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Abstract. Reinforcement learning (RL) is an important class of ma-
chine learning techniques, in which intelligent agents optimize their be-
havior by observing and evaluating the outcomes of their repeated inter-
actions with their environment. A key to successfully engineering such
agents is to provide them with the opportunity to engage in a large num-
ber of such interactions safely and at a low cost. This is often achieved
through developing simulators of such interactions, in which the agents
can be trained while also different training strategies and parameters are
explored. However, specifying and implementing such simulators can be
a complex endeavor requiring a systematic process for capturing and an-
alyzing both the goals and actions of the agents and the characteristics of
the target environment. We propose a framework for model-driven goal-
oriented development of RL simulation environments. The framework
utilizes a set of extensions to a standard goal modeling notation that al-
lows concise modeling of a large number of ways by which an intelligent
agent can interact with its environment. Though subsequent formaliza-
tion, the model is used by a specially constructed simulation engine to
simulate agent behavior, such that off-the-shelf RL algorithms can use it
as a training environment. We present the extension of the goal modeling
language, sketch its semantics, and show how models built with it can
be made executable.

Keywords: Goal Modeling · Reinforcement Learning · DT-Golog

1 Introduction

Over the past years, the demand for Artificial Intelligence (AI) systems has
been on the rise. Such systems perform tasks requiring autonomy and complex
decision making, such as driving vehicles, controlling devices, or making trading
decisions. Some of these AI systems are based on Reinforcement Learning (RL),
whereby intelligent software agents learn to optimize their behavior by continu-
ously interacting with their environment [62]. RL has been studied in a variety
of application domains including energy [5], traffic control [64], finance [58], and
healthcare [26]. Software RL agents engage in goal-oriented activity, whereby
they perform actions to fulfill functional goals (e.g., administer a therapy, trade
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securities, control a heating device), while maximizing the satisfaction of higher
level quality objectives (respectively, health outcome, profit, occupant comfort)
based on experience.

Key to successfully engineering an RL agent is the ability to subject it to a
large number of training interactions with the target environment. Using a simu-
lator based on a model of the latter allows a large number of such interactions to
take place safely and at a low cost. When such a model is accurate, the trained
agent is readily deployable to the target environment. When the model is provi-
sional, approximate, or imprecise, simulator-based training is useful for exploring
the performance of different learning algorithms under alternative problem for-
mulations and parameter settings.

We propose a framework for model-driven goal-oriented development of train-
ing simulators for RL. The framework is based on developing goal models that
describe the required intentional structure of RL agents through representing
how high-level agent goals are refined into low level actions, how the latter, upon
their performance, give raise to stochastic outcomes, and how such outcomes,
in turn, affect a variety of quality variables of interest, an aggregate of which is
used to represent outcome rewards. The requirements model is then translated
into an action- and decision-theoretic formal specification, which, through a set
of proposed querying and simulation components, can be directly used by RL
algorithms as a training workbench. In this way, the training simulator is the
result of a principled requirements-based approach that fully embraces modeling
both for facilitating analysis and communication of the RL agent design and for
generating its training simulator.

Our main contributions include the extensions to an existing decision-theoretic
goal-modeling language to allow RL agent modeling, the corresponding formal-
ization rules, and the architecture and implementation of components that make
the models executable and usable by RL algorithms. To demonstrate feasibility,
a set of experiments with a selection of popular RL algorithms is performed.

The paper is organized as follows. We describe the modeling language and
its semantics in Sections 2 and 3 and the generation of simulators in Section 4.
In Section 5 we discuss related work and we conclude in Section 6.

2 Modeling RL Domains

2.1 Motivating Example

Consider a large-scale woodwork manufacturer who builds custom furniture
and cabinetry in a make-to-order fashion. For every order they receive, they need
to source the material and manufacture the requested product – among many
other activities omitted here for simplicity. They have options as to how they
perform these two steps. The material can be sourced from domestic or foreign
sources. In the first case, the cost is higher, but in the latter case there are delay
risks. Once the material is acquired, they can engage their in-house craftspersons
to build the product or subcontract to a more specialized group, who use precise
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Fig. 1: An extended goal model – a (partial) meta-model can be found in [40].

manufacturing techniques but cost more and only work with domestic material.
Importantly, a decision outcome of one step of the process, may affect what
decision is best in a subsequent step. For example, a delay in sourcing may
necessitate expedience in manufacturing to meet deadlines. In addition, choices
have non-deterministic outcomes. For example, sourcing material from abroad
may or may not result in a delay, and the in-house craftspersons may or may
not produce a lower quality product.

The question for the manufacturer as they engage in this sequential decision
making process for every incoming order is what decision they should be making
at each step so that their goals are, on average, maximally satisfied in the end.
Reinforcement learning (RL) refers to a set of techniques that has been proposed
for addressing this problem via learning through experience [62]. Specifically,
an RL agent actively engages with the environment by repeatedly performing
actions which have the effect of (a) changing the state of the environment,
typically in a non-deterministic way, and (b) offering to the agent a (positive or
negative) reward reflecting the desirability of the action outcome or state change.
This is repeated until a goal state is reached. The agent then restarts with a new
effort to achieve the same goal. In our example, an RL agent would, for each
order, chose and take a sourcing action, observe the outcome (delayed or not),
proceed with a manufacturing action, observe that result (good quality or not),
and move on to the next order. Various RL algorithms exist for turning these
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repeated decision making sequences into a policy, which maps each state to an
action to be taken at that state so that the total expected reward is maximized.

As RL agents need to first process a potentially large number of cases before
they can start making safe and good quality decisions, it is preferable that their
training is not taking place in the actual environment but an executable model
thereof, i.e., a simulator. Such a model should capture the decision points that
are available to the RL agent, the corresponding alternative actions, the possible
effects that these actions bring about, as well as the reward structure reflecting
the preferability of these effects. The latter can be challenging in RL applications
within socio-technical systems, such as the one of our example, where reward
structures are abstract and multi-dimensional. We next describe an extension to
a standard goal modeling language that aims at developing such models.

2.2 Extending iStar for Reinforcement Learning: iStar-RL

The proposed language, which we will refer to as iStar-RL, extends iStar 2.0
[17], a state-of-the-art goal-oriented requirements modeling language for socio-
technical systems. Two example models can be viewed in Figure 1. The one on
the left (a) shows the goals of our hypothetical woodwork manufacturer.

As per the iStar 2.0 ontology, actors, such as Manufacturer, have goals, such
as (Have) Material Ordered, which represent states of affairs that actors want
to achieve and/or maintain. Through AND- and OR-decompositions, high-level
goals are refined into lower-level ones, whereby satisfaction of all or, respectively,
one subgoal(s) is necessary (resp., sufficient) for fulfilling the parent goal. At the
leaf level, tasks signify concrete actions to be taken for fulfilling goals – e.g. Source
Domestically. Quality goals (qualities) describe attributes for which actors desire
some level of achievement, without the requirement that such level is precisely
defined. Contribution links are used to signify that achievement of a goal/task
affects a quality in a way that is described using an annotation on the link.

Models such as that of Figure 1(a) can encode a great number of subsets
of leaf-level tasks and temporal orderings thereof that can fulfill top-level goals.
Various ways for formalizing goal models for purposes similar to identifying such
task sequences have been introduced – e.g. [23, 30, 36, 42, 53]. We adopt here a
decision-theoretic extension to iStar for reasoning in the presence of probabilistic
task effects [40,41] and further extend it with constructs that facilitate RL.

The baseline extensions are showcased in Figure 1. A set of domain propo-
sitions are, firstly, introduced for describing the state of the environment at
different points in time – for example, hasManufacturingCapacity and materi-
alAvailable. Domain propositions are used in precondition and effect elements.
A precondition contains a Boolean formula of domain propositions, whereas an
effect contains one such predicate. Preconditions are connected to tasks through

precedence links
pre−→ and, respectively, negative precedence links

npr−→ which de-
note that performance of the task is not possible unless (resp., if) the formula
in the precondition is satisfied. Precedence (resp., negative precedence) links
can also originate from goals meaning that the task cannot be performed unless
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(resp., if) the origin goal has been satisfied (resp., has been attempted, i.e. at
least one of its descendant tasks has been successfully performed).

Further, tasks are connected with effects through the use of effect links
eff−→,

denoting that performance of the task from where the link originates can cause
the effect which the link points at to occur, i.e., make the domain proposition
contained in it true. As tasks may have several possible effects, they may be
connected to effect groups which represent a collection of effects, each carrying
a distinct probability to occur once the task is performed. The probability is
added as a label on the corresponding link on the diagram. Effects are marked
as task satisfying if their occurrence implies successful performance of the task,
and non-satisfying otherwise. For example, an attempt to submit an order may
be deemed successful (task satisfying) if it is finally delivered, despite delays,
errors, etc., and non-satisfying if it is never delivered. Moreover, indirect effects,
such as heaterOn in Figure 1(b), are effects whose truth status depends on other
effects in a way that is defined outside the diagram – noted through an fO
annotation. Effect links are used to connect regular effects with indirect effects.

Further, effects, including indirect ones, are connected to qualities through
utility links, a specialization of iStar 2.0 contribution links. These are annotated
either with a number representing the amount of satisfaction that the effect, if it
occurs, adds to the quality or with the fO icon indicating that a more complex
formula describes the relationship. Using utility links, qualities also form an
hierarchy whose root otop represents the overall quality – in Figure 1, this is
Total Value. Each quality in iStar-RL is considered to be a continuous variable
whose value represents the level of satisfaction of the quality at a given state.

2.3 Task Histories, Goal Runs, and Episodes

Let us now focus on tasks. Let task (performance) history be a sequence
tH |I = [t1, t2, . . .]

|I of leaf-level tasks that (a) starts from an initial state in
which propositions and qualities have a value configuration I, and (b) is feasible
with respect to the precondition and effect constraints, i.e., t1 is feasible under
I and each subsequent ti is possible given the state that ti−1 brought about.
Attempt of each task results in the occurrence of an effect. Hence, a task history
is mapped to a set of possible effect (occurrence) histories, eH |I = [e1, e2, . . .]

|I –
we will henceforth omit the initial state superscript I unless needed. Further, let
H be the set of all goals and O the set of all qualities in a model. The mappings
satG : H×eH 7→ {true, false} and satQ : O×eH 7→ R, describe the satisfaction
or not of a goal, and, respectively, the level of satisfaction of a quality, given an
effect history eH from the set eH of all such. The former mapping reflects the
AND/OR decomposition structure and the latter the structure of utility links;
precisely how is discussed in a subsequent section.

To make effect histories meaningful for RL, we need constructs additional to
the original extension [40]. Let G be a goal model with root goal rG . A goal run
for goal rG is an effect history eH = [e1, e2, . . .] such that (a) satG(rG , eH), i.e.
the root goal is satisfied, (successful run) or (b) no other task can be performed
at eH, due to precondition constraints, a situation we will call a deadlock.
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Back in Figure 1(a), consider effect histories [deliveredInTimeDom, delivered-
BadQualityInH] (materials sourced domestically and in-house production was of
bad quality) and [neverDeliveredFrgn] (materials ordered from foreign sources
and were never delivered). Both histories are goal runs: the former satisfies the
root goal, whereas the latter cannot be continued due to the precedence link
between Material Ordered and Manufacturing Completed. However, neither [de-
liveredLateDom] nor [deliveredInTimeFrgn] are goal runs: in both cases, the root
goal is not satisfied and there are actions that are still possible. The level of sat-
isfaction satQ of quality Reputation for each of the aforementioned four (partial)
histories is +1.0 - 1.0 = 0, -5.0, -1.0, 1.0, respectively, calculated by adding up
the annotations of utility links originating from effects included in the history.

We further define an episode to be a concatenation of n goal runs eP |I =

[eH
|I
1 , eH

|I
2 , ..., eH

|I
n ] such that for all eH

|I
i , i < n the root goal is satisfied. In

other words, an episode describes a history of repeated goal runs all of which
successful except for the last one, which may be either successful or a dead-
lock. For n > 1 the episode is a multi-run episode and for n = 1 a single-run
episode. We can specify the maximum number of runs that comprise an episode
(episode length) as an annotation next to the root goal - see Figure 1. In multi-
run episodes, each run is, by default, assumed to start from the same initial
configuration I. We may however wish to designate elements that carry their
values across goal runs. We accomplish this through cross-run elements.

To appreciate the rationale for multi-run episodes and the role of cross-run
elements in such episodes, consider the model of Figure 1(b). It describes the
function of a heating device controller, contrived here to showcase additional
features of the language. The controller periodically signals wirelessly to the
device to turn on or off. This on or off signal can be lost with a probability. The
overall quality accrued from a sequence of signaling tasks is a function of the
distance of the temperature to an ideal one and the amount of time heating is on,
which represents cost and environmental impact. To make meaningful optimal
decisions we need to look at the quality value accumulated over a sequence of
goal runs. In the diagram this is set to four (4). Hence, if the controller makes a
decision every, e.g., 5 minutes, which constitutes one goal run, an entire episode
spans 20 minutes and overall quality is calculated for all 4 decisions made.

In Figure 1(b), cross-run elements (dashed outline and with a “PRE” anno-
tation) represent the (truth) value of the enclosed proposition or quality in the
previous state. The previous state is the configuration of truth values before the
latest action was performed within the episode, irrespective of goal run bound-
aries. Thus, the truth status of the proposition within indirect effect heaterOn
(solid line effect), depends on its truth status at the end of the previous state
(dashed line effect) and the current state of four regular effects in the second run,
represented through the remaining four incoming effects. The symbol f1O denotes
that the exact formula that translates the truth value of these five propositions
into the new truth value for heaterOn is specified outside the diagram. Likewise,
the current value of Reach Ideal Temperature depends on its previous value and
the current value of heaterOn. Again, a symbol f2O denotes that the formula for
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combining the two values is specified outside the diagram. Note that whether an
element is discrete or continuous is orthogonal to its status as cross-run.

We finally designate the exported state set to be the set of propositions and
qualities to be used for the calculation of policies. By default, we assume that
the problem is modeled as a discrete-state one, i.e., the exported state set is
the configuration of values of all propositions – the discrete (exported) state set.
However, in some cases it is useful to use qualities as part of the set. In the heating
controller example, whether the heater should turn on or off more obviously
depends on the satisfaction level of Reach Ideal Temperature than the history
of on/off actions. In Figure 1 we put a shaded rectangle at the background of
an indirect effect or a quality, to mark its inclusion in the exported state. When
the exported state contains at least one non-propositional element, we model
the problem as a continuous-state one. In Figure 1(b) we designate variables
heaterOn and Reach Ideal Temperature to exclusively comprise the exported
state set – a continuous exported state set. Note that such designation does not
affect how validity of effect histories is established, which is based solely on
the discrete state set; hence the clarifying “exported” qualification. Further, the
cross-run status of an element is orthogonal to its inclusion in the exported set.

2.4 iStar-RL and Reinforcement Learning

Let us now sketch how iStar-RL models can be used by an RL agent to
allow for optimal decision making. Recall that RL-agents observe the state of
the environment, perform an action from a set of available ones, and sense the
state that results from the action along with the reward that the action yields.
In our case, the state of the environment is, as we saw, the exported state, i.e., a
combination of values of designated domain propositions and/or qualities. Upon
sensing that state, the RL agent performs a task, which brings about one of
the corresponding effects, which, in turn, augments the current episode eP with
one more effect, and may also imply updated satG and satQ values. The RL
agent will sense the new state and perceive the total value satQ(otop, eHi) as
the reward of the latest action. It will then repeatedly proceed with the next
action until the episode is over, i.e., it reaches the maximum number of successful
runs or a deadlock. During training, the RL agent will attempt a great number
of such episodes, aimed at identifying a policy, i.e., a mapping from state to
tasks that, when repeatedly followed, maximizes the average total value.

For the RL agent to accomplish such training using the iStar-RL model, the
latter needs to be executable. In the next section, we describe how iStar-RL
models can be formalized, aiming at both clarifying their semantics and paving
the way for generating executable simulations of such models.

3 Semantics

3.1 DT-Golog

The semantics of iStar-RL are defined by means of its translation to DT-
Golog, a high-level agent programming language [12,61] based on the Situation
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Calculus [59]. The basic constructs of DT-Golog are fluents, stochastic (or agent)
actions, nature actions, and situations. Fluents play the role of state features and
have different truth values in different situations. They are represented through
predicates such as materialDelivered(s), with the situation s as one of the pa-
rameters. Stochastic actions a are first-order terms signifying specific activity
initiated by agents and may have several alternative outcomes, each occurring
with a different probability. These outcomes are modeled through a set of na-
ture actions Â = {â1, â2, ...} associated with a through predicate choice(a, Â).
The corresponding probabilities are represented using prob(â, v, s), where v is
the probability of the occurrence of â. Further, a situation s denotes a sequence
of actions. The function do(â, s) denotes the situation which results from the
performance of nature action â in situation s. A special constant S0 denotes the
initial situation, where no action has been performed.

A DT-Golog specification contains axioms that prescribe what actions are
possible in different situations and how the truth value of fluents is affected by
the performance of actions. The former, precondition axioms, are of the form:

∀s.poss(a, s)↔ Πa(s)
whereΠa(s) is a fluent formula and special predicate poss(a, s) states that action
a is executable in situation s. The latter, successor state axioms, are of the form:

∀â,x, s.f(x, do(â, s))↔ Φf (x, â, s)
where x signifies a list of arguments, f a fluent symbol and Φf (x, â, s) a formula
whose truth value depends on the parameters, the current situation, and the
nature action in question. Finally, by defining:

reward(v, s)↔ Ψr(v, s)
where Ψr(v, s) is a formula grounded on fluents, it is possible to assign a reward
value v to any situation or action.

3.2 From iStar-RL models to DT-Golog specifications

The DT-Golog-based semantics of iStar-RL is based on a treatment offered
by Liaskos et al. [40], with the necessary additions for supporting RL. In what
follows, let a goal model G contain a set H of goals, a set T of tasks, a set E of
effects, a set Q of domain predicates, and a set O of qualities.
Primitives. Each element in the set is translated to a DT-Golog primitive as
follows. For each domain proposition q ∈ Q introduce a fluent ϕq(s). For each
task t ∈ T associated with an effect group Et ⊆ E introduce the following: a
stochastic agent action at and a set of nature actions Nt each ât ∈ Nt associated
with an effect in Et. For each task t ∈ T and goal h ∈ H, introduce fluents ϕt(s)

and ϕh(s). For each quality o ∈ O introduce two fluents ϕ
(r)
o (v, s) and ϕ

(m)
o (v, s),

respectively called current satisfaction fluent and cumulative satisfaction fluent;
for both fluents, parameter v ∈ R represents the satisfaction value of o.

Given the 1-1 correspondence between iStar-RL effects and situation calculus
nature actions, effect histories eH = [et1 , et2 , . . .] also map 1-1 to situations
s = do(. . . do(ât2 , do(ât1 , s0)) . . .), where âti is the nature action corresponding
to effect eti . For a goal h and quality o: satG(h, eH) iff ϕh(s) and satQ(o, eH) = v

iff ϕ
(r)
o (v, s), where s is the situation corresponding to effect history eH.
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Successor State Axioms. For each domain predicate q, collect all effects
e1, e2, . . . that mention it and consider the corresponding â1, â2, . . . nature ac-
tions. Introduce the following successor state axiom:

ϕq(do(a, s))↔ (a = â1 ∨ a = â2 ∨ . . .) ∨ ϕq(s).

Attempt and Attainment Formulae. Consider each task t connected with
an effect group Et. Consider all the effects of Et, and the domain predicates

q
(t)
1 , q

(t)
2 , . . . contained in them. Generate the following task attempt formula for t:

ϕ
(att)
t (s)↔ ϕ

q
(t)
1
(s) ∨ ϕ

q
(t)
2
(s) ∨ . . .

A task attainment formula ϕt(s) is defined similarly with the only difference
being that it excludes non-satisfying effects. Introduce also a goal attainment
formula for each goal h as follows:

ϕh(s)↔ fAND/OR(ϕt1(s), ϕt2(s), . . .)

where t1, t2, . . . are the tasks that are descendants of h in the goal hierarchy,
ϕt1(s), ϕt2(s), . . . their corresponding task attainment formulae, and fAND/OR an
AND/OR formula reflecting the corresponding goal decomposition structure. A

goal attempt formula for h, ϕ
(att)
h (s), is similarly defined but grounded on task

attempt, rather than attainment, formulae.

Quality Formulae. Consider each quality or domain variable o ∈ O, all the
contribution links toward it coming from effects e1, e2, . . . labeled with values
le1 , le2 , . . ., and all contribution links coming from other qualities o1, o2, . . . – see

Figure 2 left side. Recalling that o is associated with fluents ϕ
(r)
o and ϕ

(m)
o , the

value of each is defined by the formulae at the right side of Figure 2. In the
formulae, âi are the nature actions associated with effects ei. Intuitively, the
value v of quality o is a function f of the corresponding current or previous
(depending on cross-run status) values of the other qualities and the labels of
utility links coming from effects that are(/were) currently(/previously) true.

Action Precondition Axioms. For each task t which receives precedence links
from a precondition element, a set of tasks {t1, t2, . . .}, a set of goals {h1, h2, . . .}
and a set of effects containing predicates {q1, q2, . . .} introduce:

poss(at, s)↔ ϕq1(s) ∧ ϕq2(s) ∧ . . . ∧ ϕt1(s) ∧ ϕt2(s) ∧ . . .

∧ϕh1(s) ∧ ϕh2(s) ∧ . . . ∧ gprec(s) ∧ ¬ϕ(att)
t (s)
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where gprec(s) is the formula inside the precondition element, grounded on fluents

of type ϕq(s), and ϕ
(att)
t (s) is the attempt formula for the task in question itself.

As will become apparent below, the latter addition prevents the RL learning
agent from selecting the same task more than once in a given goal run. The

above formula can be extended to include
npr−→ incoming links, omitted here for

brevity; however it must be noted that for these links specifically, we utilize task
and goal attempt formulae rather than attainment ones.
Reward. The total reward calculated for each situation is simply the current
quality value of what has been designated as otop as per the quality formula:

reward(v, s)↔ ϕ
(r)
otop(v, s)

Probabilities. For each link that connects an effect e with its effect group,
introduce prob(â, p, ·), where â is the nature action associated with e, and p is
the probability label of the link – independent of situation, hence · instead of s.
OR-decomposition exclusivity. We finally demand that all children of OR-

decompositions are connected in pairs with
npr−→ links. More formally, let g1, g2, . . .

be children (goals or tasks) of an OR-decomposition. Then, assume gi
npr−→ gj for

all i ̸= j. The additions appear in action precondition axioms for the involved

goals, following from the semantics of
npr−→.

The above translation process is automatable. A first prototype we have built
to demonstrate this is capable of automatically generating the bulk of DT-Golog
specification, leaving currently only a minimum of finishes to users [37].

4 Making Models Executable

4.1 The RL Simulation Components and their Function

So far we have discussed the iStar-RL modeling language and how it can be
formalized into a DT-Golog specification. We now describe how the latter speci-
fication can serve as a domain simulator usable by software agents implementing
arbitrary RL algorithms. We adopt a widely used interface specification for RL
simulators, Open AI’s Gym framework [1], called gym.Env, which offers a small
collection of functions that satisfy the RL observe-decide-act interaction pattern.
Specifically, the most important of gym.Env ’s functions is:

observation, reward, terminated, info ← step(action)
The function requests the simulator to perform action, identified as an integer

within a range, and return: (a) the state which results from the performance of
action, which is encoded in variable observation as a state-identifying integer
for discrete-space problems or as an array of real values for continuous-space
problems, (b) the reward obtained for performing the action, and (c) whether
the current episode is terminated, and (d) other miscellaneous info. Our goal
is, hence, to implement step (along with other auxiliary functions) such that it
behaves in a way that is compliant to iStar-RL models of our choice.

To achieve this we introduce two software components. The Query Engine
(QE ) offers a number of functions that answer queries about the domain relative
to a given history of actions, such as what fluents are true and what actions are
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possible. These services are used by GMEnv, a second component which imple-
ments the gym.Env standard. GMEnv maintains information about the current
state of execution of a simulated episode, and executes actions or relays infor-
mation as per the requests of the client environment. The latter is an arbitrary
RL agent, implementing some RL learning algorithm (e.g, A2C [46], Deep Q
Network (DQN) [47], etc.) and requiring the gym.Env interface for its training.
We examine the development of QE and GMEnv in sequence.

4.2 The Query Engine (QE)

QE offers a set of functions whereby the iStar-RL model can be queried with
respect to an effect history eH. The supported functions are listed in Table 1
and are implemented as logic programs in Prolog and in accordance to DT-Golog
semantics also seen in the table. Below we present these semantics in more detail.

Extracting State Information. Consider the set Q = q1, q2, . . . of domain
predicates in the goal model and an effect history eH = [e1, e2, . . .]. Define also
list LQ = [ql1, ql2, . . .] where qli = 1 if the predicate qi is satisfied after effect
history eH has been observed, and qli = 0 otherwise. For discrete-state problems,
LQ offers a representation of discrete exported state and it is easily translatable
to an integer identifier. For continuous-state problems, list LO = [ol1, ol2, . . .],
where oli = satQ(oi, eH), represents continuous exported state for the goal
model after eH for continuous exported state set {o1, o2, . . .} ⊆ O.

The semantics of LQ and LO in DT-Golog terms are understood as fol-
lows. Recall that there is a 1-1 correspondence between domain predicates Q =
{q1, q2, . . .} and DT-Golog fluents ΦQ = {ϕq1 , ϕq2 , . . .}, as well as between an
effect history eH and a DT-Golog situation s. The following rule then defines
LQ in terms of situation s:

getState(s, LQ) ↔ (ϕq1(s) ∧ (ql1 = 1) ∨ ¬ϕq1(s) ∧ (ql1 = 0))∧
(ϕq2(s) ∧ (ql2 = 1) ∨ ¬ϕq2(s) ∧ (ql2 = 0)) ∧ ...

Thus, getState(s, LQ) holds when binary list LQ captures the truth value
of every fluent in situation s. The predicate is the semantics of QE function
getState(eH): bit[] seen in entry 5 of Table 1. For continuous exported states,
recall that qualities o ∈ O in the goal model are associated with fluents of the

form ϕ
(r)
o (v, s) in which v is a real value representing o’s satisfaction satQ(o, eH).

Hence, for continuous exported state set {o1, o2, . . .} ⊆ O:
getContState(s, LO) ↔ ϕ

(r)
o1 (v1, s) ∧ (ol1 = v1) ∧ ϕ

(r)
o2 (v2, s) ∧ (ol2 = v2) ∧ ...

The predicate effectively maps a situation s with the value of fluents rep-
resenting the qualities included in the exported state set, and constitutes the
semantics of QE function getContState(eH):float[] – entry 6 of Table 1.

Episodes and Goal Runs. We now express the semantics of goal runs in
terms of DT-Golog constructs. Recall that a task history is a goal run iff the root
goal is satisfied or it leads to a deadlock. Recall also that for goal h, satG(h, eH)
iff ϕh(s), where s is the situation corresponding to history eH. Thus, root goal
rG is satisfied iff ϕrG (s). Secondly, to decide if a situation s is a deadlock we
examine if any of the action precondition axioms allow the performance of any
task at s. Let NG to be the set of all nature actions â (each corresponding to an
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QE Function Semantics QE Function Semantics

1
possibleAt(t,eH):

poss(at, s) 7 done(eH):bool
done(s) ≡

bool ϕrG ∨ deadlock(s)

2
getOutcomes(t): choice(at, 8

deadlock(eH): ∀â ∈ NG .¬poss(â, s)
integer[] {â(1)

t , â
(2)
t , ...}) bool

3
getProbs(t,eH): getProbs(at, 9

getCrState(eH):
crossState(LCR, s)

float[] {p(1)
t , p

(2)
t , ...}, s) float/bool[]

4 reward(eH): float reward(s, r) 10
setCrState(X)

assert(X)
(X: initializations)

5 getState(eH):bit[] getState(s, LQ)
11 rootAchieved(eH):

ϕrG (s)
bool

6
getContState(eH): getConState

float[] (s, LO)

Table 1: Query Engine (QE) functions and their semantics. The functions assume
a mapping of nature and stochastic actions to integers, hence t and eH are
respectively an integer and an array thereof.

effect e ∈ EG), a situation s is a deadlock according to the following definition:
deadlock(s) ≡ ∀â ∈ NG .¬poss(â, s)

where poss(â, s) are, as we saw, the left-hand sides of action precondition
axioms. Given the above, we can now define predicate done(s) (entry 7 of Table
1) that holds when a situation s is a complete run with respect to root goal rG :

done(s) ≡ ϕrG (s) ∨ deadlock(s)

Cross-run Elements. Recall from Figure 2 that in the initial situation S0,
qualities are assigned an initial value vinit, while all other predicates/fluents are
assumed to be false. QE allows the client environment to both assert these initial
values and to read the values at a given situation s. This is useful for implement-
ing cross-run elements within multi-run episodes. Let LCR = {ol1, ol2, ..., ql1, ql2,
...} represent the values of all cross-run qualities o1, o2, . . . and propositions
q1, q2, . . ., where oli = v iff ϕoi(v, s) and qli = 1 iff ϕq(s), 0 otherwise. Predicate
crossState(s, LCR) (the semantics of QE ’s getCrState – see entry 9 of Table 1)
allows extraction of cross-state information given situation s corresponding to
effect history eH:

crossState(s, LCR) ↔ ϕ
(m)
o1 (v1, s) ∧ (ol1 = v1) ∧ ϕ

(m)
o2 (v2, s) ∧ (ol2 = v2) ∧ . . .

[ϕq1(s)∧ (ql1 = 1)∨¬ϕq1(s)∧ (ql1 = 0)]∧ [ϕq2(s)∧ (ql2 = 1)∨¬ϕq2(s)∧ (ql2 = 0)]∧ . . .

Dynamically defining initial states is a matter of asserting in the specification,
using setCrState, the list of initializations {ϕo1(v

′
1, s0), ϕo2(v

′
2, s0), . . . , Φ

T
q (s0)},

where v′i are the desired initial values, ΦT
q (s0) the subset of fluents representing

propositions that are true in s0 – see entry 10 of Table 1. Thanks to the above
two functions, GMEnv can implement multi-run episodes by reading the values
of cross-run elements o1, o2, . . . , q1, q2, . . . at the end of a run using getCrState

and setting these as the initial values of the next episode using setCrState.
Other predicates. The query engine offers additional functions, which can

be viewed in Table 1, along with their DT-Golog semantics. One of them:
getProbs(at, {p1, p2, . . .}, s) ↔ choice(at, {â(1)

t , â
(2)
t , . . .})∧
prob(â

(1)
t , p1, s) ∧ prob(â

(2)
t , p2, s) ∧ . . .

uses choice(at, Â) to collect probabilities {p1, p2, . . .} for all nature actions Â =

{â(1)t , â
(2)
t , . . .} associated with task t’s stochastic action at.
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Algorithm 1 Implementation of the Step function of GMEnv.

1: Global: eH,tH = [] ▷ run-wide effect and task history
2: eH Ep,tH Ep =[] ▷ episode-wide effect and task history
3: curRun = 0 ▷ the goal run under current consideration
4: penaltyReward ▷ default penalty for infeasible actions
5: qe ▷ reference to a QE implementing object
6: function step(t)
7: if qe.possibleAt(t,eH) then
8: Et = qe.getOutcomes(t) ▷ Et : list of effects
9: Pt = qe.getProbs(t,eH) ▷ Pt: list of effect probabilities
10: et = pickRndAction(Et, Pt) ▷ randomly pick effect
11: eH = append(eH,et) ▷ append effect to history
12: tH = append(tH,t) ▷ append task to history
13: reward = qe.reward(eH) ▷ retrieve reward
14: state = qe.getState(eH) ▷ retrieve new discrete state
15: c state = qe.getConState(eH) ▷ optional: retrieve

new continuous state
16: n state = bitToInt(state) ▷ bit array to int
17: else
18: reward = penatlyReward ▷ penalize infeasible action
19: end if
20: if qe.rootAchieved(eH) then
21: X = constructInitClauses(qe.getCrState(eH))

22: qe.setCrState(X)

23: eH Ep.append(eH),tH Ep.append(tH)

24: eH,tH = []

25: curRun = curRun + 1

26: end if
27: return n state, reward, done, [c state]

28: end function
29:
30: function done
31: return ((curRun == N) or qe.deadlock(eH))

32: end function

4.3 The GMEnv component

GMEnv implements gym.Env through utilizing QE ’s services. While QE is
stateless, GMEnv maintains episode information including the history of tasks
that have been attempted from the beginning of an episode, the effect history
that has resulted from these attempts, the run count since the episode’s begin-
ning, as well as the state after the performance of the latest action.

Of the gym.Env functions that GMEnv implements, the most important
is, as we saw, step(task): state, reward, terminate, info. Algorithm 1
sketches the implementation of the function. The function is iteratively called
by the RL agent, with parameter a task t of its choosing. Upon its call, step
checks first if the task is feasible given the current history of effect occur-
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Model Characteristics Learning Tests

Model Size
Run
#

State
Space

Learning Reward
Rnd.

Training Steps Training Time (s)
A2C DQN PPO A2C DQN PPO A2C DQN PPO

D
is
c
re
te

Material
Ordered

1,12
1 26 0.924 0.924 0.924 0.773 10K 10K 10K 6.813 5.000 24.00
2 212 1.711 1.712 1.715 1.466 10K 10K 10K 106.2 4.469 113.9

Product
Manuf.

2,20
1 210 0.477 0.480 0.465 0.058 10K 150K 20K 81.97 848 147.8
2 220 0.946 0.705 0.710 0.065 10K 80K 20K 8,123 23.49K 20.32K

Organize
Travel

3,29 1 214 0.789 0.694 0.788 0.059 20K 150K 10K 400.3 1,957 436.7

HVAC
Control

1,13 4 216 -1.36 -1.37 -1.36 -5.041 10K 70K 10K 585 702.4 724.2

C
o
n
ts
. Product

Manuf.
2,20

1 R2 0.456 0.472 0.048 -78.42* 50K 80K 50K 778.4 972.9 181.3
2 R2 0.286 0.667 0.325 -90.95* 70K 4.5M 70K 62.59 30,379 343.5

HVAC
Control

1,13 4 R2 -1.36 -1.36 -1.37 -5.00* 10K 110K 10K 709.5 390.1 769.8

Table 2: Training with off-the-shelf RL agents. Times in CPU seconds. (*) next to an

Rnd. reward signifies inclusion of deadlock penalty. Model size n,m: n is total # of

OR-nodes, m total # of elements.

rences, stored in eH, through the use of QE ’s possibleAt(t,eH). If yes, it uses
getOutcomes(t) to retrieve a list of possible effects Et that t may have and
through getProbs(t,eH) their probabilities Pt. A random choice on the basis of
the probabilities is made and both task t and the chosen effect et are appended
to the corresponding lists, tH and eH respectively. The state resulting from the
performance of t is calculated through getState(eH), which translates a history
of effect occurrences to an array of bits representing the truth values of domain
propositions. An integer representation of the bit array, n state, is, in turn,
returned to the calling environment as per the gym.Env requirements. Likewise,
getConState(eH) is called to retrieve any continuous exported state set.

If task t is not feasible at eH, step does not proceed with any changes to
history lists and state, but may, based on user configuration, result in a negative
reward to bias the learning procedure against performance of the task in the
specific state. On the other hand, if the goal is achieved, the current run has
concluded at eH. Consequently (a) the cross-run elements at eH are retrieved
and reasserted as initial state for the next run, (b) the action and effect lists are
added to the episode-wide record and (c) reset, and (d) the run counter increases
by one. As we saw above, the episode is done if the root of the Nth goal run has
been achieved or a deadlock has been detected.

Finally, the second important gym.Env function to be implemented byGMEnv
reset(), simply empties the history lists and resets state to its initial values.

4.4 In Action

The proposed components QE and GMEnv can be used by off-the-shelf al-
gorithms for learning optimal policies for any appropriately formalized iStar-RL
model. We performed tests with three such implementations, namely, Advantage
Actor Critic (A2C) [46], Deep Q Network (DQN) [47] and Proximal Policy Opti-
mization (PPO) [60], which are part of the Stable-Baselines3 RL package [57]. For
the experiments, we used discrete and continuous versions of models such as those
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of Figure 1. As a benchmark, for discrete-space problems, we also calculated op-
timal policies and their expected rewards using the DT-Golog interpreter. An
Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 4 Core(s), 16Gb RAM computer
was used. As shown in Table 2, in all cases, using default hyper-parameters, the
RL agents converged close to the optimal reward and away from the reward of
the random policy. The tool and a reproducibility package can be found at [38].

Note, that, while the formalized iStar-RL models can be used by DT-Golog
for exact, search-based identification of optimal policies as presented in our ear-
lier work [40], that option is restricted to discrete-state problems and requires
accurate probabilities. In the absence of accurate probabilities, where neither
exact [40] nor learning-based methods (enabled in this paper) can calculate the
true optimal, generating simulators as described here can still be useful for ex-
ploring the behavior of different RL algorithms using provisional probabilities.
The utility of the toolset for such exploratory/feasibility analysis work is hinted
at by the experimental results of Table 2 in which the three algorithms performed
differently both in terms of optimization outcome and in terms of numbers of
steps and time required.

5 Related Work

Substantial interest has developed over the past few years in studying the
intersection of conceptual modeling (CM) with artificial intelligence (AI), a space
referred to as CMAI [10, 11]. The latter describes both the application of AI to
support CM tasks (AI4CM), and reversely, the application of CM to systematize
and support various qualities of AI-intensive systems (CM4AI). In the CM4AI
space, where our work naturally fits, the use of models to organize and support
the ML development pipeline from input collection and preparation to training
and inference is explored [18]. The use of models has specifically been proposed
for quality assuring the AI/ML process [33], detecting bias [66], supporting meta-
learning [28], chatbot generation [56], or generation of neural architectures [35].

The problem of systematically devising AI-intensive systems has also been
studied from the RE point of view. A major theme in that context is the quality of
the end-result [27], with an emphasis on explainability [13–15], how such systems
can be specified [9,63], and how the RE process can be organized [55]. In search
for a solution to the RE4AI [3] problem, Nalchigar et al. [51,52] propose a goal-
oriented conceptual framework for expressing machine learning requirements and
designs organized around three main modeling views (business, analytics design,
and data preparation). Ahmad et al. [3] review, among other things, modeling
approaches for conducting RE for AI, to find that Goal Oriented RE languages,
along with UML/SySML, are the most popular for modeling in that space.

Goal models have indeed been known to be effective vehicles for allowing
formal reasoning about requirements and designs in various ways [19, 20, 23,
30, 36, 43]. This capability of goal models has been utilized also in the area of
adaptive systems [6,8,22] and multi-agent systems [25]. The modeling approach
proposed here, iStar-RL, is heavily based on an iStar dialect proposed for model-
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ing decision-theoretic domains and, through formalization, perform search-based
reasoning thereof [40, 41]. The strength of the modeling approach we adopt,
compared to common approaches for modeling probabilistic transition systems
(e.g., [32]) lies in the combined ability of goal models both to concisely en-
code high-variability processes and behaviors, stemming from overarching stake-
holder goals, and to compare variants vis-à-vis intricate, multi-dimensional qual-
ity requirements structures [50]. Hence, efforts such as on probabilistic logic
shields [65] using ProbLog [34], or on using DT-Golog for Q-learning [7], indi-
cate promising destinations of iStar-RL transformations. Probabilistic reasoning
using conceptual models other than goal models, such as BPMN [54], has also
been proposed [21,31], with no clear connection to RL however.

6 Concluding Remarks and Future Work

We presented a framework for goal-oriented modeling and generation of simu-
lators for training RL agents. Through an extension to a standard goal modeling
language, designers capture the goals, action space, and reward structure of the
desired RL agents, along with the state and effect model of the environment
the agents are meant to interact with. The resulting models are subsequently
translated to a formal specification, which is used by a set of interpreting com-
ponents to allow step-wise model execution, which is, in turn, directly usable
by a variety of RL algorithms. The framework is aimed at supporting feasibility
and performance analyses of training techniques against different action, reward,
and probability models, and even at identifying a directly usable optimal pol-
icy when reward and probability models are deemed accurate but search-based
methods are computationally forbidding or otherwise inapplicable.

Future research can focus on applications, tool support, and exploration of
how goal models can support learning quality. Case studies can be helpful in
assessing the utility of our approach in various domains, such as behavioral
customization [39] and adaptive systems [24, 48] with an emphasis on adaptive
business processes [16], whose socio-technical nature fits naturally our i* -based
approach. Enhancing our translation tool [37] to allow full automation will facil-
itate such studies. Further, while iStar 2.0 is a natural choice for agent modeling,
extending the work to other languages, both goal-modeling ones, e.g., URN [4],
and others, such as business process modeling ones [54], may be of value for the
respective user communities. In addition, given the richness of the proposed ex-
tensions, studying approaches for dealing with diagrammatic complexity [44], in-
cluding text-based modeling [2,45] or various forms of intelligent assistance [49] is
high in our future work agenda. Potential may also exist in using our approach to
address AI safety and explainability, via recognizing that the behavior of an RL
agent that is trained exclusively based on an iStar-RL model is both constrained
and explainable by information contained in that model. Finally, adapting our
implementation to support multi-objective RL [29] is a logical step toward fully
exploiting iStar-RL’s ability to represent complex structures of quality criteria.
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