Causal, Strategic, and Combined Responsibility Attribution
in Situation Calculus Concurrent Game Structures

MohammadHossein Karimian', Shakil M. Khan'*, Yves Lespérance’

lDepartment of Computer Science, University of Regina, Regina, Saskatchewan, Canada
2Department of EECS, York University, Toronto, Ontario, Canada
mkm440@uregina.ca, shakil.khan @uregina.ca, lesperan @eecs.yorku.ca

Abstract

Responsibility is a central concept in accountable decision
making for multiagent systems. As modern Al systems grow
in complexity and autonomy, there is a growing demand for
them to address issues in Al ethics, prompting researchers
to formalize responsibility from diverse perspectives, includ-
ing strategic responsibility. However, causal responsibility,
i.e. responsibility due to actual causal contribution, has re-
ceived much less attention. In this paper, we study variants of
responsibility attribution from both strategic and causal per-
spectives within a synchronous game-theoretic logic frame-
work that allows concurrent moves by multiple agents. Our
formalization is based on Situation Calculus Synchronous
Game Structures (SCSGS). We show that by combining these
perspectives, one can obtain novel forms of responsibility at-
tribution that are grounded on actual causation. While doing
this, we propose an account of actual causation in SCSGS.
We prove that our formalization handles the issues associated
with preemption and over-determination well. We also study
some key properties of responsibility and demonstrate that
causal, strategic, and combined notions of responsibility are
extensionally distinct.

Introduction

Responsibility is a central concept for accountable deci-
sion making in multiagent systems. As modern Al systems
grow in complexity and autonomy, there is a growing de-
mand for them to address issues in Al ethics, prompting re-
searchers to formalize responsibility from diverse perspec-
tives, including that of structural equation models (Chock-
ler and Halpern 2004), STIT logic (Lorini and Schwarzen-
truber 2011; Lorini, Longin, and Mayor 2014; Baltag,
Canavotto, and Smets 2021; Abarca and Broersen 2022),
ATL (Bulling and Dastani 2013; Yazdanpanah et al. 2019),
LTLf (Parker, Grandi, and Lorini 2023; De Giacomo et al.
2025), game-theory (Braham and van Hees 2012; Lorini
and Miihlenbernd 2018; Baier, Funke, and Majumdar 2021),
and logics of strategic and extensive games (Naumov and
Tao 2021, 2023; Shi 2024). Much of this research for-
malizes strategic responsibility (De Giacomo et al. 2025),
which involves assessing whether an agent’s choice led to

*Corresponding author
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or “caused” a given outcome.' The literature distinguishes
two main views on this. One, associated with Frankfurt
(1969), holds that an agent is responsible only if they could
have acted otherwise. The other ties responsibility to mak-
ing an outcome inevitable, i.e. a “seeing-to-it” view linked
to STIT logic (Horty and Belnap 1995). Based on this, in
their action-based framework, (Lorini, Longin, and Mayor
2014) proposed two forms of strategic responsibility, active
responsibility and passive responsibility. The former per-
tains to an agent ensuring that some state of affairs occurs
through their actions, while the latter involves the agent’s
failure to prevent that effect from occurring. (Parker, Grandi,
and Lorini 2023) identified two variants of passive responsi-
bility based on whether the reasoning occurs before or after
the outcome. Passive responsibility anticipation is a future-
looking or ex ante notion and involves determining whether
a certain choice would incur some responsibility. Passive re-
sponsibility attribution, on the other hand, is a retrospective
or ex post notion, which involves assigning responsibility af-
ter the choices have been made. Strategic notions of respon-
sibility focus on the choices that agents have and whether
they promote the outcome. In multiagent game settings, it is
natural to see the outcome as being determined by the entire
combination of agents’ moves. In this case, even doing noth-
ing is a choice that may lead to a particular outcome (e.g., a
doctor’s absence might result in a patient’s death).

Actual causality is the problem of identifying the causes
of an observed effect from a given history of events or ac-
tions, which is also called the scenario (Halpern 2000). For
instance, in a scenario where a prison guard A loads a gun
and prison guard B shoots an inmate with the gun, their ac-
tions may be identified as the cause of the inmate’s death.
In actual causality, one focuses on what effects the actions
have. Doing nothing is not an actual cause.

The notions of responsibility and actual causality are
closely related. Despite this, the connection between these
remains largely unexplored. To deal with this, in this pa-
per we make a distinction between passive causal respon-
sibility attribution (such as guard A’s loading) and passive
strategic responsibility attribution (such as the doctor’s ab-

'In the literature, this is sometimes called “causal responsibil-
ity” (Vincent 2011; De Giacomo et al. 2025), which may lead to
confusion.

sence). Based on this, we propose notions of responsibil-
ity grounded in strategic reasoning as well as causal contri-
bution. Our formalization is based on the Situation Calcu-
lus Synchronous Game Structures (SCSGS) (De Giacomo,
Lespérance, and Pearce 2016), a game-theoretic logic frame-
work that allows concurrent moves by multiple agents. We
show that by combining causal and strategic perspectives,
one can obtain novel and stronger forms of responsibility
attribution that are extensionally distinct.

While doing this, we propose an account of actual cau-
sation in SCSGS. It overcomes a major limitation of previ-
ous proposals of actual causation in action-theoretic frame-
works, which were in turn proposed to deal with the expres-
sive limitations of structural equations models-based causal
models (Halpern 2016): that the scenario is a linear sequence
of single-agent actions, and is thus restricted to turn-taking
multiagent games. In contrast, we have a single action tick
whose effects depend on the combination of moves selected
by the players. Each agent selects its move without know-
ing which move is selected by the other agents. As we will
see, in domains with synchronous concurrency, besides the
usual preemption problem,” we also face the problem of
over-determination, as there may be more than one subset
of the moves that are sufficient to cause the effect. In this
paper, we extend previous accounts of actual causation in
the situation calculus (Batusov and Soutchanski 2018; Khan
and Lespérance 2021) to identify minimal subsets of moves
by some of the agents that are causes of the effect, i.e., suf-
ficient to cause it. We also identify causal chains consisting
of such minimal sets of moves, and notice that there may be
several of them in the scenario for a given effect.

Our contribution in this paper is thus fourfold: (i) We pro-
pose a formalization of actual causation in SCSGS. (ii)) We
extend previously proposed single-agent notions of strategic
responsibility for coalitions of agents. (iii) Based on these,
we formalize new notions of passive causal, strategic, and
combined responsibility attribution. (iv) Finally, we prove
some important properties of our formalization.

Preliminaries

Situation Calculus (SC). The SC is a well-known second-
order language for representing and reasoning about dy-
namic worlds (McCarthy and Hayes 1969; Reiter 2001). In
the SC, all changes are due to named actions, which are
terms in the language. Situations represent a possible world
history resulting from performing some actions. The con-
stant Sy is used to denote the initial situation where no
action has been performed yet. The distinguished binary
function symbol do(a, s) denotes the successor situation to
s resulting from performing the action a. The expression
do([a1,- - ,ay],s) represents the situation resulting from
executing actions aq, - - - , ay, starting with situation s. As
usual, a relational/functional fluent representing a property
whose value may change from situation to situation takes a
situation term as its last argument. There is a special pred-

2Preemption happens when two competing events try to achieve
the same effect, and the latter of these fails to do so, as the earlier
one has already achieved the effect.

icate Poss(a, s) used to state that action a is executable in
situation s. Also, the special binary predicate s C s’ repre-
sents that s’ can be reached from situation s by executing
some sequence of actions. Moreover, s C s’ is an abbrevia-
tion of s = s’ Vs = s’. Again, s < s’ is an abbreviation of
s C s’ A Ezecutable(s"), where Ezecutable(s) is defined as
Va',s'. do(a’,s") C s D Poss(a’,s’), i.e. every action per-
formed in reaching situation s was possible in the situation
in which it occurred. Finally, s < s’ means s < s’ V s = ¢'.

In the SC, a dynamic domain is specified using a ba-
sic action theory (BAT) D that includes the following sets
of axioms: (i) (first-order or FO) initial state axioms Dg,,
which indicate what was true initially; (ii) (FO) action pre-
condition axioms D, characterizing Poss(a, s); (iii) (FO)
successor-state axioms D, indicating precisely when the
fluents change; (iv) (FO) unique-names axioms D,,,, for
actions, stating that different action terms represent distinct
actions; and (v) (second-order or SO) domain-independent
foundational axioms 32, describing the structure of situations
(Levesque, Pirri, and Reiter 1998). Although the SC is SO,
Reiter (Reiter 2001) showed that for certain type of queries
¢, D = ¢ iff Dypng U Dg, = R[], where R is a syntactic
transformation operator called regression and R[¢] is a SC
formula that compiles dynamic aspects of the theory D into
the query ¢. Thus reasoning in the SC for a large class of
interesting queries can be restricted to entailment checking
w.r.t a FO theory (Reiter 2001).

Synchronous Game Structures (SCSGS). Following
(De Giacomo, Lespérance, and Pearce 2016), we focus
on games where there are n players/agents each of whom
chooses a move at every time step. All such moves are ex-
ecuted synchronously and determine the next state of the
game. At each time step, the state of the game is fully ob-
servable by all agents, as are all past moves of every agent.
To represent such multi-player synchronous games, we use a
special class of BATS, called situation calculus synchronous
game structures (SCSGS), which are defined as follows.
Agents. A SCSGS D involves a finite set of n agents, and we
use a subsort Agents of Objects which includes these finitely
many agents Ag4, ..., Ag,,, each denoted by a constant, and
for which unique names Ag; # Ag; for i # j and domain
closure agent(z) = x = Ag, V---V x = Ag,, hold.
Moves. We also use a second subsort Moves of Objects, rep-
resenting the possible moves. These come in finitely many
types, represented by function symbols M;(Z), which are
parameterized by objects &, with Move(m) = \/,3Z.m =
M;(Z). Given that the parameters range over Objects, each
agent may have an infinite number of possible moves at
each time step. We have unique name and domain clo-
sure axioms (parameterized by objects) for these functions
M;(Z) # M;(y) for i # j, and M;(Z) = M;(y) D> & = y.
Actions. In SCSGS, there is only one action type,
tick(mz, ..., my,), which represents the execution of a joint
move by all the agents at a given time step. The action
tick has exactly n parameters, mq, ..., m,, one per agent,
which are of sort Moves and corresponds to the simultaneous
choice of the move to perform by the n different agents.
Legal moves. The legal moves available to each agent in a

given situation are specified formally using a special pred-
icate LegalM, which is defined by statements of the fol-
lowing form (one for each agent Ag, and move type M;):
LegalM (Ag;, M;(Z),s) = ®ay, a1, (7, s), ie., agent Ag,
can legally perform move M;(Z) in situation s if and only
if ® 44, a7, (Z, s) holds. Technically LegalM is an abbrevi-
ation for ® 44, a7, (7, s), which is a uniform formula (i.e., a
formula that only refers to a single situation s).
Precondition axioms. The precondition axiom for
the action tick is fixed and specified in terms of
LegalM as follows: Poss(tick(mq,...,my),s) =
Ni=1,...nLegalM (Ag;, m;,s). Thus the joint action by all
agents tick(mq,...,m,) is executable if and only if each
selected move m; is a legal move for agent Ag, in situation
s. Since we only have one action type tick, this is the only
precondition axiom in Dgy,.

Successor state axioms. We have successor state axioms
D, specifying the effects and frame conditions of the joint
moves tick(myq,...,my) on the fluents. Such axioms, as
usual in basic action theories, are domain specific, and char-
acterize the actual game under consideration. Within such
axioms, the agent moves, which occur as parameters of tick,
determine how fluents change as the result of joint moves.>
Initial situation description. Finally, the initial state of the
game is axiomatized in the initial situation description Dg,
as usual, in a domain specific way.

SCSGS, as defined above, are a first-order extension of the
Concurrent Game Structures used with logics such as ATL*
(Alur, Henzinger, and Kupferman 2002), but they incorpo-
rate an action theory to specify how agent moves change the
fluents and address the frame problem.

LTL Properties. In formalizing strategic responsibility,
we will use LTL temporal properties. To do this, we utilize
the axiomatization of infinite paths in the SC introduced by
(Khan and Lespérance 2016), which adds a new sort of paths
to the language that provides a natural way to talk about “in-
finite future histories”. Paths are infinite sequences of exe-
cutable situations. Following this work, we will use the spe-
cial predicates OnPath(p, s) to mean that situation s is on
path p, Starts(p, s) to specify that the path p starts with sit-
uation s, and Suffiz(p’, p, s) to denote that the path p’ starts
with s and contains the same situations as p starting from
s. Based on this, (De Giacomo, Lespérance, and Mancanelli
2025) defined a special predicate Holds(¢, p) to specify that
a given LTL property ¢ holds on path p. In the following, we
use ¢ to range over LTL formulae.

Bottle Example. We use a variant of the well-known “bot-
tle” example (Hall 2004), where Suzy and Billy are throw-
ing stones at a bottle. Suzy’s stones are smaller and thus
she requires two throws to break the bottle while Billy’s
stone is large and he needs just one throw to break it.
The available moves of ag € {Suzy, Billy} can be one
of pick,,, representing the picking of stone(s), one for

*In many cases, moves don’t interfere with each other and the
effects are just the union of those of each move. One can also ex-
ploit previous work on axiomatizing parallel actions to generate
successor state axioms (Reiter 2001; Pinto 1998).

ag = Billy or two for ag = Suzy; throw,y, i.e. throw-
ing of a stone by ag; and a catchall other,, move, denoting
anything other than picking and throwing. The legality of
these moves is specified below. (a). LegalM (pick ,,,s) =
—Holding(ag, s). (b).LegalM (throw o4, s) = Holding(ag,
s). (¢). LegalM (other,q,s). Thus, e.g., throwing a stone
is a legal move for agent ag in situation s is she is holding
one or more stones in s. For simplicity, we assume that the
other .4 move is always possible.

There are three fluents in this domain, Holding(ag, s),
Broken(s), and SuzyThrown(s), which means that the
agent ag is holding their stones in situation s, the bottle is
broken in s, and Suzy has already thrown once before in s,
respectively. The successor-state axioms are as follows.

(d). Holding(ag, do(a, s)) =
[ag = Suzy A Im. a = tick(pickg,,,,m)] V
[ag = Billy A 3m. a = tick(m, pick gy,)] V
[ag = Suzy A Holding(ag, s) N
=(Im. a = tick(throw suzy, m) A Suzy Thrown(s))] V
[ag = Billy A Holding(ag, s) A

—3dm. a = tick(m, thT‘O’sz”y)},

(e). Broken(do(a, s)) = [Fm. a = tick(m, throw guy)] V
[Fm. a = tick(throw suzy, m) A SuzyThrown(s)] V Broken(s),

(f). SuzyThrown(do(a, s)) =
Im. a = tick(throw suzy, m) V Suzy Thrown(s).

Finally, we specify what is true initially in Sp:
(9)- Yag. = Holding(ag, So). (h). ~Broken(Sy). We will
use Dy, to refer to this axiomatization. O

Actual Causation in the SC

Based on Batusov and Soutchanski’s (2018) original pro-
posal, Khan and Lespérance (2021) (KL) recently defined
cause in the SC. Both assume that the scenario is a linear se-
quence of actions, i.e. these do not allow concurrent actions.

KL introduced the notion of dynamic formulae. An ef-
fect ¢ in their framework is a situation-suppressed dynamic
formula.* Given an effect ¢, the actual causes are defined
relative to a scenario s. When s is ground, the tuple (i, s)
is called a causal setting. Also, it is assumed that D
Ezecutable(s) A —¢[So] A ¢[s]. Here ¢[s] denotes the for-
mula obtained from ¢ by restoring the appropriate situation
argument into all fluents in ¢ (see Def. 2).

KL required that each situation be associated with a time-
stamp, which can then be used to uniquely identify an ac-
tion occurrence. A time-stamp is an integer for their the-
ory. KL assumed that the initial situation starts at time-
stamp O and each action increments the time-stamp by one.
Thus, their action theory includes the following axioms:
timeStamp(Sy) = 0; Va, s, ts. timeStamp(do(a, s)) = ts

“While KL also study epistemic causation, we restrict our dis-
cussion to objective causality only. Also, in the following, we will
use the terms situation, scenario, and history interchangeably.

= timeStamp(s) = ts—1. With this, causes in their frame-
work is a non-empty set of action-time-stamp pairs.

The notion of dynamic formulae is defined as follows:

Definition 1 Let =, 0,, and v respectively range over ob-
Ject terms, action terms, and object and action variables.
The class of dynamic formulae ¢ is defined inductively us-
ing the following grammar: ¢ = P(Z) | Poss(6,) |
After(0a,) | ~¢ [1 Ap2 | 3G @

We will use ¢ for DF. ¢[-] is defined as follows:

Definition 2
P(z,s) if v is P(Z)
Poss(0q,s) if pis Poss(0,)
o[s] = ¢'[do(0a, 5)] if pis After(0a, ¢’)
—(¢'[s]) if pis (—¢’)

w1[s] A pa[s] if pis (w1 A p2)
37. (¢'[s]) ifpis (37. ¢')

Recently, (Karimian, Khan, and Lespérance 2025a) pro-
posed a variant of KL’s definition of cause that captures the
causal chain while identifying causes. Here we briefly dis-
cuss this. The idea behind how causes are identified is as
follows. Given an effect ¢ and scenario s, if some action of
the action sequence in s triggers ¢ to change its truth value
from false to true relative to D, and if there are no actions in
s after it that change the value of ¢ back to false, then this
action is a primary or direct actual cause of achieving ¢ in
s, denoted using CausesDirectly(a,ts, ¢, s).

Definition 3 (Primary Cause (KL 2021))

CausesDirectly(a, ts, @, s) = 3sq. timeStamp(sq) = ts A
So < do(a, sa) < s A—p[sa] AVs'.(do(a, sq) <s' < 5D p[s']).

That is, a executed at time-stamp ts is the primary cause
of effect ¢ in situation s iff a was executed in a situation
with time-stamp ¢s in scenario s, a caused ¢ to change its
truth value to true, and no subsequent actions on the way to
s falsified .

Now, note that a (primary) cause ¢ might have been non-
executable initially. Also, a might have only brought about
the effect conditionally and this context condition might
have been false initially. Thus earlier actions in the trace
that contributed to the preconditions and the context con-
ditions of a cause must be considered as causes as well.
CausesByChain(a,ts, cc, p, s), which means that action a
at timestamp t¢s is a cause of an effect ¢ in scenario s through
causal chain cc, inductively captures all such primary and in-
direct causes and specifies the causal chain.’

3In this, we need to quantify over situation-suppressed DF. Thus
we must encode such formulae as terms and formalize their rela-
tionship to the associated SC formulae. This is tedious but can be
done essentially along the lines of (De Giacomo, Lespérance, and
Levesque 2000). We assume that we have such an encoding and
use formulae as terms directly.

Definition 4 (Actual Cause Through Causal Chain)

CausesByChain(a,ts, cc, p, 8) =
VP.[Va,ts, s, cc, p.(CausesDirectly(a, ts, o, s)
D P(a,ts, ((a,ts)),p,s))
AVa,ts,cc s, p.(3a’,ts', s".(CausesDirectly(a’, s’ p, s)
A timeStamp(s')=ts' Ns' < s
A P(a,ts,cc’,[Poss(a’) A After(a’, ¢)], s")
A cc = Append(cc’, (a’,ts"))
D P(a,ts,cc,¢,s))
| D P(a,ts, cc, @, s).

Thus, CausesByChain is defined to be the least relation P
such that if a executed at time-stamp ts directly causes ¢ in
scenario s then (a, ts, cc, ¢, s) is in P, where cc = ((a, ts));
and if a’ executed at ts’ is a direct cause of ¢ in s, the
time-stamp of s’ is ts’, s’ < s, and (a,ts,cc’, [Poss(a’) A
After(a’,¢)],s') is in P (i.e. a executed at ts is a di-
rect or indirect cause of [Poss(a’) A After(a’,¢)] in
s’ through causal chain cc’), then (a,ts,cc,p,s) is in
P, where cc = Append(cc,(a’,ts')). Here the ef-
fect [Poss(a’) N After(a’,¢)] requires o’ to be exe-
cutable and ¢ to hold after a’. Also, Append is defined
as follows: Append(((a1,ts1),...,(an,tsn)), (a,ts)) =
((a17 tSl),] (a’na tsn)7 (Q, tS))

Tick Actions as Causes in the SCSGS. The above for-
malization of actual causation was formulated for domains
specified by BATs in the situation calculus. However, it can
be used directly for SCSGS domains, as long as one focuses
on identifying the tick actions in the scenario that caused
the effect, and causal chains consisting of tick actions. This
is not surprising as SCSGS are special kinds of BATs. We
illustrate this in the example below.

Example (cont’d). Consider the scenario oy =
do([tick(pick gy, other iy,), tick(throw suzy, pick gy,),
tick(other sysy, other gy), tick(throw syzy , throw pary)],
Sp). We want to find the actual causes of the ef-

fect 3 = Broken(s). We can show that:® Dy,
CausesByChain(tick(pick g,,,, other puiy,), 0, cc, p1,01),
where cc = ((tick(pick g, other iy), 0), (tick(thr—

OW Suzy, PIck gy)5 1), (tick (throw sy, throw iy), 3)).

Explaining backward in cc, the last tick action executed at
time-stamp 3 is included in the causal chain as (either of the
moves in) it directly caused the breaking of the bottle. The
second tick action executed at 1 is also included because
it is a (secondary/indirect) cause as it brought about the
preconditions of the last tick action (by making Billy’s
throw legal), besides bringing about the context condition
(that SuzyThrown) under which Suzy’s second throw can
break the bottle. Finally, the first ¢ick action is also a cause
as it made the second tick action executable. O

SNote that since the definition of CausesByChain inductively
constructs the causal chain, considering some of the causes, e.g.,
the primary cause, will only give us a suffix of the complete causal
chain cc; for simplicity, we thus only show the most indirect cause
below, which captures the complete chain cc.

While the above formalization provides some insight on
what tick actions are causes and can be used to identify the
completely irrelevant tick actions, e.g. the one at time-stamp
2, observe that some irrelevant moves might still be included
in the discovered causes, such as otherp;;, at time-stamp
0 in our example. In other words, our formalization of this
does not specify what moves within the identified tick ac-
tions are contributing to the effect. To deal with this, we next
propose a formalization of agent moves as causes.

Agent Moves as Causes in the SCSGS

We now go a step further by pinpointing the moves that
actually contributed to the effect within the tick actions
that are identified as causes. Note that, since unlike actions,
agent moves within each tick action are concurrently per-
formed, it is possible that more than one alternative chain
of subsets of moves in the scenario are each by itself suffi-
cient to bring about the effect. For instance, in our exam-
ple, either ((pickg,,,,0), (throwsuzy, 1), (throwsusy,3))
or ((pick gy, 1), (throw piy, 3)) would have been suffi-
cient to break the bottle. Just as with causal chains in the
SC, we will identify these refined causal chains in two steps.
In the first step, we identify the minimal set of moves in
each action that is a direct cause of the effect in some refined
chain (e.g., throw gy, in the last tick of the second refined
causal chain above). We call these sets of direct causes min-
imal moves primary causes since they are minimal sets of
moves that are causes. However, we must consider that there
might be more than one minimal moves primary cause in one
single action. For example in the last tick of our example, we
can consider either only Suzy’s throwing or Billy’s throwing
to be a minimal moves primary cause. In the second step,
using refined causes, we define the refined chains mentioned
above, which we call minimal moves causal chains.

In keeping with the formalization of dynamic domains
in the SC, we will consider actions (but not moves) as
(refined) causes.” Thus our formalization of this does not
omit the irrelevant moves in each time-stamp altogether,
but rather replaces them with the special move wait within
the tick action to remove their effects. wait has no effects
(the domain modeler must ensure this), and is always le-
gal: Vag,s. LegalM (ag, wait, s).® Thus, for instance, in
our example, one such refined action that is a cause is
tick(pick g,,,,, wait). We collect all of these for all causal
chains in our new definition of causes.

We now define minimal moves primary causes:

Definition 5 (Minimal Moves Primary Cause)
MinMovCausesDir(a, ts, (a',ts), ¢, s) =
3sq. timeStamp(sq) = ts A (So < do(a, sq) < 8) A —=p[sa] A

Vs'.(do(a, s4) <8 <5 D @[s']) A MinSuffSubset(a’, a, 54, p, 5).

"Note that the action theory specifies how the situation changes
when actions, i.e., joint moves, are performed. This allows interfer-
ing or synergic effects to be specified.

8In many settings, an agent might be forced to make a non-wait
move, e.g. in chess. But our simplifying assumption that the agent
can always wait is only used to extract the contributions of her
moves for the purpose of causation. We could add constraints to
rule out such moves in real play.

The above definition is exactly as the definition of primary
causes (Def. 3), but has an additional parameter (o', ¢s) that
returns a tuple consisting of a minimal subset of moves o’
of the primary cause a that, when executed in s, (i.e., the
situation where the primary cause was executed in the orig-
inal scenario), is sufficient to cause the effect ¢ in s (for-
malized using MinSuffSubset), and the time stamp ts of a.
MinSuffSubset(a’,a, s', p, s) means that the tick action a’
consists of a sufficient subset of moves of a in s’ to achieve
© up to s, and it is minimal.
Definition 6

MinSuffSubset(a’, a, s, ¢, s) = SuffSubset(a’, a,s’, v, s)

A=Ja*. a* # a’ A SuffSubset(a*,a’, s, p,s).
a’ is a sufficient subset of moves of a in s’ to achieve ¢ up to
s, i.e. SuffSubset(a’,a, s’ ¢, s), iff a’ is a subset of moves
of a, and the execution of this subset a’ in s’ is sufficient
to cause ¢ in s, i.e. ¢ becomes true after o’ is executed in
s’ and it remains true after the subsequent actions between
do(a, ") and s are executed starting in do(a’,).

Definition 7
SuffSubset(a’,a, s, p,s) =
SubsetMovs(a',a) A 3s”. timeStamp(s") = timeStamp(s)
NS < 8" AVay,si,al, st
(do(a, s") < do(ay,s1) < sA
do(a’,s") < do(al,s1) < s A
timeStamp(s]) = timeStamp(s1)) D (a1 = a})]
A (Vsh.(s" < s < 8") D plsh)).
Here SubsetMovs(a’, a), meaning that the tick action a’ is

exactly as a, but with some of the moves possibly replaced
with the wait move, is defined as follows:

Definition 8 (¢’ Consists of a Subset of a)
SubsetMovs(a’, a) =
Imy, -, my,ma, M. @’ = tick(mb, -, mi,)
Aa = tick(mai, -« ,mp)
A (V). 1< j<nD(m)=m;Vmj=wait)).
Using minimal moves primary causes, we next formalize

minimal moves causal chains, a variant of CausesByChain
that inductively constructs the minimal moves chain instead.

Definition 9 (Min. Moves Cause by Causal Chain)

MinMovesCausesByChain(a, ts, cc, ¢, s) =
VP.[Va,ts,cc,a’, s, p.[MinMovCausesDir(a, ts, (a’, ts), p, s)
D P(a,ts, ((d,ts)), v, s)]
AVa,ts,cc’, s, p.[Fa",a’,ts', s .(
MinMovCausesDir(a’, ts', (a”,ts"), ¢,)
A timeStamp(s')=ts' As' <
A P(a,ts,cc’,[Poss(a”) A After(a”,)], s")
A cc = Append(cc’, (a”,ts"))) D Pla,ts,cc, ¢, s)]
] 2 P(a,ts, cc, p,s).
Thus MinMovesCausesByChain is the smallest set such
that if a tick action a executed at time-stamp ts di-

rectly caused the effect ¢ in scenario s with the mini-
mal moves primary cause (a’,ts), then (a,ts,cc,,s) is

in that set, where cc = ((d/,ts)); and if o’ executed at
ts’' is a direct cause of ¢ in s with minimal moves pri-
mary cause (a”,ts’), the time-stamp of s’ is ts, & <
s, and (a,ts,cc’,[Poss(a”) N After(a”,p)],s’) is in P
(i.e. a executed at ts is a direct or indirect cause of
[Poss(a”) N After(a”,)] in s’ through minimal moves
causal chain cc’), then (a,ts, cc, @, s) is in P, where cc =
Append(cc, (a”,ts")). This thus incrementally constructs
the refined causal chains using MinMovCausesDir.
Minimal moves causal chains, as defined above, can be
incomplete and might only include part of the chain. Thus,
we also define a notion of complete chains.
Definition 10 (Complete Min. Moves Causal Chain)
CompleteMinMovesCausalChain(cc, ¢, s) =
Ja, ts. MinMovesCausesByChain(a,ts, cc, p,s) A
Ved, ts', a'.cc' #ceh MinMovesCausesByChain(a', ts', cc', @, s)
D (Ja*,ts*. (a*,ts*) € cc A (a*,t5") & cc).
Thus cc is a complete minimal moves causal chain given ef-
fect ¢ and scenario s iff cc is a minimal moves causal chain
for some tick action a and timestamp ts, and cc includes a
minimal moves cause (a*,ts*) that no other distinct mini-
mal moves causal chains cc’ of ¢ and s includes. As shown
below, there can be more than one complete minimal moves
causal chains.

Example (cont’d). We can show the following result.

Proposition 1 (Complete Causal Chains in 1)

Dyt = CompleteMinMovesCausalChain(cci, o1,01) A
CompleteMinMovesCausalChain(ccz, p1,01),

where cci = ((tick(pickg,,, , wait),0),(tick (throw suzy, wait),1),

(tick (throw susy, wail), 3)), and ccz = ((tick(wait, pick gy,),1),

(tick(wait, throw ay),3)).

Thus, in our example, we have two distinct complete causal

chains, one that stems from the refined primary cause in-

volving Suzy’s second throw move and Billy’s wait move

at time-stamp 3, and another originating from Billy’s throw

and Suzy’s wait move, again at time-stamp 3. 0

Properties of Actual Causation in SCSGS
Preemption. Preemption occurs when there are more than
one competing contributors (actions) to an effect, but they
happen one after another/consecutively. In such cases, only
the first of these should be identified as the actual cause. The
(effects of the) latter actions are said to be preempted by the
actual cause. We illustrate this below.

Example 2. Consider the new scenario o5 =
do([tick(pick gy, Pick gy,), tick(throw suzy, other paiy,),
tick (throw guzy, other iy), tick(other gy, throw gy)],
So)- In this, we can show the following result.

Proposition 2

Dyt = —3ce. CausesByChain(tick(other suxy, throw gy), 3,
ce, p1,02) A =3ee, m. MinMovesCausesByChain(tick(m,
throw gy), 3, cc, 1, 02).

Thus as expected, Billy’s throw is not considered as part of
any (refined) causal chain. |

Over-determination. Over-determination happens when
the effect is contributed by some events, but a smaller subset
of these would have been sufficient for the effect to hold. For
example, in a voting scenario, where 6 out of 10 votes are re-
quired for a candidate to win, if 7 voters voted for candidate
A, saying that all of these 7 votes are the cause of candidate
A’s winning the ballot would be over-determination as any
6 of these would suffice. An acceptable solution to this is to
only identify any 6-vote subsets as causes (Halpern 2016).

Example (cont’d). In our first bottle example, there are
only two refined causal chains; the first one only con-
sists of Billy’s moves, and the second only consists of
Suzy’s. The definition MinMovesCausesByChain ensures
that only these two chains exist, since if we were to consider
the chain that includes the time-stamp 3 throw moves of both
Suzy and Billy, it will not be a minimal. Formally:

Proposition 3

Dyt = —Ja, ts, cc. MinMovesCausesByChain(a,ts,
Append(cc, (tick(throw sy.y, throw iy), 3)), ¢1,01).

Thus, tick(throw gy, throw iy,) at time 3 cannot be a part
of any refined causal chain for any action and timestamp. [J

In general, since refined causal chains are constructed to
be minimal, if we have two refined chains in the same time-
stamp, it cannot be the case that one of them is a refined
version of the other (i.e., has a subset of moves of the other).

Theorem 1 (No Over-Determination)

D EVa,a1,az,ts, cc, @, s.

(MinMovesCausesByChain(a,ts, Cons((a1,ts), cc), ¢, s)

A MinMovesCausesByChain(a,ts, Cons((az,ts), cc), ¢, s))

D (a1 =az V (—SubsetMovs(a1, az) A ~SubsetMovs(az, a1))).

Here Cons((a,ts),cc) denotes the sequence where (a,ts)
is added to the front of cc.

Proof Sketch: By induction on the length of the minimal
moves causal chain using properties of minimal sufficient
subsets of joint moves. O

Persistence. Finally, we study the conditions under which
(refined) causal chains persist when the scenario changes.

Theorem 2 (Persistence of the Causal Chain)

D Vs, s ce,ts,a, . CausesByChain(a,ts, cc, p, s)
ANs < s AVs",a*.(s < do(a®,s") < s D g[s*])
O CausesByChain(a,ts, cc, @, s').

Proof Sketch: By induction on the length of the causal
chain. O

That is, if a tick action a executed in ts is the cause of an
effect ¢ in scenario s through causal chain cc, then a in ts
remains the cause of ¢ in all subsequent situations/scenar-
ios s’ if o does not change after it was achieved in s. This
is because since the situation where ¢ was achieved does
not change in the extended scenario, neither does the causal
chain.
A similar result can be shown for refined causal chains.

Theorem 3 (Persistence of Refined Causal Chains)

D k= Vs,s'cets,ap. MinMovesCausesByChain(a, ts, cc, @, s)
ANs< s AVs™ a".(s < do(a*,s*) < s Dyls"])
D MinMovesCausesByChain(a, ts, cc, ¢, s').

Proof Sketch: By induction on the length of the minimal
moves causal chain using properties of minimal sufficient
subsets of joint moves. O

Causal, Strategic, Combined Responsibility

Before we can give our formalization of responsibility in
SCSGS, we need to define some notions to support strate-
gic reasoning in SCSGS. We define an agent strategy f,4 as
a function from situations to agent ag’s move in that situa-
tion, i.e. faq(s) = Maq(Z). For a coalition of agents C, a

joint strategy fo = Uagec fag and fe,ag s fug € fo

(De Giacomo, Lespérance, and Mancanelli 2025) defined
a notion of an agent being able to force an LTL tempo-
ral property ¢ by following a strategy f when operating
in a nondeterministic domain, where the environment de-
termines the outcome of the agent’s actions. Here, we adapt
this for multiagent settings modelled as SCSGS:

Definition 11 (Multi-Agent CanForceBy)

CanForceBy(C, ¢, fc,s) = Vp.Out(p, C, fc,s) D Holds(¢,p),
where, Out(p, C, fc, s) = Starts(p,s) A
Ya,s'.OnPath(p,s’) A OnPath(p, do(a,s’)) D
Vag.(ag € C D AgentMove(a, ag) = fo,aq(s")),

and, AgentMove(tick(ma,...,ms,...,mn),1) = m;.

That is, coalition C' can force temporal property ¢ using

strategy fc starting in situation s against any possible moves
by agents outside C' iff ¢ holds over all paths that can result

from C following f¢ starting in s. Here, Out(p, C, fe, s)
means that path p is a possible outcome trace when C' exe-

cutes strategy fc starting from situation s.
We also define a variant of the above that identifies the
minimal set of agents that can force an effect.

Definition 12 (Minimal Multi-Agent CanForceBy)

MinCanForceBy(C, ¢, fc, s) = CanForceBy(C, ¢, fc, s)
A—-3C7, fcf. C' C C A CanForceBy(C', 6, fcf,s).
Note that, for a given ¢ and s, MinCanForceBy does not
necessarily hold for a unique C.

Finally, we define a predicate stating that situation s is
consistent with C following strategy fc starting from s’

Definition 13 (Strategy j?c is Consistent with Sit. s)

ConsStrategySit(C, s, fc, s') =
Va*,s% ag. s’ < do(a*,s") <sAhag€C D
f.ag(s™) = AgentMove(a*, ag).

Strategic Responsibility. We are now ready to define var-
ious notions of strategic responsibility. For this, we closely
follow the definitions for the single agent case presented in
(Parker, Grandi, and Lorini 2023; De Giacomo et al. 2025),
but extend these for a coalition C' and SCSGS. In what fol-
lows, we use path formulae in the context of CanForceBy
and dynamic formulae in that of causal chains.

We start with active responsibility. According to (Parker,
Grandi, and Lorini 2023), an agent is actively responsible
for an outcome under some strategy if (i) the strategy she
selected forces that outcome, and (ii) it was possible for her
to select an alternative strategy that would have not forced
that outcome for at least some environment response. We
extend this idea for a coalition of agents C' with a strategy

fe.
Definition 14 (Active Responsibility By)

ActiveRespBy(C, fc, ¥, 8) = MinCanForceBy(C, {p, fc, s)
A 3ge, 975. CanForceBy(C U C, O, (jc, 9_75), s),

where (gc, 9_75) represents the strategy for each agent i such
that for any situation s, (Jc,g'w)(s) = gi(s) ifi € C, and
(o, 9'5)(s) = gi(s), otherwise.

Thus, a coalition C' is actively responsible for ¢ using strat-
egy fc starting in situation s iff it can force ¢ to eventually

hold using f¢ starting in s, and there is another strategy go
for C that could have been used to always avoid ¢ starting
in s at least for some strategy g_7 & of the rest of the agents C.
Next, we define passive responsibility anticipation. Ac-
cording to (De Giacomo et al. 2025), an agent anticipates
(weak) passive responsibility for an outcome under some
strategy F' if (i) there exists an environment strategy G such
that F' and G together brings about the outcome, and (ii)
there exists an agent strategy F” such that F’ along with the
same environment strategy (i.e. G) would not bring about .
Again, we extend this idea for a coalition of agents C"

Definition 15 (Passive Responsibility Anticipation By)

PassiveRespAntBy(C, J?C: J%v ®,8) =
CanForceBy(C U C, Oy, (fo, J%): s) A
3Gc. CanForceBy(C U C,0-¢, (o, j%), s),

where (fc, f%) and (gc, f%) is as defined above in Def. 14.

Thus, C' passively anticipates responsibility for ¢ using
strategies fc and]% starting in s iff C' can force ¢ to eventu-
ally hold using fg starting in s if the other agents followed
J%, and C' also has a strategy gc to ensure that ¢ always

remains false starting in s if the other agents followed J%.

Finally, we define a retrospective notion of passive re-
sponsibility. According to (De Giacomo et al. 2025), an
agent has (weak) passive responsibility for some outcome
under strategy F' and history H such that the outcome holds
in H, if (i) there exists an environment strategy G such that
H is consistent with F' and (G, and (ii) there exists another
agent strategy F” such that when executed along with G, it
would have brought about the opposite outcome. We now
generalize this for a coalition C":

Table 1: Responsibilities in the attempted murder scenario.

Coalition CausalResp PassiveResp Comb
{kllr1, Klir2} v v v
{waiter} v X X
{guard} X v X

Definition 16 (Passive Responsibility Attribution By)

PassiveRespAttribBy(C, fc,]%, v, 8) =
©[s] A ConsStrategySit(C, s, fe,80) A
ConsStrategySit(C, s, J%, So)A3s'.s' < s A
PassiveRespAntBy(C, fc, f%, ©,s).

Thus, coalition C' has passive responsibility for outcome ¢
in situation/history s by strategies]FC and j’% iff ¢ is ob-
served in s, s is consistent with both fc and f% starting in
the initial situation Sy, and C' could have anticipated passive
responsibility for ¢ by fc and f% in an earlier situation s’
in the history of 5.

Attempted Murder Example. Consider a domain D 4/,
in which there are four agents, two killers kllrl and klir2,
a waiter, and a guard. The killers each can poison a drink
with 50% lethal strength, and can serve it to a victim. The
waiter can also serve the drink. The guard can intervene if
the drink is poisoned, before it is served (or at the same time
itis being served). All agents can also instead choose to play
other moves. The outcome is MurderAttempted(s), which
becomes true if the drink is 100% poisoned and then served
without the guard intervening.

Now, consider the following individual strategies f,, of
agent ag € {kllrl, kilr2, waiter, guard}. Agent kllr1 poisons
in the first tick and plays the ‘other’ move in the second and
third. Agent kllr2 poisons in the first tick, plays other in the
second, and serves the drink in the third if it is not served yet,
otherwise plays other in the third tick as well. Agent guard
simply plays other in all three ticks. Finally, agent waiter
serves in the second tick and chooses to play other in the
first tick and in the third tick. In the following, we will com-
bine these individual strategies f,, to obtain strategies fo
for various coalitions C' or their complements C. Thus, e.g.,
if Cy = {kllrl, kilr2}, we will use f¢, to denote the strat-
egy of this coalition where the individual strategies of each
member ag of the coalition (in this case, kllrl and kllr2) are
as specified above by f4; and fCT to denote the strategy of

Note that unlike in the case for active responsibility, our
definitions of passive responsibility do not ensure that the re-
sponsible group is minimal. With some effort, passive respon-
sibility can also be minimized. In fact it is the case that if
PassiveRespAntBy(C, fa f%, ©,s) and C' is a superset of C,
then PassiveRespAntBy(C’, fL., fy, ©, 5) (where the individual

strategies are the same, i.e. (fo, J%) = for, fﬁ)) Thus with our
definition of passive responsibility anticipation, it is indeed useful
to focus on the minimal coalitions that have passive responsibility.

C1 = {waiter, guard}, where, again, the individual strate-
gies of waiter and guard are as specified above by f,.

In the actual scenario, both killers poison the drink in
the first tick and the waiter serves it in the second. At
all remaining ticks, the agents choose the other move, so
the guard never intervenes. We can show that the coali-
tion C; = {klir1, kllr2} is passively responsible for the

attempted murder by strategies fc, and fz-. The waiter’s
move is a cause, but if she does not serve, kllr2 can still de-
liver on the third tick, so the waiter cannot prevent the out-
come. Thus she is not passively responsible by the strategies
fo, and fc—z, where Cy = {waiter}. The guard, however,
could have blocked delivery and thus prevented the outcome.
We can show that by strategies fc3 and j%g the coalition
C5 = {guard} is also passively responsible. The strategic
responsibilities for this scenario and strategies are shown in
Column 3 of Table 1. See (Karimian, Khan, and Lespérance
2025b) for a formalization.

Causal Responsibility Attribution. While the above no-
tions of strategic responsibility account for the choices made
by the coalition and their consequences, they do not cap-
ture the causal contributions to the outcome. For example,
in the above scenario, both {kllrl, kllr2} and {guard} are
considered passively responsible, yet this attribution over-
looks their causal contribution to the attempted murder. To
address this, we now define causal responsibility. Since ac-
tual causality is a retrospective notion, this is also defined
relative to a history s, and is thus an ex post notion.
Definition 17 (Causal Responsibility Attribution)
CausRespAttrib(C, p, s) =
Jee. CompleteMinMovesCausalChain(ce, ¢, s) A
Vag. ag € C D Ja,ts.(a,ts) € cc A AgentMove(a, ag) # wait.
Thus, coalition C is causally responsible for effect ¢ in situ-
ation s iff all agents inside C' contributed to the effect using
a non-wait move in at least one (and the same) complete
minimal-moves causal chain.

Using this, we define a combined notion of responsibility.
Definition 18 (Passive Combined Resp. Attribution)

PassiveCombRespAttribBy(C, fa]%, v, 8) =
CausRespAttrib(C, v, s) A ConsStrategySit(C, s, fc, So) A
ConsStrategySit(C, s, f%, So) A
PassiveRespAttribBy(C, fc,]%, ®,S).

Thus, C' has combined responsibility for ¢ by fc and J% in
s iff it is causally responsible for ¢ in s, s is consistent with

both fC and]% starting in the initial situation Sy, and C'is

passively responsible for ¢ by fc and J% in s. Note that,
there are cases where C has passive strategic responsibility
for ¢, but it is not causally responsible for it.

Returning to our example, we can show that {kllrl, kilr2}
and {waiter} are causally responsible, while {guard} is not,
allowing us to distinguish between coalitions that merely en-
able outcomes and those that bring them about. {waiter}’s
causal involvement however lacks strategic intent given the
strategies of the others agents, which is consistent with her
innocent bystander role. See Table 1.

Properties of Responsibility

e Temporal Consistency: A direct consequence of Def. 15
and 16 is that if a coalition is causally responsible in antici-
pation, then—if the anticipated structure unfolds—it is also
responsible in attribution.

Corollary 1 (From Anticipation to Attribution)
D EVC, fggf%, ©, 8. (PassiveRespAntBy(C, fc,fg, ®,)
A3s*. s > s Ag[s™] A ConsStrategySit(C,s™, fo, s)
A ConsStrategySit(C, s*, J%, s))
D PassiveRespAtiribBy(C, fc,]%, ©®,8).
This also (trivially) holds in the other direction.
Corollary 2 (From Attribution to Anticipation)
D =V, fc, f%, ©, 8. PassiveRespAttribBy(C, fa]%, ®,8)
D 3s’. s’ < s A PassiveRespAntBy(C, f};, J%, ©,s').
e Non-Redundancy of Causal Responsibility:
Theorem 4 (Causal vs. Strategic Responsibility)
D YO, fo,]%, ©, 8. PassiveRespAttribBy(C, fe, f%, ®,8)
D CausRespAttrib(C, ¢, s),
D EVC, fc, j‘%, ©, 8. CausRespAttrib(C, ¢, s)
D PassiwveRespAtiribBy(C, fc,]%, ®,8).

Proof Sketch: By counterexample; see attempted murder
example above. 0

o Responsibility Persistence: If a coalition C' has passive
responsibility for ¢ by fg and]% in s, then it will retain
this responsibility in all subsequent situations s" if both C
and C' keep following these strategies from s to s’, and if ¢
holds in s'.

Theorem 5 (Persistence of Passive Responsibility)
DEVC, fc, f%, ©, s, 8 [PassiveRespAttribBy(C, fc,]%, ®,)
A s < 8 A ConsStrategySit(C, s', fc, s)
A ConsStrategySit(C, s’]%, s) A [s']]
D PassiveRespAttribBy(C, fc7)%7 ®,s').

Proof Sketch: Follows from the antecedent and Definitions
15 and 16. O

Moreover, if in addition ¢ remains true in all situations in
between s and s’, then the above persistence result can be
extended for combined responsibility as well.

Corollary 3 (Persistence of Combined Responsibility)
D E=VvC, j?c,]%, ©,s,s.
[PassiveCombRespAttribBy(C, fa }%7 ®,S)
As < s A ConsStrategySit(C, s', fo, s)
A ConsStrategySit(C, s, f%, s)
AVa™,s*. (s < do(a*,s*) < s D [s"])]
D PassiveCombRespAttribBy(C, fa]%, ©,s).

Proof Sketch: Follows from Definitions 10, 17, and 18, and
Theorems 3 and 5. O

Conclusion

We proposed an account of causation as well as causal,
strategic, and combined responsibility attribution in a syn-
chronous game-theoretic multiagent logic framework. Our
proposal builds on Batusov and Soutchanski’s (2018) orig-
inal formulation of achievement causality in the situa-
tion calculus. The relationship between that framework
and Halpern and Pearl’s intervention-based counterfactual
causality (2016) was also formally examined in that work.
Closely related to our work is the preliminary study in
(Karimian, Khan, and Lespérance 2025a), which formalizes
actual cause in the SCSGS; here we refine on this by defin-
ing complete causal chains and using these to formalize re-
sponsibility. To our knowledge, the only other work linking
responsibility to actual causation is (Chockler and Halpern
2004), where degrees of responsibility are defined in terms
of the number of changes required to avoid the outcome.

Our proposal is nevertheless limited in many ways. We
only dealt with achievement causation and considered objec-
tive responsibility exclusively. While we handled the respon-
sibility of coalitions, we did not consider how responsibili-
ty/blame should be ultimately distributed between the mem-
bers of the coalition. There are many philosophical puzzles,
such as the bystander effect and the circle-of-blame, that
need to be settled before such attribution can be formalized.
In the future, it would be interesting to study maintenance
causation in SCSGS. Also, responsibility attribution should
account for the knowledge of the agent, which requires the
integration of epistemic logic with the current proposal. To
rule out accidental effects, one must integrate conative logic
and notions of goals and intentions with responsibility. This
would allow one to distinguish responsibility incurred due
to intentional actions and accidental ones. Further, consider-
ing obligations and deontic logic might shed some light on
the bystander effect, e.g., by stipulating that due to her obli-
gations, the daycare worker should be held more strongly
responsible than all other bystanders when it comes to the
muddy child. Finally, in the future, it would be interesting to
look into the practical aspects of this research.

Acknowledgements

We would like to thank the anonymous reviewers for help-
ing us improve this paper. This work is partially supported
by the National Science and Engineering Research Council
of Canada, by the University of Regina, and by York Uni-
versity.

References

Abarca, A. I. R.; and Broersen, J. M. 2022. A Stit Logic of
Responsibility. In Faliszewski, P.; Mascardi, V.; Pelachaud,
C.; and Taylor, M. E., eds., 215t International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2022,
Auckland, New Zealand, May 9-13, 2022, 1717-1719. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems (IFAAMAS).

Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. J. ACM, 49(5): 672-713.

Baier, C.; Funke, F.; and Majumdar, R. 2021. A Game-
Theoretic Account of Responsibility Allocation. In Zhou,
Z., ed., Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IICAI 2021, Virtual Event
/ Montreal, Canada, 19-27 August 2021, 1773-1779. ij-
cai.org.

Baltag, A.; Canavotto, I.; and Smets, S. 2021. Causal
Agency and Responsibility: A Refinement of STIT Logic.
In Giordani, A.; and Malinowski, J., eds., Logic in High Def-
inition: Trends in Logical Semantics, 149-176.

Batusov, V.; and Soutchanski, M. 2018. Situation Calcu-
lus Semantics for Actual Causality. In Mcllraith, S. A.; and
Weinberger, K. Q., eds., Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, 1744-1752.
AAALI Press.

Braham, M.; and van Hees, M. 2012. An Anatomy of Moral
Responsibility. Mind, 121(483): 601-634.

Bulling, N.; and Dastani, M. 2013. Coalitional Responsibil-
ity in Strategic Settings. In Proceedings of the 14th Inter-
national Workshop on Computational Logic in Multi-Agent
Systems (CLIMA), volume 8143 of Lecture Notes in Com-
puter Science, 172—189. Springer.

Chockler, H.; and Halpern, J. Y. 2004. Responsibility and
Blame: A Structural-Model Approach. Journal of Artificial
Intelligence Research, 22: 93-115.

De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, A Concurrent Programming Language based on
the Situation Calculus. Artificial Intelligence, 121(1-2):
109-169.

De Giacomo, G.; Lespérance, Y.; and Mancanelli, M. 2025.
Situation Calculus Temporally Lifted Abstractions for Gen-
eralized Planning. In Walsh, T.; Shah, J.; and Kolter,
Z., eds., Proceedings of the 39th Annual AAAI Conference
on Artificial Intelligence (AAAI-25), February 25 - March
4, 2025, Philadelphia, Pennsylvania, USA, 14848-14857.
AAALI Press.

De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2016.
Situation Calculus Game Structures and GDL. In ECAI,
408-416.

De Giacomo, G.; Lorini, E.; Parker, T.; and Parretti, G. 2025.
Responsibility Anticipation and Attribution in LTLf. In Pro-
ceedings of the Thirty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2025, Montreal, Canada,
16-22 August 2025. ijcai.org.

Frankfurt, H. G. 1969. Alternate possibilities and moral re-
sponsibility. The Journal of Philosophy, 66(23): 829-839.
Hall, N. 2004. Two Concepts of Causation. In Collins, J.;
Hall, N.; and Paul, L. A., eds., Causation and Counterfactu-
als, 225-276. MIT Press.

Halpern, J. Y. 2000. Axiomatizing Causal Reasoning. Jour-
nal of Artificial Intelligence Research, 12: 317-337.
Halpern, J. Y. 2016. Actual Causality. MIT Press. ISBN
978-0-262-03502-6.

Horty, J. F.; and Belnap, N. 1995. The deliberative STIT: A
study of action, omission, ability, and obligation. J. Philos.
Log., 24(6): 583-644.

Karimian, M.; Khan, S. M.; and Lespérance, Y. 2025a. On
the Semantics of Actual Causality in Situation Calculus
Concurrent Game Structures. In 38th Canadian Conference
on Artificial Intelligence, Canadian Al 2025, Calgary, AB,
Canada, May 26-29, 2025, Proceedings. Canadian Artificial
Intelligence Association.

Karimian, M.; Khan, S. M.; and Lespérance, Y. 2025b.
Causal, Strategic, and Combined Responsibility Attribution
in Situation Calculus Concurrent Game Structures - Ex-
tended Version. arXiv:(to appear).

Khan, S. M.; and Lespérance, Y. 2016. Infinite Paths in
the Situation Calculus: Axiomatization and Properties. In
Baral, C.; Delgrande, J. P.; and Wolter, F., eds., Principles
of Knowledge Representation and Reasoning: Proceedings
of the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016, 565-568. AAAI
Press.

Khan, S. M.; and Lespérance, Y. 2021. Knowing Why - On
the Dynamics of Knowledge about Actual Causes in the Sit-
uation Calculus. In Dignum, F.; Lomuscio, A.; Endriss, U.;
and Nowé, A., eds., AAMAS °21: 20th International Confer-
ence on Autonomous Agents and Multiagent Systems, Virtual
Event, United Kingdom, May 3-7, 2021, 701-709. ACM.
Levesque, H. J.; Pirri, F.; and Reiter, R. 1998. Foundations
for the Situation Calculus. Electronic Transactions on Arti-
ficial Intelligence (ETAI), 2: 159-178.

Lorini, E.; Longin, D.; and Mayor, E. 2014. A logical anal-
ysis of responsibility attribution: emotions, individuals and
collectives. J. Log. Comput., 24(6): 1313-1339.

Lorini, E.; and Miihlenbernd, R. 2018. The Long-Term
Benefits of Following Fairness Norms under Dynamics of

Learning and Evolution. Fundam. Informaticae, 158(1-3):
121-148.

Lorini, E.; and Schwarzentruber, F. 2011. A logic for reason-
ing about counterfactual emotions. Artif. Intell., 175(3-4):
814-847.

McCarthy, J.; and Hayes, P. J. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. Ma-
chine Intelligence, 4: 463-502.

Naumoyv, P.; and Tao, J. 2021. Two Forms of Responsibil-
ity in Strategic Games. In Zhou, Z., ed., Proceedings of the
Thirtieth International Joint Conference on Artificial Intelli-
gence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, 1989-1995. ijcai.org.

Naumov, P.; and Tao, J. 2023. Counterfactual and seeing-to-
it responsibilities in strategic games. Ann. Pure Appl. Log.,

174(10): 103353.

Parker, T.; Grandi, U.; and Lorini, E. 2023. Anticipating Re-
sponsibility in Multiagent Planning. In Gal, K.; Nowé, A.;
Nalepa, G. J.; Fairstein, R.; and Radulescu, R., eds., ECAI
2023 - 26th European Conference on Artificial Intelligence,
September 30 - October 4, 2023, Krakow, Poland - Including
12th Conference on Prestigious Applications of Intelligent
Systems (PAIS 2023), volume 372 of Frontiers in Artificial
Intelligence and Applications, 1859-1866. IOS Press.
Pinto, J. 1998. Concurrent Actions and Interacting Effects.
In KR, 292-303.

Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. Cam-
bridge, MA, USA: MIT Press. ISBN 9780262182188.

Shi, Q. 2024. Responsibility in Extensive Form Games. In
Wooldridge, M. J.; Dy, J. G.; and Natarajan, S., eds., Thirty-
Eighth AAAI Conference on Artificial Intelligence, AAAI
2024, Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2014,
February 20-27, 2024, Vancouver, Canada, 19920-19928.
AAAI Press.

Vincent, N. A. 2011. A Structured Taxonomy of Respon-
sibility Concepts. In Vincent, N. A.; van de Poel, I.; and
van den Hoven, J., eds., Moral Responsibility: Beyond Free
Will and Determinism, 15-35. Dordrecht: Springer Nether-
lands.

Yazdanpanah, V.; Dastani, M.; Jamroga, W.; Alechina, N.;
and Logan, B. 2019. Strategic Responsibility Under Imper-
fect Information. In Elkind, E.; Veloso, M.; Agmon, N.; and
Taylor, M. E., eds., Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 19, Montreal, QC, Canada, May 13-17, 2019, 592—
600. International Foundation for Autonomous Agents and
Multiagent Systems.

