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Abstract. Crucial to the process of reasoning is the formalization of
the actual causes of observed effects. While there has been a lot of work
on root cause analysis, most studies have focused mainly on determin-
istic domains. In this paper, we build on previous work on actual cau-
sation in the situation calculus to deal with causation in nondeterminis-
tic domains. We use the nondeterministic situation calculus as our base
framework for this. We introduce the notions of “CertainlyCauses” and
“PossiblyCauses” that enable the representation of actual cause when the
agent does not have any control on and does not know the choices that
are made by the environment. We then investigate how regression in the
situation calculus can be used to reason about these notions.
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1 Introduction

The term causation refers to a collection of closely-related important philosophi-
cal problems dealing with causes and their effects that has been studied since the
time of Aristotle. Determining the “actual” causes of an observed effect, which
are events chosen from a recorded history of actions that occurred prior to the
observation of the effect (also known as the scenario) is one such problem (called
“efficient” cause in Aristotelian lingo) that has been extensively researched. Mo-
tivated by David Hume’s philosophical work and Herbert Simon’s early contri-
butions, Pearl [20, 21], and later Halpern [8–10], Halpern and Pearl [11], and oth-
ers [5, 12, 13, 17] developed computational formalizations of this problem within
Structural Equations Models (SEM). While their inspirational work significantly
advanced this field, their approach based on SEM has been nevertheless criticized
for its limited expressiveness [12, 13, 7].

In response to these criticisms, in recent years researchers have become
increasingly interested in studying causation within more expressive action-
theoretic frameworks, in particular in that of the situation calculus [1, 2, 16].
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Among other things, this allows one to formalize causation from the perspective
of individual agents by defining a notion of epistemic causation [14] and by sup-
porting causal reasoning about conative effects, which in turn has proven useful
for explaining agent behaviour using causal analysis [15] and has the potential
for defining important concepts such as responsibility and blame [23].

While there has been a lot of work on actual causation, the vast majority
of the work in this area has focused on deterministic domains. However, a dis-
tinguishing feature of the real world is that change is often unpredictable. Very
few studies address causation in non-deterministic systems, and those that do,
are formalized in SEM-based causal models that are known to have limited ex-
pressiveness and suffer from a variety of problems. For instance, recently in [3],
Beckers presented an extension of causal models to deal with non-determinism.
However, despite improving on expressivity of causal models, it is not clear how
one can formalize various aspects of action-theoretic/dynamic frameworks there,
e.g. non-persistent change supported by fluents, possible dependency between
events, temporal order of event occurrence, etc.

In this paper we build on previous work on actual causation in the situa-
tion calculus [2, 14] to deal with causation in nondeterministic domains. We use
the nondeterministic situation calculus [4] as our base framework. We introduce
notions of “CertainlyCauses” and “PossiblyCauses” that enable the representa-
tion of actual cause when the agent does not have any control on and does not
know the choices that are made by the environment. We then investigate how
regression in the situation calculus can be used to reason about these notions.

The paper is structured as follows. In the next section, we provide an overview
of the situation calculus and non-deterministic situation calculus (NDSC) and
introduce our running example. In Section 3, we examine the definition of actual
cause proposed earlier. In Section 4, we present our definitions for causes in
the NDSC. In Section 5, we demonstrate how causes can be simplified into
regressable formulae. Finally, we conclude with some discussion in Section 6.

2 Preliminaries

Situation Calculus (SC). The situation calculus is a well-known second-order
language for representing and reasoning about dynamic worlds [19, 22]. In the
SC, all changes are due to named actions, which are terms in the language.
Situations represent a possible world history resulting from performing some ac-
tions. The constant S0 is used to denote the initial situation where no action has
been performed yet. The distinguished binary function symbol do(a, s) denotes
the successor situation to s resulting from performing the action a. The expres-
sion do([a1, · · · , an], s) represents the situation resulting from executing actions
a1, · · · , an, starting with situation s. As usual, a relational/functional fluent rep-
resenting a property whose value may change from situation to situation takes
a situation term as its last argument. There is a special predicate Poss(a, s)
used to state that action a is executable in situation s. Also, the special binary
predicate s ⊏ s′ represents that s′ can be reached from situation s by executing



A Logic of Actual Cause for Nondeterministic Domains 3

some sequence of actions. s ⊑ s′ is an abbreviation of s ⊏ s′ ∨ s = s′. s < s′

is an abbreviation of s ⊏ s′ ∧ Executable(s′), where Executable(s) is defined as
∀a′, s′. do(a′, s′) ⊑ s ⊃ Poss(a′, s′), i.e. every action performed in reaching situa-
tion s was possible in the situation in which it occurred. s ≤ s′ is an abbreviation
of s < s′ ∨ s = s′.

In the SC, a dynamic domain is specified using a basic action theory (BAT)
D that includes the following sets of axioms: (i) (first-order or FO) initial state
axioms DS0

, which indicate what was true initially; (ii) (FO) action precondition
axioms Dap , characterizing Poss(a, s); (iii) (FO) successor-state axioms Dss , in-
dicating precisely when the fluents change; (iv) (FO) unique-names axioms Duna

for actions, stating that different action terms represent distinct actions; and (v)
(second-order or SO) domain-independent foundational axioms Σ, describing
the structure of situations [18]. Although the SC is SO, Reiter [22] showed that
for certain type of queries ϕ, D |= ϕ iff Duna ∪ DS0 |= R[ϕ], where R is a syn-
tactic transformation operator called regression and R[ϕ] is a SC formula that
compiles dynamic aspects of the theory D into the query ϕ. Thus reasoning in
the SC for a large class of interesting queries can be restricted to entailment
checking w.r.t. a FO theory [22].

Nondeterministic Situation Calculus (NDSC). An important limitation
of the standard SC and BATs is that atomic actions are deterministic. De Gia-
como and Lespérance (DL21) [4] proposed a simple extension of the framework
to handle nondeterministic actions while preserving the solution to the frame
problem. For any primitive action by the agent in a nondeterministic domain,
there can be a number of different outcomes. (DL21) takes the outcome as being
determined by the agent’s action and the environment’s reaction to this action.
This is modeled by having every action type/function A(−→x , e) take an addi-
tional environment reaction parameter e, ranging over a new sort Reaction of
environment reactions. The agent cannot control the environment reaction, so
it performs the reaction-suppressed version of the action A(−→x ) and the environ-
ment then selects a reaction e to produce the complete action A(−→x , e). We call
the reaction-suppressed version of the action A(−→x ) an agent action and the full
version of the action A(−→x , e) a system action.

We represent nondeterministic domains using action theories called Nonde-
terministic Basic Action Theories (NDBATs), which can be seen as a special
kind of BAT, where (1) every agent action takes an environment reaction pa-
rameter; (2) for each agent action we have an agent action precondition formula:
Possag(a(

−→x ), s) def
= ϕagPoss

a (−→x , s); (3) for each agent action we have a reaction in-
dependence requirement, stating that the precondition for the agent action is in-
dependent of any environment reaction: ∀e. Poss(a(−→x , e), s) ⊃ Possag(a(

−→x ), s);
(4) for each agent action we also have a reaction existence requirement, stating
that if the precondition of the agent action holds then there exists a reaction to it
which makes the complete system action executable, i.e., the environment cannot
prevent the agent from performing an action when its agent action precondition
holds: Possag(a(−→x ), s) ⊃ ∃e. Possag(a(−→x , e), s). The above requirements must
be entailed by the action theory for it to be an NDBAT.
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An NDBAT D is the union of the following disjoint sets: including (1) foun-
dational axioms, (2) unique-names axioms for actions, (3) axioms describing
the initial situation, (4) successor-state axioms indicating how fluents change
after system actions, and (5) system action precondition axioms, indicating
when system actions can occur; while these axioms generally follow the form:
Poss(a(−→x , e), s) ≡ ϕPoss

a (−→x , e, s), in practice, these axioms often take the form:
Poss(a(−→x , e), s) ≡ Possag(a(

−→x ), s) ∧ ψPoss(−→x , e, s), where Possag(a(
−→x ), s) de-

notes conditions necessary for the agent action a(−→x ) to occur and ϕPoss
a (−→x , e, s)

captures additional conditions influenced by the environment’s response.

Projection and Executability. In the NDSC, executing an agent action in a
situation may result in different situations and outcomes depending on the envi-
ronment reaction. To capture this, (DL21) [4] introduced the defined predicate
Doag(

−→a , s, s′), meaning that the system may reach situation s′ when the agent
executes the sequence of agent actions −→a starting in situation s depending on
environment reactions:

Doag(ϵ, s, s
′)

def
= s = s′ (where ϵ is the empty sequence of actions),

Doag([A(
−→x ), σ], s, s′) def

= ∃e. Poss(A(−→x , e), s) ∧Doag(σ, do(A(−→x , e), s), s′).

A condition ϕ may hold after some executions of a sequence of agent actions −→a
starting in situation s, denoted by PossiblyAfter(−→a , ϕ, s), or it may hold after
all executions of −→a in s, denoted by CertainlyAfter(−→a , ϕ, s). Formally:

CertainlyAfter(−→a , ϕ, s) def
= ∀s′. Doag(−→a , s, s′) ⊃ ϕ[s′],

PossiblyAfter(−→a , ϕ, s) def
= ∃s′. Doag(−→a , s, s′) ∧ ϕ[s′].

Two different notions of executability of −→a are also defined (see [4]).

Example. Our running example involves a robot navigating between different
locations and communicating. We take communication to be subject to inter-
ference and assume that the robot can communicate at a given location if the
location is not risky and it has not become vulnerable. The robot can move
between locations if they are connected and communicate from current location
(represented using agent actions move(i, j) and comm(i)). While moving to a
location, the robot faces the possibility of becoming vulnerable if that location is
a risky one. Thus the agent action move(i, j) is associated with the system action
move(i, j, e), where the environment reaction e can be either Vul (for becoming
vulnerable) or NotVul (for not becoming vulnerable). The communicate agent
action on the other hand has only one successful environment reaction and so it
is associated with the system action comm(i, e), where e = Success.
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I0 I1
Risky

I2
Risky

I3

Fig. 1. Interconnections between locations

The precondition axioms for these agent and system actions are as follows.

(1) Possag(move(i, j), s)
def
= At(i, s) ∧ Connected(i, j),

(2) Possag(comm(i), s)
def
= ¬Vul(s) ∧ ¬Risky(i, s),

(1′) Poss(move(i, j, e), s) ≡ Possag(move(i, j), s)

∧ (Risky(j, s) ⊃ (e = Vul ∨ e = NotVul)) ∧ (¬Risky(j, s) ⊃ e = NotVul),

(2′) Poss(comm(i, e), s) ≡ Possag(comm(i), s) ∧ (e = Success).

The fluents in this example are Vul(s), which denotes that the robot is vul-
nerable in situation s, At(i, s), which states that the robot is at location i in s,
and Risky(i, s), which indicates that the location i is risky in s. Certain loca-
tions are risky initially and they remain the only risky ones when actions are
performed. Also, we have a non-fluent Connected(i, j) to indicate that there is
a path from location i to location j.

The successor-state axioms (SSA) for these fluents are as follows:

(3) At(j, do(a, s)) ≡ ∃i, e. a = move(i, j, e)

∨ (At(j, s) ∧ ∀j′, e′. ¬(a = move(j, j′, e′)),

(4) Vul(do(a, s)) ≡ ∃i, j. a = move(i, j,Vul) ∨Vul(s),

(5) Risky(i, do(a, s)) ≡ Risky(i, s).

We also have the following initial state axioms:

(6) ¬Vul(S0), (7) At(I0, S0), (8) Risky(i, S0) ≡ i = I1 ∨ i = I2.

Finally, there are 4 locations I0 to I3 in this domain, and the interconnections
between these locations are given by the following axiom (see Fig. 1):

(9) Connected(i, j) ≡ (i = I0 ∧ j = I1) ∨ (i = I1 ∧ j = I2) ∨ (i = I2 ∧ j = I3) ∨
(i = I1 ∧ j = I0) ∨ (i = I2 ∧ j = I1) ∨ (i = I3 ∧ j = I2).

We will call this NDBAT D1.

3 Actual Achievement Cause in the Situation Calculus

Given a history of actions/events (often called a scenario) and an observed effect,
actual causation involves figuring out which of these actions are responsible for
bringing about this effect.4 When the effect is assumed to be false before the
4 We use actions and events interchangeably.



6 M. Rostamigiv et al.

execution of the actions in the scenario and true afterwards, the notion is re-
ferred to as achievement (actual) causation. Based on Batusov and Soutchanski’s
original proposal [2], Khan and Lespérance (KL) recently offered a definition of
achievement cause in the SC [14]. Both of these frameworks assume that the
scenario is a linear sequence of actions, i.e. no concurrent actions are allowed.
KL’s proposal can deal with epistemic causes and effects; e.g., an agent may
analyze the cause of some newly acquired knowledge, and the cause may include
some knowledge-producing action, e.g. inform. They showed that an agent may
or may not know all the causes of an effect, and can even know some causes
while not being sure about others.

To formalize reasoning about effects, KL [14] introduced the notion of dy-
namic formulae. An effect φ in their framework is thus a dynamic formula.5
Given an effect φ, the actual causes are defined relative to a narrative (vari-
ously known as a scenario or a trace) s. When s is a ground situation, the tuple
⟨D, s, φ⟩ is often called a causal setting [2]. Also, it is assumed that s is exe-
cutable, and φ was false before the execution of the actions in s, but became
true afterwards, i.e. D |= Executable(s)∧¬φ[S0]∧φ[s]. Here φ is a formula with
its situation arguments suppressed and φ[s] denotes the formula obtained from
φ by restoring the given situation argument s into all fluents in φ (see Def. 2).

Note that since all changes in the SC result from actions, the potential causes
of an effect φ are identified with a set of action terms occurring in s. However,
since s might include multiple occurrences of the same action, one also needs
to identify the situations where these actions were executed. To deal with this,
KL required that each situation be associated with a timestamp, which is an
integer for their theory. Since in the context of knowledge, there can be different
epistemic alternative situations (possible worlds) where an action occurs, using
timestamps provides a common reference/rigid designator for the action occur-
rence. KL assumed that the initial situation starts at timestamp 0 and each
action increments the timestamp by one. Thus, their action theory includes the
following axioms:

timeStamp(S0) = 0,

∀a, s, ts. timeStamp(do(a, s)) = ts ≡ timeStamp(s) = ts− 1.

With this, causes in their framework is a non-empty set of action-timestamp
pairs derived from the trace s given φ.

The notion of dynamic formulae is defined as follows:

Definition 1. Let −→x , θa, and −→y respectively range over object terms, action
terms, and object and action variables. The class of dynamic formulae φ is
defined inductively using the following grammar:

φ ::= P (−→x ) | Poss(θa) | After(θa, φ) | ¬φ | φ1 ∧ φ2 | ∃−→y . φ.
5 While KL also study epistemic causation, we restrict our discussion to objective

causality only.
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That is, a dynamic formula (DF) can be a situation-suppressed fluent, a formula
that says that some action θa is possible, a formula that some DF holds after some
action has occurred, or a formula that can built from other DF using the usual
connectives. Note that φ can have quantification over object and action variables,
but we cannot have quantification over situations or mention the ordering over
situations (i.e. ⊏). We will use φ for DFs.

φ[·] is defined as follows:

Definition 2.

φ[s]
def
=



P (−→x , s), if φ is P (−→x )
Poss(θa, s), if φ is Poss(θa)

φ′[do(θa, s)], if φ is After(θa, φ
′)

¬(φ′[s]), if φ is (¬φ′)

φ1[s] ∧ φ2[s], if φ is (φ1 ∧ φ2)

∃−→y . (φ′[s]), if φ is (∃−→y . φ′).

We will now present KL’s definition of causes in the SC. The idea behind
how causes are computed is as follows. Given an effect φ and scenario s, if some
action of the action sequence in s triggers the formula φ to change its truth
value from false to true relative to D, and if there are no actions in s after it
that change the value of φ back to false, then this action is an actual cause of
achieving φ in s. Such causes are referred to as primary causes:

Definition 3 (Primary Cause [14]).

CausesDirectly(a, ts, φ, s)
def
= ∃sa. timeStamp(sa) = ts ∧ (S0 < do(a, sa) ≤ s)

∧ ¬φ[sa] ∧ ∀s′.(do(a, sa) ≤ s′ ≤ s ⊃ φ[s′]).

That is, a executed at timestamp ts is the primary cause of effect φ in situation
s iff a was executed in a situation with timestamp ts in scenario s, a caused φ
to change its truth value to true, and no subsequent actions on the way to s
falsified φ.

Now, note that a (primary) cause a might have been non-executable initially.
Also, a might have only brought about the effect conditionally and this context
condition might have been false initially. Thus earlier actions in the trace that
contributed to the preconditions and the context conditions of a cause must be
considered as causes as well. The following definition captures both primary and
indirect causes:6

6 In this, we need to quantify over situation-suppressed DF. Thus we must encode such
formulae as terms and formalize their relationship to the associated SC formulae.
This is tedious but can be done essentially along the lines of [6]. We assume that we
have such an encoding and use formulae as terms directly.
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Definition 4 (Actual Cause [14]).

Causes(a, ts, φ, s)
def
= ∀P.[∀a, ts, s, φ.(CausesDirectly(a, ts, φ, s) ⊃ P (a, ts, φ, s))

∧ ∀a, ts, s, φ.(∃a′, ts′, s′.(CausesDirectly(a′, ts′, φ, s)

∧ timeStamp(s′)= ts′ ∧ s′ < s

∧ P (a, ts, [Poss(a′) ∧After(a′, φ)], s′)

⊃ P (a, ts, φ, s))

] ⊃ P (a, ts, φ, s).

Thus, Causes is defined to be the least relation P such that if a executed at
time-step ts directly causes φ in scenario s then (a, ts, φ, s) is in P , and if a′
executed at ts′ is a direct cause of φ in s, the timestamp of s′ is ts′, s′ < s,
and (a, ts, [Poss(a′) ∧ After(a′, φ)], s′) is in P (i.e. a executed at ts is a direct
or indirect cause of [Poss(a′)∧After(a′, φ)] in s′), then (a, ts, φ, s) is in P . Here
the effect [Poss(a′) ∧After(a′, φ)] is that a′ be executable and φ hold after a′.

The KL formalization of actual causation was formulated for deterministic
domains specified by BATs in the situation calculus. However, it can be used di-
rectly for nondeterministic domains, for instance domains specified by NDBATs,
as long as one focuses on scenarios that involve sequences of system actions,
where both the agent actions and the environment reactions are known. This is
not surprising as NDBATs are special kinds of BATS and sequences of system
actions are essentially situations. We illustrate this in the example below.

Example (Cont’d). Consider the system action sequence σ1, where σ1 =
do([comm(I0, Success); move(I0, I1, NotVul); move(I1, I2, Vul); move(I2, I3,
NotVul)], S0). We are interested in computing the causes of the effect φ1 =
Vul(s), i.e. the robot becoming vulnerable, in scenario σ1. It can be shown that:

Proposition 1 (Causes of φ1 in σ1).

D1 |= ¬Causes(comm(I0,Success), 0, φ1, σ1) ∧ Causes(move(I0, I1,NotVul), 1, φ1, σ1)

∧ Causes(move(I1, I2,Vul), 2, φ1, σ1) ∧ ¬Causes(move(I2, I3,NotVul), 3, φ1, σ1).

Thus, for example, the action move(I1, I2,Vul) executed at time-stamp 2 is
a cause since it directly caused the robot to become vulnerable. Moreover,
move(I0, I1,NotVul) executed at time-stamp 1 can be shown to be an indirect
cause of the φ1 = Vul . This is because by axioms (1) and (1′) the primary cause
of moving from location I1 to I2 i.e. move(I1, I2,Vul) is only possible when the
robot is at I1, which in this scenario was brought about by move(I0, I1,NotVul).

4 Agent Actions as Causes in the NDSC

We now turn our attention to causation in nondeterministic domains. As men-
tioned, when the scenario is a sequence of system actions where both the agent
actions and the environment reactions are specified, we can use the KL formal-
ization presented earlier to reason about actual causation, and identify causes



A Logic of Actual Cause for Nondeterministic Domains 9

for effects that are system actions containing both agent actions and environ-
ment reactions. But in many cases, we would like to consider scenarios that are
sequences of agent actions only and where we don’t know what the environment
reactions were. Moreover, we want to analyse which agent actions were causes
of given effects independently of the environment reactions. We address this
question in this section.

We start by defining a notion of nondeterministic causal setting that gener-
alizes causal settings and reflects the agent’s ignorance about the environment’s
choices.

Definition 5 (Nondeterministic Causal Setting). A nondeterministic cau-
sal setting is a tuple ⟨D,−→α , φ⟩, where D is an NDBAT, −→α is a sequence of agent
actions representing the nondeterministic scenario, and φ is a dynamic formula
such that:

D |= ¬φ[S0] ∧ PossiblyAfter(−→α , φ, S0).

Thus a scenario in a nondeterministic causal setting (ND setting, henceforth)
is modeled using a sequence of agent actions −→α , with the assumption that this
sequence was executed starting in S0, and φ holds in at least one execution
of −→α . Note that, since in this paper we are dealing with actual causation, it is
assumed that the effect φ was indeed observed, and thus the agent only considers
the executions of −→α that brought about φ to be candidates for the system action
history that actually occurred.

As before, in our framework causes are action and timestamp pairs. However,
these actions are now agent actions. Also, since each of the agent actions in the
scenario can have multiple outcomes, depending on these outcomes, we might
sometimes call an agent action a cause and sometimes not a cause. In some
cases, an agent action is a cause of an effect for all possible environment choices
associated with the actions in the scenario. In general, given a scenario which
is a sequence of agent actions, we will get a tree of possible executions, where
each branch is the execution produced by a given set of environment reactions to
the agent actions in the sequence. In this tree, it might be that only on certain
branches a system action associated with an agent action executed at some
timestamp is a cause. Additionally, it is also possible that all the system actions
associated with this agent action is a cause in their respective branch. Thus, we
have to define two notions of actual causes for agent actions in nondeterministic
domains, namely possibly causes and certainly causes:7

7 We allow both agent actions and system actions to be viewed as causes. An additional
possibility is to view the environment’s choices as causes, for instance, when there are
no other ways of achieving an effect but via certain environment reactions. However,
the consequences of such a definition is not clear. For instance, is it reasonable to
assign responsibility/blame to nature? Rather than engaging in such philosophical
questions, in this paper we focus on causes that involve the agent.
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S0,¬v

S1,¬v

Sa
2 , v Sb

2,¬v

Sb
31, vSa

31, v Sa
32, v Sb

32,¬v

Sb
41, v Sb

42, v Sb
43, v Sb

44,¬v

Fig. 2. Executions of agent action sequence −→α1.

Definition 6 (Possibly Causes). Let ⟨D,−→α , φ⟩ be an ND setting and β(−→x )
an agent action in −→α .

PossiblyCauses(β(−→x ), t, φ,−→α )
def
=

∃s. Doag(
−→α , S0, s) ∧ φ[s] ∧ ∃e. Causes(β(−→x , e), t, φ, s).

That is, agent action β(−→x ) executed at timestamp t possibly causes φ in scenario
−→α iff there is an execution of −→α that reaches some situation s, φ holds in s, and
for some environment reaction e the associated system action β(−→x , e) executed
at timestamp t is a (deterministic) cause of φ in scenario s.

Definition 7 (Certainly Causes). Let ⟨D,−→α , φ⟩ be an ND setting and β(−→x )
an agent action in −→α .

CertainlyCauses(β(−→x ), t, φ,−→α )
def
=

∀s. Doag(
−→α , S0, s) ∧ φ[s] ⊃ ∃e. Causes(β(−→x , e), t, φ, s).

Thus agent action β(−→x ) executed at timestamp t certainly causes φ in scenario
−→α iff for all executions of −→α that reach some situation s in which φ holds, there
is an environment reaction e such that the associated system action β(−→x , e)
executed at timestamp t is a (deterministic) cause of φ in scenario s. Note that
this does not require a system action associated with β(−→x ) to be a cause in
executions s where φ do not hold; this is because since the agent is assumed to
have observed the effect φ, such executions can be ruled out as unrealistic, i.e.
inconsistent with this assumption.

Example (Cont’d). Consider the agent action sequence −→α1 below:
−→α1 = comm(I0);move(I0, I1);move(I1, I2);move(I2, I3).

When executed starting on S0, −→α1 produces the tree of possible executions shown
in Fig. 2. Here, the superscripts a and b represent environment choices Vul
and NotVul , respectively, and v/¬v indicates whether the agent has become
vulnerable or not. Thus for example, in this tree, S1 = do(comm(I0,Success), S0)
and Sa

2 = do(move(I0, I1,Vul), S1), etc. It is easy to see that the execution of
−→α1 starting in S0 possibly satisfies φ1 = Vul(), e.g. due to the existence of path
(S0, S

b
43) in this tree over which the system action sequence in situation σ1 is

executed. Given ND causal setting ⟨D1,
−→α 1, φ1⟩, we can in fact show that:
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Proposition 2.

D1 |= ¬PossiblyCauses(comm(I0), 0, φ1,
−→α1)

∧ CertainlyCauses(move(I0, I1), 1, φ1,
−→α1)

∧ PossiblyCauses(move(I1, I2), 2, φ1,
−→α1)

∧ ¬CertainlyCauses(move(I1, I2), 2, φ1,
−→α1)

∧ ¬PossiblyCauses(move(I2, I3), 3, φ1,
−→α1).

Thus, comm(I0) and move(I2, I3) do not possibly causes φ1 because they are
not a cause (in the deterministic sense) of φ1 in any of the executions of −→α1

depicted in Fig. 2 in which φ1 holds, i.e. in scenarios Sb
41, S

b
42, and Sb

43. Moreover,
move(I0, I1) certainly causes (and thus also possibly causes) φ1; this is because
in all the executions of −→α1 starting in S0 over which φ1 holds, it is either a
direct cause of φ1 (as in situations Sb

41 and Sb
42), or it is an indirect cause of φ1

(as in Sb
43). To see the latter, recall Proposition 1 above. Finally, move(I1, I2)

possibly causes φ1, but not certainly causes it; this is because there is at least
one execution of −→α1 in which it is a cause of φ1, e.g. the one ending in Sb

43, but
not over all executions in which φ1 holds, e.g. in scenario Sb

41.

5 Reasoning about Achievement Causes

We now show that one can use regression to answer queries about various no-
tions of causes under certain conditions. Note that previously KL [14] showed
that Causes in the SC can be translated into a regressable formula when the
situation is ground. DL [4] on the other hand proved that CertainlyAfter and
PossiblyAfter under the right conditions are reducible to regressable formulae.
Here we formalize these two techniques and show that it is possible to combine
these two to obtain regressable formulae for possibly causes and certainly causes.

We start by defining a new abbreviation Causesk(a, t, φ, s), meaning that
action a executed at time t causes φ in situation s in a causal chain of k steps
(Definitions 8 and 9 and Theorem 1 were previously informally discussed in [14]).

Definition 8.

Causesk(a, t, φ, s)
def
=


CausesDirectly(a, t, φ, s), if k = 1

∃a′, s′, t′. CausesDirectly(a′, t′, φ, s)

∧ start(s′) = t′ ∧ s′ < s if k > 1.

∧ Causesk−1(a, t, [Poss(a′) ∧After(a′, φ)], s′),

Let us also define Causes≤k(a, t, φ, s), meaning that action a executed at time t
causes φ in situation s in a causal chain of at most k steps.

Definition 9.

Causes≤k(a, t, φ, s)
def
=

{
Causesk(a, t, φ, s), if k = 1

Causesk(a, t, φ, s) ∨ Causes≤k−1(a, t, φ, s), if k > 1.

Then we can show the following.
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Theorem 1.

D |= Causes(a, t, φ, do([a1, . . . , an], S0) ≡ Causes≤n(a, t, φ, do([a1, . . . , an], S0)).

Intuitively, this follows from the fact that any causal chain between a1 and an,
every cause of φ holding in do([a1, . . . , an], s) has at most n steps.

We next define a translation function τ+ that we will use to prove regress-
ability of causes (this is one of our main contributions).

Definition 10.

τ+(CausesDirectly(b, t, φ, do([a1, . . . , ak, . . . , an], S0)))
def
=

b = ak ∧ t = k − 1 ∧ ¬φ[do([a1, . . . , ak−1], S0)] ∧
n∧

i=k

φ[do([a1, . . . , ai], S0)].

We extend τ+ to also include indirect causes.

Definition 11.

τ+(Causes(a, t, φ, do([a1, . . . , an], S0)))
def
= τ+(Causes≤n(a, t, φ, do([a1, . . . , an], S0))),

where τ+(Causes≤k(a, t, φ, S0))
def
={

τ+(Causesk(a, t, φ, S0)), if k = 1

τ+(Causesk(a, t, φ, S0)) ∨ τ+(Causes≤k−1(a, t, φ, S0)), if k > 1.

and τ+(Causesk(a, t, φ, do([a1, . . . , an], S0)))
def
=

τ+(CausesDirectly(a, t, φ, do([a1, . . . , an], S0))), if k = 1∨n
i=2

[
τ+(CausesDirectly(ai, start(do([a1, . . . , ai−1], S0)), φ, do([a1, . . . , an], S0)))

∧ τ+(Causesk−1(a, t, [Poss(ai) ∧After(ai, φ)], do([a1, . . . , ai], S0)))
]
,

if k > 1.

Finally, we extend τ+ to deal with formulae with ground situation terms (here
s is a ground situation term and ψ, possibly with decorations, is a formula with
ground situation terms):8

Definition 12. Let ψ be a formula where all the situation terms are ground and
v be a variable of environment reaction or object sort. Then let:

τ+(ψ)
def
=



P (−→x , s), if ψ = P (−→x , s),
Poss(a, s), if ψ = Poss(a, s),

¬(τ+(ψ′)), if ψ = (¬ψ′),

τ+(ψ1) ∧ τ+(ψ2), if ψ = (ψ1 ∧ ψ2),

∃v. τ+(ψ′), if ψ = (∃v. ψ′).
8 Note that although we want this definition to deal with, among other things, arbi-

trary situation-grounded dynamic formulae, we don’t need to cover the case where
ψ = After(a, φ)[s] since this is reduced to φ[do(a, s)] by Definition 2.
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Using this, we can show the following.

Theorem 2. Let α be a ground system action term, φ be a dynamic formula
without action variables, and σ be a ground situation term. Then we have:

D |= Causes(α, t, φ, σ) ≡ τ+(Causes(α, t, φ, σ)).

Then, by the theorem, our first major result about regressability of causes im-
mediately follows (this result was previously explored in [14], but without the
details of translation τ+).

Corollary 1. If σ is a ground situation term, α is a ground action term, and
φ does not involve any action variables, then Causes(α, t, φ, σ) is equivalent to
a regressable formula.

This follows from Theorem 2 and the fact that when the above conditions hold,
τ+(Causes(α, t, φ, σ)) produces a Boolean combination of action- and situation-
grounded CausesDirectly formula, which in turn reduces to a regressable formula
that talks about whether the associated effect is true or not in different such
grounded situations.

We next investigate the regressability of possibly and certainly causes. To this
end, we define a couple of translation functions that convert these to regress-
able formulae. We start by introducing a translation function τ to deal with
CertainlyAfter and PossiblyAfter (the idea behind Definition 13 and Theorem
3 is borrowed from [4]).
Definition 13. Let β be an agent action function and −→α be an agent action
sequence. Then let:

τ(CertainlyAfter(−→α ,ψ, s)) def
=

ψ[s], if −→α = nil ,

∀e. ϕPoss
β (−→x , e, s) ⊃ τ(CertainlyAfter(−→γ , ψ, do(β(−→x , e), s))),

if −→α = [β(−→x ),−→γ ].

τ(PossiblyAfter(−→α ,ψ, s)) def
=

ψ[s], if −→α = nil ,

∃e. ϕPoss
β (−→x , e, s) ∧ τ(PossiblyAfter(−→γ , ψ, do(β(−→x , e), s))),

if −→α = [β(−→x ),−→γ ].

Using this, we can show the following result that previously appeared in [4].

Theorem 3. Let D be an NDBAT, −→α a ground agent action sequence, S a
situation term containing no situation or action variables, and ψ a situation
suppressed formula containing no action variables. Then CertainlyAfter(−→α , ψ,
S) is equivalent to a regressable formula, and so is PossiblyAfter(−→α , ψ, S).
Example (Cont’d). Let us consider the agent action sequence −→α2 = move(I0, I1);
move(I1, I2), where the robot moves from location I0 to I1 and then from I1 to
I2, starting in S0. Note that, it is possible that the agent becomes vulnerable
after executing −→α2, i.e. PossiblyAfter(−→α2,Vul , S0). We can show that this can be
reduced to the following, which is a regressable formula.
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Proposition 3.

D1 |= PossiblyAfter(−→α2,Vul , S0) ≡
∃e. At(I0, S0) ∧ Connected(I0, I1) ∧ (e = Vul ∨ e = NotVul)

∧ ∃e′. At(I1, do(move(I0, I1, e), S0)) ∧ Connected(I1, I2) ∧ (e′ = Vul ∨ e′ = NotVul)

∧Vul(do(move(I1, I2, e
′), do(move(I0, I1, e), S0))).

Next, we show that certainly/possibly causes are equivalent to a formula
about certainly/possibly after. Using this, τ , and τ+, we will then compose a
function τ∗ to reduce certainly and possibly causes to regressable formulae (what
follows is one of our main contributions).

Proposition 4. Let β(−→x ) be a ground agent action, −→α be a ground agent action
sequence, and φ be a dynamic formula without action variables. Then we have:

D |= CertainlyCauses(β(−→x ), t, φ,−→α ) ≡
CertainlyAfter(−→α ,¬φ ∨ ∃e. Causes(β(−→x , e), t, φ), S0).

D |= PossiblyCauses(β(−→x ), t, φ,−→α ) ≡
PossiblyAfter(−→α ,∃e. Causes(β(−→x , e), t, φ), S0).

τ∗ is defined as follows.

Definition 14.

τ∗(CertainlyCauses(β(−→x ), t, φ,−→α ))
def
=

τ+(τ(CertainlyAfter(−→α ,¬φ ∨ ∃e. Causes(β(−→x , e), t, φ)), S0))),

τ∗(PossiblyCauses(β(−→x ), t, φ,−→α ))
def
=

τ+(τ(PossiblyAfter(−→α , ∃e. Causes(β(−→x , e), t, φ), S0))).

Using this, we can show the following results.

Theorem 4. Let β(−→x ) be a ground agent action, −→α be a ground agent action
sequence, and φ be a dynamic formula without action variables. Then we have:

D |= CertainlyCauses(β(−→x ), t, φ,−→α ) ≡ τ∗(CertainlyCauses(β(−→x ), t, φ,−→α )),

D |= PossiblyCauses(β(−→x ), t, φ,−→α ) ≡ τ∗(PossiblyCauses(β(−→x ), t, φ,−→α )).

Finally, we prove our main result about the regressability of causes in the NDSC.

Theorem 5. Let D be an NDBAT, β(−→x ) be a ground agent action, −→α be a
ground agent action sequence, and φ be a dynamic formula without action vari-
ables. Then CertainlyCauses(β(−→x ), t, φ,−→α ) is equivalent to a regressable for-
mula, and so is PossiblyCauses(β(−→x ), t, φ,−→α ).

This follows from Theorem 4 and the definitions of τ∗, τ , and τ+. Note that
τ(· · · ) on the right-hand sides of Definition 14 will eventually be reduced to
formulae that are constructed from regressable sub-formulae as well as Causes
predicates (see the base cases in Definition 13). τ+, as specified in Definition 10
to 12, then converts these formulae into regressable formulae.
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Example (Cont’d). We can show that PossiblyCauses(move(I0, I1), 0,Vul ,
−→α2)

can be translated into the following regressable formula.

Proposition 5.

D1 |= PossiblyCauses(move(I0, I1), 0,Vul ,
−→α2) ≡

∃e′. At(I0, S0) ∧ Connected(I0, I1) ∧ (e′ = Vul ∨ e′ = NotVul)

∧ ∃e′′. At(I1, do(move(I0, I1, e
′), S0)) ∧ Connected(I1, I2) ∧ (e′′ = Vul ∨ e′′ = NotVul)

∧ ([¬Vul(S0) ∧Vul(do(move(I0, I1, e
′), S0))

∧Vul(do(move(I1, I2, e
′′), do(move(I0, I1, e

′), S0)))] ∨
[¬Vul(do(move(I0, I1, e

′), S0)) ∧Vul(do(move(I1, I2, e
′′), do(move(I0, I1, e

′), S0)))

∧ ¬φ2(S0) ∧ φ2(do(move(I0, I1, e
′), S0))]),

where φ2 = [Poss(move(I1, I2, e
′′)) ∧After(move(I1, I2, e

′′),Vul)].

This regressable formula requires that for some environment reaction e′, the
first move action in the scenario must be executable in S0, and for another
environment reaction e′′, the second move action must be executable afterwards.
Moreover, move(I0, I1, e

′) executed at time-stamp 0 is required to be either a
primary or a secondary cause of the robot becoming vulnerable. The former
demands Vul to be false initially in S0 and to become and remain true after the
execution of the first move action till the end of the trace. The latter stipulates
that move(I1, I2, e

′′) must be a primary cause of Vul , and thus Vul must have
been false before its execution but must become and remain true afterwards.
As well, move(I0, I1, e

′) must have caused the preconditions of the latter move
action and the conditions under which the latter move action brings about Vul
(this indirect effect is represented using φ2 above), and thus φ2 must have been
false in S0 but must become and remain true after the first move action was
performed until the execution of the next move action.

6 Conclusion

Motivated by the nondeterministic nature of real world action and change, in
this paper, we proposed a formalization of actual achievement causes in the
nondeterministic situation calculus [4]. We showed that in such domains, when
the environment reactions are not known, two different notions of causes can
be defined, one where an agent action is a cause for all possible environment
reactions, and thus it is certainly a cause, and another where the agent action is
a cause for at least one environment choice, i.e. it is possibly a cause. Extending
on previous work, we also proved that these notions can be straightforwardly
translated to regressable formulae. While our initial results look promising and
shed some light on reasoning about these notions, in practice our translations
generate large formulae. To deal with this, we are currently looking at how one
could produce more compact versions of the translations. We are also looking into
the epistemics of causation in nondeterministic domains, extending our previous
work in [14].
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