internal state. Firstly, the JVM bytecode language

is strictly typed. Secondly, pointer arithmetic is not allowed. Therefore, bytecode

instructions can only access memory in a type-safe manner. As a consequence, mem-

ory protection is reduced to type-checking. All untrusted Java classfiles must pass

through a bytecode verifier before they are dynamically linked into the JVM. Since

the JVM bytecode is unstructured, data-flow analysis must be used to make sure that

the classfile is type-safe. In fact, dataflow analysis within the JVM is not limited

to checking type safety, but is also used to check for other safety concerns such as
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operand stack overflow5. Therefore, runtime checks that would otherwise be needed

to avoid operand stack overflow and ensure typesafety can be safely avoided.

Proof-Carrying Machine Code. Type systems can capture only certain kinds

of security properties, and occasionally require a safe (intermediate) language. To

enforce memory safety in a less structured language (e.g., native code), and to provide

more expressive means for formulating safety properties, Hoare logic [45] can be used.

Hoare logic is an axiomatic system for proving program correctness. Safety properties

can be encoded as precondition/postcondition pairs, while verification reduces to the

establishment of the postcondition given the validity of the preconditions.

In their work on proof-carrying code6, Necula and Lee use Hoare logic to establish

the memory safety of operating system kernel extensions [144] and native code ML

library routines [143]. In the following, their work on kernel extension will be used

for illustrating the idea of proof-carrying code.

Suppose a kernel maintains a table of descriptors. Each entry of the table is

composed of two words: the first one is a tag specifying if the second data word is

modifiable. The kernel allows users to install their application-specific access functions

for the table entries. These access functions are passed pointers to a table entry when

called. The functions must obey the following constraints:

[C1 ] The function must not access table entries other than the one passed as argu-

ment.

[C2 ] The tag word is read only.

[C3 ] The data word is writable if and only if the tag is non-zero.

5Every JVM call frame contains an operand stack for evaluating nested expressions.
6The contribution of Necula and Lee’s work is twofold. One is demonstrating the feasibility of

using Hoare logic as a practical verification formalism for mobile code security, and the other is the
proposal of proof-carrying code as a verification protocol. The current discussion focuses on the
first contribution. The second contribution will be discussed when the design space of verification
protocols is explored in Section 2.4.2.
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[C4 ] Privileged registers must not be modified (remember that the access functions

are called by the kernel and thus are run in kernel mode).

The verification of the above policy is performed in the following steps:

1. The operational semantics of the underlying instruction set is formalized into

proof rules.

2. The policy is encoded as precondition and postcondition.

3. The code for the access function is translated into an array of predicates de-

scribing the effect of executing the code.

4. The conjunction of the precondition, postcondition, and the predicates in the

last step forms a verification condition.

5. The proof that the verification condition follows from the proof rules in step 1

is attached to the code unit.

6. Any party who would be interested in executing the code unit must check if the

attached proof correctly establishes the verification condition.

Proving the memory protection policies described above turns out to be a very

tractable task, especially for certain low level routines (e.g., network packet filters) in

which no looping is involved. Though some of the above constraints can be readily

enforced by type systems in an abstract intermediate language (e.g., Java bytecode),

Hoare logic offers flexibility that allows one to deal directly with native code in-

stead of using compiled high level language or interpreted bytecode, both introducing

considerable run-time interference that cannot be tolerated in certain applications7.

Moreover, the ability to deal with constraint [C4], in which the modifiability of one

field is dependent on the value of another, demonstrates the expressiveness of Hoare

logic. This benefit of expressiveness was demonstrated more fully in a later paper

7It is observed that PCC has significant performance advantages over its competitors like software-
based fault isolation (Section 2.4.3).
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[146], in which Hoare logic is used to enforce a liveness condition, resource usage

limitation, and data abstraction in an information harvesting agent.

The down side of using a proof system as powerful as Hoare logic is its inherent

undecidability. In Necula and Lee’s experience, the added flexibility may result in dif-

ficulties when dealing with looping programs [144]. In those cases, one might have to

generate a proof by hand. To limit this, they have experimented with automatically

generating loop invariants by a certifying compiler [145]. In particular, starting with

a small type-safe source language, one may build a compiler that generates machine

code annotated with type specifications and loop invariants in the midst of aggressive

compiler optimization (e.g., array-bound checking elimination). For simple memory-

and type- safety properties, the above approach effectively automates the generation

of loop invariants. Yet, for the general case, manual intervention cannot be avoided

without the use of some domain-specific language [146, Section 9]. To avoid such

manual intervention during run-time verification of mobile code, proofs may be gen-

erated ahead of time and transmitted with the mobile code. Section 2.4.2 describes

this concept of proof-carrying code in more detail.

Typed Assembly Language While Java has to resort to an intermediate lan-

guage in order to carry type information, and while Necula and Lee have to resort to

a highly expressive logical proof to capture similar information for machine code, Mor-

risett et al [141, 140, 80] demonstrate that type checking can actually be performed

on an assembly language. In particular, this is demonstrated by a typed assembly

language (TAL) [141] which carries the type information of a rich, functional source

language (a call-by-value variant of System F , the polymorphic λ-calculus augmented

with products and recursion on terms). The significance of this work is threefold.

Firstly, it demonstrates that type safety can be achieved without using an abstract

intermediate language, which inevitably reduces run-time performance. Indeed, typed

assembly code can be fully typechecked without reference to the original source pro-

gram. Secondly, the typing construct imposes almost no restrictions on optimization.

This makes the safety of the program independent of the compiler that generates the

code. Thirdly, there is a type-preserving, effective procedure that can translate the
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source language to TAL. This contrasts with the incompleteness of verification under

the more general approach of Necula and Lee [144].

In summary, one may see Java bytecode as a portable intermediate representa-

tion which allows type annotation to be attached for the sake of enforcing memory

protection statically. Proof-carrying code, when applied solely to memory protec-

tion, captures typing information for a target language using a very expressive logic,

thereby providing static typing without using an interpretive intermediate language.

Finally, TAL demonstrates that static typing can actually be performed in a target

language without the use of an overly expressive formalism.

Verification for Confidentiality

Program-analytic approaches to the enforcement of confidentiality have received a lot

of attention, and are relatively well-understood. Building on Bell and La Padula’s

security model [20, 124], the work of Dorothy Denning [50, 52, 51] has laid the foun-

dation for the study of secure information flow analysis. Developments have been

constantly reported [171]. In particular, the work of Volpano et al [213, 209, 208, 186,

210, 187, 211, 212, 207, 184, 185] on using a type system to capture information flow

has recently attracted considerable attention from the mobile code community. This

section gives a brief survey of Denning’s lattice model of information flow, and the

basic idea of Volpano et al’s type system.

In the US military’s multilevel security model, documents are classified into a

finite set of sensitivity levels such as unclassified, restricted, confidential, secret, and

top secret. Personnel are each granted a single clearance level, indicating a level of

trust. Personnel with clearance secret may access all documents except those classified

as top secret. The Bell-LaPadula model and its later generalization by Denning is a

formalization of the above concepts. A security system is composed of a set S of

subjects and a disjoint set O of objects. Each subject s ∈ S is associated with a fixed

security class C(s), denoting its clearance. Likewise, each object o ∈ O is associated

with a fixed security class C(o), denoting its classification level. The security classes
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are partially ordered by a relation ≤, and ≤ forms a lattice8. To prevent subjects with

low clearance from accessing sensitive data, the following property is needed:

Simple Security Property (No read up). A subject s may have read

access to an object o only if C(o) ≤ C(s).

To prevent subjects with high clearance from releasing sensitive data to low-clearance

subjects, the following property is needed:

*-Property (No write down). A subject s who has read access to an

object o may have write access to an object p only if C(o) ≤ C(p).

In summary, a subject may only read objects with classification level no higher than

his clearance, but may only write to objects with classification level no lower than his

clearance. Information must only flow unidirectionally from low classification sources

to high classification destinations.

In the context of mobile programs, one may want to control the flow of information

among variables and routines. For example, one may want to protect the content of

a private variable from leaking into a globally accessible data area, or from flowing

into a routine that writes to a socket. To illustrate this, let us define a very simple

procedural language:

(expressions) e ::= x | n | e + e′ | e = e′ | e < e′

(commands) c ::= e := e′ | c; c′ | if e then c else c′ |

while e do c | letvar x := e in c

Suppose we have two variables H and L, so that H contains some classified data and

L is globally accessible. Information about the value stored in H can flow into L in

at least two ways. Firstly, information flow may be explicit:

8A partial ordering is a binary relation which is transitive and antisymmetric. A lattice is a
partial ordering in which every pair of elements possesses a least upper bound and a greatest lower
bound. Consult Davey and Priestley [47] for more information.
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X := H + 1;

L := X − 1;

Secondly, information flow from H to L may also be implicit. Conditional statements

may convert information into control flow.

if H > 0 then

L := 1;

else

L := 0;

L := 0;

while H > 0 do

H := H − 1;

L := L + 1;

Information flow analysis attempts to statically uncover these kinds of information

leakage. As noted by Podgurski and Clarke [155], information flow analysis is a kind

of dependence analysis [66]. In the following, a type system in the style of [213] is

presented.

To deal with explicit information flow, each expression is associated with a se-

cure flow type, which represents the classification level of the data item. The lattice

structure of the classification levels induces a natural subtyping relationship among

the secure flow types: if type τ represents a classification level at least as high as

that of type τ ′ then τ ≥ τ ′. An expression involving operands with distinct security

types receives the least upper bound of the operands’ types as its type. For example,

if e and e′ have security types τ and τ ′ respectively, and τ ≤ τ ′, then e + e′ can be

assigned security type τ ′. Each variable also has a type τ var, indicating that it holds

contents with type no higher than τ . Explicit leaking is then prevented by requiring

that assignment of the form X := a is well-typed only if X has type τ var and a has

type no higher than τ . To formally express this, we allow expression type τ to be

coerced to any type τ ′ if τ ≤ τ ′, and then require that X := a is well-typed if and

only if X has type τ var and a has type τ . With this arrangement, the above example

code that explicitly leaks information will not be well-typed.

To handle implicit information flow, every command is associated with a type τ

com. Intuitively, a command has type τ com if every variable that is being assigned
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in the command has type τ ′ var where τ ≤ τ ′. That is, τ is a lower bound for the

security levels of the variables being assigned in the command. The idea is that if

a conditional or iterative construct involves a condition expression of type τ then

commands in the body should not assign to variables with security levels lower than

τ . To make this work, we need two more subtyping rules. For the variables, τ var ≤

τ ′ var if and only if τ ≤ τ ′. For the commands, the opposite must hold: τ com ≤ τ ′

com if and only if τ ′ ≤ τ . Again, expressions can be freely coerced to their supertypes.

The following type rules are then defined:

• An assignment statement of the form X := a has type τ com if X has type τ

var and a has type τ .

• A sequential composition of the form c; c′ has type τ com if both c and c′ have

type τ com.

• A conditional statement of the form if e then c else c′ has type τ com if e has

type τ while c and c′ have type τ com.

• An iterative statement of the form while e do c has type τ com if e has type τ

while c has type τ com.

Volpano et al prove that a type system such as the above satisfies variants of the

simple security property and the *-property [213]. They also extend their type system

to account for covert flow [208], procedures [209], and concurrency [186]. A covert

channel is a mechanism that is not intended for communication but, nevertheless,

may leak information. A good example is that a thread T may be constructed to

conditionally enter an infinite loop depending on the value of a classified variable.

Now another spying thread S may then time the execution of thread T , thereby

obtaining information about the classified variable without exchanging data with T .

To deal with procedures, they use a constrained type to capture the condition on

which the procedure may be executed securely. Instead of a fixed type, a principal

type containing subtype inequalities is computed. They have also studied the impact

of various scheduling assumptions on the soundness of secure flow types in the presence
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Figure 2.3: Participants of a Verification Protocol

of concurrency. It is shown that the original type system in [186] has to be properly

restricted in order for soundness to be preserved (e.g., by restricting the kind of

condition that can appear in conditional or iterative statements).

Information flow analysis is a very difficult problem. In a simple sequential lan-

guage in which there is no malicious third-party observer, information flow analysis

as described in this section is fully adequate. However, in a context typical to mobile

programs, neither the sequential assumption nor the closed-world assumption hold.

In order to deal with the complications of covert channels and malicious observers,

analyses such as the above quickly become too conservative to be useful. Recent de-

velopments in this area attempts to provide more accurate analyses. See [171] for an

up-to-date survey.

Verification Protocol

The verification approach requires only that security properties of the mobile code

units are checked prior to their execution. It does not specify how the various parties

involved in the verification process are to be orchestrated. The design space within

the verification approach is in fact much wider than we have seen earlier. The term

verification protocols is used to refer to schemes that specify how various concerned

parties cooperate to carry out a verification procedure. A typical verification system

consists of four parties (see figure 2.3):

Producer: The party who generates the mobile code unit.

Prover: The party who takes a mobile code unit, and generates a proof that the code

satisfies a predefined set of security properties.
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Checker: The party who takes a mobile code unit and the proof generated by the

prover, and translates it into a decision of whether execution/linking is autho-

rized.

Consumer: The party who takes the mobile code unit and an authorization of exe-

cution, and executes the code.

A verification protocol specifies where the above participants are located, and how

they orchestrate the verification process. In the following, three verification protocols

will be surveyed: proof-on-demand, proof-carrying code and proof delegation.

Proof-on-Demand. The proof-on-demand protocol is exemplified in the Java mo-

bile code system. Both the prover and the checker are on the host that execute the

mobile code unit (Figure 2.4). Whenever an untrusted classfile is to be linked into

the JVM, the bytecode verifier will be invoked on-the-fly to prove that the classfile

is structurally intact and type-safe [129]. Since the JVM assumes both the prover

and consumer role, there is no need to generate the proof explicitly, and thus proof

checking reduces to the simple authorization of execution if verification succeeds.

Performing verification in the computing environment has the key advantage that

it supports run-time code generation. Execution units may dynamically generate

code that will be linked in on-the-fly. Having the verifier built inside the dynamic

linker allows such dynamically generated code to be verified properly — a feature

essential for implementing protection mechanisms based on dynamic code rewriting

[59, 201, 202, 215, 220, 167, 168].

However, the proof-on-demand protocol has several drawbacks:
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1. Compared to authentication-based approaches, proof-on-demand introduces ex-

tra link-time overhead to the computing environment. For example, in the case

of Java, verification could involve complicated dataflow analysis, which intro-

duces observable slow down to the dynamic linking process9.

2. There is a close coupling between the verifier and the computing environment.

Such close coupling introduces two software engineering problems:

(a) When a bug is found in the verifier, as frequently happened in various

industrial strength Java-enabled web browsers10, one has to replace the

entire computing environment (e.g., browser). This is usually difficult to

guarantee because there are in an order of 107 browser users out there, and

it is difficult to guarantee that they are all updated.

(b) If the architecture of the computing environment is not well articulated,

there will be many dependencies among the loader, linker, and verifier.

Consequently, building a correct verifier is made more difficult.

Proof-Carrying Code. In the proof-carrying code (PCC) protocol [144, 143], the

verifier is located at the producer side of the internet (Figure 2.5). Verification pro-

ceeds in the following steps:

1. The code consumer publicizes a safety policy in the form of some static program

properties. The properties should be specified in a way so that a proof that the

9McGraw and Felten [135, p 110] observe that the slow down could be as unbearable as a denial-
of-service attack.

10Consult [49, 135, 107, 108, 157] for a shamefully endless list of bugs found in various web browsers.
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properties are present in a program can be formally expressed and mechanically

verified.

2. If a code producer wants to ship a mobile code unit to the consumer, it must

first acquire the safety policy.

3. On behalf of the producer, a prover then produces, manually or mechanically, a

proof that the code unit to be shipped satisfies the safety policy mandated by

the code consumer.

4. The proof is then attached to the code unit when it is shipped.

5. When the code unit and the attached proof arrive at the code consumer side,

a mechanical proof checker will determine if the proof establishes the safety of

the code unit. If so, it authorizes execution.

6. The consumer executes the code.

The idea of proof-carrying code is based on the intuition that proof-checking is

more tractable than proof-generation. Firstly, since the safety of the mobile code unit

is proven on the producer side instead of being repeated every time the code is loaded

into the computing environment (as in the case of Java), the protocol effectively

reduces link-time interference. Secondly, transferring the “burden of proof” to the

code producer allows one to consider more expressive safety policy. The consumer does

not have to worry that verifying such policy will introduce unbearable performance

overhead to linking, for only proof checking is involved. With this setup, even manual

proof generation is affordable assuming standardized policies for consumers. The

resources the producer put into generating a safety proof for the code will be amortized

over multiple uses of the code.

A potential problem of proof-carrying code has to be mentioned. In the worst

case, the size of the proof may be exponential in the size of the program [144, 146].

This creates a problem for the transportation and checking of the generated proof.

However, Necula and Lee observe that such “proof bloat” is a rare case.
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Recent development of the idea of PCC includes lightweight bytecode verification

[165, 119], typed assembly language [141], and certifying compiler for Java [44]. The

common theme is to avoid the full expressiveness of proof-carrying code, while con-

centrating on a specific program analysis problem (e.g., type checking), in which small

certificates can be generated mechanically by a certifying compiler.

Proof Delegation. Proof delegation11 [54, 55] is motivated by a number of security

and software engineering concerns, including the following:

1. Performance: Verification, be it proof generation or proof checking, intro-

duces performance degradation. Can either or even both be removed from the

consumer’s burden?

2. Disclosure: Most of the verification protocols require the use of a high level

(intermediate) language (proof-on-demand) or the attachment of program an-

notations (e.g., proof-carrying code). These representations may disclose infor-

mation that the producer might consider proprietary.

3. Configuration Management: In all verification protocols, a verifier of some

sort is involved. The implementation of such program verifier is usually compli-

cated, and bugs are found in commercial implementations (footnote 10). When

11The term “proof delegation” was not coined in the original papers. The term is coined here
simply because it reflects accurately where the approach lies within the wide spectrum of verification
protocols.
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verifier bugs are found, how easy is it to distribute the upgrades? Alterna-

tively, how can customers be protected from using an “outdated” computing

environment with known security vulnerabilities?

The proof delegation protocol consists of three components (figure 2.6):

1. Trusted Hardware: Beside publicizing the theorem to be proven, the con-

sumer also distribute to the producer a trusted proof generator and a proof

checker. The target theorem, the proof generator, and the proof checker are

all installed into some trusted coprocessor, and the entire package is handed to

the producer. Trusted coprocessors are usually realized in the form of hard-

ware extensions to consumer equipment, for example, as PCI cards or PCMCIA

cards. They contain a secret key, which is physically protected from tamper-

ing12. When a code producer wishes to distribute a mobile program, he submits

the code to the trusted coprocessor. The embedded verification software in the

trusted hardware checks if the code is safe, and then attaches a digital signature

to the code using the secret key in the trusted coprocessor. The producer can

then distribute the properly signed code.

2. Authentication-enabled Computing Environment: A computing environ-

ment that has authentication capability will then be able to check if a mobile

code unit has been endorsed by a trusted coprocessor. If so, no link-time check

will be necessary.

3. Key Management Infrastructure: When faults are found in an implementa-

tion of the verification algorithms, the key associated with the implementation

can be revoked automatically by well-known key revocation techniques. From

then on, mobile code units signed by the expired key (corresponding to the

faulty implementation) will have to be re-certified. Browser owners have no

need to upgrade their browsers.

12Attempting to physically tamper with the hardware and the firmware will trigger protection
mechanisms that erase the secret key on board.
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In effect, the verification effort is delegated to a trusted program analyzer. Firstly,

on the customer side, proof generation and proof checking is replaced by efficient

signature checking, thereby improving performance. Secondly, no program analytic

annotation is needed for the authorization of execution, thereby avoiding disclosure

of intellectual property. Thirdly, when a verifier implementation is found to be faulty

and its corresponding key revoked, software upgrades are confined to the code pro-

duction side, leaving code consumers (e.g., browser users) unaffected. This is much

more manageable, for the number of producers is significantly smaller than the num-

ber of consumers. Moreover, mobile program developers have an obvious motivation

for actively updating their certifying hardware. This arrangement addresses the con-

figuration management need of keeping verification technology up-to-date.

The goal of trusted hardware is to establish a physically secure binding between

a signature and a well-defined, program analytic semantics (Section 2.4.1). Such

a binding makes the distribution of trusted program certification software possible.

Without such binding, a malicious programmer may tamper with the certification

software, generating signed mobile code units that are in fact faulty. Trusted hardware

is thus designed to ensure that this tampering does not occur.

2.4.3 Transformation

A mobile code representation that is good for transportation (e.g., platform indepen-

dent, compact for transport efficiency) may not be tailored for execution. In many

mobile code systems, code units are transported in the form of virtual machine byte-

code, and then, upon arrival to a host, the bytecode is transformed into native code

for efficient execution. Such just-in-time (JIT) compilation [15] is now a core feature

of mobile code systems like Java [130] and Omniware [133]. Link-time code genera-

tion also adds portability to mobile code systems [77]. Yet, dynamic code generation

can also be seen as a protection mechanism. Mobile code units are expressed in a

high level representation (e.g., a type-safe intermediate language as in Java) in which

unsafe behavior cannot be expressed. Upon arrival at the host, the code units are

translated into a format which is directly executable on the host machine. Since code
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generation is performed by a trusted compiler on the host, and since unsafe behavior

cannot be expressed in the source code, the generated code can be considered safe.

In a similar vein, transformation can be used to tailor untrusted code into a more

secure form. In contrast to dynamic code generation, unsafe behavior can be expressed

in the migrated code. Upon arrival at the host, the code unit is statically analyzed,

and extra protection code is injected at program points where security cannot be

guaranteed.

Transformation for Memory Protection

As early as the 1970’s, code rewriting has been applied to memory protection within

a single address space [53]. Recently, the Omniware mobile code system [133] uses

transformation to implement memory protection for untrusted mobile code units.

Omniware mobile code units are transported as bytecode for the Omniware Virtual

Machine (OmniVM) [4]. OmniVM is designed to resemble a RISC architecture, thus

allowing efficient performance, simple implementation, and retargetability. OmniVM

divides its address space into segments. In order to ensure that execution units access

only those segments for which they have authorization, Software-based Fault Isolation

(SFI) is used [214]. The basic idea of SFI is to rewrite untrusted mobile code units

into versions containing no access to unauthorized segments. Each memory address is

divided into two parts, namely, a segment identifier and an offset within the segment.

Two possible rewriting rules can be formulated:

1. Segment Matching: For every memory reference, guard code is inserted be-

fore the instruction that initiates the reference. The inserted code dynamically

checks that the referenced segment matches the current segment. A memory

fault is raised if the check fails.

2. Sandboxing: For every memory reference, the segment identifier of the target

address is dynamically overwritten by the identifier of the current segment.

The systematic application of either rule to every memory reference in a program

guarantees that no interference occurs between disjoint segments.
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Experience indicates that observable run-time overhead is caused by this approach

because additional code is introduced by the transformation. Despite this overhead,

native code that is instrumented this way can run at speeds comparable to the original

code [214], although not as efficiently as a proof-carrying code version [144, 146].

In extensible operating systems VINO [178] and Exokernel [58, 110], users are

allowed to dynamically download untrusted extension code into the kernel address

space to modify the behavior of the operating systems. To avoid corruption of the

kernel address space, untrusted extension code units are subject to SFI transformation

before downloading.

2.4.4 Arbitration

Another way to protect a host is to protect it completely from “direct” contact with

untrusted execution units. Whenever an untrusted execution unit requests the exe-

cution of an operation, a trusted party, the arbitrator, is called in to carry out the

operation for the execution unit. By restricting the kind of operations visible to the

execution unit, and by examining the client’s run-time state, the arbitrator can care-

fully block out unsafe operations. The cost of such flexibility is usually a considerable

run-time overhead.

Arbitration can be used to enforce both memory protection and access control.

An interpreter is often used to enforce memory protection. Interposition is frequently

used for enforcing access control. Each of them will be examined in turn.

Memory Protection by Interpreter

Using an interpreter has been a very popular way of implementing safe and portable

computation. Mobile code languages like Java [89], Safe Tcl [153], Scheme48 [162],

and Telescript [221], JavaScript [147], all involve the interpretation of some source or

intermediate languages. The interpreter approach can achieve memory protection in

two ways:
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1. Restricting expressiveness: A safe intermediate representation can be de-

fined for mobile code units. Due to language restrictions, certain unsafe opera-

tions cannot be expressed, while others can be statically checked for. Take the

JVM bytecode representation [130] as example. Privileged native instructions

cannot be expressed; there is no pointer arithmetic; the language is strictly

typed; interactions with host resources are performed through a public appli-

cation programming interface (API). As a result, memory interference can be

avoided.

2. Dynamic checking: The execution unit interacts with the host CPU only

through the arbitration of the interpreter. Consequently, the interpreter can

screen out all potentially dangerous moves by run-time checking. For example,

the JVM checks against null pointer dereferencing, out-of-bound array access,

and illegal type-cast [130].

Access Control by Interposition

Interposition is the insertion of trusted arbitration code, usually in the form of a

reference monitor [170] (Figure 2.7), between a protected service and the entry point

of the service. In a traditional operating system setting, processes usually access

system resources via a non-bypassable system call interface. Any attempt to access the

protected resources are therefore subject to the monitoring of the trusted arbitration

code before reaching the target service. Access control policies can be programmed

into the arbitration code, which can flexibly screen out inappropriate access to the

service. This section surveys several implementations of interposition in mobile code

systems: application wrappers, reference monitors, reference monitor inlining, and

name resolution control.

Application Wrappers. Application wrappers [83, 79, 78, 67] are software con-

tainers that control the interactions between untrusted programs and their execution

environments. The goal is to retrofit arbitration code into a legacy software system

in a non-intrusive manner.
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Janus [83] is an application wrapper especially designed for protecting a host

against insecure mobile code computing environments. The intuition behind the de-

sign of Janus is that an untrusted process cannot do much harm if its access to the

underlying operating system is appropriately restricted. Using the process tracing

facilities and the /proc virtual file system [62] in Solaris, Janus creates a user-level

sandbox that monitors all system calls made by an untrusted process. Since legacy

computing environments which have unreliable protection mechanisms (e.g., an old

version of ghostview [32], sh, or a buggy, Java-enabled web browser) can be executed

inside the Janus sandbox, the Janus monitor can effectively block out unsafe system

access initiated by the execution units running inside the legacy computing environ-

ment. Users may even supply their own policy module to specify which system calls

to allow, which one to deny, and for which a function must be called to determine

what to do.

Janus represents a very practical solution to a very practical problem. It does

not require modification to the kernel and the computing environment, and it effec-

tively protects the host from any unreliable computing environment. However, even

disregarding its platform-dependent nature, Janus does not satisfactorily address the

layered protection problem. Firstly, Janus does not allow the computing environment

to define a different protection domain for each execution unit. Secondly, the kind

of security policy it may express is limited due to its ignorance of the semantics of

the computing environment. For instance, when a JVM is running inside a Janus

sandbox, the policy modules of Janus have no way of figuring out the internal state

of the JVM, and must make their access control decision independent of the JVM

state. In general, layered protection is adequately addressed only when interposing is

a built-in feature of the computing environment instead of being a retrofitted patch

of the operating system.

Reference Monitors. The Java incarnation of a reference monitor is composed of

two mechanisms — the security manager and stack inspection. All access to operating

system services are isolated in the standard Java API. Whenever a service routine is

invoked, the API transfers control to a corresponding monitor method of the global
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Figure 2.7: Reference Monitor

security manager object. The monitor method will inspect the Java run-time stack to

determine if the call is safe. If the monitor method disallows the access, an exception

will be thrown. Otherwise, control is returned to the service routine, carrying out the

original request. The security authority may override these monitor methods of the

security manager class in order to customize the security policy of the JVM.

The Java security model allows one to define intricate security policies. Stack

inspection allows the security manager to decide with fine control what access will be

granted. The drawbacks of this approach are as follows. Firstly, the security manager

needs to implement complex stack inspection logic to differentiate between accesses

initiated by different execution units. From a software engineering point of view,

the construction and maintenance of this logic is both difficult and prone to error.

Secondly, a procedural definition of security policy is hard to understand. A popular

solution is to implement traditional access control lists in the arbitration code (as in

Java [84, 85, 86, 87, 88] and Agent Tcl [90]). Subsequently, Netscape has attempted

to extend the Java stack inspection mechanism by providing stack annotation which

simplifies the logic for access right checking [216]. This extended version of stack

inspection is later proven by Wallach, Appel and Felten [217, 215] to be equivalent to

formal deduction in ABLP logic [1].

Reference Monitor Inlining. Code rewriting (Section 2.4.3) can be applied at

load time to introduce monitoring code into an untrusted program. Here, the arbi-

tration code does not reside at the entry points of privileged services, but instead
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is injected into the program itself to detect and avoid misuse of privileged services.

Specifically, Java stack inspection has been implemented using this strategy [202, 215].

SFI has also been applied to enforce security policies expressed as security automata

[201]. There have been a number of other efforts in applying load time code rewriting

to enforce high level access control policies [59, 220, 167, 168].

Name Resolution Control In name resolution control, arbitration occurs at the

time of dynamic linking. The relative simplicity of name resolution offers the potential

of centralizing all security logic into a single mechanism.

Safe-Tcl [153] is a security-aware extension of the popular Tcl scripting language

[152]. Protection is achieved by three mechanisms — safe interpreters, aliases, and

hidden commands. Tcl is a command-based language, similar to other shell scripting

languages. Access to operating system facilities are provided through a set of com-

mands. Safe-Tcl defines a padded cell security model, in which every execution unit

is executed in its own interpreter. All system services are available in a trusted, mas-

ter interpreter. When an untrusted script is executed, it is sandboxed in a separate,

untrusted, safe interpreter. A safe interpreter acts like a separate name space. Privi-

leged commands can be hidden in the safe interpreter, thus blocking untrusted script

from unauthorized access to system resources. Also, to obtain finer-grained control,

a command may be aliased. Specifically, the name of a privileged command in the

safe interpreter may be “overshadowed” by a trusted arbitration routine in the master

interpreter. The arbitration routine decides at run-time if the access is granted. If

the access is permitted, it delegates the original call to the overshadowed command

in the master interpreter.

The padded cell model represents a form of interposition called name resolution

control, in which the name resolution mechanism (e.g., dynamic linking) is exploited to

provide selective exposure of privileged services. In essence, name resolution control is

composed of two component mechanisms. Firstly, granting of capabilities is realized

by name visibility control. The notion of a safe interpreter, which is essentially a

namespace, coincides with that of a protection domain. A privileged service can be

accessed only if it can be named in the safe interpreter. The assignment of each
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script to a separate name space, plus the possibility of name hiding, allows one to

easily tailor a different access policy for each script. Secondly, message interception

selectively binds names of privileged services to wrapper code that protects the entry

points of those services. Here, accessibility is not controlled by visibility, but instead

by dynamic checking of the possession of rights.

Scheme48 [162] is another early mobile code system that uses name resolution con-

trol as its primary protection mechanism. In Scheme, a procedure is a function closure,

containing a lambda expression and a binding environment. When a procedure is ap-

plied, the only objects that are visible inside the lambda expression are the actual

arguments and the values of the names in the lexical environment. Scheme48 allows

programs to construct arbitrary binding environments, and then execute untrusted

code inside these carefully-crafted environment. During the course of constructing

such environments, privileged procedure names can be made invisible or be redefined

to refer to arbitration routines.

Wallach et al [216] describe a way to implement name resolution control in the

context of Java. In Java, a name space coincides with a classloader [127]. A class

name in one classloader represents a different class than another class with the same

name in a different classloader. The classloader was originally conceived for name

space partitioning so that there will be no name conflict among separate execution

units. Taking advantage of this design, one may create a subclass of the standard

classloader class, in which all requests for name resolution are monitored. As a result,

if a privileged name is to be hidden, the classloader can throw an exception when

the name is resolved. Aliasing can be simulated by resolving the names of privileged

classes to arbitration classes.

The extensible operating system SPIN [22, 181] also models protection domains

by name spaces. All extension code in SPIN is written in the type-safe language

Modula 3. Capabilities are directly modeled as pointers. Therefore, if a name is

well-typed in a code unit, then the resource or service it refers to will be accessible.

Typing thus provides a means of expressing conditional visibility of a symbol. Fine-

grained protection is achieved by allowing users to manipulate name spaces. Name

spaces can be created dynamically, and code units are executed within the confine of
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that name space, thus restricting its capabilities. An interesting feature is that name

spaces can be extended by the Combine operation, which creates a union of two name

spaces. This compares with the more flexible name space extension primitive import

mentioned in Section 2.2.3. In general, a system that uses name resolution control for

protection needs ways to construct and extend name spaces.

One potential problem with modeling protection domains using name spaces is that

there is no way of revoking capability. The J-Kernel [94], is a Java security kernel

that provides a capability revocation mechanism within a name-space-as-protection-

domain framework.

Interposing Mechanisms. In the reference monitor inlining and name resolution

control approaches, arbitration code is interposed by dynamic code rewriting and

dynamic linking respectively. Other advanced programming language constructs hav-

ing the potential of being adopted as interposing mechanisms include, for example,

behavioral reflection [219], metaobject protocols [118], and aspect-oriented program-

ming [116, 175]. Protection mechanisms based on behavioral reflection have begun to

appear [220]. Although most of these mechanisms ultimately rely on load-time code

rewriting [175, 220], they represent high-level language abstractions that are usually

easier to work with than rewriting.

Interposing works by monitoring the execution of an untrusted execution unit. It

is theoretically interesting to find out how much can be achieved by such a mechanism.

Schneider [176] proposed a characterization of security policies enforceable by execu-

tion monitoring (EM). Specifically, an EM-enforceable policy prescribes access event

sequences recognized by a Büchi automaton [9]. It is observed that Büchi-like security

automata can only enforce safety properties, but not liveness properties. Viswanathan

[205] points out that any reasonable characterization of execution monitoring must

involve a computability constraint. Subsequently, Bauer, Ligatti and Walker [19, 128]

proposed a characterization of increasingly general classes of security policies en-

forceable by insertion, suppression and editing automata, while Hamlen, Morrisett

and Schneider [91] offers a characterization of security policies enforceable by code

rewriting. These policy classes are provably more expressive than EM-enforceable
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policies. An open question raised by Bauer, Liatti and Walker is whether one can

further classify the space of security policies by constraining the capabilities of the

execution monitor. The question is partially addressed by Fong [69], who proposed a

fine-grained characterization of subclasses of EM-enforceable security policies using an

information-based approach. The characterization yields policy classes that contain

naturally occurring security policies.



Chapter 3

The Proof Linking Architecture

This chapter presents a brief overview of Proof Linking as a language-independent ver-

ification architecture for mobile code systems. A set of formal correctness conditions

are formulated for evaluating language-specific instantiations of the architecture. The

possibility of applying Proof Linking to address the issues of stand-alone verification

modules, distributed verification, and augmented type systems is also discussed.

3.1 Architectural Overview

A mobile program is assumed to be composed of one or more code units (modules,

classes and so on), each of which may contain externally visible members (functions,

methods, variables, and so on). Code units and their members are identified by

symbolic names. A code unit and its members may contain symbolic references to

other code units and their members. When a program is executed, its code units

are loaded, verified, and the symbolic references are incrementally replaced by actual

machine pointers.

A modular architecture for dynamic linking is postulated here. It is assumed

that link-time activities like loading a code unit, verifying a code unit, and resolving

a symbolic reference are all atomic linking primitives, in the sense that, although

concurrent execution is allowed, no linking primitive attempts to invoke any other

66
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invokespecial A::M(S)

+M(S)

A

C
+M(S)

B

...

...

Figure 3.1: Running Example

during its processing, nor will one recursively invoke itself. This setup poses the

following challenge:

Verification requires knowledge of other code units which might not have

been loaded yet. How can the loading of these code units be avoided without

affecting the integrity of the verification process?

For illustrative purpose, consider the example as depicted in Figure 3.1. Suppose

the Java class A defines a method M(S). Suppose further that A has a direct subclass

B, which in turn has a direct subclass C. Assume that class C overrides the method

M(S). Say the body of method C::M(S) contains an invokespecial bytecode instruc-

tion that delegates the call to method A::M(S). When method C::M(S) is verified,

the bytecode verifier has to check if class C is a subclass of class A in order to type

check the invokespecial instruction. This fact cannot be confirmed by examining solely

the body of C::M(S), but instead class A and other superclasses of class C must be

examined. This example illustrates a challenge that any modular verification archi-

tecture must address. In the Proof Linking architecture, this challenge is addressed

by the decomposition of verification into two subtasks: modular verification and proof

linking1.

1Capitalization is used to differentiate between “Proof Linking” as a verification architecture and
“proof linking” as a verification subtask
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Figure 3.2: Modular Verification

3.1.1 Modular Verification

Verification is modularized by the formulation of verification interfaces. Figure 3.2

depicts the setup for modular verification in a prototypical mobile code system. Un-

trusted code units are subjected to static verification after loading. The verifier might

need the knowledge of another code unit in order to decide if the current code unit

should be endorsed. Instead of validating such external dependencies by recursively

loading and/or verifying other code units, the modular verifier computes for the cur-

rent code unit a conservative safety precondition summarizing the external dependen-

cies that will guarantee safety of this code unit. The safety precondition is represented

as a conjunctive set of database queries. In the running example (Figure 3.1), during

the verification of classfile C, a modular Java bytecode verifier will generate the query

subclass(’C’, ’A’) as the invokespecial instruction is scanned. The verifier may end

up generating many such queries. The conjunctive set of all queries formulated by

a verification session becomes the safety precondition for endorsing the code unit in

question.

The modular verifier also schedules each of the queries for evaluation. Each query

describes a safety precondition of a certain linking primitive. For example, the query



CHAPTER 3. THE PROOF LINKING ARCHITECTURE 69

above, subclass(’C’, ’A’), is associated with the linking primitive “resolve A::M(S)

in C”. In essence, this schedules the subclassing check for evaluation immediately

prior to the resolution of the method symbol A::M(S) in class C. Such a query is said

to be the proof obligation for the associated linking primitive, representing a condition

that must be met if the run-time system is to safely execute the corresponding linking

primitive. A proof obligation is also said to be attached to its associated linking prim-

itive. Proof obligations generated by the modular verifier are collected by the proof

linker, which records in a global obligation table the mapping from linking primitives

to their attached obligations.

In order for the run-time system to discharge proof obligations, the verifier also

computes, for each code unit, a set of clauses called commitments. The commitments

are ground facts that describe the interface properties of the code unit. For example,

during the verification of the Java classfile C, the fact extends(’C’, ’B’) is generated

as one of the commitments. The generated commitments are collected by the proof

linker, and subsequently asserted into a global commitment database. As we shall

see below, the commitment database provides the set of facts against which proof

obligations are evaluated.

3.1.2 Proof Linking

The process by which the run-time system cross-validates the results of verifying

different code units is called proof linking. Figure 3.3 depicts the setup for proof

linking. When the run-time system needs to execute a linking primitive, it sends the

request to the proof linker. The proof linker looks up the obligations that have been

attached to the linking primitive in question, and then posts them to the commitment

database as deductive queries. If the queries are satisfied, the request is granted.

Otherwise, a linking exception is raised to signal failure to proof link.

To make proof linking more expressive, arbitrary logic programs can be provided as

an initial theory in the commitment database. For example, recursive definitions of the

following program can be present in the commitment database to define subclassing

as the transitive closure of the extend/2 relation:
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Figure 3.3: Proof Linking

subclass(X,X).

subclass(X,Y ) :- extends(X,Z), subclass(Z,Y ).

After the linking primitives “verify B” and “verify C” are processed, the commit-

ment database may contain the following commitments:

extends(’C’, ’B’).

extends(’B’, ’A’).

When the linking primitive “resolve A::M(S) in C” is to be executed, the JVM will

look up its attached obligations, among which the query subclass(C,A) will be

found. The proof linker then attempts to satisfy this query by consulting the facts

and rules in the commitment database. The query succeeds and the linking primitive

is executed (assuming that any other obligations are satisfied as well).

3.1.3 Remarks

Although a deductive database model has been used as a means of representing proof

obligations and commitments, an actual system is not required to be implemented
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this way. As loading and linking in a mobile code system occur frequently, a declar-

ative implementation would likely be unacceptably inefficient. Given queries and

commitments of fixed signatures, and given a fixed initial theory, appropriate data

structures and algorithms can be designed for the efficient assertion of commitments

and discharging of obligations. For example, the commitments collectively defining

the extends relationship can be represented in a space-efficient manner using an

appropriate tree data structure, while the logic of the subclass relationship (i.e.,

transitive closure) may be implemented efficiently by a tree traversal algorithm. For

more information about how proof linking can be implemented efficiently, consult

Chapter 6.

There are however two reasons to model the proof linking process as a series of

database updates and queries. Firstly, the database model provides an abstract frame-

work to describe the general notion of incremental proof linking, without getting into

the idiosyncrasies of individual mobile code systems. Secondly, and more importantly,

it allows one to define a formal model of proof linking and its correctness conditions.

3.2 Correctness of Incremental Proof Linking

To assess the theoretical soundness and modeling adequacy of the incremental proof

linking process in a complex dynamic linking environment such as the JVM, one

needs a theoretical model upon which the semantics and correctness of the process

can be articulated. Such a formal model of incremental proof linking is the topic

of this section. Based on this model, the following three correctness conditions are

formalized:

1. Safety: All obligations relevant to the safe execution of a linking primitive are

generated and checked before that primitive is executed.

2. Monotonicity: Checked obligations may not be contradicted by subsequently

asserted commitments.
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3. Completion: All commitments that may be needed for satisfying an obligation

are generated before the obligation is checked.

Note the parallel between the complete generation of obligations required by the Safety

condition and the complete generation of commitments required by the Completion

condition. There is also an interesting parallel between Monotonicity and Completion.

The latter may be rephrased to state that once an obligation fails, no subsequently

asserted commitment will enable it.

In summary, the Safety, Monotonicity and Completion conditions are intended to

ensure that the checking of proof obligations and authorization of linking activities

are deterministic processes even though the lazy, dynamic linking procedure is not.

In essence, the correctness of proof linking is characterized by the correct scheduling

of static verification steps over time.

The remainder of this section formalizes these notions as follows. Section 3.2.1

defines a formal model of the proof linking process. Section 3.2.2 presents a sim-

ple proof linking algorithm as the operational semantics of the proof linking model.

Section 3.2.3 then goes on to formalize the Safety, Monotonicity and Completion

conditions in terms of the terminology developed in the previous two subsections.

3.2.1 Building Blocks of Proof Linking

The proof linking process is modeled as a sequence of verification steps orchestrated

by a proof linker. An abstract model of the proof linking process consists of four

building blocks: (1) linking primitives, (2) an initial theory, (3) proof obligations and

commitments, and (4) a linking strategy.

Linking Primitives

The proof linker could be seen as a reference monitor that mediates and protects

linking activities that have security significance. The first building block of a proof

linking model is obtained by the identification of linking primitives to be monitored
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by the proof linker. The precise set of linking primitives may vary depending on the

kind of activities one would like to model, but in a prototypical mobile code system

the following set would be defined for each code unit X:

load X: acquire code unit X.

verify X: verify code unit X.

resolve S in X: replace symbolic reference S in code unit X with an actual machine

pointer.

use S in X: symbolic reference S in code unit X is used for the first time.

Associated with each linking primitive p are two linking events, namely, “begin

p” and “end p”, which respectively represent the initiation and termination of the

primitive p. These events occur asynchronously as the run-time system executes

various linking primitives. It is assumed that events are then queued up in some

synchronized event queue, waiting to be examined by the proof linker. Intuitively,

when the run-time system requests that a linking primitive p be authorized to execute,

“begin p” will be generated. Similarly, the run-time system generates “end p” to

inform the proof linker that p is properly terminated. The sequence of linking events

that enters the event queue from the beginning of an execution session to some point

of execution is said to be an execution trace of the run-time system in that period of

time. An execution trace is well-formed if it is reasonably structured in the following

sense. It is assumed that each linking primitive can only be executed at most once

during the life time of the run-time environment. Consequently, each event may occur

at most once in a well-formed execution trace. It is further assumed that event “end

p” can occur in a well-formed execution trace only if there is a corresponding event

“begin p” occurring strictly before it. Given a fixed set P of linking primitives,

traces(P ) denotes the set of all possible well-formed execution traces made up of

linking events corresponding to primitives from the set P .
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Initial Theory

The second building block of a proof linking model is obtained by the specification

of an initial theory. The initial theory represents the evaluation logic to be used

for checking proof obligations. The initial theory can be an arbitrary logic program

representing a decidable first-order theory. Decidability is required for proof linking

to be properly defined. The precise formulation of the initial theory depends on the

semantics of the verification task at hand. The Greek letter Γ is usually used for

denoting an initial theory.

Proof Obligations and Commitments

The third building block of a proof linking model is obtained by the definition of proof

obligations and commitments that could be generated by linking primitives. In gen-

eral, every linking primitive may generate both proof obligations and commitments.

Commitments are facts describing the information collected as a result of executing a

linking primitive. Obligations are queries that are attached as safety preconditions to

linking primitives, called targets. An obligation-target pair is called an attachment.

Notice that the obligations can attach to any linking primitive. It is assumed that

commitments and attachments generated by a linking primitive are available when

the corresponding end event occurs.

It is postulated that, given a fixed set P of linking primitives, the functions com(p)

and att(p) map a linking primitive p to the respective sets of commitments and at-

tachments generated by p when the event “end p” occurs. Also, the notation obl(q)

is used for representing the set of obligations that are attached to a linking primitive

q, that is, the set { o | ∃ p∈P . 〈o, q〉∈att(p) }.

Linking Strategy

Given a set P of linking primitives, a linking strategy σ is a subset of traces(P ). Every

implementation of a mobile code run-time environment defines a linking strategy. The

strategy expresses the order in which linking events may be processed by the run-time
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system. An execution trace τ ∈ traces(P ) is σ-conforming if τ ∈ σ. To say that a

run-time system implements a linking strategy σ is to say that the run-time system

guarantees that all execution traces it generates are σ-conforming2.

A linking strategy can be specified syntactically by formulating ordering con-

straints. Ordering constraints are notations specifying properties that must be met by

all execution traces in the linking strategy being specified. For example, given linking

primitives p and q, the notation p < q represents the property that an execution trace

τ satisfies one of the following conditions:

• “begin q” does not occur in τ ;

• “begin q” occurs in τ after an occurrence of “end p”.

Given the notation above, a linking strategy for a prototypical mobile code system

can be specified as follows: given any code units X and Y , and a symbol S imported

by code unit X from Y , the following holds:

1. Natural Progression Property:

load X < verify X < resolve S in X

2. Import-Checked Property:

verify Y < resolve S in X < use S in X

Assuming that code unit X imports symbol S from code unit Y , the following

execution trace conforms to the strategy:

2Under this definition, a run-time system may implement a linking strategy by generating only a
subset of conforming execution traces.
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(1) begin “load X”

(2) begin “load Y ”

(3) end “load Y ”

(4) begin “verify Y ”

(5) end “load X”

(6) begin “verify X”

(7) end “verify Y ”

(8) end “verify X”

(9) begin “resolve S in X”

(10) end “resolve S in X”

The ordering of events corresponds to the following timeline:

oo

(1) load X (5)
// oo

(6) verify X (8)
// oo

(9) resolve S in X (10)
//

oo

(2) load Y (3)
// oo

(4) verify Y (7)
//

Switching the relative ordering of events (1) and (2) results in a new execution

trace that still conforms to the strategy. Further switches of (4) with (5) and (6)

with (7) also maintain conformance and lead to an execution trace illustrated by the

following timeline diagram:

oo

(1) load X (5)
// oo

(6) verify X (8)
// oo

(9) resolve S in X (10)
//

oo

(2) load Y (3)
// oo

(4) verify Y (7)
//

Now, if the position of (8) with (9) are further switched, then the resulting exe-

cution trace would violate the Natural Progression Property. Similarly, moving

event (7) after (9) would violate the Import-Checked Property.

In summary, a proof linking model is given by a 5-tuple 〈P, Γ, com(·), att(·), σ〉,

where P is a set of linking primitives, Γ is an initial theory, com(·) and att(·) are

commitment and attachment mappings, and σ is a linking strategy.
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algorithm ProofLinker(P , Γ, com(·), att(·), σ):

01: DB ← Γ; Obligations[ ] ← ∅;
02: Ready ← ∅; Satisfied ← ∅; Failed ← ∅;
03: while (¬ run-time-env-terminatedσ()) do
04: e ← get-next-eventσ();
05: switch e of
06: case “begin p”:
07: All-Obligations-Satisfied ← true;
08: for all o ∈ Obligations[p] do
09: if (DB ` o) then
10: Satisfied ← Satisfied ∪ { o };
11: else
12: Failed ← Failed ∪ { o };
13: All-Obligations-Satisfied ← false;
14: end if
15: end for
16: if (All-Obligations-Satisfied) then
17: Ready ← Ready ∪ { p };
18: authorize-execution(p);
19: else
20: deny-execution(p);
21: endif
22: case “end p”:
23: DB ← DB ∪ com(p);
24: for all 〈o, q〉 ∈ att(p) do
25: Obligations[q] ← Obligations[q] ∪ {o};
26: end for
27: end switch
28: end while

Figure 3.4: The Proof-Linker Model Algorithm
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3.2.2 A Model Proof Linking Algorithm

The semantics of the proof linking process is defined operationally as an algorithm

handling asynchronously generated linking events. Figure 3.4 presents a model proof-

linking algorithm in which linking primitives are consumed from a global event queue.

The proof linker maintains two global data structures, namely, a commitment database

(DB) and an obligation table (Obligations[ ]). The commitment database is a de-

cidable first-order theory containing both facts and rules. The obligation table maps

each linking primitive to a set of database queries. Initially, the commitment database

contains the initial theory (Γ), and the obligation table is empty (line 1). The proof

linker consumes linking events in an order specified by the linking strategy (line 4).

When the begin event of a linking primitive is removed from the event queue (line

6), its associated obligations are retrieved from the obligation table (line 8). The

verification of these obligations is then attempted against the logic program in the

commitment database (line 9). If all obligations are satisfied (line 16), then the linking

primitive will be allowed to execute (line 18); otherwise, its execution will be denied

(line 20), which means that the corresponding end event will not be returned when

line 4 is executed in the future. Alternatively, when the end event of a primitive is

removed from the event queue (line 22), the commitments and attachments for the

primitive are collected. The commitments are added to the commitment database

(line 23). The attachments are incorporated into the obligation table (lines 24–26).

The proof linker repeats this process until the run-time environment terminates (line

3).

3.2.3 Formalization of Correctness Conditions

To formalize the correctness conditions of the proof linker, three auxiliary variables

are introduced into the listing in Figure 3.4. “Satisfied” (lines 2 and 10) denotes

the set of obligations that have already been checked at line 9, while “Failed” (line

2 and 12) collects obligations that have failed to check. “Ready” (lines 2 and 17) is

the set of primitives that are ready for execution.
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Fixing the initial theory Γ and the commitment and attachment mappings com(·)

and att(·), the proof linker is said to be correct if the following conditions hold:

1. Safety: Before any primitive is executed, all obligations that may potentially

be attached to it are generated and checked. Formally, the following invariant

should hold at all times:

∀p ∈ Ready . ∀o ∈ Obligations[p] . o ∈ Satisfied

To enforce this, one may require that, for any linking primitives p and q, p < q

if there is an obligation o such that 〈o, q〉 ∈ att(p).

2. Monotonicity: Obligations may not be contradicted by subsequently asserted

commitments. The Monotonicity condition may be captured formally by assert-

ing that the following invariant holds at all times:

∀o ∈ Satisfied . DB ` o

In a deductive database model, Monotonicity results naturally from the applica-

tion of Horn clause logic [131]. If the initial theory and generated commitments

are required to be definite clauses (aka Horn clauses) and the obligations are

constrained to be definite queries, then no contradiction will result from the

assertion of commitments, thus ensuring that subsequent commitments do not

contradict satisfied preconditions.

3. Completion: Conversely, obligation failure may not be subsequently contra-

dicted by asserted commitments. A formal restatement is that the following

invariant should hold at all times:

∀o ∈ Failed . DB 6` o

This condition can be enforced as follows. A commitment c is said to support

an obligation o if (1) there is a set S ⊆ P of linking primitives so that

Γ ∪
⋃

p∈S

com(p) ` o,
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(2) c ∈ com(p) for some p ∈ S, and (3) c is used as a premise in establishing

the proof for o. For any linking primitives p and q, p < q is required if there is

a commitment c ∈ com(p) and an obligation o ∈ obl(q) such that c supports o.

Thus, if an obligation o of primitive q is eventually provable, then generation of

the commitments necessary for its proof must be complete when “begin q” is

processed.

In general, the correctness of proof linking depends on (1) the linking strategy σ,

(2) the initial theory Γ, and (3) the commitment and attachment mappings com(·)

and att(·). In particular, the Safety and Completion conditions constrain the linking

strategy to ensure that an obligation is checked neither too late nor too early, while

the Monotonicity condition imposes syntactic constraints on the underlying logic used

in expressing proof obligations and commitments.

Note that the correctness conditions do not impose a strict policy on the link-

ing strategy. Either eager linking (linking every code unit at once) or lazy linking

(linking a code unit only when its code is being executed)—or indeed any interme-

diate strategy—can be tailored to satisfy the correctness conditions. To maximize

the opportunities for laziness, however, strategies with fewer ordering constraints are

preferred so long as the correctness conditions hold.

These three correctness conditions will be used to judge if a language-specific

instantiation of the Proof Linking architecture is sound.

3.3 Architectural Advantages

This section explores how the adoption of the Proof Linking architecture addresses

the issues presented in Section 1.1, namely, that of stand-alone verification modules,

distributed verification, and augmented type systems.

3.3.1 Stand-alone Verification Modules

It is generally desirable for the mobile code verification technology to evolve inde-

pendently of the mobile code hosting technology. In the context of Java classfile
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verification, this would mean that the standard bytecode verifier is manufactured as a

replaceable component that can be “plugged” into any virtual machine that supports

pluggable verification services. It should be possible to validate the correctness of ver-

ification components independent of the rest of the mobile code hosting environment.

Third party vendors can specialize in producing highly secure verification modules,

while JVM vendors can concentrate their efforts on producing faster virtual machines.

As a result, installation of a virtual machine of one brand does not preclude the adop-

tion of a bytecode verifier of another brand. This software configuration model should

yield higher quality and more secure mobile code hosting environments.

The Proof Linking architecture is a framework for identifying and reducing the

coupling between a mobile code hosting environment and its verification component.

Consequently, it may represent a good basis for the development of stand-alone veri-

fication modules in mobile code systems.

3.3.2 Distributed Verification

Conditional Certification

Modularization makes it feasible for mobile code verification to be performed remotely.

The correctness conditions in Section 3.2.3 only require that the verify primitive

correctly generates all commitments and obligations. It does not specify how such

commitments and obligations are generated. Consequently, remote verification can

proceed as follows:

Conditional certification. Untrusted code units are certified by a trusted verifier

at a remote site. Instead of endorsing external dependencies that might have

been invalidated at link time, the remote verifier captures the dependencies in

proof obligations and commitments. Prior to shipping a code unit, the remote

verifier attaches the corresponding proof obligations and commitments to each

code unit. The annotated code unit is signed by the verifier using its private

key, and is then distributed to consumers.
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Proof linking. Upon acquiring the signed, annotated code unit, the run-time sys-

tem performs a special verify primitive that (1) authenticates the signature,

and then (2) processes the proof obligations and commitments as if they were

generated locally. To the proof linker, this special verify primitive looks not dif-

ferent than a normal verify primitive, and will proof-link the remotely-verified

classfile correctly.

This scheme nicely addresses the need for conditional certification. Even though

the remote verifier is unable to validate the external dependencies of a code unit, it

nevertheless can express them as proof obligations. The proof linking mechanism is

invoked to discharge the proof obligations at run-time, when the necessary information

has become available.

Protocol Interoperability

The Proof Linking architecture provides an infrastructure for the interoperability of

the verification protocols such as proof-on-demand, proof-carrying code and proof

delegation. Because linking primitives communicate solely by attaching proof obli-

gations and asserting commitments, they are highly modular. An intelligent verify

primitive may process certified code units to produce the appropriate proof obliga-

tions and commitments as if they are formulated locally. For code units that are not

certified at all, the intelligent verify primitive may itself perform a complete verifica-

tion to generate the necessary proof obligations and commitments. The proof linking

mechanism checks and discharges obligations from each of theses sources in the same

way, without any need to know the verification protocol used for a particular code

unit. As a result, a mobile program could consist of a number of code units that are

signed remotely, others that are proof carrying, and still others that are completely

uncertified. As long as each verification protocol uses the same verification interface

for proof obligations and commitments, interoperability is assured.
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3.3.3 Augmented Type Systems

If an implementation of the Proof Linking architecture supports an open mechanism

of attaching obligations to linking primitives and discharging obligations by examining

commitments, then it would be very convenient to introduce an augmented type anal-

ysis into the overall linking process of the mobile code hosting environment. Specifi-

cally, additional versions of the verify primitives can be introduced into the linking

strategy for conducting intra-modular type analysis for the augmented type system.

Inter-modular type safety is enforced by formulating appropriate proof obligations

and commitments and by processing them with the open proof linking mechanism.

This extension mechanism will greatly cut down the cost of implementing alternative

protection mechanisms that are based on static type analysis.

3.4 Research Problems

The Proof Linking architecture, as presented in the previous sections, is a conceptual

architecture for structuring the verification service of a mobile code hosting environ-

ment. To what extent this architecture is applicable for structuring the verification

service of a production mobile code system (TS1), and whether the architecture de-

livers the intended advantages in practice (TS2) are the topics of investigation for

this research. To operationalize this study, the focus of this research is turned to the

implementation of Proof Linking on a production mobile code hosting environment

— the Java platform. The Java platform contains enough semantic complexity for

testing the modeling adequacy and soundness of Proof Linking. Moreover, the realiza-

tion of Proof Linking in the JVM represents a concrete contribution to the technical

community by enabling the Java platform to support stand-alone verification mod-

ules, distributed verification, and augmented type systems. This endeavor involves

addressing four research problems listed below.
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3.4.1 Modeling Adequacy and Soundness

As an archetypical mobile code protection mechanism, Java bytecode verification is

chosen for testing the modeling adequacy and soundness of the Proof Linking archi-

tecture. It is hypothesized that, on the one hand, the Proof Linking architecture is

rich enough to model the semantic complexity of the Java run-time environment, and,

on the other hand, there is a reasonable implementation of Java bytecode verification,

in the form of a linking strategy and an appropriate selection of proof obligations

and commitments, which satisfies the three correctness conditions outlined in Section

3.2.3, namely, that of Safety, Monotonicity, and Completion. Specifically, a proper in-

stantiation of Proof Linking should account for two distinct complexities of the JVM

— lazy, dynamic linking and multiple classloaders.

Lazy, Dynamic Linking

The first complication comes from the fact that the Java dynamic linking semantics

is closely tied to its object model and its bytecode verification procedure. Specifically,

loading of one class will initiate the loading of classes representing its supertypes, and,

as mentioned before, verification also affects the loading schedule of classes. There

are complex temporal dependencies among linking primitives that are not accounted

for in the prototypical Proof Linking architecture presented in the previous sections.

This motivates the first research problem.

Research Problem 1: Can the Proof Linking architecture be correctly

instantiated to model Java bytecode verification in the presence of Java’s

lazy, dynamic linking process?

To address this research problem, the proof linking model was extended to ac-

count for Java bytecode verification in the context of a Java-specific dynamic linking

model [71, 73]. Specifically, the mentioned temporal dependencies were captured in

a relatively lazy linking strategy. A set of proof obligations and commitments was

designed to capture the verification interface of Java bytecode verification. This proof
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linking model was then proven to satisfy the three correctness conditions: Safety,

Monotonicity, and Completion. See Chapter 4 for more details of these results.

Multiple Classloaders

The second modeling complication originates from the fact that the standard Java

classloading semantics uses multiple classloaders to implement namespace partition-

ing [130, Chapter 5][127]. This introduces additional dependencies between symbol

resolution and the notions of proof obligations and commitments. Specifically, the ref-

erents of symbols occurring in proof obligations and commitments might come from

various namespaces that are created at run time, while the prototypical Proof Linking

architecture in this chapter assumes that there is only one, static namespace. This

complication is especially significant in the case of remote verification, in which the

remote verifier has no way of addressing symbols that live in the run-time namespaces

of the consumer JVM. This motivates a second research problem:

Research Problem 2: Can the Proof Linking architecture be correctly

instantiated to model Java bytecode verification in the presence of multiple

classloaders?

To address this research problem, the proof linking model was extended to account

for the existence of multiple classloaders in Java. The extension preserves the mod-

ularity of the verification architecture as well as the correctness of the proof linking

process. It turns out that, most of the modeling apparatus can be reused with only

minimal modification. See Chapter 5 for details of these results.

3.4.2 Implementation Feasibility

Previous sections promise that the realization of Proof Linking in a mobile code system

should bring support for stand-alone verification modules, distributed verification and

augmented type systems. This section describes the research problems surrounding

the first and third applications of Proof Linking.
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Stand-alone Verification Modules

As we will see in Chapters 4 and 5, Java bytecode typechecking introduces significant

complexities into the Proof Linking architecture. Whether such complexities can be

feasibly addressed in a realistic Java platform is a problem of interest.

Research Problem 3: Is there a feasible implementation of the Proof

Linking architecture for modularizing the standard Java bytecode verifi-

cation process?

Specifically, one may have concerns about the architectural impact of modular ver-

ification and incremental proof linking on a JVM, especially in the following two

aspects.

1. Data structures. It is anticipated that non-trivial data structures will be

needed to support the incremental proof linking process. Introduction of com-

plex data structures into an already complex linking process within the JVM

may be questionable.

2. Linking strategies. The correctness conditions imposed on linking strategies

affect the temporal ordering of linking activities. An easy to validate linking

strategy for Java bytecode verification may perhaps not be the laziest one al-

lowed by the JVM specification. The degree to which laziness is curtailed may

proportionately affect the efficiency of the overall linking process.

To assess how the above two concerns can be addressed in a realistic implemen-

tation of the Proof Linking architecture, the Java instantiation of Proof Linking as

developed in Chapters 4 and 5 was implemented in an open source JVM, the Aegis

VM [68]. A discussion concerning the design of data structures and linking strategies

for this implementation can be found in Chapter 6.
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Augmented Type Systems

If the proof linking mechanism is generalized to process arbitrary proof obligations

and commitments, then a verifier plug-in mechanism can be constructed to support

the introduction of alternative link-time verification tasks other than Java bytecode

verification.

Research Problem 4: Is it feasible for Proof Linking to be implemented

as a general-purpose, efficient, and usable mechanism for servicing user-

defined, link-time static analyses?

The key challenges for this endeavor are three:

1. Generality. The studies proposed so far are focused on one very specific anal-

ysis, namely, that of Java bytecode verification. The generalized Proof Linking

framework should be applicable to a wide range of static analyses.

2. Efficiency. Since linking events occur frequently in a Java platform, the gen-

eralized Proof Linking implementation must be efficient enough so that the

overhead introduced by obligation discharging is acceptable.

3. Utility. The effort required of a programmer to incorporate an application-

specific analysis into the dynamic linking process of a JVM should be signifi-

cantly reduced when performed under the Proof Linking framework.

The real question of feasibility then becomes one of whether there are acceptable

tradeoffs in balancing these and other design goals in the implementation of a plug-

gable verification architecture.

The above research problem has been addressed by two implementation efforts —

the implementation of one possible design that is mindful of the issues of generality,

efficiency and utility (Chapter 6), and the application of this implementation to realize

a security-related type analysis (Chapter 7).



Chapter 4

Lazy, Dynamic Linking

This chapter1 describes a first instantiation of the Proof Linking architecture for Java

bytecode typechecking. Specifically, we will see how the Proof Linking architecture can

be instantiated to handle the complexity originating from the lazy, dynamic linking

semantics of Java classloading. This instantiation of Proof Linking will be shown to

satisfy all the correctness conditions outlined in Section 3.2.3.

4.1 A Simplified View of Java Dynamic Linking

In Java, code units are classfiles, each of which contains the definition of a single

class. The standard Java classloading semantics uses multiple classloaders to im-

plement namespace partitioning. A loaded class is identified by both its classname

and its defining classloader [130, Chapter 5][127]. Since the focus of this chapter is

on analyzing how the deferred discharging of proof obligations interacts with a lazy,

dynamic linking process, a simplified view of Java classloading is considered: every

class is loaded by the same classloader (i.e., the bootstrap classloader). As a result of

this simplification, classnames are sufficient for identifying code units. Complexities

introduced by the presence of multiple classloaders are discussed in the next chapter.

1Results in this chapter originally appeared in [71, 73].

88
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A symbolic reference in Java may refer to either a class2 or a member of a class.

Class references are simply classnames. Member references refer to either fields or

methods. As a class may contain multiple members with the same identifier, both the

identifier and the descriptor (i.e., type signature) of a member are generally needed

to uniquely denote the member within a class. The descriptor of a field specifies its

type, while that of a method specifies the type of both its formal parameters and its

return value. A member M of a class X with descriptor S has a symbolic reference

of the form X::M(S).

4.2 A First Proof Linking Model

This section describes a proof linking model that captures Java verification passes

1 through 3, and integrates them within a single verification primitive3. Further

improvement could be achieved by formulating commitments and obligations related

to the checking of resolution errors — the fourth pass of verification [130, chapter 5].

As this exercise is a conceptually straightforward extension, and since it has less of

an impact on enabling other verification protocols (see Section 1.1.2), it is omitted to

facilitate presentation.

2Although the current discussion assumes a programming model in which all classes are top-level
classes, it is sufficient for handling Java nested classes, which were introduced in Java 1.1 so that
programmers can define classes as members of other classes, locally within a block of statements, or
within an expression[14, Chapter 5]. However, nested classes are strictly source language constructs
implemented entirely by a Java source compiler which transforms all Java 1.1 nested classes into
Java 1.0 bytecode. Consequently, the presence of nested classes requires no change to the current
scheme, which assumes a standard JVM bytecode semantics.

3Because pass 4 (resolution of constant pool entries) is not included in the modelling, and because
some of the verification checks are performed entirely within the verify primitive, it is not necessary
to capture all typing information (e.g., whether a member is abstract) in the current proof linking
model. The initial theory, commitments and obligations formulated in Sections 4.2.3 and 4.2.4 reflect
only the dependencies between the loader and the verifier.
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load X Acquire the definition of class X.
verify X Perform bytecode verification on class X.

endorse X Endorse class X for resolution.
endorse X::M(S) Endorse class member X::M(S) for resolution.

resolve Y in X Resolve class symbol Y in class X.
resolve Y ::M(S) in X Resolve member symbol Y ::M(S) in class X.

Figure 4.1: Linking Primitives for Modeling Java Typechecking in the Presence of
Lazy, Dynamic Linking

4.2.1 Linking Primitives

Figure 4.1 shows the set of linking primitives for modeling Java typechecking in the

simplified dynamic linking process. The load and verify primitives are defined as in

Section 3.2.1. Additional linking primitives are introduced. Since class symbols and

member symbols are resolved separately, the linking primitive that resolves method

Y ::M(S) in class X is denoted by “resolve Y ::M(S) in X”, and the simpler syntax of

“resolve Y in X” is reserved for resolution of classes. Auxiliary primitives “endorse

X” and “endorse X::M(S)” are also introduced, with the intuitive semantics of

declaring the corresponding objects to be ready for linking. These primitives serve

as placeholders to which one may attach obligations that should be checked before

a symbol is resolved. As we shall see in the following, they are used for fine tuning

the discharging schedule of proof obligations. Readers may safely identify them with

class preparation [130, Section 5.4.2].

Java typechecking can be modeled by assuming that only the verify primitives

generate proof obligations and commitments. Furthermore, obligations are only at-

tached to the endorse and resolve primitives.

4.2.2 Linking Strategy

A relatively lazy linking strategy for the above proof linking model is articulated. The

Natural Progression Property and the Import-Checked Property are first modified to

accommodate the introduction of new primitives, and then further properties are

added to capture the linking dependencies peculiar to Java.
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1. Natural Progression Property:

load X < verify X < endorse X < resolve Y in X < resolve Y ::M(S) in X

2. Import-Checked Property:

endorse Y < resolve Y in X < use Y in X

and also

endorse Y < endorse Y ::M(S) < resolve Y ::M(S) in X < use Y ::M(S) in X

3. Subtype Dependency Property: To establish an obligation concerning a

class, type information concerning its superclasses and superinterfaces might be

needed. For example, to show that a class is properly defined, one has to show

that none of its superclasses is declared final, and that all of its superinterfaces

are properly defined interfaces. To address this need, it is necessary to make sure

that the commitments regarding the superclasses and superinterfaces of a class

are completely generated before the class is endorsed for linking. Consequently,

it is required that, for all superclasses and superinterfaces Y of X,

verify Y < endorse X

4. Referential Dependency Property: As mentioned in Section 3.4.1, bytecode

verification affects the loading schedule of classes. Specifically, if the body of a

method X::M(S) refers to a class symbol Y , then it might be necessary to obtain

the type information regarding class Y before the type safety of X::M(S) can

be endorsed. For example, if method X::M(S) assigns a reference of type Y to

a variable of type Z, then Java type rules require Z to be either a superclass or

a superinterface of Y . Unless Y is a superclass of X, it is entirely possible that

the superclasses and superinterfaces of Y are not verified yet. Consequently, the

required supports for the obligation are not necessarily present at the time the

obligation is checked, a violation of the Completion property. In such a case, Y

is said to be relevant to the endorsing of X::M(S). It is assumed that, statically
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associated with the bytecode of each method X::M(S) is a set of relevant classes

Y , and that the following is required4.

endorse Y < endorse X::M(S)

That is, all relevant classes (plus their superclasses and superinterfaces) are fully

verified before the obligations attached to “endorse X::M(S)” are checked.

Since the notion of relevance is statically defined, an implementation may enforce

the above ordering constraint by identifying the relevant classes when “verify

X” scans the bytecode of X. Equipped with this information, the run-time

system can consistently endorse all relevant classes before endorsing a method

of X.

4.2.3 Initial Theory

A first-order, decidable initial theory is defined for this proof linking model. Specifi-

cally, Figure 4.2 shows the set of precidate symbols5, while Figure 4.3 shows the logic

program that captures the axioms of the theory. It is instructive to point out once

again, that the logic program in Figure 4.3 does not exhaust all the type rules of the

Java bytecode language, for some of the type rules are checked at symbol resolution

time (pass 4), which is outside of the scope of this model. That is why one does not

find any rule describing, for example, abstract classes. More than that, some of the

rules in the initial theory only capture a partial aspect of their counterpart in Java’s

type system. For example, the accessible predicate only captures the notion of ac-

cessibility for protected members, and permits access in the cases of public, package

4An alternative formulation is to require that:

verify Y < endorse X::M(S)

for all class Y that is either a relevant class of method X::M(S) or a supertype of a class relevant
to method X::M(S). See footnote 3 on page 115 for a follow up of this variation.

5Proof obligations and commitments were formatted in a datalog-style notation in previous pub-
lications [71, 73]. They are reformatted here in a style with structures and operators. Doing so
improves readability without altering the essence of the scheme.
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class(X): X is a non-interface class.

interface(X): X is an interface class.

non final(X): X is not declared to be a final class.

package(P,X): Class X is defined in package P .

extends(X,Y ): Y is a direct superclass of X.

implements(X,L): L is the list of all direct superinterfaces of X.

public member(M(S),X): M(S) is a public member of class X.

protected member(M(S),X): M(S) is a protected member of class X.

package private member(M(S),X): M(S) is a package private member of class X.

private member(M(S),X): M(S) is a private member of class X.

implementable(L): The list L contains only properly defined interface symbols.

subclassable(X): X is a properly defined class.

subclass(X,Y ): X is either Y or one of its subclasses.

throwable(X): X is either ’java/lang/Throwable’or one if its subclasses.

subinterface(X,Y ): X is either Y or one of its subinterfaces.

assignable(X,Y ): X is either Y or one of its subtypes.

accessible(Y ::M(S),X,Z): Y ::M(S) is accessible from within class X via a ref-
erence of type Z.

transitively implements(X,Y ): This is the “transitive closure” of the
implements relation. This is a helper predicate for defining subinterface.

list member(X,L): The standard Prolog list membership predicate. This is a helper
predicate for defining transitively implements.

Figure 4.2: Predicate Symbols of the Initial Theory Used for Modeling Java Type-
checking in the Presence of Lazy, Dynamic Linking



CHAPTER 4. LAZY, DYNAMIC LINKING 94

implementable([ ]).
implementable([X |L ]) :-

interface(X),
implements(X, I),
implementable(I),
implementable(L).

subclassable(’java/lang/Object’).
subclassable(X) :-

class(X),
non final(X),
implements(X, I),
implementable(I),
extends(X, Y ),
subclassable(Y ).

throwable(X) :-
subclass(X, ’java/lang/Throwable’).

list member(X, [X | ]).
list member(X, [ |L ]) :-

list member(X,L).

transitively implements(X, Y ) :-
implements(X, I),
list member(Y , I).

transitively implements(X,Z) :-
implements(X, I),

list member(Y , I),
transitively implements(Y ,Z).

subinterface(X,X) :-
interface(X).

subinterface(X,Z) :-
subclass(X, Y ),
transitively implements(Y ,Z).

assignable(X, Y ) :-
subclass(X, Y ).

assignable(X, Y ) :-
subinterface(X, Y ).

accessible(Y ::N(T ), , ) :-
public member(N(T ), Y ).

accessible(Y ::N(T ),X, ) :-
protected member(N(T ), Y ),
package(P,X),
package(P, Y ).

accessible(Y ::N(T ),X,Z) :-
protected member(N(T ), Y ),
subclass(Z,X),
subclass(X, Y ).

accessible(Y ::N(T ), , ) :-
package private member(N(T ), Y ).

accessible(Y ::N(T ), , ) :-
private member(N(T ), Y ).

Figure 4.3: Axioms of the Initial Theory Used for Modeling Java Typechecking in the
Presence of Lazy, Dynamic Linking
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class(X)

interface(X)

non final(X)

package(P,X)

extends(X,Y )

implements(X,L)

public member(M(S),X)

protected member(M(S),X)

package private member(M(S),X)

private member(M(S),X)

Figure 4.4: Commitments Generated by verify X for Modeling Java Typechecking
in the Presence of Lazy, Dynamic Linking

private and private members. The modeling is partial because only the type con-

straints enforced during the first three passes of bytecode verification are considered.

The unmodeled aspects are, again, enforced during pass 4 of the verification process.

4.2.4 Proof Obligations and Commitments

In this proof linking model, only the “verify X” primitive generates commitments

and obligations. Figure 4.4 enumerates the commitments that may be generated by

“verify X”: The modular bytecode verifier basically scans the loaded classfile, and

generate commitments that describe the type interface of the class.
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The following list6 describes the proof obligations generated by “verify X”, to-

gether with the primitives to which the generated obligations are attached:

1. Obligation: subclassable(Y )

Target: endorse X

Intention: This attachment guarantees that it is safe for the current class X to

subclass from the direct superclass Y . The obligation states that the definition

of Y does not involve circular subclassing and subinterfacing, subclassing from

an interface, and subinterfacing from a class. In the Sun JVM implementation,

these checks are performed in pass 1 of bytecode verification. The obligation

also makes sure that no final class is subclassed (a pass 2 check in the Sun JVM).

2. Obligation: implementable(L)

Target: endorse X

Intention: This attachment guarantees that the list L of direct superinterfaces

of the current class X are all properly defined interfaces (e.g., no circular im-

plementation, etc). In the Sun JVM implementation, the check is performed in

pass 1 of bytecode verification.

3. Obligation: throwable(Y )

Target: endorse X::M(S)

Intention: This attachment is generated when the body of a method X::M(S)

contains an athrow bytecode instruction. It guarantees that the class Y of the ob-

ject being thrown as an exception is indeed a subclass of java.lang.Throwable.

The class Y is statically identified as being relevant to X::M(S). In the Sun

JVM, this check is performed in pass 3 of bytecode verification as part of a

dataflow analysis.

6The second edition of the JVM specification [130] simplifies the type rules of the Java bytecode
language originally presented in the first edition [129]. This allows fewer obligations to be generated
in the current proof linking model than the one presented in [73], which is already a simplification of
the list reported in [71]. A further simplification was adopted by the implementation in Chapter 6.
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4. Obligation: subclass(X,Y )

Target: resolve Y ::N(T ) in X

Intention: The JVM specification [130, page 137] states that “each

invokespecial instruction must name an instance initialization method, a method

in the current class, or a method in a superclass of the current class.” This at-

tachment is generated for the third case. In the Sun JVM, the check is performed

in pass 3 as part of a dataflow analysis.

5. Obligation: assignable(Y ,Z)

Target: endorse X::M(S)

Intention: This attachment is generated when the body of method X::M(S)

contains one of the following bytecode instructions: putstatic, putfield, getfield,

invokestatic, invokevirtual, invokeinterface, invokespecial, areturn and aastore.

It is generated for the following reasons:

(a) In the case of invokestatic, invokevirtual, invokeinterface and invokespecial,

an actual argument of reference type Y must be assignment compatible7

to its corresponding formal parameter of reference type Z.

(b) In the case of getfield, putfield, invokevirtual, invokeinterface and

invokespecial, the type Y of the object instance to which the instruction

is applied must be assignment compatible to the class Z named in the

instruction.

(c) In the case of areturn, the type Y of the object instance that is returned

by the instruction must be assignment compatible to the return type Z of

X::M(S).

(d) In the case of putfield and putstatic, the type Y of the value that is stored

by the instruction must be assignment compatible to the type Z of the

target field.

7In the case of reference types, the notion of assignment compatibility coincide with that of
invocation compatibility. Only the notion of assignment compatibility is captured in the current
initial theory, so that unnecessary complication caused by redundancy can be avoided.
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(e) In the case of aastore, the type Y of the value that is stored by the in-

struction must be assignment compatible to the component type Z of the

target array.

In each case, Y is statically identified by the modular verifier as being relevant

to X::M(S). In the Sun JVM, this check is performed in pass 3 as part of a

dataflow analysis.

6. Obligation: accessible(Y ::N(T ),X,Z)

Target: resolve Y ::N(T ) in X

Intention: This attachment is generated when the body of a method X::M(S)

contains one of the following: getfield, putfield, invokevirtual and invokespecial.

It is generated to make sure that it is safe to access member Y ::N(T ) from

within the current class X through an object instance of type Z. The type Z is

statically identified to be relevant to X::M(S). In the Sun JVM, this check is

performed in pass 3 as part of a dataflow analysis.

4.3 Correctness of the Proof Linking Model

Suppose a JVM can be implemented to generate the proof obligations and commit-

ments described in the previous section, and enforce the ordering constraints of Section

4.2.2. It can be proven that such an implementation satisfies the three correctness

conditions in Section 3.2.3.

1. Safety: Only “verify X” generates obligations. As specified in Section 4.2.4,

the generated obligations are only attached to “endorse X”, “endorse

X::M(S)”, “resolve Y in X”, and “resolve Y ::M(S) in X”. In each case,

however, the proof linker processes these primitives only after the appropri-

ate “verify X” primitive, in accord with the Natural Progression and Import-

Checked properties.
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2. Monotonicity: The initial theory and the commitments are all in Horn clause

form. Obligations are expressed as definite queries. Monotonicity is thereby

assured.

3. Completion: Consider the obligation subclassable(Y ) attached to “endorse

X” by “verify X”. Supports of this obligation are asserted by all primitives of

the form “verify Z”, where Z is either Y or one of its superclasses or superin-

terfaces. It then suffices to show that “verify Z” < “endorse X”. According

to Section 4.2.4, the obligation is imposed only when Y is declared to be a direct

superclass of X. The Subtype Dependency Property guarantees that Y and all

its superclasses and superinterfaces are verified before X is endorsed. Therefore,

the obligation is consistently established.

Consider now the obligation assignable(Y ,Z) attached to “endorse

X::M(S)”. Supports of the obligation are asserted by all primitives of the

form “verify W”, where W is Y or a superclass or superinterface thereof. As

shown in Section 4.2.4, Y is relevant to X::M(S) if the the obligation is to be

asserted. It then follows from the Referential Dependency Property that the

superclasses and superinterfaces of Y are already verified when the obligation

is tested. Thus, all the supports are already present, and the obligation can be

consistently established.

Using similar arguments, one can establish that Completion holds for all obli-

gations.

The above reasoning can be formalized and checked using the PVS specification and

verification tool [188]. Details are given in Appendix A.

4.4 Summary

This chapter describes how the Proof Linking architecture can be instantiated in a

way that captures the complexity of Java’s lazy, dynamic linking semantics, and does

so without violating the three correctness conditions specified in Section 3.2.3. This
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is achieved by introducing a new set of linking primitives (endorse) for staging the

discharging of certain proof obligations, and also imposing two additional ordering

constraints (Subtype Dependency Property and Referential Dependency Property) to

synchronize the generation of commitments and discharging of proof obligations.

One limitation of the model is that it assumes a single namespace for all symbols.

Whether the proof linking model can be extended to account for the complexity of

multiple classloaders is the topic of the next chapter.



Chapter 5

Multiple Classloaders

In order to focus on the interplay between incremental proof linking and lazy, dynamic

linking, the discussion in the previous chapter assumes a simplified JVM with only one

classloader. The assumption is relaxed in this chapter1, and analyze the interaction

between incremental proof linking and lazy, dynamic linking in the setting of multiple

classloaders. It turns out that a systematic, straightforward set of extensions to

the original model is sufficient to make incremental proof linking work with multiple

classloaders. This demonstrates that the Proof Linking Architecture is applicable to

realistic mobile code environments and is orthogonal to namespace partitioning with

multiple classloaders. Of particular interest is that the extended model is carefully

designed to support the distributed verification of Java classfiles (see Section 3.3.2).

5.1 Enter Multiple Classloaders

In standard Java platforms, multiple namespaces can be created by defining multiple

classloaders. A Java class is identified not only by its name, but by both its name

and the classloader in which the class is defined. Formally, when a Java application

attempts to load a class C with class name X using a classloader Li, Li may delegate

1Results in this chapter first appeared in [72, 74].

101
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Classloader L

Class <X, J>

Class <Y, L>

load Y

Classloader J

load Y

Classloader K

load Y

Figure 5.1: Java Delegation Style Classloading

the classloading task to another classloader, which, in turn, might delegate the task to

yet another classloader. The classloader Li is called the initiating classloader of class

C. The classloader Ld that eventually loads and defines C is said to be its defining

classloader. C is uniquely identified by the pair 〈X,Ld〉. We also write XLi 7→ 〈X,Ld〉

to indicate the fact that class 〈X,Ld〉 is bound to the symbol X in the namespace

associated with classloader Li as a result of Li initiating the loading of 〈X,Ld〉.

When a symbolic reference Y is resolved in a class 〈X, J〉, the classloader J will

be used as the initiating classloader for class Y . Doing so guarantees that the loading

of classes referenced in class 〈X,L〉 is consistently initiated by the same classloader

that defines the class. The situation is depicted in Figure 5.1, in which the defining

classloader J of loaded class 〈X, J〉 is used for initiating the loading of a class with

name Y . Classloader J , delegates the loading request to classloader K, which in turn

delegates the loading request to classloader L, the classloader that finally defines the

class as 〈Y, L〉. As a result, the following name bindings materialize:

Y J 7→ 〈Y, L〉, Y K 7→ 〈Y, L〉, Y L 7→ 〈Y, L〉.
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Details of Java’s classloading mechanism are described elsewhere [127][130, Chap-

ter 5].

The notation 〈P,L〉 is used to denote loaded package with package name P and

defining classloader L.

5.2 An Extended Proof Linking Model

5.2.1 Overview of the Solution Approach

A naive attempt to account for the complexity introduced by multiple classloaders

would be to replace each class reference Y appearing in commitments and obligations

by a classname-classloader pair 〈Y,K〉, where K is the defining classloader of the

referenced class. Unfortunately, this naive approach would not work. Suppose that

the commitment or obligation mentioning symbol Y is generated when a class 〈X, J〉

is being verified. There is no guarantee that the class designated by the class symbol

Y has already been properly loaded before class 〈X, J〉 is verified (recall that the goal

is to avoid recursive classloading). In the adversarial case, the defining classloader for

Y is simply not known yet, and so the naive approach will break down for the obvious

reason. Fortunately, the initiating classloader for class symbol Y is already known:

classloader J will be used for initiating the loading of class reference Y . Consequently,

if the name resolution process can be explicitly mirrored in the discharging of proof

obligations, then the previous proof linking model can be reused. The proof linking

model as presented in the previous chapter will be extended according to the following

strategy:

1. The modular verifier formulates commitments and obligations not in terms of

loaded classes, but in terms of symbolic class references. This removes the

necessity of identifying unknown defining classloaders.

2. Before commitments are asserted into the commitment database, and obliga-

tion attachments are recorded in the obligation table, they are tagged with the
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load 〈X, J〉 Acquire the definition of a class with name X with the
defining classloader J .

verify 〈X, J〉 Assess the safety of the bytecode in loaded class 〈X, J〉.
bind XL to 〈X, J〉 Bind the class symbol X in the namespace of classloader

L to the loaded class 〈X, J〉. That is, classloader L be-
comes an initiating classloader of X.

endorse 〈X, J〉 Endorse the loaded class 〈X, J〉 for resolution.
endorse 〈X::M(S), J〉 Endorse the loaded member 〈X::M(S), J〉 for resolution.

resolve Y in 〈X, J〉 Resolve the class symbol Y in loaded class 〈X, J〉.
resolve Y ::M(S) in 〈X, J〉 Resolve the member symbol Y ::M(S) in loaded class

〈X, J〉.

Figure 5.2: The Extended Set of Linking Primitives for Modeling Java Typechecking
in the Presence of Multiple Classloaders

initiating classloaders of the symbolic class references. This provides the con-

text in which to perform symbol resolution during the incremental proof linking

process.

3. Name binding events are explicitly modeled as linking primitives generating

binding commitments. This allows us to access the name binding information

of the JVM.

4. Translation rules are introduced into the initial theory for explicit resolution

of tagged symbolic references to loaded classes using binding commitments.

This allows us to mirror JVM name resolution in the incremental proof linking

process.

The above plan will be carried out step by step in the following sections.

5.2.2 Linking Primitives

Let us begin the discussion of the extended proof linking model by looking at its

linking primitives, which can be found in Figure 5.2. Two changes to the original

primitive set have been made:
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1. The load, verify, endorse and resolve primitives have been adapted to refer

to loaded classes rather than simple class names.

2. A new family of bind primitives has been introduced. They model the explicit

binding of loaded classes to symbols defined in the local namespace of a class-

loader. When the JVM binds the loaded class 〈X, J〉 to the symbol X in an

initiating classloader L, the primitive “bind XL to 〈X, J〉” is executed. It is

assumed that the JVM will execute at most one “bind XL to 〈X, J〉” for each

symbol X in classloader L. The special binding primitive “bind XL to 〈X,L〉”

represents the definition of class 〈X,L〉 by classloader L.

In addition, the use primitives are no longer considered in the extended proof linking

model, as doing so does not add further insight into the discussion.

5.2.3 Static Type Rules

Let us begin with the static type rules formulated in the previous chapter. To reason

about loaded classes in multiple namespaces instead of class names in a single names-

pace, the naive approach mentioned in Section 5.2.1 was first adopted, the result of

which was then enriched according to the solution plan. To do so, class names are

uniformly replaced by loaded class notations. For example, consider the subclassing

rule mentioned in the previous chapter:

subclass(X,X).

subclass(X,Y ) :-

extends(X,Z),

subclass(Z,Y ).

This rule is rewritten as follows:

subclass(〈X, J〉, 〈X, J〉).

subclass(〈X, J〉, 〈Y,K〉) :-

extends(〈X, J〉, 〈Z,L〉),

subclass(〈Z,L〉, 〈Y,K〉).
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implementable([ ]).
implementable([ 〈X,J〉 |L ]) :-
interface(〈X,J〉),
implements(〈X,J〉, I),
implementable(I),
implementable(L).

subclassable(〈’java/lang/Object’, ∅〉).
subclassable(〈X,J〉) :-
class(〈X,J〉),
non final(〈X,J〉),
implements(〈X,J〉, I),
implementable(I),
extends(〈X,J〉, 〈Y,K〉),
subclassable(〈Y,K〉).

subclass(〈X,J〉, 〈X,J〉).
subclass(〈X,J〉, 〈Y,K〉) :-
extends(〈X,J〉, 〈Z,L〉),
subclass(〈Z,L〉, 〈Y,K〉).

throwable(〈X,J〉) :-
subclass(〈X,J〉, 〈’java/lang/Throwable’, ∅〉).

transitively implements(〈X,J〉, 〈Y,K〉) :-
implements(〈X,J〉, I),
list member(〈Y,K〉, I).

transitively implements(〈X,J〉, 〈Y,K〉) :-
implements(〈X,J〉, I),

list member(〈Z,L〉, I),
transitively implements(〈Z,L〉, 〈Y,K〉).

subinterface(〈X,J〉, 〈X,J〉) :-
interface(〈X,J〉).

subinterface(〈X,J〉, 〈Y,K〉) :-
subclass(〈X,J〉, 〈Z,L〉),
transitively implements(〈Z,L〉, 〈Y,K〉).

assignable(〈X,J〉, 〈Y,K〉) :-
subclass(〈X,J〉, 〈Y,K〉).

assignable(〈X,J〉, 〈Y,K〉) :-
subinterface(〈X,J〉, 〈Y,K〉).

accessible(〈Y ::M(S),K〉, , ) :-
public member(〈Y ::M(S),K〉, .)

accessible(〈Y ::M(S),K〉, 〈X,J〉, ) :-
protected member(〈Y ::M(S),K〉, ,)
package(〈P,L〉, 〈X,J〉),
package(〈P,L〉, 〈Y,K〉).

accessible(〈Y ::M(S),K〉, 〈X,J〉, 〈Z,L〉) :-
protected member(〈Y ::M(S),K〉, ,)
subclass(〈X,J〉, 〈Y,K〉),
subclass(〈Z,L〉, 〈X,J〉).

accessible(〈Y ::M(S),K〉, , ) :-
package private member(〈Y ::M(S),K〉, .)

accessible(〈Y ::M(S),K〉, , ) :-
private member(〈Y ::M(S),K〉, .)

Figure 5.3: Axioms in the Initial Theory Used for Modeling Java Typechecking in the
Presence of Multiple Classloaders
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class(〈X, J〉)
interface(〈X, J〉)
non final(〈X, J〉)
package(〈P,L〉, 〈X, J〉)
extends(〈X, J〉, 〈Y,K〉)
implements(〈X, J〉, I)

public member(M(S), 〈X, J〉)
protected member(M(S), 〈X, J〉)
package private member(M(S), 〈X, J〉)
private member(M(S), 〈X, J〉)

Figure 5.4: Foundational Queries Used for Modeling Java Typechecking in the Pres-
ence of Multiple Classloaders

The reformulation2 of rules is entirely mechanical. A list of all the reformulated rules

is presented in Figure 5.3. The evaluation of the static type rules above requires

ability to evaluate the query forms in Figure 5.4, a topic to which we will turn next.

5.2.4 Commitment Assertion

Suppose that a classfile with class name X is being verified, and that X extends a

class with name Y . The verifier must assert a commitment specifying this subclassing

relationship. However, because the actual verification of the classfile may happen

remotely (Section 3.3.2), the defining classloaders for classes X and Y are not known

at the time of verification. Consequently, the commitment cannot be phrased in terms

of loaded classes. To address the above problems, three reformulations are introduced

below.

Commitment Formulation and Tagging

First, the generation of commitments is separated into a two stage process, involving

(1) commitment formulation and (2) commitment tagging. The modular verification

procedure formulates the mentioned subclassing commitment in the following form:

2In fact, the original rule can be used here without change. A more stylized version is adopted
here to draw attention to the difference in argument types of the predicate symbols.
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class(this)

interface(this)

non final(this)

package(P, this)

extends(this,Y )

implements(this,L)

public member(M(S), this)

protected member(M(S), this)

package private member(M(S), this)

private member(M(S), this)

relevant(Y ,M(S), this)

Figure 5.5: Commitments For Modeling Typechecking in the Presence of Multiple
Classloaders

bind class list([ ], [ ]) @ 〈X, J〉.
bind class list([ Y |H ], [ 〈Y, K〉 | I ]) @ 〈X, J〉 :-

Y J 7→ 〈Y, K〉,
bind class list(H, I) @ 〈X, J〉.

Figure 5.6: Rules for Resolving a List of Class Symbols
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class(〈X, J〉) :-
class(this) @ 〈X, J〉.

interface(〈X, J〉) :-
interface(this) @ 〈X, J〉.

non final(〈X, J〉) :-
non final(this) @ 〈X, J〉.

package(〈P, J〉, 〈X, J〉) :-
package(P, this) @ 〈X, J〉.

extends(〈X, J〉, 〈Y, K〉) :-
extends(this,Y ) @ 〈X, J〉,
Y J 7→ 〈Y, K〉.

implements(〈X, J〉, I) :-
extends(this,H) @ 〈X, J〉,
bind class list(H, I) @ 〈X, J〉.

public member(M(S), 〈X, J〉) :-
public member(M(S), this) @ 〈X, J〉.

protected member(M(S), 〈X, J〉) :-
protected member(M(S), this) @ 〈X, J〉.

package private member(M(S), 〈X, J〉) :-
package private member(M(S), this) @ 〈X, J〉.

private member(M(S), 〈X, J〉) :-
private member(M(S), this) @ 〈X, J〉.

Figure 5.7: Translation Rules for Resolving Symbols in Commitments

extends(this,Y )

Notice that symbolic references such as Y are used rather than actual loaded classes.

The relative reference this represents the class being verified. Figure 5.5 shows

a complete reformulation of the commitments originally found in Figure 4.4. The

reformulation is straightforward and mechanical. Notice that a new commitment,

“relevant(Y ,M(S), this)”, has been introduced for identifying class Y to be rel-

evant to the endorsing of method M(S) in this. Such an explicit representation of

relevance relationship is necessary for articulating linking strategies involving condi-

tional ordering constraints, details of which to follow in Section 5.2.6.

Before the commitments are actually asserted into the commitment database by

the “verify 〈X, J〉” primitive, they undergo a tagging process in which information is

attached to each commitment so as to identify the initiating classloader that will be

used for resolving the symbolic references occurring in the commitment. Specifically,

whenever “verify 〈X, J〉” asserts a commitment p, it systematically tags the commit-

ment as p @ 〈X, J〉. For example, the subclassing commitment above will be asserted

as:

extends(this,Y ) @ 〈X, J〉
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Similar tagging is systematically applied to all the commitments in Figure 5.5 before

they are actually asserted into the commitment database.

Binding Commitments

Second, execution of the bind primitive contributes binding information by asserting

commitments. Whenever a “bind XL to 〈X, J〉” primitive terminates, it asserts

the commitment “XL 7→ 〈X, J〉”. These facts will be used for explicit resolution of

symbols in commitments and queries. In order to facilitate resolving lists of class

symbols, the rule in Figure 5.6 is also added into the initial theory.

Translation Rules

Third, the initial theory is augmented with translation rules that express how sub-

goals expressed in terms of loaded class notations (Figure 5.4) may be satisfied us-

ing tagged commitments (Figure 5.5). For example, evaluating queries of the form

subclass(〈X, J〉, 〈Y,K〉) causes subgoals of the form extends(〈X, J〉, 〈Y,K〉) to

be generated. To satisfy these subgoals using tagged commitments, the following

translation rule is used.

extends(〈X, J〉, 〈Y,K〉) :-

extends(this,Y ) @ 〈X, J〉,

Y J 7→ 〈Y,K〉.

Basically, the rule retrieves the corresponding tagged commitment, and then validates

binding information by consulting binding commitments. A similar translation rule is

required for each predicate that may be asserted as a commitment. The formulation

of these rules is straightforward, and the complete set is given in Figure 5.7.

The three reformulations above address the need for modular and remote verifi-

cation. The use of symbolic references in commitment formulation and the explicit

modeling of name resolution in the incremental proof linking process allow a verifier to

operate without explicitly identifying defining classloaders. Separating commitment
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subclassable(Y ) @ 〈X, J〉 :-
Y J 7→ 〈Y, K〉,
subclassable(〈Y, K〉).

implementable(I) @ 〈X, J〉 :-
bind class list(I,H) @ 〈X, J〉
implementable(H).

throwable(Y ) @ 〈X, J〉 :-
Y J 7→ 〈Y, K〉,
throwable(〈Y, K〉).

subclass(Y ,Z) @ 〈X, J〉 :-
Y J 7→ 〈Y, K〉,

ZJ 7→ 〈Z, L〉,
subclass(〈Y, K〉, 〈Z, L〉).

assignable(Y ,Z) @ 〈X, J〉 :-
Y J 7→ 〈Y, K〉,
ZJ 7→ 〈Z, L〉,
assignable(〈Y, K〉, 〈Z, L〉).

accessible(Y ::M(S),X,Z) @ 〈X, J〉 :-
XJ 7→ 〈X, J〉,
Y J 7→ 〈Y, K〉,
ZJ 7→ 〈Z, L〉,
accessible(〈Y ::M(S), K〉,XJ,ZL).

Figure 5.8: Translation Rules for Resolving Symbols in Obligations

generation into a two-staged process consisting of a commitment formulation stage

and a commitment tagging stage also facilitates remote verification. Specifically, the

commitment formulation stage can be performed remotely by a certification service,

while the commitment tagging stage can be performed locally by the verify primitives

of a JVM.

5.2.5 Obligation Attachment

As with the commitments, the verify primitive cannot identify the defining class-

loader for the classes appearing in obligations. Following a similar strategy, proof

obligations are formulated in terms of symbolic class names, and subsequently tagged

with the context in which they are to be evaluated. For example, the verifier may

formulate an obligation of the following form:

subclass(Y ,Z)

The obligation is subsequently tagged with an evaluation context before attachment:
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subclass(Y ,Z) @ 〈X, J〉

Similar tagging is systematically applied to each obligation in Section 4.2.4.

Again, in order to evaluate the tagged obligations, one has to provide transla-

tion rules that transform tagged queries into queries in terms of loaded classes. For

example, the following rule is required in the initial theory in order to handle all

subclass(·, ·) queries:

subclass(Y ,Z) @ 〈X, J〉 :-

Y J 7→ 〈Y,K〉,

ZJ 7→ 〈Z,L〉,

subclass(〈Y,K〉, 〈Z,L〉).

The translation rule basically resolves all the symbols in the tagged context, and

evaluates a corresponding query in terms of loaded classes. A similar translation rule

is formulated for each of the obligations stated in Section 4.2.4. The complete set is

presented in Figure 5.8.

Recall that, in the running example (Figure 3.1), the above subclassing obligation

is attached to the primitive “resolve Z::M(S) in 〈X, J〉”, which is identified by the

loaded class reference 〈X, J〉. If verification is performed remotely, then the defining

classloader for the class being examined will not be available, and as a result, the

remote verifier cannot completely identify the target primitives to which the obliga-

tion is attached. Fortunately, obligations are always attached to primitives that are

operating on the class being verified (see Section 4.2.4). The remote verifier may thus

formulate the target of attachment in terms of placeholders:

resolve Z::M(S) in

and rely on the local “verify 〈X, J〉” primitive to fill in 〈X, J〉, as it does when tagging

obligations.
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5.2.6 Linking Strategy

The linking strategy presented in the previous chapter involves certain ordering con-

straints whose semantics depends on the static relationship among classes and/or

methods. Specifically, the Subtype Dependency Property is defined in terms of the

subtyping relationship among classes, whereas the semantics of the Referential De-

pendency Property is based on the static relevance relationship. The formulation is

well defined because a static type environment is assumed (see Appendix A). When

dynamic classloading is introduced, the definition of such conditional ordering con-

straints needs to be rigorously specified in order not to introduce semantic confusion.

To this end, the notations used for expressing ordering constraints are extended. As

usual, given linking primitives p and q, the syntactic constraint “p < q” requires that

any execution of primitive q should be preceded by the completion of primitive p.

Given further a query g, the conditional ordering constraint “p < q if g” requires that

execution of q must not begin if g is satisfiable and p has not yet completed. More

precisely, the notation represents the property that an execution trace τ satisfies one

of the following conditions:

• “begin q” does not occur in τ ;

• “begin q” occurs in τ after an occurrence of “end p”.

• “begin q” occurs in τ . Let S be the set of primitives whose end events occur

in τ before “begin q”. The following judgment does not hold:

Γ ∪
⋃

r∈S

com(r) ` g

That is, the condition g is not provable from the initial theory and the commit-

ments that are asserted into the commitment database prior to the occurrence

of “begin q”.

The following ordering constraints are imposed on the linking primitives. Except

for the newly introduced Proper Resolution Property, the rest are refinement to those

ordering constraints found in the previous chapter (Section 4.2.2).
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1. Natural Progression Property: The natural life cycle of a class 〈X, J〉 is

reflected in the ordering below:

load 〈X, J〉 < verify 〈X, J〉 < bind XJ to 〈X, J〉

< endorse 〈X, J〉 < resolve Y in 〈X, J〉 < resolve Y ::M(S) in 〈X, J〉

2. Proper Resolution Property: The defining classloader of a loaded class is

used for resolving the symbolic references of the class:

bind Y J to 〈Y,K〉 < resolve Y in 〈X, J〉

Delegation of classloading bottoms out when a classloader defines the requested

class:

bind Y K to 〈Y,K〉 < bind Y J to 〈Y,K〉

3. Import-Checked Property: Resolving a symbolic reference requires that the

target object is well-defined:

endorse 〈Y,K〉 < resolve Y in 〈X, J〉 if Y J 7→ 〈Y,K〉

endorse 〈Y,K〉 < endorse 〈Y ::M(S), K〉

< resolve Y ::M(S) in 〈X, J〉 if Y J 7→ 〈Y,K〉

4. Subtype Dependency Property: To establish an obligation concerning a

class, type information about its superclasses and superinterfaces might be

needed. For example, to establish that the direct superclass Y J of a loaded

class 〈X, J〉 is subclassable (i.e., subclassable(Y ) @ 〈X, J〉), all superclasses

and superinterfaces of 〈X, J〉 are required to be loaded, verified and bound be-

fore 〈X, J〉 is used. To address this need, it is required that

bind Y L to 〈Y,K〉 < endorse 〈X, J〉 if subtypedependent(Y L) @ 〈X, J〉

where the conditional query is handled by the following rules in the initial theory:
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subtypedependent(XJ) @ 〈X, J〉.

subtypedependent(Y L) @ 〈X, J〉 :-

subtypedependent(ZK) @ 〈X, J〉,

ZK 7→ 〈Z, L〉,

extends(this, Y ) @ 〈Z, L〉.

subtypedependent(Y L) @ 〈X, J〉 :-

subtypedependent(ZK) @ 〈X, J〉,

ZK 7→ 〈Z, L〉,

implements(this, I) @ 〈Z, L〉,

list member(Y , I).

5. Referential Dependency Property: Sometimes, verification of a class Y is

needed before a method 〈X::M(S), J〉 can be safely endorsed. For example,

if method 〈X::M(S), J〉 assigns a reference of type Y to a variable of type Z,

then Java type rules require Z to be either a superclass or a superinterface

of Y . Unless Y is a superclass of X, it is entirely possible that the super-

classes and superinterfaces of Y are not verified yet. Consequently, the required

supporting commitments for the obligation are not necessarily present at the

time the obligation is checked, a violation of the Completion Condition. In

such a case, Y is said to be relevant to the endorsing of 〈X::M(S), J〉. It

is assumed that, verification of method 〈X::M(S), J〉 generates commitments

relevant(Y ,M(S), this) @ 〈X, J〉 for all relevant class symbols Y . The fol-

lowing is then required3.

endorse 〈Y,K〉 < endorse 〈X::M(S), J〉

if relevant(Y ,M(S), this) @ 〈X, J〉

3An alternative formulation of this requirement is the following ordering constraint.

bind Y K to 〈Y,L〉 < endorse 〈X::M(S), J〉 if referentialdependent(Y K) @ 〈X,J〉

where the conditional query is handled by the following rules in the initial theory:

referentialdependent(Y J) @ 〈X,J〉 :-
relevant(Y ,M(S), this) @ 〈X,J〉.

referentialdependent(ZL) @ 〈X,J〉 :-
relevant(Y ,M(S), this) @ 〈X,J〉,
Y J 7→ 〈Y,K〉,
subtypedependent(ZL) @ 〈Y,K〉.

This variant of the Referential Dependency Property achieves the same goal as the original version.
It was not adopted in previous works [72, 73] because of its convoluted formulation. Nevertheless,
this slightly lazier variant was eventually implemented in the Aegis VM (Chapter 6). The Completion
condition is preserved because the endorse primitive does not generate commitments.
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1. subclass(C,A) @ 〈C,L3〉 /* resolve A::M(S) in 〈C,L3〉 */
1.1. CL3 7→ 〈C,L3〉 /* bind CL3 to 〈C,L3〉 */
1.2. AL3 7→ 〈A,L1〉 /* bind AL3 to 〈A,L1〉 */
1.3. subclass(〈C,L3〉, 〈A,L1〉)

1.3.1. extends(〈C,L3〉, 〈B,L2〉)
1.3.1.1. extends(this,B) @ 〈C,L3〉 /* verify 〈B,L2〉 */
1.3.1.2. BL3 7→ 〈B,L2〉 /* bind BL3 to 〈B,L2〉 */

1.3.2. subclass(〈B,L2〉, 〈A,L1〉)
1.3.2.1. extends(〈B,L2〉, 〈A,L1〉)

1.3.2.1.1. extends(this,A) @ 〈B,L2〉 /* verify 〈B,L2〉 */
1.3.2.1.2. AL2 7→ 〈A,L1〉 /* bind AL2 to 〈A,L1〉 */

1.3.2.2. subclass(〈A,L1〉, 〈A,L1〉)

Figure 5.9: Subgoals generated by evaluating subclass(C,A) @ 〈C,L3〉

That is, the commitments for all relevant classes (plus their superclasses and su-

perinterfaces) are collected before the obligations attached to “endorse

〈X::M(S), J〉” are checked.

5.2.7 Putting It All Together

To illustrate how the scheme works, consider a refinement of the running example (Fig-

ure 3.1). Suppose class 〈A,L1〉 defines a method M(S). Suppose further that 〈A,L1〉

has a direct subclass 〈B,L2〉, which in turn has a direct subclass 〈C,L3〉. Assume that

〈C,L3〉 overrides the method M(S). Say the loaded method 〈C::M(S), L3〉 contains

an invokespecial instruction that delegates the call to 〈A::M(S), L1〉. The obliga-

tion subclass(C,A) @ 〈C,L3〉 will be attached to the primitive “resolve A::M(S)

in 〈C,L3〉” (Section 4.2.4). When the obligation is discharged, the subgoals in Figure

5.9 will be generated. The original obligation is shown as the top-level goal, annotated

with “resolve A::M(S) in 〈C,L3〉”, the primitive to which the obligation is attached.

Also, all the innermost subgoals are annotated with the primitives that assert their

matching commitments.
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The deduction is successful because the commitments required by the innermost

subgoals are already asserted at the time the obligation is checked, that is, at the time

“resolve A::M(S) in 〈C,L3〉” is executed. For example, subgoal 1.1 is satisfiable

because, according to the Natural Progression Property, the primitive “bind CL3 to

〈C,L3〉” has already been executed. Also, subgoal 1.2 is satisfiable because

bind AL3 to 〈A,L1〉 < resolve A in 〈C,L3〉 (Proper Resolution)

< resolve A::M(S) in 〈C,L3〉 (Natural Progression)

The rest of the subgoals are more interesting. Note that

subtypedependent(BL3) @ 〈C,L3〉 is satisfiable before “resolve A::M(S) in 〈C,L3〉”

is executed. By applying the Subtype Dependency Property and other ordering con-

straints, the following can be deduced.

verify 〈B,L2〉 < bind BL2 to 〈B,L2〉 (Natural Progression)

< bind BL3 to 〈B,L2〉 (Proper Resolution)

< endorse 〈C,L3〉 (Subtype Dependency)

< resolve B::M(S) in 〈C,L3〉 (Natural Progression)

That is, the commitments extends(this,B) @ 〈C,L3〉 and BL3 7→ 〈B,L2〉 (generated

by “verify 〈B,L2〉” and “bind BL3 to 〈B,L2〉” respectively) are already in place when

the obligation is checked. Therefore, subgoals 1.3.1.1. and 1.3.1.2. are necessarily

satisfiable. Similar reasoning applies to subgoals 1.3.2.1.1. and 1.3.2.1.2.

This example is really a skeleton for the proof of Completion, one of the three

correctness criteria for proof linking. Detailed correctness justification of Java proof

linking with multiple classloaders will be the topic of the next section.

5.3 Correctness

Recall that, given a well-defined linking strategy, proof linking is correct if the three

correctness conditions can be established: Safety, Monotonicity and Completion (Sec-

tion 3.2.3).
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5.3.1 Consistency of the Linking Strategy

The strict partial order imposed by the linking strategy above is well-defined. To see

this, consider the following linearization of the linking primitives:

1. “load 〈X, J〉” for all classnames X and classloaders J

2. “verify 〈X, J〉” for all loaded class 〈X, J〉

3. “bind XJ to 〈X, J〉” for all loaded class 〈X, J〉

4. “bind XL to 〈X, J〉” for all loaded class 〈X, J〉 and classloader L such that

J 6= L

5. “endorse 〈X, J〉” for all loaded class 〈X, J〉

6. “endorse 〈X::M(S), J〉” for all loaded member 〈X::M(S), J〉

7. “resolve Y in 〈X, J〉” for all class symbols Y and loaded class 〈X, J〉

8. “resolve Y ::M(S) in 〈X, J〉” for all member references Y ::M(S) and loaded

class 〈X, J〉.

It is easy to check that this linearization satisfies all the ordering constraints imposed

by the linking strategy in Section 5.2.6. The linking strategy is therefore consistent.

5.3.2 Safety and Monotonicity

Establishment of the Safety and Monotonicity properties follows the corresponding

arguments for the single-classloader case (Section 4.3).

1. Safety: Only verify primitives generate obligations. A “verify 〈X, J〉” prim-

itive only attaches obligations to “endorse 〈X, J〉”, “endorse 〈X::M(S), J〉”,

“resolve Y in 〈X, J〉” and “resolve Y ::M(S) in 〈X, J〉”, all of which are or-

dered after “verify 〈X, J〉” by the Natural Progression Property. Therefore,

once a primitive begins execution, no additional unchecked obligation will be

attached to it.
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(α-0) XL0

0 7→ 〈X0, L0〉 bind XL0

0 to 〈X0, L0〉
(γ) XL0

n 7→ 〈Xn, Ln〉 bind XL0

n to 〈Xn, Ln〉
(β-0) extends(this,X1) @ 〈X0, L0〉 verify 〈X0, L0〉
(α-1) XL0

1 7→ 〈X1, L1〉 bind XL0

1 to 〈X1, L1〉
(β-1) extends(this,X2) @ 〈X1, L1〉 verify 〈X1, L1〉
(α-2) XL1

2 7→ 〈X2, L2〉 bind XL1

2 to 〈X2, L2〉
(β-2) extends(this,X3) @ 〈X2, L2〉 verify 〈X2, L2〉
(α-3) XL2

3 7→ 〈X3, L3〉 bind XL2

3 to 〈X3, L3〉
...

...
...

(β-(n − 1)) extends(this,Xn) @ 〈Xn−1, Ln−1〉 verify 〈Xn−1, Ln−1〉
(α-n) XLn−1

n 7→ 〈Xn, Ln〉 bind XLn−1

n to 〈Xn, Ln〉

Figure 5.10: Leaves of the Proof Tree for the Obligation subclass(X0,Xn) @ 〈X0, L0〉

2. Monotonicity: The initial theory, commitments and obligations form a mono-

tonic, Horn clause theory. Once an obligation is satisfied, it will not be contra-

dicted by subsequently asserted commitments.

5.3.3 Completion

Completion has to be established on an obligation-by-obligation basis. Continuing

with the running example in Section 5.2.7, let us consider an obligation

subclass(X0,Xn) @ 〈X0, L0〉 that is attached to the primitive “resolve Xn::M(S)

in 〈X0, L0〉”. The goal is to show that, if the predicate subclass(X0,Xn) @ 〈X0, L0〉

eventually becomes provable, then it is necessarily provable before the primitive

“resolve Xk::M(S) in 〈X0, L0〉” is executed.

Suppose that the obligation subclass(X0,Xn) @ 〈X0, L0〉 becomes provable at a

certain point. Generalizing the proof tree found in Figure 5.9, the proof tree of the

subclassing obligation contains the innermost subgoals shown in Figure 5.10. The

subgoals are labeled as (α-i), (β-i) and (γ). The goal is to prove that the primitives

that assert commitments satisfying these subgoals have all been executed prior to

the execution of “resolve Xn::M(S) in 〈X0, L0〉”. As already explained in Section
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5.2.7, the Proper Resolution Property guarantees that supporting commitment (γ) is

already in place. Induction is applied to show that commitments (α-i) and (β-i) are

already asserted when the obligation is checked.

Basis: Commitment (α-0) and (β-0) are already asserted because,

verify 〈X0, L0〉 < bind XL0

0 to 〈X0, L0〉 (Natural Progression)

< resolve Xk::M(S) in 〈X0, L0〉 (Natural Progression)

Induction Step: Assume that commitments (α-i) and (β-i) are already in place, for

0 ≤ i < k, where k > 0. The presence of these commitments enable the query

subtypedependent(X
Lk−1

k ) @ 〈X0, L0〉 to be satisfiable. The following can then

be deduced.

verify 〈Xk, Lk〉 < bind XLk

k to 〈Xk, Lk〉 (Natural Progression)

< bind X
Lk−1

k to 〈Xk, Lk〉 (Proper Resolution)

< endorse 〈X0, L0〉 (Subtype Dependency)

< resolve Xn::M(S) in 〈X0, L0〉 (Natural Progression)

Since the contributors “bind X
Lk−1

k to 〈Xk, Lk〉” and “verify 〈Xk, Lk〉” for

respectively (α-k) and (β-k) are already executed, the commitments are present

when the obligation is checked.

This concludes the proof of Completion for one class of obligations. Completion can

be established similarly for the rest of the obligations.

5.4 Summary

It has been shown in this chapter that the Java instantiation of the Proof Linking

Architecture can be extended in a systematic manner to provide support for multiple

classloaders. The proposed extension preserves the three correctness conditions. Par-

ticular attention is paid to make the extension applicable in the setting of distributed

verification.
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Successful extension of the Proof Linking Architecture to support Java delegation

style classloader gives us strong evidence that the architecture can indeed be realized in

a production mobile code system. The following chapter describes an implementation

of the Proof Linking Architecture in an open source JVM.



Chapter 6

The Aegis VM

6.1 Introduction

This chapter1 reports an implementation effort that serves to establish thesis state-

ment TS2, namely, the implementation feasibility of the Proof Linking architecture

in a production mobile code system for supporting stand-alone verification modules

and augmented type systems.

To give concrete evidence to support the thesis statement TS2, the Proof Linking

architecture has been fully implemented in an open source JVM, the Aegis VM [68]2.

The project is an on-going work. Five development releases result in a VM that sup-

ports features including dynamic linking, access control, delegation style classloading,

loading constraints, reflection, garbage collection, native method dispatching and all

aspects of bytecode interpretation. The VM does not support multithreading yet.

With the features already implemented, the VM provides a realistic Java platform

for implementation and evaluation of Proof Linking. Currently, the VM runs on the

GNU/Linux (x86) platform, but efforts in porting the Aegis VM to platforms such as

1Results in this chapter and the next first appeared in [70].
2The features described in this chapter is publicly available in the project CVS repository, and

will be integrated into the next release.

122
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Darwin, Solaris and Windows are planned3.

At the core of this exercise is the design and implementation of a generic mecha-

nism for recording and discharging proof obligations, and for defining arbitrary initial

theories that provide the vocabularies and semantics in terms of which proof obli-

gations and commitments can be formulated. This generic proof linking mechanism

will be described in Section 6.2. The generic proof linking mechanism is then em-

ployed to support two further features. Firstly, standard Java bytecode verification

is implemented in this framework as a stand-alone verification module, in accordance

with the blueprint prescribed in Chapters 4 and 5. Secondly, a generic verifier plug-in

mechanism, Pluggable Verification Modules (PVMs), is implemented. This mecha-

nism allows one to introduce well-mannered static program analyses into the dynamic

linking process of the Aegis VM. Details of the stand-alone Java bytecode verifier and

the PVM facility can be found in Section 6.3.

The design goals outlined in Section 3.4.2 were observed in the development of

the generic proof linking mechanism and the PVM facility. They are restated here for

reference.

1. Generality. The generic proof linking mechanism and the PVM facility should

be applicable to a wide range of static analyses.

2. Efficiency. Since linking events occur frequently in a Java platform, the generic

proof linking mechanism must be efficient enough so that the overhead intro-

duced by obligation discharging is acceptable.

3. Utility. The effort required of a programmer to incorporate an application-

specific analysis into the dynamic linking process of a JVM should be signifi-

cantly reduced when performed through the PVM facility.

At the system level, two potential problems are also noted in Section 3.4.2.

3A contributer has submitted a patch that ports the Aegis VM to the Cygwin platform. Cygwin
is an open source POSIX layer on top of the Win32 platform.
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1. Data structures. It is anticipated that non-trivial data structures will be

needed to support the incremental proof linking process. Introduction of com-

plex data structures into an already complex linking process within the JVM

is questionable. Consequently, the data structure required to implement proof

linking should have manageable complexity.

2. Linking strategies. The correctness conditions imposed on linking strategies

affect the temporal ordering of linking activities. An easy-to-validate linking

strategy for Java bytecode verification may perhaps not be the laziest one al-

lowed by the JVM specification. The degree to which laziness is curtailed may

proportionately affect the efficiency of the overall linking process. An imple-

mentation of Proof Linking should try to maximize the degree of laziness while

preserving correctness.

In the following discussion, we will see how the Aegis VM was designed and imple-

mented to meet the above design goals while avoiding the potential problems.

6.2 Incremental Proof Linking

This section describes the generic proof linking mechanism implemented in the Aegis

VM. The key features of the design are summarized before a detail treatment is given.

6.2.1 Key Features

Obligation Discharging as Native Function Dispatching

A generic proof linking mechanism should support the attachment of arbitrary obliga-

tions to the set of linking primitives specified in Chapter 5. Each verification domain

requires a different initial theory. A generic mechanism must be in place to capture

the logic of evaluating obligations for a wide spectrum of verification domains. Also,

since linking events occur frequently in a Java platform, the overhead of obligation

evaluation must remain an acceptable percentage of the overall run time.
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A declarative representation, such as the deductive database notation that has

been used throughout this work, will satisfy the generality requirement, but will fail

miserably in terms of efficiency. For this reason, a procedural approach is adopted for

specifying obligation semantics. Specifically, an initial theory, including its vocabulary

and axioms, is specified in terms of a dynamically loadable shared library of predicates

implemented as C functions. A security engineer implements a library of native

predicate functions following a specific convention, and then configures the Aegis

VM to load the library into its address space at the time of start up. Whenever an

obligation is to be discharged, the corresponding native function will be dispatched to

evaluate the validity of the obligation. An Application Programming Interface (API)

is defined to allow these native predicate functions to query the internal states of the

Aegis VM (e.g., interrogating the type interface of a specific class) or to retrieve the

commitments related to a class. Details of this design is given in Section 6.2.2.

Flexible Obligation Encoding

The end result of a modular verification session is either a simple failure, or a success

together with a set of obligation attachments. Obligations are not discharged until the

target linking primitives to which the they attach are executed. As such, they must

be represented and stored explicitly in the Aegis VM. This is achieved by an efficient

but expressive obligation encoding scheme. An encoded obligation is composed of an

identifier that denotes a native function implementing its semantics, together with a

list of actual arguments. Also designed is a rich obligation argument encoding scheme

that lets a modular verifier name the components of a class interface or other global

constants as obligation arguments. This includes, with respect to the class being

verified, the immediate superclass and superinterfaces, declared methods, declared

fields, constant pool entries, and so on. Prior to the discharging of an obligation, the

Aegis VM will resolve these encoded arguments into the VM data structures to which

they refer. The resolved arguments are then passed into the native predicate function

implementing the obligation.
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One particular kind of symbol that may be named as obligation arguments com-

prises the class symbols referenced in the body of a bytecode method. These appear

in a classfile as substrings of an UTF8 entry in the constant pool. The availability of

the referents for these auxiliary symbols is not guaranteed by the normal linking pro-

cess of the Aegis VM. These are exactly the class symbols relevant to the verification

of the bytecode method (Section 4.2.2). Relevant symbols are explicitly identified

by a modular verifier. The Aegis VM implements the Referential Dependency Prop-

erty (Section 4.2.2) by performing extra classloading in order to make sure that all

the identified relevant symbols are available before they are needed for obligation

discharging.

Details of obligation encoding can be found in Section 6.2.3.

Class-Centric Obligation Attachment

Once an obligation is formulated, it is attached to a linking primitive. One challenge

is to make sure that obligation attachment works properly with the class unloading

semantics of Java. According to the JVM Specification, a class is unloaded when its

defining classloader becomes unreachable [130, Section 2.17.8]. At the point when a

loaded class 〈X, J〉 is unloaded, all commitments and obligations tagged with 〈X, J〉

should be retracted from the commitment database. If commitments and obligations

tagged with a loaded class are stored along with the class, then unloading a class

automatically removes all the associated commitments and obligations. Consequently,

obligation attachment points are built into the class structure to facilitate the tracking

and discharging of proof obligations. Details can be found in Section 6.2.4.

Agnostic Representation for Commitments

To maximize the opportunity for optimization, the Aegis VM does not assume a par-

ticular representation for commitments. A verify primitive is free to produce any

native representation of commitments. It is only assumed that such a commitment

data structure is stored along with a loaded class. The obligation library API provides
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facilities for predicate functions to examine the content of commitment data struc-

tures. Details of commitment generation are described in Section 6.3, where modular

verification is discussed.

6.2.2 Pluggable Obligation Libraries

POL Life Cycle

Programmers define a custom verification domain by developing a corresponding plug-

gable obligation library (POL). Each POL is a dynamically loadable shared library on

GNU/Linux, and supplies native functions that will be used for evaluating obligations

in the initial theory of the verification domain. The Aegis VM has a command line

option that allows users to specify the path of a POL4. Users may specify multiple

POLs in the command line, thereby equipping the VM with vocabulary sets for mul-

tiple verification domains. When the Aegis VM starts up, all the POLs specified in

the command line are loaded. Each library exports an initialization function, which

is invoked after the POL is loaded. The initialization function initializes the POL by,

for example, creating global data structures that will be used for obligation evaluation

purposes. The VM then loads a number of classes on behalf of the POLs during its

bootstrapping process, so that the said classes can be used in the course of obligation

evaluation. After that point, the native functions in the library are made available to

the generic proof linking mechanism for obligation discharging. Before the Aegis VM

shuts down, each clean up function exported by the loaded POLs is invoked to clean

up the libraries before they are unloaded.

POL API

Each POL must export a global variable named pol profile with the following type:

struct pol_profile_t {

4A planned feature is to allow users to specify the same information using a configuration file.
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const char *id;

pol_init_t init;

pol_finish_t finish;

uint16_t npreds;

const pol_predicate_t *predicates;

uint16_t nclasses;

const char * const *global_classes;

uint16_t nconstants;

const void * const *global_constants;

};

This global variable describes the profile of the POL. The POL programmer must

initialize the fields as follows:

• id: A C-string identifying the verification domain that this obligation library

is intended to model. As we shall see in the following, a pluggable verification

module relies on this identifier to match up the obligations it generates with

their evaluation semantics.

• init: A function pointer referring to the initialization function of the POL.

Specifically, the type of the pointer is given below:

typedef int (*pol_init_t)(void);

• finish: A function pointer referring to the clean-up function of the POL. Specif-

ically, the type of the pointer is given below:

typedef int (*pol_finish_t)(void);

• npreds: The number of predicate functions exported by this POL, in a 16-bit

unsigned integer.

• predicates: An array of npreds function pointers, each referring to the im-

plementation of a predicate exported by the POL. More details concerning the

type signature of predicates will be given below.
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• nclasses: The size of the global classes array, in a 16-bit unsigned integer.

• global classes: An array of nclasses C-strings, each specifying the name

of a class that the VM should preload during its bootstrapping process (us-

ing the bootstrapping classloader). The classes named in this array are used

for evaluating obligations in the verification domain this POL models. As

such, they are accessible from a POL through a standard API, and can also

be named by a modular verifier as obligation arguments. For example, the class

’java.lang.Throwable’ is a global class of the standard Java typechecking POL,

because it is instrumental in the evaluation of the predicate throwable (Figure

5.3).

• nconstants: The size of the global constants array, in a 16-bit unsigned

integer.

• global constants: An array of immutable, native data structure representing

the domain constants in the verification domain. Predicate functions may access

them through standard API calls. A modular verifier may also name them as

obligation arguments.

The main job of a POL programmer is to supply native functions that implement

the semantics of obligation predicates. Each predicate listed in the predicates array

must have the following type signature5.

typedef bool (*pol_predicate_t)(POLEnv env,

uint16_t nargs,

const void *args[const]);

• env: Contextual information supplied by the Aegis VM. It is needed for retriev-

ing commitments and other data structures that might be needed for proper

evaluation of a predicate.

5The formal parameter args is typed in a syntax introduced in the C99 standard [102].
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• nargs: The number of actual arguments being passed, in a 16-bit unsigned

integer.

• args: An array of nargs generic C pointers, each pointing to an actual argument

of the obligation.

The 16-bit index of a predicate function in the array predicates becomes the pred-

icate identifier for that predicate. This numeric index is used by a modular verifier

to identify a predicate while formulating obligations. Before discharging an obliga-

tion, the Aegis VM will look up all the actual arguments embedded in an obligation

encoding. The actual arguments will be placed in an array, which will subsequently

be passed into a corresponding predicate function via parameter args, along with

the array size in parameter nargs. As modular verifiers are trusted components, a

predicate function is not obligated to verify the type and number of the arguments.

The nargs argument is supplied for implementing variable-size argument list and for

debugging. As we shall see in the following section, arguments could be internal data

structures of the Aegis VM, such as classes, methods, fields, and constant pool entries,

or global classes and constants supplied through the POL profile, etc.

To facilitate the evaluation of obligations, the Aegis VM offers a pluggable obli-

gation library API to allow obligation functions to examine the run-time state of the

VM (e.g., relationship between classes), or, more specifically, retrieve the commit-

ments associated with a class for the current verification domain. A brief summary of

the API functions that an obligation function may access is given below. A complete

list can be found in Appendix B.

1. Package interface interrogation: Given a package, examine its package name,

classloader, etc.

2. Class interface interrogation: Given a class, examine its access control flags,

package, classloader, class name, superclass, superinterfaces, fields, methods,

constant pool entries, etc.
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header argument list
pred nargs arg-1 arg-2 . . . arg-k

16 bits 16 bits 32 bits 32 bits . . . 32 bits

Figure 6.1: Encoding of a Proof Obligation

argument
type index

16 bits 16 bits

Figure 6.2: Encoding of an Obligation Argument

3. Field interface interrogation: Given a field, examine its access control flags,

declaring class, field name, type signature, etc.

4. Method interface interrogation: Given a method, examine its access control flags,

declaring class, method name, type signature, exception class names, etc.

5. Subtyping relationship: Subclassing, subinterfacing, subtyping, etc.

6. Contextual information: Retrieve commitments of a class, retrieve global classes

or constants specified in the POL profile, etc.

With these helper functions, a POL predicate function determines whether an obli-

gation is satisfied, returning a boolean value to indicate so.

6.2.3 Obligation Encoding and Relevant Symbols

Proof obligations are encoded for efficient storage and discharging. Every obligation

is encoded with respect to a base POL and a target class. The base POL defines

the verification domain to which the obligation belongs. It is the POL against which

predicates, global classes and global constants are looked up. The target class is

the one with which the obligation is tagged in Chapter 5. It provides a reference

point from which class components can be addressed. Figure 6.1 depicts the encoding

scheme for an obligation in the Aegis VM.
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type index
PRE ARG Constant index of a constant pool entry in the target

class
PRE ARG Symbol index of a relevant symbol for the target class
PRE ARG Relative a tag specifying either the target class (0) or

its superclass (1)
PRE ARG Interface index of an immediate superinterface for the

target class
PRE ARG Field index of a declared field in the target class
PRE ARG Method index of a declared method in the target class
PRE ARG GlobalClass index of a global class named in the

global classes array of the base POL’s pro-
file.

PRE ARG GlobalConstant index of a global constant in the
global constants array of the base POL’s
profile.

Figure 6.3: Argument Type

• An encoded obligation begins with a pred field, which is the 16-bit unsigned

integer identifying a POL predicate function. Recall that a predicate identifier

is essentially the index of a native function in the predicates array of a POL’s

pol profile.

• Next comes a nargs field, which is a 16-bit unsigned integer specifying the

number of arguments for this obligation.

• Exactly nargs 32-bit arguments follow. Each argument arg-i is encoded as shown

in Figure 6.2, as two 16-bit subfields. The encoding scheme for arguments is

discussed below.

Each encoded argument is composed of two 16-bit unsigned integer fields (Figure

6.2). The type field is a tag specifying the type of the argument. The index field

supplies additional information to identify the argument. Figure 6.2 summarizes the

use of the type-index pair.

• Argument types PRE ARG GlobalClass and PRE ARG GlobalConstant allow global
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classes specified by the base POL and the global constants it exports to be named

as obligation arguments.

• Argument types PRE ARG Relative, PRE ARG Interface, PRE ARG Field and

PRE ARG Method provide a means to encode supertypes and members of the

target class.

• The argument type PRE ARG Symbol is for encoding relevant symbols. When a

modular verifier scans the bodies of bytecode methods, it will identify all the

class symbols relevant to the verification of the methods. A symbol table of such

relevant classes are returned as part of the result of a successful verification. An

argument with type PRE ARG Symbol identifies a member of this relevant symbol

table.

• The argument type PRE ARG Constant is for encoding referents of constant pool

entries. Two types of constant pool entries can be encoded. Firstly, constant

pool entries corresponding to int, long, float, double, and UTF8 literals can

be encoded this way to represent constant arguments of the respective types.

Secondly, the resolved target of a constant pool entry corresponding to an import

reference (i.e., a class, field, method, or interface method reference) can also be

named as an obligation argument in any of the following cases:

1. The target primitive is “resolve Y in 〈X,L〉”, and the constant pool entry

is the class reference Y .

2. The target primitive is “resolve Y ::M(S) in 〈X,L〉”, and the constant

pool entry is either the class reference Y or the member reference Y ::M(S).

where 〈X,L〉 denotes the target class.

To make the above discussion more concrete, consider this example. Suppose a

modular verifier attempts to formulate an obligation that will be evaluated by the

predicate function at index 2 of the base POL’s predicates array. Suppose further

that 3 arguments are to be named in this obligation. The first is the 6th method
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Linking Primitive Corresponding VM Data Structure

endorse class class
endorse field field
endorse member member
resolve constant-pool-entry in class constant-pool-entry

Figure 6.4: Linking Primitives and Their Corresponding VM Data Structures

declared by the target class. The second is the 4th member of the relevant symbol

table. The third is the 2nd global constant exported by the base POL. The obligation

will be encoded as the following sequence of 16-bit quantities:

pred nargs type-1 index-1 type-2 index-2 type-3 index-3

2 3 PRE ARG Method 6 PRE ARG Symbol 4 PRE ARG GlobalConstant 2

6.2.4 Obligation Attachment Points

Encoded obligations are attached to a well-defined set of linking primitives. Each

linking primitive operates on a specific data structure of the Aegis VM (Figure 6.4),

making the data structure a natural attachment point for obligations. Specifically,

obligations attached to a linking primitive is stored in the corresponding VM data

structure. When the VM attempts to carry out a linking primitive, it will first dis-

charge the obligations stored in the VM data structure. To reduce space consumption,

obligations belonging to the same verification domain are stored together at each at-

tachment point. This eliminates the need for each obligation to carry an extra field

that identifies the verification domain to which the obligation belongs.

Notice that obligations attached in this way are removed from the VM along with

the associated class data structures when the latter is unloaded. The VM memory

management mechanism is thus conveniently exploited to manage the life time of

proof obligations.

6.2.5 Obligation Discharging Sequence

Obligations are discharged according to the linking strategy presented in the last

chapter. When a class is to be defined, its classfile representation (as obtained from a
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load primitive) is parsed into an abstract syntax tree (AST). Subtyping information

provided by the AST is used to initiate the loading of all supertypes, thus implement-

ing the Subtype Dependency Property. The AST is then examined by all modular

verifiers in turn. This corresponds to the execution of the corresponding verify prim-

itive. Successful completion of each modular verifier results in a verification interface

consisting of commitments, obligation attachments and a relevant symbol table. A

permanent class data structure is finally created in the namespace corresponding to

the defining classloader of the class (bind XL to 〈X,L〉), and the AST is discarded.

When the loaded class is subsequently prepared [130, Section 5.4.2], all the classes

named in the relevant symbol table are explicitly loaded and defined, thus imple-

menting the Referential Dependency Property6. The endorse primitives are then

executed, beginning with class endorsement, then field and method endorsement. Af-

ter this point, constant pool entries may be resolved as a result of bytecode execution

(resolve primitives). To resolve a constant pool entry, the Aegis VM acquires the

target pointer, makes it available for obligation argument resolution, and then dis-

charge obligations attached to the resolve primitive before marking the constant pool

entry as having been successfully resolved. This sequencing of events implements the

Proper Resolution Property.

To discharge an encoded obligation, the following steps are followed.

1. The pred field of the obligation header (Figure 6.1) is used as an index to look up

the corresponding predicate function in the current POL. This operation takes

constant time.

2. A temporary array of nargs pointers is created for holding arguments.

3. Each obligation argument is resolved into a corresponding pointer to a VM data

structure. The arguments are then placed into the temporary argument array.

As argument resolution amounts to a simple look up operation of VM data

6To be precise, the variant of the Referential Dependency Property as described in footnote 3 on
page 115 is implemented. As noted before, this does not affect the correctness of proof linking.
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structures, no classloading is involved. Resolution of an argument can thus be

carried out in constant time.

4. The predicate function is invoked with the argument array as input.

5. The result of evaluation is returned by the predicate function as a boolean value.

Since predicate lookup and argument resolution are both constant time operations,

the overhead involved in the dispatching of an obligation is proportional to the number

of obligation arguments. Such a modest overhead is quite reasonable.

6.2.6 Correctness Issues

Since the Aegis VM implements the linking strategy in Chapter 5, most of the cor-

rectness arguments transfer to the Aegis VM. As prescribed in the previous chapter,

a modular verifier only attaches obligations to the endorse and resolve primitives of

the target class. The Safety condition is therefore guaranteed. Completion is guaran-

teed by two features. Firstly, the POL API (Section 6.2.2) is carefully constrained to

expose only those commitment information already proven to be available at the time

of obligation discharging. Secondly, the argument encoding scheme (Section 6.2.3)

and the linking strategy are designed in such a way that properly named obligation

arguments are always resolvable. In particular, relevant classes are explicitly loaded

before the execution of any primitive that may bear obligations containing their ref-

erences. Similarly, the rules governing when constant pool entries may be named

as obligation arguments (Section 6.2.3) guarantee that targets of import references

are made available to the obligation argument resolution mechanism before the cor-

responding obligations are discharged. Such design decisions ensure the Completion

condition is satisfied.

Monotonicity is not guaranteed by the Aegis VM. It is the responsibility of the

POL programmer to make sure that the initial theory implemented in a POL satisfies

the Monotonicity condition.
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6.2.7 Comparison with the Sun Linking Strategy

As opposed to the Sun JVM implementation, which postpones bytecode verification

until a class is prepared, the implementation strategy above performs full verification

at the time of class definition. This is necessary for ensuring that commitments and

relevant symbol tables are properly constructed before they are needed for obligation

discharging. The Sun JVM performs one pass of verification at class definition time,

postponing the second and third passes until class preparation. Despite this difference,

the classloading order of Aegis VM is exactly the same as that of Sun. The reason

is that, although verification is scheduled earlier in the Aegis VM than in the Sun

implementation, the loading schedule of relevant classes remains the same — they are

loaded when a class is prepared. Consequently, although Aegis VM performs eager

verification, the linking strategy is nevertheless identical to that of Sun.

The linking strategy of Chapter 5 permits more laziness in classloading than is

implemented in the Aegis VM. Specifically, the linking strategy of the previous chapter

allows method endorsement to be postponed until a method is resolved for the first

time, and assumes that relevant symbols are identified separately for each method. An

implementation could potentially exploit these properties to delay the endorsement

of a method and the loading of its relevant classes. If such a method is not actually

invoked, then the loading of relevant classes can be completely avoided. Comparing to

the unconditional loading of all relevant symbols performed by the Aegis VM at class

preparation time, such an arrangement could potentially increase the performance of

a JVM in a significant manner [222, Chapter 6]. This path is not followed so as to

reduce memory consumption and maintain higher fidelity to the Sun linking strategy.

This concludes the discussion of the generic proof linking mechanism implemented

in the Aegis VM. In the next section, we turn to the counterpart of incremental proof

linking, namely, modular verification.
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6.3 Modular Verification

This section describes how the generic proof linking mechanism is exploited to sup-

port stand-alone verification modules for Java bytecode typechecking, and presents

a plug-in mechanism that allows users to augment the protection mechanisms of the

Aegis VM by introducing alternative static analyses into the dynamic linking process.

Again, key features of the design are summarized before a detail treatment is given.

6.3.1 Key Features

Stand-alone Java Bytecode Verifier

A stand-alone Java bytecode verifier is implemented in an open source C library called

Prelude [68], which is distributed separately of the Aegis VM. The Prelude library pro-

vides facilities for parsing and typechecking Java classfiles. It also provides generic

facilities for formulating verification interfaces composed of obligation attachments,

commitments and relevant symbol tables. Because intermodular dependencies are all

captured in proof obligations and commitments, bytecode verification can be con-

ducted without consulting external classes. See Section 6.3.2 for details concerning

the Prelude library. The Aegis VM employs the Prelude library to perform bytecode

verification. Proof obligations and commitments generated by the Prelude library

interoperates with the generic proof linking mechanism in the Aegis VM.

Pluggable Verification Modules

A plug-in mechanism is designed so that programmers may introduce alternative static

analyses into the dynamic linking process of the Aegis VM. Modular static analyses

are implemented as dynamically loadable shared libraries, called pluggable verification

modules (PVMs), according to a set of coding convention prescribed by a PVM API.

The Aegis VM can be configured to load these libraries into its address space at the

time of start up. Whenever a class is to be defined, its classfile representation is passed
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to each loaded PVM in turn for verification. Class definition is authorized only when

all the PVMs endorse the safety of the classfile.

The PVM mechanism depends on the Prelude library in two ways. Firstly, the

result of successful verification is a set of obligation attachments, a commitment data

structure and a relevant symbol table. The Prelude library provides constructors

for formulating these objects. Secondly, each PVM will receive as input arguments

an abstract syntax tree (AST) and the dataflow analysis results produced by the

Prelude classfile parser and bytecode typechecker respectively. This information can

be exploited by a PVM to facilitate its own program analysis.

Details of the PVM mechanism can be found in Section 6.3.3

6.3.2 Stand-alone Java Bytecode Verifier

The Prelude library features facilities for parsing and validating the structural well-

formedness of Java classfiles, performing dataflow analysis to assure the type safety

of bytecode methods, and formulating verification interfaces in the form of proof

obligations, commitments and relevant symbol tables.

• Classfile parsing: A family of C functions are in place for generating an AST

from a Java classfile. The classfile representation is verified for well-formedness.

Standard classfile attributes are recognized and parsed. Unrecognized attributes

are preserved verbatim. Accessor functions are in place to facilitate traversal of

the AST.

• Bytecode typechecking: A dataflow analyzer is implemented to perform standard

typechecking on bytecode methods. The analyzer also recovers the intraproce-

dural control flow graph, which is originally implicit due to the presence of the

notorious subroutine construct in the bytecode language [191, 151]. For each

program point, a type state is also computed to report (i) the depth of the

operand stack, (ii) the type of each data item residing in the operand stack and

local variable array, and (iii) the subroutine call chain that leads to the program
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point. Facilities are also in place to formulate the proof obligations specified in

Chapters 4 and 5.

• Verification interface formulation: Data structures are implemented to support

construction of verification interfaces composed of obligation attachments, com-

mitment data structures and relevant symbol tables. These data structures are

employed by the Prelude bytecode typechecker for recording verification inter-

faces in the standard Java bytecode verification domain. Yet, as the data struc-

tures are general enough, they are reused by the PVM mechanism for recording

results of modular verification. Specifically, proof obligations are encoded in the

scheme described in Section 6.2.3, while the representation of commitments are

left to be domain specific.

Specific implementation issues concerning the bytecode typechecker are discussed

below.

Meet Computation

Java typechecking involves dataflow analysis. In the Sun implementation of dataflow

analysis, the meet of two classes Z1 and Z2 is their most specific common superclass

[130, Section 4.9.2]. To compute this superclass at verification time, the Sun JVM

immediately loads all superclasses of Z1 and Z2. The Prelude bytecode typechecker

eschews recursive loading by representing the meet symbolically as Z1uZ2, the seman-

tics of which is that the reference could either be Z1 or Z2, and thus any operation on

such a reference should be supported by the type interfaces of both Z1 and Z2. Obli-

gations are then formulated in terms of these meet expressions7. Specifically, when

the composite obligation P(Z1 u Z2) is to be imposed, the typechecker will generate

both P(Z1) and P(Z2). For example, if subclass(Y ,Z1 u Z2) is found to be a safety

precondition, then the two obligations subclass(Y ,Z1) and subclass(Y ,Z2) are

7Such a symbolic representation does not affect the termination of the data flow analysis because
the number of class symbols that may appear in a method is finite, and the underlying lattice is
consequently bounded [111].
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generated. First reported in [71], this technique of formulating meet expressions and

composite obligations were independently proposed by Coglio and Goldberg [41, 42],

who later employed it to fix a bug found in the standard Java bytecode verification

algorithm [130, Section 4.9.2].

Handling Arrays

Java arrays are classes, and there are special type rules for handling them. However,

these rules are ultimately formulated in terms of type rules of ordinary classes. For

example, an array of X is assignment compatible to java.lang.Object, java.lang.

Cloneable, and an array of Y for which X is assignment compatible to Y . As a

result, the Prelude bytecode typechecker can always translate an obligation involving

array types into one or more (conjunctive) obligations that are free of array type.

Optimization

Notice that the linking strategy of the Aegis VM is more or less fixed, except for the

ordering imposed by the Referential Dependency Property, which is defined in terms

of a relevant symbol table. Specifically, if a class is not statically identified to be

relevant to a method, less ordering, and thus more laziness, results. To optimize the

linking process, the modular bytecode verifier may choose not to identify a class as

relevant if it is redundant to do so. For example, if the modular verifier attempts

to attach subclass(Y ,Z) to “endorse X::M(S)”, normally, Y will need to be

statically identified as being relevant to X::M(S). But in the case when Y = Z,

one knows that subclass(Y ,Z) is trivially provable. So, the obligation need not be

generated in this case, and thus it is not necessary to identify Y as being relevant

to X::M(S). Similar optimizations have been adopted for obligations involving other

special cases of type rules.

Simplification

Two simplifications have been employed to reduce the complexity of the implementa-

tion. Firstly, commitments are not explicitly generated for Java typechecking, for they
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merely carry type information that is already embedded in a Java classfile. Instead,

the obligation predicate functions in the Java typechecking POL invokes the type

interface interrogation functions in the POL API to obtain the same information.

This reduces memory consumption, and improves obligation discharging efficiency.

Although the commitment facility is not explicitly utilized for Java bytecode verifica-

tion, it is crucial for other verification domains, as we shall see in Chapter 7.

Secondly, two of the obligations in Section 4.2.4, namely subclassable and

implementable, are not generated. The reason is that they are assumed for all

classfiles, and thus their explicit formulation as proof obligations is omitted to im-

prove memory efficiency and implementation economy. Instead, equivalent checks are

hard-coded into the classloading logic of the Aegis VM.

Obligation Library

A POL is implemented for evaluating proof obligations specific to the Java bytecode

typechecking domain. The native predicate functions implement the core initial theory

in Figure 5.3. Most of the predicate functions can be implemented trivially by the

interrogation functions in the POL API. The obligation translation rules are implicitly

embedded into the obligation argument resolution mechanism, while the commitment

translation rules are implemented within the interrogation functions exported by the

POL API. Also, the bytecode typechecker generates obligations that may name Java

built-in classes as arguments. This small set of Java built-in classes are identified as

global classes of the POL.

6.3.3 Pluggable Verification Modules

This section describes the design of the PVM facility as implemented in the Aegis

VM.
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PVM Life Cycle

PVMs are dynamically loadable shared libraries on the GNU/Linux platform. Pro-

grammers may implement a modular verifier as a PVM, and subsequently use it to

augment the Aegis VM through the PVM plug-in mechanism. The Aegis VM has a

command line option that allows users to specify the path of a PVM. Multiple PVMs

may be specified in the command line. When the Aegis VM bootstraps, each PVM

thus specified will be loaded. Each PVM exports the identifier of a verification domain

to which it corresponds. The Aegis VM will search through all the loaded POLs to find

a matching one (the id field of the POL profile structure). The predicate functions

of the matching POL will be used for interpreting the proof obligations generated by

the modular verifier of this PVM. The initialization function exported by the PVM

will then be invoked. From this point on, the verification facilities of the PVM will

be called into service whenever a class is to be defined. Specifically, when a class is

defined, the classfile parsing facility of the Prelude library is employed to construct

an abstract syntax tree (AST) for the classfile representation. The Prelude bytecode

typechecker is then applied to run dataflow analysis on the bytecode methods of the

AST. The AST and the dataflow analysis results (i.e., subroutine control flow graph

and type states) are then passed into each loaded PVM for examination. In this way,

the PVM does not need to analyze the target classfile from scratch. The obligation

attachments, commitment data structures and the relevant symbol tables generated

along the way are all collected in Prelude verification interface data structures, which

are in turn processed uniformly by the generic proof linking mechanism. Before the

Aegis VM shuts down, the clean-up function exported by each of the PVMs will be

invoked in turn, and then the libraries are unloaded.

PVM API

A PVM must export a global variable named pvm profile as its profile. The type of

the variable is given below.

struct pvm_profile_t {
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const char *pol;

pvm_init_t init;

pvm_finish_t finish;

pvm_verify_t verify;

};

The profile variable must be initialized as follows.

• pol: A C-string identifying the POL that should be used for interpreting the

proof obligations generated by this PVM.

• init: A function pointer referring to the initialization function of this PVM.

Specifically, the type of the pointer is given below:

typedef int (*pvm_init_t)(void);

• finish: A function pointer referring to the clean-up function of this PVM.

Specifically, the type of the pointer is given below:

typedef int (*pvm_finish_t)(void);

• verify: A function pointer referring to the modular verifier exported by this

PVM. More details will follow.

The core of a PVM is the function referenced by the verify field.

typedef const PREVI *(*pvm_verify_t)(JArena *arena,

const PREClassFile *classfile,

const PREAnalysis **analyses);

• arena: The memory arena [92] from which memory is allocated to build the

resulting verification interface.

• classfile: The abstract syntax tree of the classfile being examined.
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• analyses: The results of typechecking dataflow analyses for methods in

classfile.

If verification is successful, the verifier function returns a verification interface (PREVI),

which is composed of three elements:

1. a table of class symbols relevant to the verification of methods in this class,

2. a set of proof obligation attachments generated by the verifier (obligations are

encoded in the scheme specified in Section 6.2.3),

3. a domain-specific commitment data structure.

The header file that defines the PVM API can be found in Appendix C.

6.4 Summary

This chapter describes an implementation of the Proof Linking architecture in an

open source JVM, the Aegis VM. Modularization of the link-time verification step

allows standard bytecode verification to be implemented as a stand-alone bytecode

verification module called the Prelude library. Generalization of the incremental proof

linking procedure yields a general purpose verifier plug-in mechanism, PVM, that

supports the introduction of alternative static program analyses into the dynamic

linking process of the VM.

In the next chapter, the utility of the PVM facility is evaluated in an experimental

application of the facility to enforce an augmented type system.
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Application: Java Access Control

In this chapter, the generality and utility of the POL and PVM facilities are evaluated

in a specific verification domain, namely, that of the augmented type system JAC

proposed by Kniesel and Theisen [122]. The chapter begins with an examination of

the JAC type system in its original form, which was designed for typing Java source

programs. The JAC type system is then recast into a form that types Java bytecode

(Section 7.1). We then look at how a link-time typechecker for the bytecode version

of JAC can be implemented in the framework of the POL and PVM facilities (Section

7.2). Lastly, examples of Aegis VM in action, enforcing access control through the

JAC POL and PVM, are given in Section 7.3. The goal of this discussion is to

demonstrate that features designed into the POL and PVM facilities are sufficient for

supporting the implementation of link-time typecheckers for augmented type systems.

7.1 A JAC Type System for Java Bytecode

7.1.1 Motivation

JAC (Java with Access Control) was proposed as an augmented type system for

controlling the proliferation of side effects due to alias creation in object oriented

programs [122]. As briefly discussed in Section 1.1.3, rather than preventing the

146
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creation of aliases, as is frequently done in many similar augmented type systems,

JAC prevents undesirable side effects from occurring when aliasing is unavoidable.

Specifically, it allows a Java reference type to be qualified as being readonly, which

effectively protects the transitive state of the reference from any write access. Un-

like the C/C++ qualifier const, which only protects the state of the object directly

accessible from a const-qualified reference/pointer, JAC’s write protection extends

to all objects reachable from a readonly-qualified reference in the underlying object

graph. This verification domain is chosen as a test case for the PVM facility because

of its simplicity and its relevance to access control.

To understand how the readonly qualifier works, consider the following Java

linked-list class.

public class List {

public int data;

public List next;

public List(int data, List next) {

this.data = data;

this.next = next;

}

}

Notice that all instance variables in List are public, and as such they can be freely

modified by client code.

1 List x = new List(1, new List(2, null));

2 x.data = 3; // OK: Writing to the immediate state of x

3 x.next.data = 4; // OK: Writing to the transitive state of x

However, a List variable qualified as readonly cannot be used for modifying the

transitive state reachable from the variable.

4 readonly List y = x;

5 y.data = 5; // Error: Writing to the immediate state of y

6 y.next.data = 6; // Error: Writing to the transitive state of y
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Notice that unqualified reference types can be converted to readonly ones, but not

vice versa.

7 readonly List u;

8 u = x; // OK: Converting from unqualified to readonly

9 u = y; // OK: Readonly to readonly

10 List v;

11 v = x; // OK: Unqualified to unqualified

12 v = y; // Error: Readonly to unqualified

Notice also that references reachable from a readonly reference are all readonly.

13 v = x.next; // OK: Transitive state of unqualified is unqualified

14 v = y.next; // Error: Transitive state of readonly is readonly

The types of class/instance variables, method parameters and return values, can

all be qualified as above. The meaning of such qualification is that only reference

values with compatible qualification types can be stored in class/instance variables,

passed as arguments, or returned as method values.

The original JAC type system is designed for typing Java source programs, and is

enforced at compile time. As discussed in Chapter 1, code units that are checked to

be type safe in the compilation environment may no longer be type safe when they

are linked against the code units in the run-time environment. For access control type

systems to become a viable protection mechanism for mobile code systems, they must

be enforced at link time. To this end, the JAC type system is recast in this section as a

type system for the JVM bytecode language. Furthermore, this bytecode incarnation

of JAC differs from Kniesel and Theisen’s work [122] in the following ways:

1. The original JAC syntax forces the return type of an instance method to share

the same type qualifier with the type of this, the object instance to which

method invocation is targeted. This restriction is purely a source-level syntactic

constraint, and will not be enforced here. The bytecode annotation scheme

presented below is fully capable of qualifying the two types independently.
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2. The original JAC type system has a mutable type qualifier for decorating in-

stance variables, thereby selectively shielding the qualified fields from the transi-

tive effect of write protection. The mutable qualifier is not modeled in this work.

Extending the current work to include the mutable qualifier is a straightforward

exercise.

3. The original work in [122] describes an extension of JAC to accommodate the

generic type system of GJ [29], a variant of Java that supports genericity. This

extension is beyond the scope of this work.

7.1.2 The Type System

The bytecode version of the JAC type system consists of type rules for well-formedness

and subtyping, classfile linking, and intraprocedural type consistency, each of which

will be discussed in turn.

Type Assertions

The JAC type system has two types1, namely, readonly and ⊥. Every value in Java

is typed as one of the two. The bottom type ⊥ corresponds to unqualified reference

types and primitive types (i.e., int, boolean, etc). The readonly type applies to

references for which transitive states are protected.

There are two kinds of type assertions, one for fields (i.e., class or instance vari-

ables), the other for methods (i.e., instance and static methods, and instance and

class initializers). A well-formed type assertion for a field must assign ⊥ to a field

that has a Java primitive type. A well-formed type assertion for a method consists of

an assignment of a JAC type to every formal parameter, including this in the case

of an instance method, and a JAC type to the return value, if there is one. Again,

well-formedness further requires that ⊥ be assigned to formal parameters with Java

primitive types. The same constraint applies to method return types.

1To avoid confusion, we call the types in the JAC type system JAC types, and the types in the
standard Java type system Java types. If the context is clear, especially in this section, the JAC
types are simply called types.
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Subtyping

The two JAC types are ordered as in the following subtype lattice:

readonly

|

⊥

The subtyping relationship permits the conversion of ⊥ to readonly. We write A <: B

if type A is equivalent to or a subtype of type B. Method subtyping follows the usual

contravariant rule: A → B <: A′ → B′ if A′ <: A and B <: B′.

Typing Classes

Associated with each Java classfile is a type interface, which consists of an export part

and an import part. Each part is a list of type assertions, relating symbols to their

types. The export part assigns a type assertion for every symbol exported by the

class, including class and instance variables, and all declared methods and initializers

(hereafter, these symbols are collectively called export symbols). The import part con-

tains type assertions for symbols in the constant pool that are either a field reference,

a method reference, or an interface method reference (hereafter, these three types

of constant pool entries are collectively called import references). The import part

corresponds to a type environment in formal type systems, and as such it entails each

of the type assertions in the export part. In essence, the type interface is a composite

type judgment.

Subclassing is type safe if instance method overriding honors the usual subtyping

rule, that is, if method C.M overrides C ′.M , and the methods are typed by the

assertions C.M : T and C ′.M : T ′, then T <: T ′. A similar requirement applies

to subinterfacing. In essence, the type of an overriding method should be no more

stringent than the overridden method.

Resolution of a constant pool (interface) method reference with import assertion

C.M : T is type safe if the resolved target C ′.M is defined in a classfile that exports
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type assertion C ′.M : T ′ and T ′ <: T . Resolution of a constant pool field reference

C.F with import type assertion C.F : T is type safe if the resolved target C ′.F is

defined in a classfile that exports type assertion C ′.F : T . Notice that the typing

requirement is different in the two cases.

Typing Methods

Each JVM stack frame has a local variable array and an operand stack. The local

variable array contains the “registers” of a JVM, while the operand stack is used for

evaluating nested expressions. When a new stack frame is created, the local variable

array is initialized with the input arguments. Execution proceeds until the method

returns, or when an exception escapes the method scope.

The type assertion for a method is valid if every program point in the body of

the method can be consistently assigned a type state. A type state is an assignment

of a JAC type to each location in the local variable array and the operand stack.

Every JVM bytecode instruction imposes typing constraints on the type states at the

program points before and after the instruction. The typing constraints for bytecode

instructions are presented below.

Most of the bytecode instructions consume operands from the operand stack, and

deposit results back into it. For example, the iadd instruction pops the two integers

at the top of the operand stack, and pushes their sum back, as illustrated in below

using a convention popularized by the JVM specification [130].

Operand Stack :

Before: . . . , i1, i2

After: . . . , i3

where integer i3 is the sum of i1 and i2. For a simple instruction such as iadd,

the typing constraint is straightforward: i1, i2 and i3 must all be typed as ⊥. The

type constraints for most of the instructions in the JVM bytecode instruction set are

similarly straightforward. The following, however, are the ones that require special

consideration.
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• bastore, castore, sastore, iastore, fastore, lastore, dastore:

Operand Stack :

Before: . . . , a, i, v

After: . . .

Operation : Store primitive value v into array reference a as the component

at index i. The seven instructions are for storing Java primitive types

boolean/byte, char, short, int, float, long, and double respectively.

Type Constraints :

– The type of a must not be readonly — storing into the immediate

state of a readonly array reference is not permitted.

• aastore:

Operand Stack :

Before: . . . , a, i, v

After: . . .

Operation : Store reference value v into array reference a as the component

at index i.

Type Constraints :

– The type of a must not be readonly.

– The type of v must not be readonly. Otherwise, a readonly element

v would be stored into an unqualified array a, making it possible for a

subsequent aastore to illegally remove the readonly qualification.

• aaload :

Operand Stack :

Before: . . . , a, i

After: . . . , v

Operation : Load the reference component v of array reference a at index i.
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Type Constraints :

– The type of v must be identical to that of a.

• athrow :

Operand Stack :

Before: . . . , o

After: o

Operation : The object reference o is thrown as an exception. The operand

stack of the stack frame that catches o will be cleared, and then o will be

pushed into that operand stack.

Type Constraints :

– The type of o must not be readonly. Otherwise, o may escape the

current static scope, and the type information of o will not be re-

coverable in the static scope in which it is caught. Consequently, all

exceptions are required to be of type ⊥ for backward compatibility

with the standard Java semantics.

• areturn:

Operand Stack :

Before: . . . , o

After: [empty]

Operation : Return object reference o as a value of this method invocation.

Type Constraints :

– If the return type of the current method (as prescribed by its export

type) is not readonly, then o must not have a readonly type.

• getstatic 〈fieldref〉:

Operand Stack :

Before: . . .

After: . . . , v
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Operation : Load the value v of class variable 〈fieldref〉. The field reference

〈fieldref〉 is a constant pool entry.

Type Constraints :

– If 〈fieldref〉 is a reference field with a readonly import type, then v is

readonly. Otherwise, v is ⊥.

• getfield 〈fieldref〉:

Operand Stack :

Before: . . . , o

After: . . . , v

Operation : Load the value v of the instance variable 〈fieldref〉 from object

instance o. The field reference 〈fieldref〉 is a constant pool entry.

Type Constraints :

– If 〈fieldref〉 is a reference field with a readonly import type, then v is

readonly. If 〈fieldref〉 is a reference field, and o has a readonly type,

then v is readonly. Otherwise, v is ⊥.

• putstatic 〈fieldref〉:

Operand Stack :

Before: . . . , v

After: . . .

Operation : Store the value v into the class variable 〈fieldref〉. The field

reference 〈fieldref〉 is a constant pool entry.

Type Constraints :

– If the field reference 〈fieldref〉 has an import type ⊥, then v must not

have a readonly type.

• putfield 〈fieldref〉:
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Operand Stack :

Before: . . . , o, v

After: . . .

Operation : Store the value v into the instance variable 〈fieldref〉 of object

instance o.

Type Constraints :

– The type of o must not be readonly.

– If 〈fieldref〉 is a reference field with an import type ⊥, then v must not

have a readonly type.

• invokespecial 〈methodref〉, invokevirtual 〈methodref〉:

Operand Stack :

Before: . . . o, a1, a2, . . . , ak

After: . . . v

Operation : Invoke method 〈methodref〉, with arguments a1, a2, . . . , ak, on

the object reference o. Any return value v is pushed into the operand

stack. The method reference 〈methodref〉 is a constant pool entry. The

invokevirtual instruction uses dynamic binding to select the actual method

being invoked, while the invokespecial instruction does not have a dynamic

binding semantics, and can be used for invoking special methods such as

instance initializers.

Type Constraints :

– Let the type of the i’th actual argument be T , and the import type of

the method reference 〈methodref〉 is such that the i’th formal param-

eter has type T ′. Then T <: T ′.

– Let the type of the the object reference o be T , and the import type

of the 〈methodref〉 is such that this has type T ′. Then T <: T ′.

– The value v must have a type identical to the return type prescribed

by the import type of the method reference 〈methodref〉.
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• invokeinterface 〈interface-methodref〉:

Operand Stack :

Before: . . . o, a1, a2, . . . , ak

After: . . . v

Operation : Invoke interface method 〈interface-methodref〉, with arguments

a1, a2, . . . , ak, on the object reference o. Any return value v is pushed into

the operand stack. The interface method reference 〈interface-methodref〉

is a constant pool entry.

Type Constraints :

– Let the type of the i’th actual argument be T , and the import type of

the method reference 〈interface-methodref〉 is such that the i’th formal

parameter has type T ′. Then T <: T ′.

– Let the type of the the object reference o be T , and the import type of

the 〈interface-methodref〉 is such that this has type T ′. Then T <: T ′.

– The value v must have a type identical to the return type prescribed

by the import type of the method reference 〈interface-methodref〉.

• invokestatic 〈methodref〉:

Operand Stack :

Before: . . . a1, a2, . . . , ak

After: . . . v

Operation : Invoke static method 〈methodref〉, with arguments a1, a2, . . . ,

ak. Any return value v is pushed into the operand stack. The method

reference 〈methodref〉 is a constant pool entry.

Type Constraints :

– Let the type of the i’th actual argument be T , and the import type of

the method reference 〈methodref〉 is such that the i’th formal param-

eter has type T ′. Then T <: T ′.
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– The value v must have a type identical to the return type prescribed

by the import type of the method reference 〈methodref〉.

7.1.3 Typechecking Procedure

Subclassing and symbol resolution To enforce type safety of subclassing, it

suffices to make sure method overriding always satisfies the subtyping constraint.

This check can be performed when the endorse primitive for the class in question is

executed. Similarly, the typing constraint for symbol resolution can be checked when

the corresponding resolve primitive is executed.

Typechecking methods To demonstrate the validity of a method type assertion,

the standard iterative dataflow analysis algorithm [148] can be applied to verify if a

type-consistent fix point for the type states can be found.

7.2 Read-Only Types in the Context of the Aegis

VM

Having explored the essence of the JAC type system, and also eliciting the require-

ments of a JAC typechecker, attention is now turned to demonstrating that features

designed into the POL and PVM facilities are sufficient for supporting the implemen-

tation of a link-time typechecker for the type system.

7.2.1 Embedding JAC Type Interface in Java Classfiles

To make JAC enforceable at link time, every Java classfile must carry a JAC type

interface. The Java classfile format has an extension facility called attributes [130,

Section 4.7]. Arbitrary annotations can be embedded in a classfile as an attribute.

This section describes how a JAC type interface is encoded as a classfile attribute.



CHAPTER 7. APPLICATION: JAVA ACCESS CONTROL 158

Type assertions must be encoded before they can be stored in an attribute. The

JAC types readonly and ⊥ are encoded as the ASCII characters ’R’ and ’.’ (period)

respectively. An encoded field type is a length-1 ASCII string containing an encoded

JAC type. Method type encoding is not as straightforward. The JAC type signature

of a method is encoded as an ASCII string in the following format:

“t0(t1t2. . . tk)t”

where

• t0 is the encoded type of this for instance methods, and is ’.’ for static methods;

• t1, t2, . . . , tk are the encoded types of the formal parameters;

• t is the encoded return type for methods with a return value, and is ’.’ for void

methods.

Such an encoding scheme yields a uniform encoding format for both instance and static

methods. This is necessary because the constant pool does not carry information for

one to differentiate a static method reference from an instance one.

A JAC type interface assigns a type encoding string to each export symbol and

import reference. Such a type interface is embedded in a classfile as a JAC attribute

with the following format:

struct JACMap {

uint16_t id;

uint16_t index;

};

struct JACTypeInterface {

uint16_t attribute_name_index;

uint32_t attribute_length;

uint16_t padding;
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uint16_t constant_annotations_count;

uint16_t field_annotations_count;

uint16_t method_annotations_count;

struct JACMap constant_annotations[constant_annotations_count];

struct JACMap field_annotations[field_annotations_count];

struct JACMap method_annotations[method_annotations_count];

};

The meaning of the fields is given below.

• attribute name index: Index of a UTF8 string in the constant pool. The

UTF8 string must have value “JAC”.

• attribute length: Total number of bytes in this attribute, not counting the

six bytes consumed by attribute name index and attribute length.

• padding: Zero.

• constant annotations count: Number of import type assertions.

• field annotations count: Number of export type assertions for fields.

• method annotations count: Number of export type assertions for methods.

• constant annotations: An array of type assertions, mapping the index of an

import reference in the constant pool to the index of a UTF8 string in the

constant pool. The string is the encoded type of the import reference.

• field annotations: An array of type assertions, mapping the index of a field

declaration in the classfile to the index of a UTF8 string in the constant pool.

The string is the encoded export type of the field.

• method annotations: An array of type assertions, mapping the index of a

method declaration in the classfile to the index of a UTF8 string in the constant

pool. The string is the encoded export type of the method.
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A well-formed JAC attribute must assign no more than one type to an export

symbol or an import reference. It is, however, not necessary for every export symbol

or import reference to receive a type assignment. Entries left untyped are said to

have default types. In fact, a classfile may not even have a JAC attribute. In this

case, all export symbols and import references are assumed to have default types.

The default type of a field is ⊥. The default type of a method is such that the return

value and all formal parameters have type ⊥. The provision of assuming a default

type interface for classfiles not carrying a JAC attribute renders it possible to reuse

legacy classfiles not compiled for JAC typechecking. This is particularly handy in the

case of the standard Java class library — hundreds of system classfiles can be reused

without change.

A small utility was developed to facilitate the attachment of JAC attributes to

classfiles. This C program takes a Java classfile and a high level JAC type interface

specification file as input, and generates a version of the input classfile with the

specified JAC attribute embedded.

7.2.2 Pluggable Obligation Library for JAC

A POL was implemented to provide facilities for discharging obligations formulated

by the JAC PVM. As mentioned in the previous section, two kinds of conditions must

be checked for at link time: (1) the import type of a constant pool entry must be

compatible with the export type of the resolved target, and (2) method overriding

must honor the subtyping constraint.

To facilitate proof obligation discharging, it is assumed that the verification in-

terface generated by the modular JAC verifier will contain an optimized copy of the

JAC attribute as its commitment data structure. The JAC POL exports the following

predicates for enforcing the above two conditions:

1. Import safety predicates:

safe field import(field, import type)

safe method import(method, import type)
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The first predicate function checks that the export type of field field is identical

to the import type encoded in the UTF8 literal import type. Similarly, the sec-

ond predicate function checks that the export type of method method is identical

to or a subtype of the import type encoded in the UTF8 literal import type. The

encoded export type of fields and methods can be retrieved from commitment

data structures through the POL API. Type compatibility can then be checked

by comparing the encoding of the two types involved.

2. Method overriding safety predicate:

safe method override(class)

For each of the method declared in class, check that it is a subtype of every

method it overrides. This involves examining the type interfaces of superclasses

and superinterfaces. The POL API provides functions for traversing the class

hierarchy and retrieving JAC type interfaces as commitment data structures.

The POL also exports a global constant for representing default types. This default

type constant may appear as an import type argument in an import safety obligation.

The predicates are implemented to account for such exceptional cases.

7.2.3 Pluggable Verification Module for JAC

A PVM was implemented for JAC. When the verify function of the PVM is invoked

on a classfile, it performs the following verification steps:

1. If the classfile carries a JAC attribute, then the encoded type interface is checked

for well-formedness. If no JAC attribute is found, then a default type interface

is assumed. In either case, the JAC type interface of the classfile is cached as a

commitment data structure.

2. The usual iterative dataflow analysis algorithm is applied to the body of each

bytecode method. The type constraints of Section 7.1.2 are verified. The import

type assertions are consulted for the effect of bytecode instructions.
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Notice that, if all the import references have default types, then there is no need

to run the dataflow analysis on a method with default export type2. A special

case is that this step can be skipped entirely for classfiles with no JAC attribute.

3. A list of obligation attachments is generated. First, a corresponding import

safety obligation is attached to each import reference in the constant pool. For

example, an obligation of the following form will be generated for every field

reference:

pred nargs type-1 index-1 type-2 index-2

safe field import 2 PRE ARG Field i PRE ARG Constant j

Here, the pred field contains the predicate identifier of safe field import, i is

the constant pool index of the field reference, and j is the constant pool index

of an UTF8 literal containing the expected import type of the reference. If

the import type of the field reference is not explicitly specified, then a default

import type is assumed, and the following obligation will be generated instead.

pred nargs type-1 index-1 type-2 index-2

safe field import 2 PRE ARG Field i PRE ARG GlobalConstant 0

where the 0’th global constant is assumed to be an immutable data structure

representing the default type. The formulation of import safety obligations for

method references is similar.

Notice that obligation attachments should still be generated for an import refer-

ence even if it has default type. That is, although intraprocedural typechecking

may be optimized away in special cases, interprocedural typechecking must never

be bypassed.

Second, a single method overriding safety obligation is attached to the current

class.

pred nargs type-1 index-1

safe method override 1 PRE ARG Relative 0

2If a method has a default export type, then the initial type state will only contain ⊥. Bytecode
instructions only produce ⊥ value if all the operands are ⊥. This holds when all the import references
have default type. As a result, the dataflow analysis will trivially succeed.
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The sole argument refers to the target class (Figure 6.3).

4. A verification interface is generated for the target classfile. The verification

interface includes the obligation attachments generated in step 3 and the com-

mitment data structure from step 1. No relevant symbol is needed for this

verification domain.

The JAC attribute encoding, and the POL and PVM described in this section

enable the link-time enforcement of the JAC type system. The next section describes

some example runs of this implementation.

7.3 Examples

Consider the List data structure in the running example:

public class List {

public int data;

public List next;

public List(int data, List next) {

this.data = data;

this.next = next;

}

}

Suppose an application class Alice needs to compute the sum of all integers in a List

it creates. The task is delegated to to another class Bob, which provides a sum method

that computes the sum of all elements in a given List.

public class Alice {

public static void main(String[] args) {

List L = new List(1, new List(2, new List(3, null)));

System.out.println(Bob.sum(L));

}

}
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Suppose Alice cannot trust that Bob is side-effect free. To ensure Bob does not acci-

dentally or maliciously modify the values stored in the List argument, the following

import type assertion can be introduced to the classfile of Alice.

Bob.sum : readonly → ⊥

Specifically, the following encoded import type is assigned to the constant pool entry

corresponding to the method reference Bob.sum.

“.(R).”

When equipped with the JAC POL and PVM, the Aegis VM will reject any imple-

mentation of Bob that does not honor this import type specification. Consequently,

the transitive state of the List reference passed into sum will be write protected.

Suppose the class Bob indeed provides a side-effect free implementation of the sum

method:

public class Bob {

public static int sum(List L) {

int acc = 0;

while (L != null) {

acc += L.data;

L = L.next;

}

return acc;

}

}

To inspire trust, the classfile of Bob will need to be annotated properly. Specifically,

the following export type assertion is embedded into the classfile of Bob.

Bob.sum : readonly → ⊥
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When the class Bob is defined, the verify function of the JAC PVM will be invoked.

Dataflow analysis is conducted on the body of the Bob.sum method so as to ensure

that the implementation indeed lives up to its promise. In this case, the JAC PVM

successfully verifies the export type assertion of the method, and class definition is

therefore granted. Next, when the import reference Bob.sum is resolved in Alice, the

proof obligation safe method import will be dispatched to make sure that the export

type of Bob.sum is compatible with the import type of Alice. Again, the check will

succeed, and resolution will be granted.

Now, consider a version of Bob in which the sum method silently corrupts the List

argument.

public class Bob {

public static int sum(List L) {

int acc = 0;

while (L != null) {

acc += L.data;

if (L.next == null) // corrupt last node

L.data = 0;

L = L.next;

}

return acc;

}

}

The sum method perturbs the integer datum stored in the last node of the List

argument, corrupting its transitive state. Without further annotation, Alice will not

link with Bob due to the incompatibility between the default export type of Bob.sum

and its expected import type in Alice. Yet, the classfile of Bob could be annotated

with a JAC attribute that falsely claims that the sum method is side-effect free.

Bob.sum : readonly → ⊥
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When the Aegis VM attempts to verify this version of Bob with the JAC PVM, the

dataflow analyzer will fail to confirm the consistency of the export type assertion, and

class definition will fail. In either case, write protection is guaranteed.

Consider a more realistic example, in which the class Alice dynamically loads a

user-specified extension to carry out the summation operation.

public class Alice {

public static void main(String[] args)

throws InstantiationException,

ClassNotFoundException,

IllegalAccessException {

List L = new List(1, new List(2, new List(3, null)));

Class C = Class.forName(args[0]);

Bob b = (Bob) C.newInstance();

System.out.println(b.sum(L));

}

}

In this example, Bob is defined as an interface specifying the invocation convention of

the summation service.

public interface Bob {

int sum(List L);

}

To protect Alice, the classfile of Bob is annotated to ensure that any implementation

of the sum service must treat the List argument as readonly. Specifically, Bob.sum

has the following export type in Bob.

Bob.sum : readonly → ⊥

Notice, however, that there is no need to annotate Alice. As such, a default import

type for Bob.sum is assumed.
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Bob.sum : ⊥ → ⊥

When the interface method reference Bob.sum is resolved in Alice, the corresponding

safe method import obligation will be discharge successfully since the export type of

the resolved target (readonly → ⊥) is a subtype of the default import type (⊥ →

⊥).

Suppose the class Charlie provides a non-compliant implementation of Bob.sum.

public class Charlie implements Bob {

public int sum(List L) {

int acc = 0;

while (L != null) {

if (L.next == null) // corrupt last node

L.data = 0;

acc += L.data;

L = L.next;

}

return acc;

}

}

If Charlie is not annotated, then the default export type of Charlie.sum will violate

the subtyping constraint required for type safe method overriding. The obligation

safe method override will thus fail to discharge when Charlie is prepared. Alter-

natively, if Charlie falsely exports the following type assertion

Charlie.sum : readonly → ⊥

then the JAC PVM will detect the inconsistency when the Charlie class is defined.

In both cases, this faulty implementation of Bob will be rejected.
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7.4 Summary

The PVM facility was applied to implement an augmented type system, namely, the

access control type system JAC. This implementation exercise highlights the role of a

verification interface in access control: proof obligations and commitments determine

the manner in which a class is accessed.

Features offered by the generic proof linking mechanism and the PVM facility

have been shown to be sufficient in supporting the link-time enforcement of JAC at

the bytecode level. The provision of user-defined obligations, domain-specific global

constants and class symbols, and pluggable verifiers yield a very general framework

upon which a wide variety of static verification tasks can be programmed into the

Aegis VM. As the Proof Linking architecture essentially decouples the verification

logic from the dynamic linking process, implementing program-analytic protection

mechanisms in the Aegis VM becomes a demonstrably tractable task.



Chapter 8

Conclusion

This chapter concludes the dissertation by offering a critical reflection of what has

been achieved in the work, as well as directions for future research.

8.1 Discussion

Program safety is in general a whole-program notion: the safety of a code unit depends

not only on properties that can be established by examining the unit alone, but also

on the compatibility of the established properties with the runtime environment into

which the code unit is linked. In the context of typechecking, the two tasks roughly

correspond to the inference of a type interface for a code unit, and the checking of

the compatibility between the type interface and a given type environment. Cardelli

succinctly called the two tasks intrachecking and interchecking [30]. Unfortunately, the

two tasks are not cleanly separated in a typical implementation of the JVM bytecode

verification procedure. As pointed out repeatedly in this dissertation, in the course

of intrachecking a classfile, classloading is frequently initiated by the bytecode verifier

in order to bring in the type interface of other classfiles for interchecking purposes.

The result is a tight coupling between the bytecode verifier and the dynamic linking

logic of the runtime environment.

169
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This work answers the need for modularity in mobile code verification. Intra-

checking and interchecking are cleanly separated by the formulation of a verification

interface. Through the inference of proof obligations and commitments, intrachecking

of a classfile is carried out by a modular verifier in the absence of other closely-coupled

classfiles. Interchecking thus involves the discharging of proof obligations using com-

mitments of loaded classes, a process called proof linking. This setup is analogous

to the notion of separate compilation, in which individual compilation units can be

compiled separately because of an explicit module interface. Proof obligations and

commitments can thus be seen as the interface that makes the linking of safety proofs

a rational process even if each individual safety proof is generated separately.

Due to the incremental nature of lazy, dynamic linking, a mobile program may not

be completely loaded or linked, and thus not all proof obligations can be discharged

right away. Consequently, a notion of obligation discharging schedule is introduced

to the verification interface. Every proof obligation is meant to protect a linking

primitive that bears security significance. Execution of the linking primitive is only

authorized if the proof obligation can be discharged successfully. The incremental

proof linking process arbitrates the execution of linking primitives, while proof obli-

gations are interposed at the entry points of linking services. Consequently, the proof

linking facility can be seen as a reference monitor for dynamic linking primitives.

Articulating the correctness of incremental proof linking in a production mobile

code environment turns out to be a non-trivial endeavor. Complex temporal depen-

dencies among linking primitives are introduced by intermodular coupling, subtype

relationships, and name binding constraints among separate namespaces. Such tem-

poral dependencies are formally modeled through a linking strategy, which allows one

to analyze the timeliness of obligation attachment (Safety) and commitment genera-

tion (Completion). Care must also be taken to ensure that logical inferences used to

authorize linking primitives cannot be subsequently contradicted (Monotonicity).

The reformulation of Proof Linking to account for multiple classloaders in Java

has been instructive. Firstly, it demonstrates that name resolution has to be explicitly

mirrored in the obligation discharging process in the presence of multiple namespaces.

Secondly, it shows that the core initial theory is immutable to the introduction of the
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added complexity. These findings informed the design of the POL mechanism, in

which the complexity of name resolution is completely encapsulated in the Pluggable

Obligation Library API, while leaving the tractable responsibility of crafting a core

initial theory to the POL programmer.

Through the conception and implementation of Pluggable Verification Modules, an

extensible protection mechanism has been developed. Link-time verification becomes

a pluggable service that can be replaced, reconfigured and augmented. Application-

specific verification services can be introduced into a mobile code system after the

fact.

The significance of PVM as an enabling technology can only be understood through

the appreciation of the need for enforcing safety properties at the bytecode level, at the

time of dynamic linking. Program verification, when performed against source code, or

when administrated by the code producer, cannot be trusted. What has been checked

in the code producer’s verification environment may not hold in the code consumer’s

verification environment. A malicious code producer may verify the target program

in a liberal verification environment and then falsely claim that the program is safe.

The consequence of not checking the miscertified program against the verification

environment on the code consumer side may be devastating. Many augmented type

systems previously proposed in the literature possess the potential to be used for

enforcing application-specific security constraints. Unfortunately, given the inherent

complexity of Java’s dynamic linking process, and its tight coupling with the bytecode

verifier, programming alternative static analyses into the existing bytecode verification

procedure is an extremely taxing and error-prone exercise. This explains why it is

rare to see the mentioned works materialize into link-time protection mechanisms for

the JVM. That is, until now.

With the help of the PVM facility, such an application has been carried out for

the JAC type system. Fine-grained access control policies can be programmed into

the verification interface of a classfile to protect its transitive state from write access.

Although write access is the only capability captured in JAC, the exercise suggests

that PVM has opened up a possibility for enforcing more general forms of statically

checkable access control policies at dynamic link time.
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8.2 Related Works

This section offers a review of literature directly related to the research reported in

this dissertation.

8.2.1 Verification Protocols

Proof-carrying code [144, 143, 146], proof-delegation [54, 55] and proof-on-demand

are examples of distributed verification protocols. Proof Linking can be seen as an

enabling technology for supporting interoperability of these verification protocols.

8.2.2 Formalization of Java Classloading and its Relationship

to Bytecode Verification

Dean [48] pioneered the study of security issues surrounding the coexistence of static

typing and dynamic linking. He postulated a consistent extension property, which

states that typing judgments verified to be correct in the course of dynamic linking

will not be contradicted subsequently by future classloading activities. He then used

the PVS theorem prover to confirm that consistent extension is preserved by a sim-

plified Java linking model, which accounts for user-initiated classloading. The main

observation is that so long as the same class name is not defined more than once (in

a given classloader1), then consistent extension can be achieved. This requirement

was subsequently named as temporal namespace consistency [127]. The Monotonic-

ity condition can be seen as a generalization of the consistent extension property for

arbitrary verification domains.

The Java community was caught by complete surprise in 1997 when Saraswat from

AT&T Research2 posted an article on his homepage, announcing that Java is not

1Dean’s work predates the Saraswat discovery [174], and so does not address complexity involving
multiple classloaders.

2The author was an intern student at AT&T in that summer, fortunate enough to have the
opportunity to learn firsthand from Saraswat about this flaw.
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type-safe [174]. This anomaly reflects an omission in the Java/JVM specification it-

self, especially in the treatment of multiple classloaders. The cause of the problem has

to do with the fact that different occurrences of a class name in the same lexical scope

may be defined by different classloaders, and thus receive multiple, potentially contra-

dicting definitions. This anomaly can be exploited in type-spoofing attacks, leading

to run-time type confusion. The security hole was subsequently fixed through the

imposition of loading constraints, which are essentially type equivalence constraints

enforcing namespace consistency among delegating classloaders [127]. Since then the

correctness of Java’s classloading model, especially its relationship with the bytecode

verifier, has been scrutinized under unprecedented vigilance by the formal verification

community [109, 82, 160, 56, 200]. Among them the work of Qian, Goldberg and

Coglio [160] shares many similarities with this work.

Built on their prior experience in formalizing various aspects of Java’s bytecode

verifier and its dynamic linking model [82, 43, 159, 41], Qian et al [160] proposed a

formal specification of Java’s classloading model, taking into account of both bytecode

verification and the on-going maintenance of loading constraints. In their specifica-

tion, bytecode verification is modeled as a modular primitive. Recursive classloading

is avoided by the formulation of subtype constraints to capture intermodular dependen-

cies, a strategy similar to the formulation of proof obligation. The subtype constraints

are maintained and verified lazily in the same way as the type equivalence constraints

mandated by Liang and Bracha [127]. Linking primitives are modeled as “macro oper-

ations”, although the articulation of a linking strategy has not been explicit. Despite

the many similarities in our treatment of modularization and dynamic linking, the

following differences are observed:

• Generality: While a proof obligation can be an arbitrary query, Qian et al focus

only on Java subtyping constraints. Type consistency is modeled as a constraint

problem over semilattices. In contrast, the generic proof linking model can be

applied to multiple verification domains involving a wide spectrum of initial

theories.

• Constraint Maintenance vs Query Satisfaction: Qian et al ’s subtype



CHAPTER 8. CONCLUSION 174

constraints are maintained on-the-fly very much like the type equivalence con-

straints in [127, 130]. In contrast, proof obligations are scheduled to be dis-

charged prior to the execution of their respective linking primitives. This

scheduling element introduces an additional dimension of complexity into the

correctness proof of Proof Linking (Safety and Completion). By restricting

oneself to only consider Java subtype constraints, on-the-fly constraint main-

tenance is conceptually simpler. Whether this simplicity translates to actual

performance gain is a topic of interest.

• Implementation and Embodiment: The constraint system of Qian et al be-

gan as a modeling apparatus for formalizing the bytecode verification algorithm

and its relationship to classloading. It was subsequently implemented in the

constraint solving system Specware as a detached bytecode verifier [43]. In

contrast, the notion of proof obligations, commitments and incremental proof

linking were implemented and embodied in an actual JVM for supporting regular

bytecode typechecking and also Pluggable Verification Modules.

The standard Java bytecode verification algorithm, as outlined in the JVM spec-

ification [130, Section 4.9.2], computes the meet of two reference types as their most

specific common superclass. This requires the immediate loading of the superclasses of

the two reference types during the course of bytecode verification. To avoid recursive

classloading, the Prelude bytecode typechecker defers the loading of superclasses by

formulating meet expressions and composite obligations (Section 6.3.2). First reported

in [71], this technique was independently employed by Coglio and Goldberg [41, 42]

to fix a bug in the standard Java bytecode verification algorithm that originates from

the subtleties of multiple classloaders.

For a sample of recent works on formalization of the JVM, consult [93, 149]. See

also [190], which provides a mathematical specification of the Java language and the

JVM (including the bytecode verification components) using Abstract State Machines.

The formal models of the JVM thus obtained are executable, and have been formally

verified to be safe.
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8.2.3 Type-Safe Dynamic Linking

Cardelli [30] defined a formal model for type-safe, static linking in the simply-typed

lambda calculus F1 (without recursion). Linking is characterized as a series of sub-

stitutions that preserve type safety invariants. The verify primitive corresponds to

Cardelli’s intra-checking, while the endorse and resolve primitives could be seen as

an incremental version of inter-checking. The approach of this work differs substan-

tially from Cardelli’s in the treatment of typing environments. In particular, Cardelli’s

notion of an import environment as an input to intra-checking is replaced by the no-

tion of obligations produced as output. In essence, obligations represent a logical

specification of all allowable typing environments for which a module intra-checks.

This technique is key to the implementation of modular verification. Furthermore, to

cope with lazy, dynamic linking, obligations are explicitly scheduled to be discharged

incrementally: an obligation discharging schedule is an integral part of a verification

interface. The second distinction in the treatment of typing environments is that

Cardelli’s notion of export environments is replaced by the set of commitments pro-

duced during module verification. In this case, however, the replacement is essentially

a direct encoding of the typing environment in logical form. To mention a last point

of comparison, the correctness of Cardelli’s model is dependent, though implicitly, on

a specific ordering of substitution steps [30, Lemma 3-3 & Section 6]. In the Proof

Linking framework, the interaction between verification correctness and relative order-

ing of linking events are formalized explicitly as three correctness conditions, namely,

Safety, Monotonicity, and Completion.

Building on the work of Cardelli, Glew and Morriset [80] proposed the typed object

file as an extension to Typed Assembly Language (TAL) [142]. TAL object programs

are annotated with type information, to be type checked at link time. The typed

object file provides a means for safe, modular type checking of separately compiled

code units. As the authors note, however, this approach does not naturally extend

to lazy, dynamic linking. The deficiency was later remedied by Duggan [57] , who

proposed a very general, type-safe module system, which accounts for recursive module

dependencies, dynamic linking, dynamic loading, and shared libraries.
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8.2.4 User-Defined Type Qualifiers

Foster et al [75] developed a general framework for adding user-defined type qualifiers

to a language. The framework supports qualifier polymorphism, and handles qual-

ifier inferences separately from the standard type system. The framework has been

successfully applied to detect format string vulnerabilities [179]. The framework was

subsequently extended to account for flow-sensitive type qualifiers [76]. The inference

algorithm has been implemented in a tool Cqual, which allows programmers to anno-

tate C programs with application-specific type qualifiers, and subsequently checks for

type-safety statically. Although the work of Foster et al shares with PVM the same

goal of enabling users to incorporate application-specific verification into a program-

ming language system, the two works differ in several aspects. Firstly, while the work

of Foster et al represents an type-theoretic study of user-defined type qualifiers, PVM

is a plug-in architecture aimed at supporting a wide-range of static verification tasks.

Generality is achieved through a customizable proof linking mechanism, in which ver-

ification interfaces are represented as proof obligations and commitments. Secondly,

while Cqual is a compile-time analysis tool, the PVM facility is a link-time protec-

tion mechanism. The explicit modeling of linking primitives and the formulation of

obligation discharging schedules is essential for enforcing safety in a lazy, dynamic

linking environment.

8.2.5 Extensibility and Modularity

With modularization comes extensibility. Proof Linking decouples the verification

logic from dynamic linking, thereby rendering verification a pluggable service. A

major contribution of this dissertation is the introduction of an extensible protection

mechanism enabled by a modular architecture. Yet, modularization is not the only

way to extensibility. Three closely related concepts – aspect-oriented programming,

reflection and metaobject protocols, and load-time code rewriting, can be thought of

as general-purpose program extension mechanisms.
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• Aspect-Oriented Programming : Originally proposed as an alternative to encap-

sulation as a means for implementing separation of concern, aspect-oriented pro-

gramming [116, 117] can be seen as a high-level program extension mechanism.

Specifically, aspect-oriented programming system allows the weaving of aspect

code into programmer-specified join points, thereby modifying the behavior of

the underlying program.

• Reflection and Metaobject Protocols : Behavioral reflection [65, 219] and inter-

cessory metaobject protocols [118] allow operations such as method invocation

to be intercepted. When an interception occurs, a metaobject will be notified

of the event via some kind of method callback facility. Programmers can cus-

tomize the semantics of the metaobject, thereby achieving the effect of software

extension.

• Load-Time Code Rewriting : Load-time code rewriting has been employed to

introduce security checks into mobile code systems [59, 201, 202, 215, 167, 168].

Dedicated classloaders can be programmed in Java to inject behavioral changes

into untrusted code.

8.2.6 Programming Languages for Developing Verifiable Sys-

tems

Mobile code systems in general, and the Proof Linking architecture in particular,

wrestle with a number of design issues once faced by early programming languages

designed for developing verifiable systems (e.g., Euclid [156, 224] and GYPSY [10]).

• Verification interface. Euclid supports the specification of modules and rou-

tines through the use of Hoare-style pre- and post-assertions, and invariants

[132]. Interchecking, that is, proof of usage validity, can be performed with the

assertions in the absence of implementation. Intrachecking is then performed

separately by assuming the pre-assertions and then inferring the post-assertions.
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• Proof obligations. The Euclid compiler generates proof obligations in the

form of legality assertions [223], which can then be inlined into the object code

as run-time checks.

• Programmer control over visibility, scope and aliasing. To the best

knowledge of the author, Euclid and GYPSY are the original sources for the idea

of explicit access control and alias control in programming languages. Visibility

of identifiers, including the kind of access permitted, can be modified by Euclid

programmers at scope boundaries. Alias creation is forbidden in Euclid and

GYPSY in order to simplify the proof rules of the languages. See [11] for an

early study of protection in programming languages for mutually distrusting

code units.

A unique feature of Proof Linking, which is absent from the design of these early

languages, is the introduction of a scheduling element into the verification interfaces

in order to deal with the reality of lazy, dynamic linking, even in the presence of

multiple namespaces.

8.3 Contributions

8.3.1 Primary Contributions

The primary contribution of this dissertation lies in the definition of a modular ver-

ification architecture, Proof Linking, for mobile code systems. The soundness and

adequacy of the architecture have been evaluated in the context of Java bytecode

verification. Its implementation feasibility has been established by the availability of

a reference implementation. The following list highlights the specific aspects of the

primary contribution.

1. The Proof Linking architecture

(a) Through the formulation of verification interfaces in the form of proof obli-

gations and commitments, the Proof Linking architecture fully decouples



CHAPTER 8. CONCLUSION 179

static verification from dynamic linking, thereby enabling separate verifi-

cation.

(b) A novel scheduling element has been introduced into the verification inter-

face so that obligation discharging can be appropriately staged to dovetail

with the incremental process of lazy, dynamic linking.

2. Modeling adequacy and soundness

(a) A novel notion of linking strategy has been employed to formalize the tem-

poral dependencies among linking primitives, thereby making it possible

to establish the correctness of Proof Linking in a formal framework.

(b) Three correctness conditions for Proof Linking have been formalized —

Safety, Monotonicity, Completion.

(c) Increasingly realistic instantiations of Proof Linking for Java bytecode ver-

ification have been shown to satisfy the aforementioned correctness condi-

tions.

3. Implementation feasibility

(a) Under the Proof Linking architecture, the Java bytecode verifier can be

specified, crafted, understood, and evaluated as a separate engineering

component. Specifically, such a stand-alone bytecode verification module

has been implemented in the open source Prelude library.

(b) The Proof Linking architecture enables an extensible protection mech-

anism, Pluggable Verification Modules (PVM), in which well-mannered

static program analyses can be introduced into the dynamic linking pro-

cess of the JVM. A reference implementation of PVM has been realized in

an open source JVM, the Aegis VM. The PVM facility of the Aegis VM is

the first known technology of this sort.

(c) The design of the Aegis VM and its PVM facility achieves a novel tradeoff

balancing the simultaneous need for generality, efficiency and utility.
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(d) The generality and utility of the PVM facility have been assessed favor-

ably in an experimental application of the facility to enforce a published

augmented type system, JAC.

8.3.2 Secondary Contributions

Listed below are contributions not directly related to the establishment of the thesis.

1. An extensive overview and taxonomy of mobile code protection mechanisms has

been developed.

(a) Three distinct security challenges for mobile code systems have been iden-

tified: anonymous trust, layered protection, and implicit acquisition.

(b) Existing mobile code protection mechanisms have been categorized into

four major approaches: discretion, verification, transformation, and arbi-

tration.

(c) The notion of distributed verification protocols has been proposed, and its

design space has been analyzed.

2. The JAC type system has been recast into a version suitable for enforcing access

control at the bytecode level, at link time. The techniques employed can be

applied to other augmented type systems.

8.4 Limitations and Future Works

In this section, the limitations of this work are discussed along with possible exten-

sions.

Generality The generality of the generic proof linking mechanism has been sup-

ported by only one experiment — the application of PVM to enforce the augmented

type system JAC. To further assess the generality of the design, more experiments
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are needed. It will be interesting to demonstrate that PVM can be applied to a wide

spectrum of verification domains, ranging from low level type systems such as those

for alias control [121, 28, 6] to high level partial specification systems such as AAL

[115], or even safety properties at the software architectural level [5, 7].

One specific question usually raised by observers of this work has been whether

Proof Linking can handle polymorphic type systems. Examination of the JAC obli-

gation set suggests that a positive answer is highly plausible. The crux is to design an

efficient and compact encoding for polymorphic types that appear in a type interface.

Polymorphic type inference can be programmed into a POL and a PVM. A polymor-

phic extension of the JAC type system for Java bytecode has been planned, successful

implementation of which will offer a definite positive answer to the question.

Efficiency The generic proof linking mechanism has been designed with efficiency in

mind. The degree to which this design delivers its promise has not been substantiated

by experimental data. One future direction is to conduct empirical studies so as to

understand the performance characteristics of the generic proof linking mechanism.

To reduce the cost of program analysis within the PVM, the Aegis VM passes to

the PVM verification function the abstract syntax tree and type analysis results of

the target classfile. The verification function can utilize the control flow and typing

information to speed up its analysis. The question is whether one can do better

than this. For example, the JAC PVM has to perform its own dataflow analysis to

ensure there is a fix point for which all type constraints are satisfied. The process will

greatly speed up if the dataflow structure of bytecode methods can be made explicit,

and is passed along with the classfile AST to the verification function. One promising

direction is for the Prelude bytecode typechecker to summarize the dataflow structure

of a bytecode method in an SSA-based representation [16] along the line of Jimple

[203] or SafeTSA [12].

Distributed Verification Proof Linking has been claimed to be an enabling tech-

nology for verification protocol interoperability and conditional certification. The Java

instantiation presented in Chapter 5 has been carefully designed to anticipate such an
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application. Yet, no empirical evidence has been provided to confirm its effectiveness

in supporting distributed verification. More empirical work is needed before the claim

can be substantiated.

Theoretical Considerations The formalization of the incremental proof linking

process explicitly models linking primitives and their temporal dependencies. It is in-

teresting to see if modeling apparatus such as linking strategies can be combined with

the work of Cardelli [30] to yield a formal characterization of type-safe dynamic link-

ing for a Java-like object-oriented programming language, in which complex temporal

dependencies exist among linking events.

Another theoretical question is to understand the expressive power of the Proof

Linking framework. Exactly what properties can be enforced by posting proof obli-

gations? What is the effect of restricting the expressiveness of the underlying query

language (to, say, a sublanguage of Horn-clause logic)?

Generalizing the formal specification and verification work reported in Appendix A

to handle multiple classloaders involves the introduction of a dynamically constructed

class hierarchy. The formal dynamic linking model proposed in [109] seems to fit well

into the Proof Linking framework.

More Extensible Protection Mechanisms Proof Linking is a generalization of

the link-time access control checks performed in a standard JVM. By making these

checks customizable, one obtains an extensible protection mechanism for the JVM.

Another set of checks performed by the JVM in the course of dynamic linking are

loading constraints, which are essentially equivalence constraints over binding of class

symbols from different namespaces [127]. An interesting direction is to generalize

the idea of Qian et al [160], and make loading constraints customizable: users may

introduce domain-specific constraint systems over the binding of class symbols, and

maintain binding consistency with pluggable constraint solvers. This flexibility yields

an extensible protection mechanism for which the subtype constraint system of [160]

becomes a special case.
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Both the extensible loading constraint system suggested in the previous para-

graph, and the PVM are special-purpose extension mechanisms. An existing check

is identified, and customizability is introduced through some kind of special-purpose

plug-in mechanism. An alternative is to consider the application of general-purpose

software adaptation mechanisms, such as Aspect-Oriented Programming, to extend

the protection mechanism of a JVM. In this approach, customizable join points are

documented and publicized as an Extension Programming Interface. Customization

code could then be weaved into these join points as security aspects. The standard-

ization of extension mechanisms reduces the probability of programming error, and

greatly simplifies the process of transforming an existing protection mechanism into

an extensible one.

Access Control Types The JAC type system formalizes the control of write access

in a type system. Implementation of JAC as a PVM demonstrates that access control

type systems can indeed be enforced at link time, at the bytecode level. It is interesting

to see if some of the access control type systems [121, 28] originally proposed for alias

control can be lifted to the architectural level [5] for enforcing system-level security

policies, thereby obtaining a purely program-analytic access control mechanism for

the JVM.

8.5 Conclusion

The recent advent of global internetworking and the growing demand for dynamic

software extensibility have made mobile code systems a reality. With new possibili-

ties come new security risks. The unique security challenges presented by mobile code

systems have generated exciting synergies between core Computer Science subdisci-

plines such as Computer Security, Programming Languages, Operating Systems and

Software Engineering. The research reported in this dissertation addresses the need

for modularity in the verification of mobile code fragments, examines the interaction

of modular verification with lazy, dynamic loading and namespace partitioning, and

exploits modularization to create an extensible protection mechanism. Inasmuch as
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a deeper understanding of modular verification in the context of mobile code security

has been achieved, exciting new research directions have also been identified. It is

therefore fitting to conclude this work with the words of Eliot:

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time

T. S. Eliot, Four Quartets
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Correctness Proof by PVS

The proof of Safety, Monotonicity, and Completion as presented informally in Chapter

4 can be formally verified using a theorem prover. In particular, the above properties

have been formally established using the PVS specification and verification system

[188]. This appendix reports on the exercise, in order (1) to demonstrate that the

verification of Safety, Monotonicity, and Completion can be performed rigorously with

the help of a theorem prover, (2) to illustrate the specification and proof techniques

that are found to be helpful in such an endeavor, and (3) to highlight the improved

understanding of proof linking that may be gained as a result.

A.1 Intended Model

Before one can specify and prove theorems about the correctness of proof linking, one

has to define an intended model for the first-order theory that is used in proof linking.

Specifically, one has to define the intended meaning for predicate symbols “extends”,

“subclass”, and so on. To this end, one must give a specification of the class hierarchy

in a way that captures not only properties that the modular verifier enforces, but also

the potential anomalies that could arise if proof linking is not performed properly.

For instance, a modular verifier can guarantee that the class ’java/lang/Object’

has no immediate superclass, that interfaces have ’java/lang/Object’ as their only

185
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direct superclass, and that all other classes have a unique direct superclass. However,

confined to examine one code unit at a time, a modular verifier cannot rule out the

possibility of circular subclassing (i.e., two classes being subclasses of each other) and

subclassing from an interface class. Such anomalies must be made possible in our

specification of the intended model. To capture these, the following are specified:

• class is a non-empty type.

• java lang object is a distinguished object of type class. All other class

objects have type (non root class?).

• The set (non root class?) is further partitioned into two subsets, (interface?)

and (proper class?).

• The function below is defined to map a non-interface class to its unique, direct

superclass.

extends : [(proper class?) -> class]

Notice that circularity and subclassing from an interface class is thus allowed.

• As an “extension” to the function extends, the following predicate is defined to

capture the fact that java/lang/Object has no superclass and that interfaces

extend java/lang/Object.

direct super class? : [class -> class -> bool]

• The following predicate is defined to be the transitive closure of direct super class?.

super class? : [class -> class -> bool]

Other notions like subinterfacing, subclassability, and so on are completely specified

according to what the modular verifier enforces and allows. This part of the specifi-

cation documents the capabilities and limitations of the modular verifier.
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A.2 Strategy

To specify linking strategies, an abstract datatype primitive is defined. A PVS

datatype declaration introduces constructors and accessors for each of the subtypes

(e.g., the constructor for the linking primitive “verify X” is PRIM verify(X)). A

binary relation before over primitive is then defined to represent the partial or-

dering as specified in Section 4.2.2. Notice that the specification defines the link-

ing strategy in terms of the intended model. For example, the Subtype Depen-

dency Property requires before(PRIM verify(Y), PRIM endorse class(X)) to hold

if super class?(X)(Y) is true.

For the sake of clarity and specification economy, before is specified in the fol-

lowing manner. Each of Natural Progression Property, Import-Checked Property,

Subtype Dependency Property and Referential Dependency Property are captured in

a separate relation. Another binary relation Precede is then defined as a union of

the four. Also, only the immediate precedence of primitives is specified in Precede.

A binary relation before is then defined as the transitive closure of Precede.

When a new strategy is defined, it is imperative to check that it actually defines a

strict partial ordering over the set of primitives. To illustrate this necessity, consider

an alternative formulation of the Subtype Dependency Property, in which it is required

that

endorseY < endorseX

for any class X and its direct superclass or direct super interface Y . Despite the subtle

difference, this formulation appears to have achieved everything one wants a Subtype

Dependency Property to achieve, namely, forcing all superclasses and superinterfaces

of X to be verified before X is endorsed. Unfortunately, such a formulation also

introduces an inconsistency: the resulting strategy is not a strict partial ordering.

Recall that the modular verifier cannot rule out circular subclassing. In the case

when X and Y are subclasses of each other, the above formulation places “endorse

X” and “endorse Y ” before each other, an impossibility if before is to be a strict

partial ordering. It is through this articulation process that current formulation of
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Subtype Dependency Property has come to be adopted instead of the alternative

shown here.

To prove that before is a strict partial ordering, one has to show that it is tran-

sitive (which is trivial since before is defined as a transitive closure of Precede) and

irreflexive. The latter can be shown by, firstly, assigning an (integer) ordinal number1

to each primitive and, secondly, showing that the ordering of ordinals preserves the

ordering of before. Irreflexivity follows since no integer is less than itself.

A.3 Database

An abstract datatype predicate is defined to capture the signature of the predicate

symbols used in proof linking. A database is represented as a set of predicate. Also

defined is a mapping model : [predicate -> bool] which correlates a predicate

to the relation it denotes. For example, model(PRED extends(X, Y )) maps to the

value of direct super class?(X)(Y ).

Obligation attachments specified in Section 4.2.4 are encoded by a relation

may attach?(q)(o)(p) that evaluates to true when primitive q could potentially

attach predicate o to primitive p as an obligation. (This relation captures the att(·)

mapping defined on page 74.) We also define the shorthand

potential obligation?(p)(o) to mean (∃ (q) : may attach?(q)(o)(p)). (This re-

lation formalizes the obl(·) mapping defined on page 74.) In addition, Figure 4.4

is mirrored by a relation commit?(p)(c) that evaluates to true when primitive p

asserts predicate c as a commitment. (This relation captures the com(·) mapping

defined on page 74.) Both may attach? and commit? are defined in terms of the in-

tended model. For example, commit?(PRIM verify(X))(PRED extends(X, Y )) is

true iff the relation direct super class?(X)(Y ) holds in the intended model. This

formally captures the condition under which the modular verifier generates a specific

commitment or obligation. One can also sanity-check the definition of commit? by

proving the following challenge using case analysis:

1PVS automatically defines an ordinal number for members of an abstract datatype.
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CONSISTENT COMMITMENT : lemma

(∀ (p : primitive, c : predicate) : commit?(p)(c) ⇒ model(c))

A state is defined to be a set of primitive. Intuitively, a state describes the

set of primitives that are already terminated at a certain point of the proof linking

process. A state database is then defined to be a mapping from a state to a

database that contains all the predicates committed by members of the given state.

Also defined is the function STATE before : [primitive -> state], which maps

a primitive to the state containing all the primitives that are guaranteed to have

terminated before the initiation of the given primitive. As a result, the expression

state database(STATE before(p)) gives the database containing all commitments

that are guaranteed to be available prior to the execution of a primitive p.

Query evaluation and the initial theory are captured by an inductively defined re-

lation provable? : [[predicate, database] -> bool], which captures whether a

predicate is provable in a given database. For non-recursive queries, provable?

simply checks if the predicate is an element of the database. For recursive queries,

provable? unfolds the query inductively. For instance, provable?(PRED subclass(X,

Y ), DB) is true iff the following is true:

X = Y ∨

(∃ (Z : class) :

provable?(PRED extends(X, Z), db) ∧

provable?(PRED subclass(Z, Y ), db))

To sanity-check the definition, and to prepare for proving completion, a general-

ization of the CONSISTENT COMMITMENT lemma is verified:

SOUNDNESS : theorem

(∀ (o : predicate) :
(∃ (S : state) : provable?(o, state database(S))) ⇒ model(o))

The above theorem says that, once an obligation is shown to be provable in a database,

it means that the relation it denotes is true in the intended model. The theorem is
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established by induction, of which the CONSISTENT COMMITMENT lemma serves as a

base case.

All the definitions ready, we are now in the position to establish the correctness

conditions.

A.4 Correctness Proofs

The discussion of the Safety condition, which can be checked by straightforward case

analysis, is skipped for brevity. Monotonicity is captured by the following theorem:

MONOTONICITY : theorem

(∀ (DB1 : database, DB2 : database) :
(DB1 ⊆ DB2) ⇒
(∀ (o : predicate) : provable?(o,DB1) ⇒ provable?(o,DB2)))

The theorem says that, if an obligation is provable in a database, it stays provable even

if more clauses are added into the database. This theorem can be proven by induction

on the relation provable?. Strictly speaking, the above proof is not necessary because

the use of Horn clauses trivially guarantees Monotonicity (Section 3.2.3). Yet, the

ability to establish Monotonicity without relying on the syntactic characteristics of

the logic suggests that a more general form of logic may be used as long as the

MONOTONICITY theorem can be proven.

The Completion condition can be represented in the following theorem:

COMPLETION : theorem

(∀ (p : primitive, o : predicate) :
potential obligation?(p)(o) ⇒
(∃ (S : state) : provable?(o, state database(S))) ⇒
provable?(o, state database(STATE before(p))))

To understand the above formulation, recall that Completion requires that, if an obli-

gation check fails, then subsequently asserted commitments cannot serve to establish

it. Conversely, if an obligation can ever be established, it must be satisfied at the



APPENDIX A. CORRECTNESS PROOF BY PVS 191

time of checking. Formally, if an obligation o can be attached to a primitive p, and

if o is provable in some database, then it must be provable immediately prior to the

execution of p.

Proof of Completion is considerably more challenging than establishing Safety

and Monotonicity. In order to establish the above theorem, the completeness of

the query evaluation procedure is first established by induction and by applying the

MONOTONICITY theorem:

COMPLETENESS : lemma

(∀ (p : primitive, o : predicate) :
potential obligation?(p)(o) ⇒
model(o) ⇒ provable?(o, state database(STATE before(p))))

The COMPLETENESS theorem says that, if an obligation o can be attached to a

linking primitive p, and if the relation denoted by o is true in the intended model, then

o must become provable before p is executed. It is easy to see that the SOUNDNESS

theorem and the COMPLETENESS theorem together imply COMPLETION.

The idea behind the above proof is to show that the dynamically evolving com-

mitment database is always consistent with a static typing model. Since the relations

defined in the static model are invariant, and since the commitments always mir-

ror these static relations, subsequently asserted commitments never contradict each

other. Establishing consistency between sets of clauses by finding a shared model is

a standard technique in formal logic.
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Pluggable Obligation Library API

This appendix contains the C header file that every Pluggable Obligation Library

must include. The file captures the POL API. The version shown here is slightly

edited to improve presentation.

/*

libaegisvm - The Aegis Virtual Machine for executing Java bytecode

Copyright (C) 2003 Philip W. L. Fong

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
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*/

#ifndef __AE_POL_H__

#define __AE_POL_H__

/*

* Name of the global variable containing the profile of a POL.

*/

#define POL_PROFILE_SYMBOL "pol_profile"

/*

* Oblique types for referring to internal data structures of VM.

*/

typedef const void *POLEnv;

typedef const void *POLPackage;

typedef const void *POLClassloader;

typedef const void *POLClass;

typedef const void *POLField;

typedef const void *POLMethod;

/*

* Type signatures for predicate functions, initialization function,

* and clean-up function.

*/

typedef bool (*pol_predicate_t)(POLEnv env,

uint16_t nargs,

const void *args[const]);

typedef int (*pol_init_t)(void);
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typedef int (*pol_finish_t)(void);

/*

* Type interface for POL profile

*/

typedef struct pol_profile_t pol_profile_t;

struct pol_profile_t {

const char *id;

pol_init_t init;

pol_finish_t finish;

uint16_t npreds;

const pol_predicate_t *predicates;

uint16_t nclasses;

const char * const *global_classes;

uint16_t nconstants;

const void * const *global_constants;

};

/*

* Package interface interrogation

*/

const char *pol_package_name(POLPackage package);

/*

* Class interface interrogation

*/

const char *pol_class_utf8_constant(POLClass class, uint16_t index);

ji4 pol_class_integer_constant(POLClass class, uint16_t index);
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jf4 pol_class_float_constant(POLClass class, uint16_t index);

ji8 pol_class_long_constant(POLClass class, uint16_t index);

jf8 pol_class_double_constant(POLClass class, uint16_t index);

bool pol_class_is_public(POLClass class);

bool pol_class_is_final(POLClass class);

bool pol_class_is_super(POLClass class);

bool pol_class_is_interface(POLClass class);

bool pol_class_is_abstract(POLClass class);

bool pol_class_is_primitive(POLClass class);

bool pol_class_is_array(POLClass class);

bool pol_class_is_array_of_reference(POLClass class);

bool pol_class_is_array_of_primitive(POLClass class);

bool pol_class_is_loaded(POLClass class);

POLClass pol_class_array_component(POLClass class);

POLPackage pol_class_package(POLClass class);

POLClassloader pol_class_classloader(POLClass class);

const char *pol_class_name(POLClass class);

POLClass pol_class_super_class(POLClass class);

uint16_t pol_class_interfaces_count(POLClass class);

POLClass pol_class_interface(POLClass class, uint16_t index);

uint16_t pol_class_fields_count(POLClass class);

POLField pol_class_field(POLClass class, uint16_t index);

uint16_t pol_class_methods_count(POLClass class);

POLMethod pol_class_method(POLClass class, uint16_t index);

/*

* Field interface interrogation

*/

bool pol_field_is_public(POLField field);

bool pol_field_is_private(POLField field);

bool pol_field_is_protected(POLField field);

bool pol_field_is_package_private(POLField field);
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bool pol_field_is_static(POLField field);

bool pol_field_is_final(POLField field);

bool pol_field_is_volatile(POLField field);

bool pol_field_is_transient(POLField field);

POLClass pol_field_class(POLField field);

uint16_t pol_field_index(POLField field);

const char *pol_field_name(POLField field);

const char *pol_field_descriptor(POLField field);

/*

* Method interface interrogation

*/

bool pol_method_is_public(POLMethod method);

bool pol_method_is_private(POLMethod method);

bool pol_method_is_protected(POLMethod method);

bool pol_method_is_package_private(POLMethod method);

bool pol_method_is_static(POLMethod method);

bool pol_method_is_final(POLMethod method);

bool pol_method_is_synchronized(POLMethod method);

bool pol_method_is_native(POLMethod method);

bool pol_method_is_abstract(POLMethod method);

bool pol_method_is_strict(POLMethod method);

POLClass pol_method_class(POLMethod method);

uint16_t pol_method_index(POLMethod method);

const char *pol_method_name(POLMethod method);

const char *pol_method_descriptor(POLMethod method);

uint16_t pol_method_exceptions_count(POLMethod method);

const char *pol_method_exception_name(POLMethod method, uint16_t index);

/*

* Subtyping relationship

*/
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bool pol_subclass(POLClass class1, POLClass class2);

bool pol_subinterface(POLClass class1, POLClass class2);

bool pol_assignable(POLClass class1, POLClass class2);

/*

* Contextual information

*/

POLClass pol_env_global_class(POLEnv env, uint16_t index);

const void *pol_env_global_constant(POLEnv env, uint16_t index);

const void *pol_env_commitments(POLEnv env, POLClass class);

#endif
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Pluggable Verification Module API

This appendix contains the C header file that every Pluggable Verification Module

must include. The file captures the PVM API. The version shown here is slightly

edited to improve presentation.

/*

libaegisvm - The Aegis Virtual Machine for executing Java bytecode

Copyright (C) 2003 Philip W. L. Fong

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
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*/

#ifndef __AE_PVM_H__

#define __AE_PVM_H__

#include <jpr/type.h>

#include <jpr/arena.h>

#include <prelude/classfile.h>

#include <prelude/type_analysis.h>

/*

* Name of the global variable containing the profile of a PVM.

*/

#define PVM_PROFILE_SYMBOL "pvm_profile"

/*

* Type signatures for verifier function, initialization function,

* and clean-up function.

*/

typedef int (*pvm_init_t)(void);

typedef int (*pvm_finish_t)(void);

typedef const PREVI *(*pvm_verify_t)(JArena *arena,

const PREClassFile *classfile,

const PREAnalysis **analyses);

/*

* Type in terface for PVM profile

*/
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typedef struct pvm_profile_t pvm_profile_t;

struct pvm_profile_t {

const char *pol;

pvm_init_t init;

pvm_finish_t finish;

pvm_verify_t verify;

};

#endif
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