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Abstract. As modern software-intensive systems grow in complexity
and autonomy there is a demand for them to incorporate services that
explain their actions. Such explanation services allow stakeholders, espe-
cially end-users, to develop trust that the corresponding system complies
with its objectives and limitations. Before such explanation services can
be designed, their requirements need to be analyzed, in terms of both
the kinds of stakeholder questions such services can entertain and the
content of the answers they respond with. We propose a framework for
goal-oriented modeling and analysis of explanation requirements. Expla-
nation requirements are captured as stakeholder goals and are subse-
quently analyzed into specific explanation tasks and explanation inter-
action templates. By further extending the models with temporal and
causal constraints, the resulting conceptual model can be used to gener-
ate answers to certain families of stakeholder questions. Formalization of
the model allows both simulations of the explanation service and, under
restrictive assumptions, a working prototype thereof.

Keywords: Goal Modeling · Software Systems Explainability · Golog

1 Introduction

We are interested in software systems that can explain their actions. Such
systems include an autonomous vehicle (AV) that can explain its driving actions
to its passengers, such as “Why did you turn?” “Because I need to get gas”, or
a meeting scheduler (MS) that answers “Why was I invited to this meeting?”
with “Because of your expertise on the topics to be discussed”. Explainability
as a quality of software systems came to prominence with the advent of AI-
intensive systems that play an important role in our daily lives and need to be
transparent about their actions so that they can be justifiably [23] trusted by
their stakeholders, and particularly their end-users [4,25]. The concern, however,
extends to any socio-technical system – AI-powered or not – whose size and
complexity makes the rationale of actions performed within its context difficult
to comprehend without assistance.
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Explanations are aimed at allowing an explainee to understand how and why
an aspect of a system is as it is in a given context [4,21]. In one of their common
forms, explanations are assignments of causal responsibility for a phenomenon
[22] (as cited in [33]) [41]. In our case, the phenomenon is an action that a system
has performed. For such phenomena, causes can be goals the system is trying to
achieve. In the AV example, the overarching goal “Be at Pittsburgh by 6pm” is
viewed as the cause of the corresponding system subgoals such as g1 = “Enter
the highway” and g2 = “Drive towards Pittsburgh” and, as such, constitutes an
explanation for the pursuit of these subgoals. We call such causes teleological
[33], [10] (as cited in [20]). Alternatively, causes can be found in system design
rules, such as that g2 is enabled by g1, so the question “Why did you enter
the highway?” may be answered with “Because that allows me to Drive towards
Pittsburgh”. We call these causes canonical as they are derived from design rules.

For a system to be capable of providing such explanations, the requirements
for the corresponding explanation functionality need to first be identified and
modeled. Such functional requirements can be captured as explanation goals
which express what domain explainees want to have explained. Explanation goals
are, in turn, analyzed into explanation tasks. The latter describe the textual
format and content of explanation interactions with explainees in order to fulfill
the explanation goals. At the same time, when a model of the domain in question
is present, it can serve as a basis for constructing certain additional explanations.

Based on these ideas, we present a goal-oriented framework for analyzing,
modeling, simulating, and implementing explanation requirements. Functional
and non-functional system requirements are captured using the i* goal-modeling
language [13,42], appropriately extended to capture temporal and causal rela-
tionships between goals and actions. Then, explanation requirements are cap-
tured in the form of explanation goals, assigned to various explainee roles. These
explanation goals are operationalized into actions that capture run-time expla-
nation information or render explanation interactions. The textual format of the
latter is described through templates. In addition, a set of axioms are intro-
duced that utilize the information of the extended model to construct responses
to ad hoc explainee questions. Subsequent formalization of said templates and
axioms allows design-time simulation of the envisioned explanation interactions,
supporting its early assessment and improvement. Further, when the envisioned
system is implemented in accordance to the goal model and its actions are logged,
our formalization can serve as the basis of the run-time explanation engine.

The main contribution of our work is a model-driven approach for systemat-
ically discovering and specifying explanation requirements within an established
goal-oriented requirements framework, while at the same time, thanks to the pro-
posed formalization and axiomatization, allowing simulation and prototyping of
the specified explainability service.

The rest of the paper is organized as follows. In Section 2 we describe the
extensions to i* that are needed for capturing explanations. In Sections 3 and
4 we describe explanation templates and explanation axioms for custom and
generic explanations, respectively. In Section 5 we sketch how the above are



Model-Driven Analysis and Design of Explanation Services 3

Timetables
Collected (o,m)

Collect From
Callendar (o,m,p)

Meeting
Announced (o,m)

Have Meeting
Scheduled (o,m)

forall 

p.Potential_participant(m,p)

pre

eff

Secretary Have PP Called
(o,m,p)

DCollect Constraints
by Phone (o,s,m,p)

eff

Meeting
Organizer

Meeting 

Initiator

Have Meeting
Organized (n,m)

Have Scheduling
Performed (n,m)

Decide 

Meeting Details

(n,m)

pre

D

{p: Potential_participant(m,p)}

{i: Important(m,i)}

{o: Scheduler(m,o)}

{r: Purpose(m,r)}

{Promote(inclusivity,m)}

{Promote(quickScheduling,m)}


eff

Meeting
Attended (n,m)

Announce

 Meeting (o,m,p)

eff

forall p.Potential_participant(m,p)

forall p.Invited(m,p)

Participate (m,p)

eff

Participant

Meeting Attended 

by Participant (n,m,p) D

HasPhoneNumber(s,p)

pre

pre

pre
Enter Detailed

Justifications (n,m)

{p,u: PPJustification(m,p,u)}

{p,u: ImpJustification(m,p,u)}

{u: DateRangeJustification(m,u)}


eff

pre

Why agents are 

(not) in the pool PPs

Describe inclusion
status of agents

Justify inclusion
status of agents

Why important
participants are

deemed important

{a: Agent(a)}

{a: MaintainsCallendar(a)}

{p,q: HasPhoneNumber(p,q)}

{t: Secretary(t)}

{o: Organizer(o)}


eff

Effect
link

pre

Precedence
link

Conditional

OR

Effect

Initialization

Precondition
Legend

Explanation Goal
...

pick s. [formula]forall p. [formlula]

Conditional 

AND

Explanation Task

...

...

Explainee Role

HasTimeTable(m,o,p)


HasTimeTable (m,o,p)


eff

TimeDateDecided(o,m)


Organizer's

Explainee

Why specific
collection method
was chosen (m,p)

Timetable
Collected (o,m,p)

D

Invited(m,p)


D

Participated(m,p)


pick s. Secretary(s)

Inclusivity

help

Quick
Scheduling

help

Have Secretary 

Call PP (o,s,m,p)

Have Scheduling
Performed by

Organizer(n,o,m)

pick o. Organizer(o)

D

Initiator's

Explainee

Why agents are 

(not) in the pool PPs

Why important
participants are

deemed important

Explain
Collection

Method (m,p)

Choose Time

 and Date (o,m)

/

/

(n) (p)

(s)

(o)

Fig. 1. Augmented Goal Model (for meaning of baseline iStar 2.0 elements see [13])

formalized to allow for design-time and run-time reasoning, described in Section
6. We present related work in Section 7 and conclude in Section 8.

2 Capturing requirements in i+

The i* requirements modeling language [42] captures requirements in terms
of goals that actors (stakeholders) need to fulfill and the actions (aka tasks in
i* ) through which their goals can be fulfilled. Given an i* model of stakeholder
requirements, we are interested in extracting explanations that stem from teleo-
logical causes of actions, that is, what goal the action serves, as well as canonical
causes of actions, that is, what rules or constraints lead the actor to perform a
specific action. Teleological causes are readily captured in i* through modeling
tasks as the result of recursive goal refinement. However, to capture canonical
causes, we need to extend i* with the appropriate constructs for representing
temporal and causal constraints. We adopt and extend a recent derivative of i* ’s
successor iStar 2.0 [13] for representing action theoretic aspects of goal models
[28]. We call the resulting extension i+. An example of an i+ model appears in
Figure 1. Figure 2 shows a meta-model with the concepts introduced in i+ as
they relate to the iStar 2.0 standard.

The standard iStar 2.0 elements, such as roles, goals, tasks, AND- and OR-
refinements and dependencies [13] are augmented with elements that represent
constraints to the order by which tasks can be performed. At the core of the
additional elements are domain predicates, such as Agent or HasPurpose, which,
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Fig. 2. Meta-model of i+ and explainability extensions

applied to domain objects, such as John or GrantAdjudication, are used to
build domain literals to represent statements about the world, e.g., Agent(John)
or HasPurpose(Meeting, GrantAdjudication). Each effect (unshaded rectangles)
contains lists, or descriptions (more below) of lists of domain literals. Connecting
a task with an effect through an effect link shows that performance of the task
has the effect of turning the literals listed or described in the effect box true.
Further, preconditions contain closed formulae and are connected with tasks
through precedence links, which, in turn, signify that the origin of the link must
be satisfied before the destination of the link can be attempted.

Goals and tasks contain parameters that can be bound to domain objects.
By convention, the first parameter is a reference to the agent that pursues the
goal or performs the task. Thus, Have Meeting Scheduled(o,m) signifies that the
goal Have Meeting Scheduled is pursued by an agent o for a distinct meeting
m. This way i+ allows us to reason with multiple instances of goals and tasks,
each uniquely identified by its parameter instantiations. When a goal is (uncon-
ditionally) refined into a subgoal or operationalized into a task, the parameters
of the subgoal/subtask must be a subset of the parameters of the parent goal.
An exception is conditional AND and conditional OR refinements, which allow
extension of an AND- or OR-refinement respectively to all objects that fulfill a
stated condition (a formula of domain literals), and may result in an additional
parameter for the subgoal or subtask. In Figure 1, Timetables Collected (o,m)
is refined into as many instances of the goal TimeTable Collected (o,m,p) as the
known potential participants p for meeting m. We signify this through the for-
mula forall p. Potential participant(m,p) on the refinement link. Likewise, goal
Have PP Called (o,m,p) (PP is, henceforth, shorthand for Potential Participant)
is OR-refined into an instance of task Ask Secretary to Call PP (o,s,m,p), whose
performance for some s that is a secretary suffices for the fulfillment of the goal.
This is indicated by formula pick s. Secretary(s) on the refinement link.

The parameters of the literals listed in an effect must be a subset of the
parameters found in the task that is connected to the effect. Often, however, tasks
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such as Decide Meeting Details (n,m) generate new instance-level information
and we wish to represent this generation process. We use assertion descriptions
for the purpose. They come in the form {params: Predicate(params)} which is
a shorthand for the list of literals Predicate(Param1), Predicate(Param2), . . .,
where Parami are objects of the domain. Thus, the description {p: Potential
participant(m,p)} found in the effect of task Decide Meeting Details (n,m), can
be instantiated to list Potential participant (m, Alice), Potential participant (m,
John). The description denotes that, as a result of performing the task, the
meeting initiator will come up with instances of potential participants (Alice,
John, etc.), that are unknown at the time of the analysis.

Further, we define (task) histories tH to be sequences of leaf level tasks,
which have all their parameters bound to domain objects, and which can be
executed in the given sequence in compliance with the precedence constraints of
the model. A history is, further, goal satisfying with respect to a goal g, if after
all tasks are executed, g is satisfied according to the AND/OR decomposition
structure. Finally, initialization elements containing assertion descriptions are
added to the model to describe what domain literals need to be asserted as true
or false prior to calculating task histories.

3 Modeling Explanation Requirements

The i+ extension is used for developing models of stakeholder goals perti-
nent to a requirements problem at hand. When we are interested to also model
stakeholder requirements for acquiring explanations on why actor actions are
chosen and performed, i.e., explanation requirements, the models need to be
augmented accordingly. We propose to approach explanation requirements as
functional ones, stemming from explanation needs of explainees in the domain.
Explainees are actors that inquire about the performance of tasks by other ac-
tors. We model explainees as i* roles. Depending on the application, explainee
roles may reflect specific organizational roles and positions, e.g., mandated reg-
ulatory, quality control, or customer advocacy officers, or they may be generic
roles that any actor in the domain may play. Explainee roles may also be ded-
icated to explaining the actions of one particular other actor. In the example
of Figure 1, two explainee roles are included, one concerned with the actions of
the initiator (Initiator’s Explainee) and one concerned with the actions of the
organizer (Organizer’s Explainee). Thus, a participant may play the initiator’s
explainee role when they have the goal to understand why, e.g., their own names
have been included or excluded from a participant list.

Explainees have explanation goals. These goals reflect states of the world in
which a desired explanation about the actions of an actor has been acquired.
For example, the initiator’s explainee has the explanation goal to “[Have] why
important participants are deemed important [explained].” – we omit the first
and last word when writing such goals. Top level explanation goals like this are
delegated or refined like any other i* goal. In our example, the explanation goal
“Why agents are (not) in the pool of potential participants”, is delegated to the
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Q: explain(WhyIsPP(p,m),e) /* "Why is [p] a potential participant for meeting [m] in [e]?" */
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Q: explain(WhyPhoneNoCal(p,m),e) /* "Why did you you call [p] for meeting [m] instead of checking their callendar in [e]?" */

A1: not MaintainsCallendar(p,e) : true : "Collection through callendar is the only other option but potential participant [p] does
not maintain a callendar."

A2: MaintainsCallendar(p,e) and Promote(inclusivity,m,e) and not Promote(quickScheduling,m,e) : true :"Although both
options were possible, the initiator prioritized inclusivity and collecting by phone is assumed to support inclusivity."

A3: MaintainsCallendar(p,e) and not Promote(inclusivity,m,e)  and not Promote(quickScheduling,m,e): true :"No
guidelines for choice were provided and both options were possible. No conclusive explanation available."

A4: MaintainsCallendar(p,e) and Promote(inclusivity,m,e) and Promote(quickScheduling,m,e) : true :"Conflicting
guidelines were provided and both options were possible. No conclusive explanation available."

A5: MaintainsCallendar(p,e) and not Promote(inclusivity,m,e) and Promote(quickScheduling,m,e) : true :

"Choice contravenes initiator guidelines and alternative choice was possible. No conclusive explanation available."


Fig. 3. Explanation Rendering Tasks and the associated Explanation Templates.

initiator, as she is the one who makes the corresponding decisions. The dele-
gated goal is further analyzed into specific tasks that are required for satisfying
the corresponding explanation goal. This includes verifying the inclusion status
of various agents in the list of potential participants and offering an explana-
tion as to why the status is as such. We call such tasks that gather or render
explanation information explanation tasks. In our example, to be able to per-
form the explanation task that explains the potential participant status of each
agent, explanations must be registered by the meeting initiator at an earlier
time. Thus, the information gathering task Enter Detailed Justifications (n,m)
with the corresponding effect is added as one of the initiator’s tasks. According
to the effect, at run time, the task results in a number of literals of the form
PPJustification(m,p,u) to be generated, each assigning a message u as justifica-
tion for inclusion of an agent p in the PP list for meeting m. This informs the
designers that a facility for adding message u for each p when deciding meeting
details for m must be available to the initiator. Thus, the analysis of explana-
tion goals leads to the discovery of additional requirements for functions that
are necessary for capturing explanation information. Such information capture is
the first of two aspects of operationalizing explanation goals. The second aspect
is the rendering of explanations which is described using explanation templates.

3.1 Explanation Templates

Explanations are offered in response to appropriately formulated explanation
questions posed by the explainees. Part of the requirements specification process
is to precisely describe the required format of both the question and the answer
to the question, as well as the content of the answer based on information avail-
able in the system, including information acquired through other tasks in the
model. Each explanation rendering task is, hence, associated with an explanation
template to describe the format of question and answer that the task entails as
well as how the content of the answer can be retrieved or constructed.

Three explanation templates can be seen in Figure 3, each corresponding to
one of the explanation tasks for Figure 1. An explanation template consists of
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a set of question templates and, for each such, one or more alternative answer
templates. Question templates are of the form:

explain(explanandum(q1,q2,...),e)

where explanandum(q1,q2,...) is a goal or task whose parameters are to be bound
at the time that the question is posed, and e is a task history offering the context
within which the explanation is required. For example, consider the scenario in
which an explainee studies the task history that unfolded for the scheduling of
a meeting in a university setting. A question they may ask is of the form:

explain(WhyIsPP(p,m),...,e)

which, in plain language, asks why agent object m is treated as a potential
participant for meeting m in history e. At the time of posing the question, exam-
ples of specific objects are used, such as p = “Anita” and m = “the promotion
adjudication meeting”. The answer templates are of the form:

guard/(q1,q2,...,e) : query/(q1,q2,...,a1,a2,...,e) : render/(a1,a2,...)

The guard is a logical expression grounded on domain literals that must
be true for the answer to be provided. Variables q1,q2,... are a subset of those
contained in the question. The query part consists of a logical expression that is
grounded on domain literals and that contains parameters q1,q2,...,e that are,
again a subset of those of the question, as well as free parameters a1,a2,.... The
render part is a function that presents the output parameters a1,a2,... in a human
readable format through, e.g., instantiating parameterizable text templates as
seen below. For example, the following can be an answer template to the above
question:

Potential participant(m,p,e) : PPJustification(m,p,u,e) : “Because,

according to the initiator, [u].”/(u)

At run time the answer is instantiated as follows. First the guard condi-
tion is instantiated using the parameters of the question. In the example above,
the guard condition is Potential participant(“the promotion adjudication meet-
ing”,“Anita”, e). If the guard is true, an answer can be rendered. Firstly, a value
for u will be sought such that the following holds:

PPJustification(“the promotion adjudication meeting”,“Anita”,u,e)

Recall that, as a result of analysing explanation goals, the model contains
task Decide Meeting Details (n,m) in which initiator n creates such literals. In
our case, u = “Anita has been elected as recording secretary” may have been
entered by the initiator and, as such, satisfy the query expression. The final
response instance is simply a human-friendly rendering of the query results. If
multiple u’s satisfy the query, multiple answers will be provided. Notice also that
a specific task history e is present in all relevant literals.

In Figure 3, additional examples of explanation templates are provided. The
one addressing explanation task Explain Method Collection (m,p) tackles the
question why a certain child of an OR-decomposition is chosen. The explain-
ability analyst designs various alternatives based on different guard conditions.
The first answer observes that the alternative is not feasible. The second answer
suggests that the choice is compliant to quality guidelines offered by the initiator
and does not contradict any other guidelines. The remaining choices contextu-
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alize the choice but do not offer a definitive explanation. In the particular case,
the analyst does not fully determine how variability is bound at the cost of being
able to only provide plausible and not definite explanations.

4 Ad hoc Explanations and Explanation Axioms

Explanation goals, tasks, and templates help analysts to identify and rep-
resent specific explanation requirements and designs thereof (templates) that
can be known at the requirements stage. This analysis ensures that the require-
ments specification includes requirements for explanation information tracking
and answer-rendering functions that are specific to the domain in question.

However, there may be explanation requirements that evade capture during
analysis. In that case, we may still be able to exploit information embedded in
the i+ model – in the form of intentional (refinements, operationalizations, con-
tributions) and canonical (precedences, effects) relationships – to provide ad hoc
explanations, that is, explanations not captured during requirements analysis.
Given an observed action to be explained, such ad hoc explanations can render
(a) the motivation for the action’s performance in terms of actor goals they may
support, (b) the action’s potential role in enabling subsequent necessary steps,
(c) the possible absence of feasible alternatives for the action, or (d) compliance
of the action with certain preferences over quality goals.

For generating such explanations, we utilize a set of general explanation ax-
ioms that describe how such relationships can be combined to explain perfor-
mance of tasks. Axioms are of the form:

explains(y, x, e)←− f(y, x, e)
where y is an explanation, x is an explanandum (what needs to be explained), e
the history relative to which the explanation is sought, and f(y, x, e) is a formula
based on structural characteristics of the i+ model and, where applicable, the
content of e. The explanandum x is a task that appears in e and the explainee
desires to have explained, or a goal that has been rendered as an explanation to
an earlier query. Likewise, explanations y are other goals or tasks. In a typical
application of the axioms, the explainee will start by asking what explains a
task within a history, which will return various other tasks or goals, which are,
in turn, the explananda of follow-up queries. Below we present the axioms in
detail and in later sections we show how they can be used.

Operationalizations. The first axiom is based on the observation that in
an operationalization relationship, i.e., the (AND- or OR-) refinement of a goal
into a task, the goal being operationalized constitutes a possible explanation as
to why the task was performed. Hence, in Figure 1 task Collect From Calendar
(o,m,p) is one of the tasks that operationalize goal Timetable Collected (o,m,p).
Clearly, question “Why did organizer [o] collect [p]’s constraints from their cal-
endar for meeting [m]?” can be answered with “Because [o] wanted to collect
[p]’s timetable for [m]”. Hence our first axiom can be as follows, where x is a
task, y is a goal, and e is a task history:

explains(y, x, e)←− occurredIn(x, e) ∧ operationalizedBy(y, x) (Axiom 1)
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where occuredIn(x, e) holds if task x is included in e.

Refinements. The above can be extended to refinements between goals. In
the example, “Timetables Collected (o,m)” is a subgoal of “Have Meeting Sched-
uled(o,m)”, hence the latter explains the former. The axiom is then as follows,
where both x and y are goals and satisfiedIn(x, e) holds iff task occurrences in
e satisfy x according to AND/OR structure.

explains(y, x, e)←− satisfiedIn(x, e) ∧ refinedBy(y , x ) (Axiom 2)

Dependencies. The initiator for a meeting is the original actor who wants
to schedule it. However, the scheduling is delegated to the meeting organizer.
Accordingly, a question about meeting organizer o, “Why did [o] want to have
meeting [m] scheduled?” can be reasonably answered with “Because the initia-
tor [n] asked [o] to”. In reference to Figure 1, Have Scheduling Performed by
Organizer(n,o,m) explains why Have Meeting Scheduled (o,m), where n is the
initiator, o is the chosen organizer, and m is the meeting.

Let dependency(r, d, y, x) denote a dependency between actors, whereby a
depender actor r depends on a dependee actor d to fulfill depender goal y which
becomes dependee goal or task x. Then:

explains(y, x, e)←− ∃(r, d).dependency(r, d, y, x) ∧ delegated(r, d, y, x, e)

(Axiom 3)

where delegated(r, d, y, x, e) holds if, in history e, actor r delegated goal y to
actor d, which goal became goal or task x for d.

Enablement. Consider the question “Why did [o] collect timetables for meet-
ing [m]?”, now answered with “Because [o] needed to choose a time and a date
for meeting [m]”. The specific answer constitutes a canonical explanation rather
than a teleological one. It explains performance of a task on the basis of it be-
ing necessary for allowing some other task to be executed later in the history
of tasks. In the example, this is established by the precedence link that pre-
vents performance of task “Choose Time and Date (o,m)” unless “Timetables
Collected (o,m)” is first fulfilled. We formulate the above with the axiom:

explains(y, x, e)←− enables(x, y) ∧ includedIn(y, e) ∧ includedIn(x, e)

(Axiom 4)

In the above, y and x are goals or tasks and includedIn (z, e)←→ occuredIn
(z, e) ∨ satisfiedIn(z, e). Furthermore, enables(x, y) means that there is an ex-
plicit or implicit precedence constraint between x and y, such that prior per-
formance, achievement, or satisfaction of x is necessary (but not necessarily
sufficient) for performance (task) or satisfaction (goal) of y to be possible.

An explicit constraint exists when there is a direct precedence link from x to
y. Implicit constraints emerge when precedence links originate from high-level
goals and are, hence, inherited by their successors in the refinement hierarchy.
Specifically, if goal g1 targets goal g2 with a precedence link, every task that is
a descendant of g1 can be seen as an enabler of g2. This is formalized as follows:

enables(x, y)←− pre(x, y) (Axiom 4.1)

enables(x, y)←− ancestorOf (w, x) ∧ enables(w, y) (Axiom 4.2)

In the above, ancestorOf (w, x) denotes that there is a chain of refinements
and/or operationalizations from high-level goal w down to goal or task x. In
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Figure 1, for example, a precedence link is drawn from goal “Timetables Col-
lected (o,m)” to task “Choose Time and Date (o,m)”. According to the axiom,
satisfaction or performance of any descendant of “Timetables Collected (o,m)”
contributes to the enablement of “Choose Time and Date (o,m)”. As such, goal
“Have Secretary Call PP (o,s,m,p)” enables “Choose Time and Date (o,m)”.

OR-refinements. A final set of axioms offers explanations on why a child
of an OR-refined goal, henceforth: OR-sibling, is chosen over some other child,
as evident in a history e. In goal analysis, identifying optimal choices for OR-
refinements is typically done by a global optimization process whose details are
not part of the model (e.g., [28,29]). Even if the optimization algorithm is known,
explaining local decisions within the context of a complex global optimization
task can be hard. Nevertheless, in our case, plausible explanations for OR-sibling
choices made by the external optimizer can be possible. Specifically, a plausible
explanation can be produced when (a) at the time of the choice of an OR-
sibling no other sibling was possible, or when (b) in the presence of more than
one possible alternatives, the alternative chosen is the only one that contributes
to qualities for which express statement(s) of preference exist. To produce the
corresponding axioms we first define the following auxilary predicates:

onlyFeasibleIn(x, e)↔ ∀yi.[or sibling(yi, x)→ ¬poss(yi, e)] (Aux. 1)

preferred(x)↔ ∃q1.[contr(x, q1, plus) ∧ promote(q1)]∧
¬∃q2.[contr(x, q2,minus) ∧ promote(q2)] (Aux. 2)

onlyPreferredIn(x, e)↔ ∀yi.[or sibling(yi, x)→ ¬(prefered(yi)∧poss(yi, e))]
(Aux. 3)

The first predicate, onlyFeasibleIn(x, e), holds if none of x’s OR-siblings yi
are possible (poss(yi, e)) at the end of e. Predicate preferred(x) holds if x sends a
positive contribution to some quality q1 (contr(x, q1)) and that quality has been
declared to be a preferred quality (promote(q1)), while x does not contribute
negatively to some other preferred quality. Predicate onlyPreferredIn(x, e) holds
when there is no alternative yi to x that is both feasible in history e and pre-
ferred. We note that or sibling(y, x) holds both for direct OR-siblings and for
cases in which, e.g., y is an OR-sibling of an ancestor of x, which also makes y
and x alternatives. For example, Collect Constraints by Phone (o,s,m,p) is an
alternative to Collect From Calendar (o,m,p). We omit here the exact definition
for brevity. The explanation axioms are then as follows:

explains(x, e)←− onlyFeasibleIn(x, esel) (Axiom 5)

explains(x, e)←− onlyPreferredIn(x, esel) (Axiom 6)

where esel is a prefix t1, t2, . . . , tn of e such that tn+1 is either x or, if x is a goal,
a leaf-level successor of x but no ti is any of the two for i ≤ n. Thus, esel marks
the moment in e where the choice to perform/satisfy x is made.

According to Axiom 5 selection of an OR-sibling is explained if none of its
other siblings was possible at the time esel when goal or task x was selected.
Axiom 6, on the other hand, explains OR-child selection on the basis that none
of the competing alternatives is possible and preferred with respect some quality.
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5 Semantics

So far we have introduced an extension to the standard i+ notation, explana-
tion templates, as well as axioms for ad-hoc explanations. We now offer a brief
overview of the semantics of these extensions that pave the way for automat-
ically calculating run-time explanations in a simulated or real environment. A
complete presentation can be found in the long version of this paper [30].

Golog. The semantics is based on Golog [27], a Situation Calculus-based
[26] language for specifying dynamic domains. Its main concepts are fluents,
which are first-order predicates describing what is true in a given situation s

and situations, which represent a sequence of actions from an initial situation
S0. Function symbol do(a,s) denotes the situation that results from performing
action a in situation s, and atomic formula Poss(a,s) denotes that it is possible
to perform action a in situation s. In a complete Golog specification, a set of
successor state axioms and action precondition axioms are defined. The former,
specified for each fluent, describe if and how the truth value of the fluent changes
from one situation to the next. The second, defined for each action, characterize
Poss(a,s) and describe what conditions must be true for action a to be exe-
cutable in situation s. Golog further allows the definition of procedures, written as
proc([name],[body]), where [body] can be, among other common programming
constructs (e.g., loops, conditionals), a sequence or a nondeterministic choice of
other actions or procedures. When asked to perform a procedure [name], the
Golog interpreter attempts ways to perform the content of [body] in compliance
to the aforementioned axioms.

The semantics is grounded in Golog via three kinds of translations: (i) of
the i+ model into a Golog specification that encodes the domain structure and
allows generating simulated task histories, (ii) of the explanation templates into
formulae that can yield custom explanations, and (iii) of the ad-hoc explanation
axioms into formulae and routines for, likewise, yielding ad-hoc explanations.

i+ Translation - Primitives. Every actor in the goal model is mapped
to an individual in the Golog domain. Every goal is translated into a fluent
(satisfaction fluent) and a Golog procedure. Every task is translated into a fluent
(performance fluent) and a primitive action. Every effect is translated into as
many fluents (effect fluents) as the atomic formulae that are listed in the effect.

i+ Translation - Structure. Consider each goal in the i+ model and
the Golog procedure it associates with. If the goal is OR-refined (resp., AND-
refined), the procedure’s body contains a non-deterministic choice of the proce-
dures/actions corresponding to each sub-goal/task (resp., of all permutations of
said procedures/actions). For conditional OR- and AND-refinements, procedures
involve constructs for, respectively, non-deterministically picking an object that
satisfies the condition and calling the sub-goal/sub-task with it (OR-refinement)
or doing the same for every object that satisfies the condition (AND-refinement).
The satisfaction fluent of goal is defined to be the disjunction (OR-refinement)
or conjunction (AND-refinement) of satisfaction/performance fluents of the sub-
goals, sub-tasks. Further, when the goal is the depender goal of a dependency, a
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reserved delegates action is introduced as the body of the procedure, followed
by invocation of the procedure of the dependee goal.

Successor state axioms are added for every effect and performance fluent,
which make the fluent true in a situation if it already was true in the previous
situation or the latest action is the task the fluent associates with – through
an effect link in effect fluents. For each task, an action precondition axiom is
constructed based on the conjunction of all satisfaction/performance fluents that
correspond to the goals/tasks that target the task with a a precedence link.

Given the above, a situation do(an,do(an−1, ...,do(a1,S0)...))) in Golog
terms corresponds to a history [t1,t2, ...,tn] in the i+ ontology, where each task
ti corresponds to Golog action ai, and the initial situation S0 corresponds to a
state in which no task has been performed.

Explanation Templates. Recall that explanation templates are of the form
guard : query : render and are relativised to histories e. The latter map to situ-
ations s, according to the above. The guard condition corresponds to a Boolean
expression constructed with fluents relativized to that situation s. The param-
eters in the expression are all bound by the user to specific objects. The query
is then another such expression with free parameters to be bound to values that
make the expression true in s. For human readability, these parameters are then
used to construct the answer through the render predicate which concatenates
constant text with parameter instantiations to construct the answer.

Explanation Axioms. Of the explanation axioms introduced, translation
of the first Axioms 1-4 are straightforward rules which depend on predicates
reflecting structural characteristics of the i+ model. The challenge in translating
of Axioms 5 and 6 reduces to constructing atomic formula getPrefix(x,s,ssel)

for extracting situation ssel corresponding to history prefix esel (see Section 4).
The formula holds if (a) x holds in S0, in which case s = ssel = S0 or (b) ssel is
a prefix of s such that if do(a,ssel) is also a prefix for s, then x does not hold in
ssel but holds in do(a,ssel) – i,e., performance of a turns x from false to true. To
implement this, a simple logic program replays s from initial situation S0 until
the first a is found that brings about this transition to the truth value of x and
the corresponding prefix ssel is returned [30].

6 Simulation Analysis and Implementation

The formalized models are useful for both simulating the explanation services
of the system-to-be in order to support the process of discovering and specify-
ing explanation requirements and, assuming a compliant implementation of the
required system, forming the backbone of an explanation service prototype. A
prototypical implementation of the explanation engine and the example of Figure
1 is available at the associated online code repository [31].

Exploring Explanations via Simulation. Simulation is based on gener-
ating possible action histories and asking explanation questions based on them.
Specifically, Golog’s predicate FindSit(p(...),S0,s) renders situations s which
result from executing procedure p(...), starting from the initial situation S0. By
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Simulated History e1

– 01: s0
– 02: decideMeetingDetails(abdul)
– 03: delegate(abdul,matilda,haveSchedulingPerformedByOrganizer(abdul,matilda)

haveMeetingScheduled(matilda))
– 04: collectFromCallendar(matilda,xing)
– 05: collectFromCallendar(matilda,amr)
– 06: delegate(matilda,alex,haveSecretaryCallPP(matilda,alex,naya),

collectConstraintsByPhone(matilda,alex,naya))
– 07: collectConstraintsByPhone(matilda,alex,naya)
– 08: chooseTimeandDate(matilda)
– 09: announceMeeting(matilda,xing)
– ...

Explanations

Q1: explain(collectConstraintsByPhone(matilda,xing,naya), e1)

– A1.1: Teleological Explanation: Because organizer matilda wanted to
have secretary alex call participant naya to collect their constraints.
(haveSecretaryCallPP(matilda,alex,naya)) [dependency (axiom 3)]

– A1.2: Canonical Explanation: Because organizer matilda wanted to choose time and
date for the meeting. (chooseTimeandDate(matilda)) [enablement (axiom 4)]

– A1.3: Choice mandatory, no other feasible alternative. (...) [only feasible
(axiom 5)]

Q2: explain(collectFromCallendar(matilda,amr), e1).

– A2.1: Teleological Explanation: Because organizer matilda wanted to collect
amr’s timetable. (timetableCollected(matilda,amr)) [operationalization (axiom
1)]

– A2.2: Canonical Explanation: Because organizer matilda wanted to choose time and
date for the meeting. (chooseTimeandDate(matilda)) [enablement (axiom 4)]

– A2.3: Canonical Explanation: Because organizer abdul wanted to have the meeting
attended. (meetingAttended(abdul)) [enablement (axiom 4)]

– A2.4: From the available choices this is the only preferred one. (...) [only
preferred from feasible (axiom 6)]

Q3: explain(whyisPP(amr), e1).

– A3.1: Because amr needs to report on agenda items 3 and 4.

Fig. 4. Simulated history and ad-hoc explanations.

setting p(...) to be the procedure that maps to the top-level goal, the resulting
situation s maps to an i+ history that captures one way of fulfilling the corre-
sponding goal. The situations can be subsequently passed as the input situation
of the explanation templates and rules. To allow such simulations, analysts will
need to instantiate assertion descriptions – including these in the intialization
element – with concrete objects (see Section 2).

Returning to our example of Figure 1, let us hypothesize that Abdul, the
meeting initiator, wants to ask organizer, Matilda, to schedule a meeting with
three participants, Xing, Amr, and Naya. The first two have their on-line calen-
dars up-to-date, and Alex, the executive secretary, has the phone numbers of the
last two. We further know that the organizer wants to promote Quick Scheduling.

After having Golog generate a hypothetical history e1, as seen in the top
frame of Figure 4, we observe that Alex collected (at the behest of Matilda)
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Naya’s constraints by phone (task #07). We request an ad-hoc explanation for
this action, in the first question (Q1) at the bottom frame of Figure 4. As ad-hoc
explanations are agnostic to the purpose or context of the sought explanation,
predicate explain will consider all possible ways by which axioms can be in-
stantiated to provide a response. The outcomes are answers A1.1 - A1.3. The
first (A1.1) is a teleological explanation making use of dependency Axiom #3
to inform that said action took place at the request of the organizer, Matilda.
The second explanation (A1.2) is a canonical one, and points to a subsequent
task (#08 in the upper frame) whose performance requires prior performance
of the task in question. The third (A1.3) informs that this is the only possible
alternative; indeed Naya does not maintain an on-line calendar and there is no
other way to collect constraints. Out of these answers, the explainee may focus
on the one they intended with their question. Note also that the natural lan-
guage in the answer is due to simple templates translating the atomic formulae
in parentheses into more accessible descriptions.

The second question (Q2) of Figure 4 offers similar answers for the question
why Amr’s constraints were collected from the calendar. In this case, we have an
additional canonical explanation A2.3 stemming from the precedence between
an ancestor of the task in question, namely Have Scheduling Performed(Abdul),
to goal Meeting Attended(Abdul). In other words, collecting constraints – in the
case of Amr from his calendar – is necessary for the meeting to be eventually
attended. This explanation is likely too distant from the explanandum to be of
interest. In general, since ad-hoc questions lack context, they may include several
uninteresting explanations in response. For canonical explanations, specifically,
the level of ancestry at which explanation producing precedence constraints are
sought (see Axiom 4.2) can be limited to avoid explanations that are unlikely
to be of interest or even comprehensible. This limit is exceeded in Q1 hence
the additional canonical explanation does not show up. The final answer for
Q2, A2.4., shows that while for collecting Amr’s constraints both options are
available, the one that aligns with the promotion of the Quick Scheduling quality
appears to have been chosen. Note that this is not a definite but a plausible
explanation, as how exactly the variability-binding decision is made is, as we
saw, subject to optimization procedures outside of the model. Finally, the third
question Q3 is not ad-hoc but based on a pre-designed template from Figure 3.

As part of the explanation requirements exploration process, analysts may
add or remove constraints and initialization clauses from/to the model, and fur-
ther steer the interpreter to generate situations which satisfy certain properties,
e.g., omit or necessarily include a specific action/task. The exercise allows testing
the efficacy of the explanation axioms to the given domain and, when the latter
fall short, triggers development of custom templates. To facilitate exploration, in
our prototypical implementation [30] the possibility of interactive ad-hoc expla-
nation exploration is also available. Following the initial explanation question,
the possible answer literals are listed prompting the explainee to choose one of
them for adoption as the explanandum of the next round.
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Implementing the Explanation Service. Let us further assume that the
systems supporting the socio-technical structure captured in i+ are implemented
(a) in full compliance with the i+ model, (b) such that performance of every
i+ task is captured and logged, (c) instances of top-level goal fulfillment have
concrete identifiers, such that different instances of top-level goal fulfillment
can be extracted from logs. In that case, the formalization of the axioms and
templates can be used as-is for the generation of explanations. Thus, in the
meeting scheduling example of Figure 1, the name and parameter instances of
leaf-level tasks are appended to the log upon their performance, and, hence, in
the order in which they are performed. By requiring the value of parameter m to
identify a specific meeting of interest, a pre-processor can then extract the tasks
that relate to that meeting and construct a history such as the one in Figure 4,
top frame. The history is then used according to the process sketched above.

7 Related Work

The topic of explanations spans multiple disciplines and a broad literature
that stretches back to Aristotle and his seminal work on causality in Nature [17].
In the context of software-intensive systems and their actions, we consider an
explanation to be about a set of phenomena (explananda) (e.g., the actions of
an autonomous vehicle (AV)) that needs to be generated by an explainer (the
explanation service of the AV), and help an explainee (e.g., passenger, owner,
auditor) to understand the phenomena. Our proposal for the form of explana-
tion requirements was inspired by competency questions used for scoping and
evaluating formal ontologies (e.g., [18]).

In the Requirements Engineering (RE) literature, explainability has been
largely studied as a non-functional requirement [3,4,5,6,7,15,25]. Through lit-
erature [4], survey [3], and case study research [5,6], Chazette et al. devise a
definition of explainability – consistent with our approach – and highlight the
desire for and value of embedding explanation services within software-intensive
systems [5]. In other studies [15,25], the focus is how explainability interacts with
other non-functional requirements, such as transparency [11,12], understandabil-
ity, and usability using Softgoal Interdependency Graphs (SIGs) [8]. Sterz et al.
use the umbrella term perspicuity to refer to this class of qualities [40], Speith
focuses on categories that enable evaluation of explainability of a system, while
Berani et al. [2] propose a framework for organizing such concepts at different
granularity levels. At the same time, the motivation for seeking explanations
has been studied by Sadeghi et al. [36], and includes training, validation, and
interaction; all of which are suitable application areas of our proposal. Consis-
tent with our i* -based approach, an explainee-oriented elicitation practice has
been proposed through the use of personas [16]. Elsewhere, Mann et al. [32] offer
categories of opacity that explainability aims at addressing, of which complexity
(in our case: variability of system outputs/behaviors) and epistemic dependency
(actors possessing different pieces of the explanation puzzle) can be seen as
particularly suitable targets of our approach. In general, rather than studying
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explainability as a quality, our effort is oriented towards developing tools and
techniques for systematic elicitation, modeling, analysis, and implementation of
explanation requirements of specific kinds, namely, observed system actions.

The problem of explainable AI (XAI) was first discussed in the AI community
in the context of expert systems [9], and has been regularly studied ever since.
For instance, Shanahan [37] proposes a deductive and an abductive approach in
the situation calculus, while, more recently, Dennis and Oren [14] proposed an
interactive Belief-Desire-Intention (BDI) agent system to explain agent actions.
Structural Equation Models (SEM)-based models have also been proposed to
address causal notions of explanation [1] and applied to explain the behavior of
model-free reinforcement learning agents. Causal models are also utilized for en-
abling contrastive explanations [34], while elsewhere, non-monotonic reasoning,
probabilistic planning, and interactive learning are combined to develop an ex-
plainable robotic architecture [38,39]. Finally, Khan and Rostamigiv [24] appeal
to theory of mind, causal analysis of agents’ knowledge, and goal recognition to
explain agent behaviour in communicative multiagent contexts. Comparatively,
we aim at supporting the requirements analysis and design of explanation ser-
vices within an established requirements modeling framework, and generating
explanations based on information within the specific kind of models.

8 Conclusions

We presented a goal-oriented framework for modeling, analyzing, simulat-
ing, and prototyping explanation requirements for actions of software-intensive
systems. We utilize i+, an extension of i* that allows temporal and causal re-
lationships among intentional elements. Subsequently, explanation requirements
are captured through explanation goals, are assigned to various explainee roles,
and are operationalized into actions that capture run-time explanation informa-
tion or render explanation interactions, the format of which is described through
templates. Further, a set of axioms exploits information embedded in the i+

models to offer possible answers to ad-hoc explanation questions. By appropri-
ately formalizing the model, both simulations and, under certain assumptions,
prototyping of the envisioned explanation interactions are possible.

Future work aims at empirically evaluating both the proposed analysis ap-
proach and the quality of explanations produced by our axioms through case
studies and experiments. We, further, plan to broaden the kinds of explanations
our system can offer, including explanations for exceptional system actions, ac-
tion failures, and, generally, expected actions that did not occur, such as coun-
terfactual explanations [19] – our current axioms are restricted to explaining
actions that have occurred. In addition, we are interested in refining our axiom-
atization to include ad hoc explanations that are context- and explainee-sensitive
[35]. We, finally, wish to study how systems can be engineered in full compliance
with the explanation requirements model, especially in the context of learning-
based systems, whose decision-making rules are known to be opaque.
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