
Towards an iStar 2.0 Extension for Analyzing
Goal Variability

Sotirios Liaskos Shakil M. Khan John Mylopoulos

Abstract Goal models of the i* family have been shown to be suitable for concisely
representing and analyzing goal variability. In standard i*, goal variability emerges
due to the presence of OR-refinements, which describe alternative ways by which
stakeholder goals can be fulfilled. On closer inspection, however, variability exists in
goal models beyond what can be represented by OR-refinements. Firstly, given one
set of tasks that fulfill the root goals, there are many alternative orderings by which
those tasks can be performed. Secondly, tasks can have many alternative outcomes.
In the past, we have proposed various approaches for analyzing these two types of
variability, each accompanied by an extension to the i* notation that allows trans-
lation of the visual goal model into a formal specification suitable for automated
identification of goal-fulfilling alternatives. In this chapter, we propose a consoli-
dation of these extensions into iStar T, a unified extension to the current iStar 2.0
modeling language. iStar T proposes a minimum set of added modeling constructs
and a core set of rules that allow translation of models into specifications usable by
different reasoning systems. We describe the extensions and, as examples, we sketch
the rules to translate into Hierarchical Task Network and Golog specifications and
the kinds of automated analysis that can be done with the result.

1 Introduction

Since its introduction in the mid-90’s, the i* modeling language [27] has had a
substantial influence in the study of the engineering of software-intensive systems.

Sotirios Liaskos
School of IT, York University, Toronto, ON, Canada e-mail: liaskos@yorku.ca

Shakil M. Khan
University of Regina, Regina, SK, Canada e-mail: shakil.khan@uregina.ca

John Mylopoulos
University of Toronto, Toronto, ON, Canada e-mail: jm@cs.toronto.edu

1

https://orcid.org/0000-0001-5625-5297
https://orcid.org/0000-0003-0140-3584
https://orcid.org/0000-0002-8698-3292
liaskos@yorku.ca
shakil.khan@uregina.ca
jm@cs.toronto.edu

2 Liaskos, Khan, and Mylopoulos

Its ability to combine modeling of intra-agent intentional structures with inter-agent
social dependency ones in an accessible semi-formal manner has found a large variety
of applications in a broad range of areas. It has further been the central reference
point of a large and diverse ecosystem of related languages, tools, methods, and
analysis techniques. One of the many attractive aspects of i* and the languages
it has inspired is their ability to model goal variability, that is, alternative ways
by which actor goals can be fulfilled [22]. In i*, goal variability is modeled both
concisely, allowing encoding of large numbers of alternatives within relatively small
and readable decomposition structures, and in a way that is amenable to useful
analysis by allowing characterization of the alternatives subject to criteria.

In this chapter we discuss the notion of goal variability and review the ways by
which it occurs in goal models. We then propose iStar T, an extension to i*’s lat-
est standard iStar 2.0 [6], aimed at facilitating representation of the variability that
emerges along temporal and causal dimensions of goal models. The iStar T dialect
combines and consolidates disparate extensions we have introduced over the past
years for different variability modeling and analysis purposes. It introduces a mini-
mum set of core constructs that has proved useful for a variety of variability modeling
applications and is amenable to translation into various formal specifications to en-
able automated reasoning and analysis. As examples, we sketch how iStar T can be
translated to Hierarchical Task Networks (HTN) [23] and Golog [16] specifications
and how the latter can be used for automated reasoning about goal variability. iStar
T can hence be the basis for developing core modeling and translation tools that can
be extended into more specialized languages and toolsets.

We organize the chapter as follows. In Section 2 we describe how variability is
encoded in i*-type goal models. In Section 3 we present the iStar T extension. Then
in Sections 4 and 5 we outline how iStar T diagrams can be translated to HTN and
Golog specifications and allow for useful automated reasoning. We conclude with
pointers to related efforts and discuss opportunities for future work in Section 6.

2 Variability in i* models

Let us demonstrate how variability emerges in goal models through an example. In
Figure 1, an iStar 2.0 [6] (our reference i* language specification henceforth) hybrid
strategic dependency (SD) - strategic rationale (SR) diagram can be viewed depicting
the intentional structure of an interaction between a merchant and a customer. The
latter depends on the former to receive a quote for a product of interest, and, following
order placement and payment completion, to receive the product shipment. The
merchant depends on the buyer for receiving order and payment. Both actors want
to fulfill their top-level goals, Have Order Fulfilled and Have Product Acquired.

We use the term goal variability to express both the notion that there are alternative
ways by which such root goals can be fulfilled [22] and to refer to the set of these
alternatives. Such variability is primarily represented through OR-refinements of
goals and tasks. In the example, OR-refinements are used to represent different

Towards an iStar 2.0 Extension for Analyzing Goal Variability 3

Customer

Have Product
Acquired

Have
Payment

Submitted

Place
Order

Have Product
Delivered

Pay with
Credit Card

Pay with
Cheque

Low
Cost

Traceability

Ship
Standard

Ship
Express

Have Order
Fulfilled

Send
Quote

Payment
Received

Received by
Credit Card

Received by
Cheque

Order
Received

Order
Fulfilled

Quote
Received

Check
Stock

Received
Regular

Received
Express

help

help

Merchant

Accept
Quote

Strong
Profit help

Order
Shiped

D

D

D

Quote
Sent

Quote
SentD

D

Shipped
Regular

D

Shipped
Express D

D

Check
ReceivedD D

CC Payment
Reveived D

D

Fig. 1 A merchant-customer iStar 2.0 diagram.
.

speeds by which Merchant’s Order Shipped can be fulfilled (express and regular),
as well as different ways by which the Customer can Have Payment Submitted.

The meaning of OR-refinement-based variability can vary depending on the
content of the participating goals and the aspect in which the refinement children
differ. For example, variability in methods of paying for the order can be seen as
instrument variability whereas variability in delivery times is temporal variability.
Additional examples of kinds of variability that an OR-refinement represents includes
agentive (different actors responsible for fulfilling the goal), locational (different
locations at which a goal can be fulfilled) or extent (different degrees by which goal-
fulfillment activities can be performed - e.g., intensity, level, amount etc.). These
categories, inspired by case frame literature [8], have been proposed to be used as
tools for eliciting OR-refinements [20, 25]. Moreover, the presence of contribution
links to quality goals allows representation of the rationale for certain choices among
OR-refinement sibling goals, or conversely, guide the choice when a preference of
one or more quality goals over others is given [21, 22].

However, variability in i*-type intentional structures may exist beyond what an
OR-refinement can represent. Two additional types of variability that are of interest
here are ordering variability and outcome variability. Ordering variability refers
to the multiplicity by which sets of actions to fulfill goals can be ordered. In our
example, a product can be shipped before or after a payment has been received.
Outcome variability, on the other hand, is based on the acknowledgment that, in
reality, tasks do not bring about the same outcome every time they are attempted.
Rather, attempt of a task leads to the occurrence of one out of multiple outcomes.
For example, Ship Express may fail due to a mishap in the shipping process or either
of the outcomes of a task (not seen in the figure) Choose Payment Option, e.g.,
cash or credit card, may occur. Importantly, different outcomes may influence how
variability is handled elsewhere in the goal model. For example, if Customer chooses
to pay by credit card, tasks such as Apply Discount may become disabled.

To represent and reason with ordering and outcome variability we propose iStar T,
an extension to the standard iStar notation with constructs that allow us to repre-
sent, firstly, constraints to the order by which tasks can be executed, and, secondly,
alternative outcomes of tasks. We discuss these extensions next.

4 Liaskos, Khan, and Mylopoulos

Customer

Have Product
Acquired

Have Payment
Submitted

Place
Order

Have Product
Delivered

Pay with
Credit Card

Pay with
Cheque

Happy
Customer

break

Low Cost

Traceability

Ship Standard

Ship
Express

eff

quoteSent

orderReceivedorderLost

0.950.05

eff

Order
Shiped

arrivedLateEx

shipmentLostEx

0.25
0.05

eff

arrivedLate

shipmentlost

0.25
0.05

eff

arrivedInTime

0.7

Have Order
Fulfilled

Send Quote

Payment
Received

Received by
Credit Card

Received by
Cheque

Order
Received

Order
Fulfilled

Quote
Received

preCheck
Stock

Received
Regular

Received
Express

eff

itemInStock

notInStock
0.3

0.7

chequeLost

0.95

0.05
eff

help

help

Merchant

break

hurt

hurt

orderReceived

pre

eff

ccPayReceived

hasCheckingAccount AND
merchantAcceptsCheques

pre

quoteAcceptable

quoteUnacceptable

Accept Quote

eff

pre
pre

pre

quoteLost

hasCreditCard AND (NOT
priceExceedsLimit OR
thresholdSuspended)

pre

chequeReceived,
accountUpdated

0.4

0.6

{hasCreditCard},
{thresholdSuspended},
{hasCheckingAccount}

Initialization

arrivedInTimeEx

0.7
help

Strong
Profit

help
npr

D

D

Condition

Failure
Effect

Success
Effect

Effect
Group

Negative
Precedence

Precedence

Effect Link
Quote
Sent

Initialization

DD

Quote
Sent

D
Shipped
Regular

D

D

D

CC Payment
Reveived

D

D

D
Check

Received

D

D

D

Shipped
Express

D

D

D

D
D

help

Fig. 2 Extension of the merchant-customer iStar 2.0 model of Figure 1 using iStar T elements.
.3 Elements of iStar T

The extensions proposed for iStar T allow expressing temporal and conditional
relationships between goals and tasks and outcome variability in the latter. An
iStar T model, such as the one shown in Figure 2, contains the following added
elements: (a) a set 𝐷 of domain propositions, (b) a set E of effect elements (also:
effects) containing elements or sets of elements from 𝐷, (c) a set P of effect groups,
each associated with a task 𝑡 ∈ T , (d) a set of C of condition elements (also:
conditions), each containing boolean formulae built with elements from 𝐷 and (e)
an initialization element (also: initialization) I containing a set of elements from 𝐷.

In addition, the following link types are introduced. Firstly, precedence links and
negative precedence links can originate from any of: goal, task, condition element
and target any of: goal, task, effect. Secondly, effect links originate from tasks and
target any of: a unique effect 𝑒 ∈ E or an effect group 𝑝 ∈ P. We next look at each
of these additions in more detail.

Domain Propositions, Condition Elements, and Effects. The added domain
propositions are used to represent properties of the domain such as its state as tasks
are performed for the fulfillment of actor goals. Examples of such domain proposi-
tions include itemInStock, shipmentLost, hasCheckingAccount. Domain propositions
appear in the diagram in three kinds of visual elements: conditions, effects, and ini-
tializations. Conditions, represented as rectangles in the diagram, contain arbitrary
consistent formulae constructed using domain propositions and common logical
connectives: not, and, or. Thus:

hasCreditCard and (not priceExceedsThreshold or thresholdLifted)
is an example of the content of a condition element. Effects, represented as ovals,
contain a list of one or more propositions, e.g., chequeReceived, accountUpdated.

Towards an iStar 2.0 Extension for Analyzing Goal Variability 5

Causal Constraints and Non-Determinism. Tasks and effects are connected
with each other using effect links which represent causal constraints. Effect links
towards single effects convey that attempt of the task from where the link originates
deterministically (i.e., with no uncertainty) makes the propositions listed in the effect
true. In Figure 2, Customer task Pay with Credit Card points to effect ccPayReceived,
meaning that attempt of the task makes the proposition in the effect true.

When we want to represent that performance of a task has multiple possible ef-
fects, we use effect groups. Effect groups are represented through a filled circular
element on which the set of possible effects are connected through a plain effect group
line. When the group is activated, exactly one of the effects will non-deterministicaly
occur. When available, the probability of each effect occurring upon effect group
activation can be represented through a numeric label on the corresponding effect
group link; probabilities in each effect group must add up to 1. When an effect link
connects a task to an effect group, this conveys that when the task is attempted,
the corresponding effect group is activated, which, in turn, means that one of the
constituent effects of the group will occur. In our example, the Customer task Accept
Quote is connected to an effect group that includes two possible outcomes: quoteAc-
ceptable, and quoteUnacceptable. Upon performance of the task, exactly one of these
two propositions will become true with probabilities 0.6 and 0.4, respectively.

Moreover, individual effects of an effect group may be deemed either success or
failure effects, marked with a blue/solid or a red/dashed outline, respectively. The
former signify that, when they occur, the task that points to the effect group is assumed
successfully performed. The latter signify that the corresponding task attempt has
instead failed. In our Accept Quote example, of the two effects it may have, only one
is assumed to mark successful performance of the task (quoteAcceptable). However,
a task is considered to be attempted, if any of its effects occurs.

A failed task does not contribute to the fulfillment of its parent goal, though it
marks its attempt. Specifically, let a goal 𝑔 be AND- (respectively, OR-) refined
into tasks 𝑡1, 𝑡2, . . . and goals 𝑔1, 𝑔2, Goal 𝑔 is satisfied iff all (respectively, at
least one) of tasks 𝑡𝑖 and goals 𝑔𝑖 are (resp., is) successfully performed (rather than
merely attempted) and (resp., or), in the case of goals, satisfied. Likewise, a goal 𝑔
is attempted iff at least one of the tasks 𝑡𝑖 and goals 𝑔𝑖 is successfully attempted. By
applying these rules while recursively traversing the AND/OR refinement tree, we
can associate any goal or task element in the diagram with two Boolean formulae
grounded on domain propositions, a satisfaction formula and an attempt formula.
Then, the goal/task is satisfied/performed (resp. attempted) iff the satisfaction for-
mula (resp. attempt formula) holds. Given a value configuration of all propositions
mentioned in effect elements, the satisfaction and attempt status of any goal in the
diagram, including those of root goals can be decided.

Temporal Constraints. Precedence and negative precedence links can be drawn
from a condition element, a task, or a goal, and target a task, a goal, or an effect
within an effect group. A precedence link from a condition element, task or goal to
a task means, respectively, that the condition element has to be true, the task has
to be successfully performed, or the goal has to be satisfied before the task can be
attempted. A precedence link towards a goal can be seen as a shorthand to drawing

6 Liaskos, Khan, and Mylopoulos

separate precedence links from the same origin to each of the tasks in the model
that are descendants of the goal. When a precedence link targets an effect within
an effect group, the effect cannot be brought about unless the origin is respectively
true/satisfied/performed. A negative precedence link from a condition element, task
or goal targeting an effect in effect group, a task, or a goal, means, respectively, that
the targeted effect cannot be brought about, the targeted task cannot be attempted and
none or the leaf-level successor tasks of the goal can be attempted, if, respectively
for the origin possibilities, the condition element is true, the origin task has been
successfully performed, or the origin goal has been attempted (rather than satisfied).

In Figure 2, the precedence between goal Quote Received and task Accept Quote
implies that the goal must be deemed satisfied before the task can be attempted. This
will be true if Merchant’s task Send Quote is successfully performed, meaning that
the quoteSent outcome occurs. If quoteLost occurs instead, Quote Received is not
considered satisfied and, as such, Accept Quote cannot be attempted.

Effect Histories and Initializations. As actors act in the domain to satisfy
their goals, tasks are assumed to be attempted bringing about deterministic or non-
deterministic effects, which, in turn, decide if the tasks and their parent goals can be
assumed performed and satisfied, enabling or disabling the possibility of attempting
other tasks or goals in the next step. An effect (occurrence) history is a constraint-
satisfying sequence of effects resulting from a corresponding sequence of tasks (the
task history) from a state in which no task has been attempted. A goal satisfying
history with respect to a goal is an effect history leading to a state in which the
goal has been fulfilled. Such a history describes one way to bind goal variability,
where specific OR-refinement alternatives are chosen, a specific execution order is
attempted, and specific outcomes have come about.

Further, initializations contain a vocabulary of propositions that must be set to
true or false prior to the calculation of histories. Their content is of the form {𝑝1},
{𝑝2}, ..., where 𝑝𝑖 are propositional atoms to be initialized.

Contribution Links. In iStar T contribution links can be drawn from effects to
quality goals, signifying that it is the outcomes of tasks that contribute to qualities,
rather than their mere attempt. For example, that Ship Express has been attempted
does not offer any information with regards to whether quality Happy Customer is
positively affected. The latter depends on the outcome of the attempt. For example,
if the shipment is lost, that has a very negative contribution to the quality goal in
question despite the intent. Contributions can be seen as activated and deactivated
by task attempts taking place throughout a satisfying history, through enabling
propositions contained in the task’s effects or arbitrary conditions. Consequently, a
goal satisfying history is associated with a trajectory of activations and deactivations
of contribution links that target each quality goal.

Structural Restrictions. We finally note that a number of structural constraints
and scope restrictions are introduced in the current version of iStar T to simplify
the formalization and analysis process. The most important are (i) that every task
must be connected through an effect link to an effect or effect group, (ii) that tasks
are not further refined into other tasks or goals, and (iii) that goals must either be
refined or delegated; no goal can exist at the leaf level. Thus, meaningful iStar T

Towards an iStar 2.0 Extension for Analyzing Goal Variability 7

diagrams consist of one or more goal refinement trees, rooted at goals which are
progressively refined and/or delegated into lower-level subgoals and eventually tasks,
each of which is associated with an effect or an effect group.

4 Formalizing iStar T

One of the purposes for defining iStar T is to allow automated reasoning about
goal variability via translation into suitable formal specification languages. The
authors have proposed various ways in the past for performing such translations
based on different extensions to i* catering for different variability analysis purposes
[18, 19, 21]. Our goal is to distill baseline translation rules which can be extended to
fulfill specific needs. The baseline rules depend on the target specification language.
In this chapter, we showcase development of rules for two targets: Hierarchical Task
Networks (HTNs) [23] and Golog [16]. Both target languages have been shown
to be useful for a variety of tasks including identification of optimal solutions
based on different criteria [19, 21], behavioral customization of software [18], and
development of simulations for reinforcement learning [17].

Our presentation is informal and example-based and aimed at showcasing the
principles behind the translation rules and their capabilities in terms of the analysis
they support. An authoritative report with a formal presentation and analysis of the
core translation rules is upcoming. For better comprehension of the presentation that
follows, the reader may find useful to refer to the examples of Figure 3.

4.1 HTN Planning

We start by showing how the extended goal models can be translated to HTN
specifications, which in turn can be used to identify goal satisfying histories.

HTN planners receive a domain specification and a problem specification as input
and generate a solution to the latter as output. The domain specification consists of
a set of domain predicates 𝑣 ∈ 𝑉 describing properties of objects 𝑏 ∈ 𝐵 that are of
interest in the domain, a set of operators 𝑜 ∈ 𝑂, representing actions in the domain,
and a set of methods ∈ 𝑀 describing ways by which higher level planning objectives
can be decomposed into lower level operators or other methods.

Domain predicates, such as has(customer,quote), are used to describe the state
of the domain as agents perform actions described by operators. Moreover, axioms
show that the predicate that is the head of the axiom is true if the expression in the
tail of the axiom is satisfied. Thus, the following axiom says that 0-ary predicate
orderShipped is true if any of the propositions in the tail is satisfied:
(:- (orderShipped) ; head

(orderShippedByAir ∨ orderShippedByLand)) ; tail

8 Liaskos, Khan, and Mylopoulos

(:method paywithCreditCard
 ()
 ((!ccPayReveivedNat)
 (q_contr traceability plus)))
(:operator (!ccPayReceivedNat)
 ()
 ()
 (ccPayReceived))
...
(:method
 (q_contr ?quality help)
 (sat ?goal FS) ; if
 ((!!fullSat ?goal)) ; tasks
 () ; else
 ((!!partSat ?goal)))

Pay with
Credit Card

eff

ccPayReceived

eff

quoteSent

Send Quote

quoteLost

(:operator (!quoteSent)
 (...) ; precondition
 () ; delete list
 (quoteSent)) ; add list
(:operator (!quoteLost)
 (...)
 ()
 (quoteLost))
(:method sendQuote
 ()
 ((!quoteSent)))
(:method sendQuote
 ()
 ((!quoteLost)))
(:- sendQuoteSat
 ((quoteSent)))
(:- sendQuoteAtt
 (or (quoteSent)
 (quoteLost)))

Product
Acquired

Payment
SubmittedProduct

Delivered

AND AND

(:method productAcquired
 ()
 (:unordered
 (productDelivered)
 (paymentSubmitted)))
(:- productAcquiredSat
 (and (productDeliveredSat)
 (paymentSubmittedSat)))
(:- productAcquiredAtt
 (or (productDeliveredAtt)
 (paymetnSubmittedAtt)))

Ship
Standard

Ship
Express

Order
Shiped

OR
OR

(:method orderShipped
 ()
 ((shipExpress)))
(:method orderShipped
 ()
 ((shipStandard)))
(:- orderShippedSat
 (or (shipExpressSat)
 (shipStandardSat)))
(:- orderShippedAtt
 (or (shipExpressSat)
 (shipStandardSat)))

Traceability

help

proc(productAcquired,
 (productDelivered:paymentSubmitted) #
 (paymentSubmitted:productDelivered)).

productAcquiredSat(S) :-
 productDeliveredSat(S), % and
 paymentSubmittedSat(S).

productAcquiredAtt(S) :-
 productDeliveredAtt(S); % or
 paymentSubmittedAtt(S).

proc(orderShipped,
 shipExpress # shipStandard). % pick

orderShippedSat(S) :-
 shipExpressSat(S);
 shipStandardSat(S).

orderShippedAtt(S) :-
 shipExpressAtt(S);
 shipStandardAtt(S).

proc(sendQuote,
 quoteSent # quoteLost).

poss(quoteSent) :- ...
poss(quoteLost) :- ...

quoteSent(do(A,S)) :-
 quoteSent(S); A = quoteSent.
quoteLost(do(A,S)) :-
 quoteLost(S); A = quoteLost.

sendQuoteSat(S) :-
 quoteSent(S).
sendQuoteAtt(S) :-
 quoteSent(S);quoteLost(S).

proc(paywithCreditCard,
 ccPayReceived).

poss(ccPayReceived) :- ...

ccPayReceived(do(A,S)) :-
 ccPayReceived(S);
 A = ccPayReceived.

sat(traceability,part,do(A,S)) :-
 sat(traceability,part,S);
 A = ccPayReceived;
 A = ... % other help contributors

iStar T GologHTN

Fig. 3 Translation rules by example.

Operators represent the transitioning of the domain from one state to another, through
changes in the truth values of domain predicates. Each operator 𝑜 is associated
with an add list and a delete list, which list predicates that turn true and false,
respectively, upon application of the operator. Operators also have a precondition
formula, constructed with elements from 𝑉 , which denote that the operator cannot
be applied at a given state, unless the precondition is satisfied at that state. The
following is an example of an operator:
(:operator (!payWithCreditCard) ; Operator name

(hasCC ∧ (¬priceExceedsLimit ∨ limitSuspended)) ; precondition
((paymentPending)) ; Delete list
((ccPayReceived))) ; Add list

Towards an iStar 2.0 Extension for Analyzing Goal Variability 9

Methods are used to guide the planner into searching for sequences of actions that
are plausible in the domain of interest. An example of a method is as follows:
(:method (orderfulfilled) ; method name

(orderReceived) ; method precondition
(:unordered (!checkStock) (orderShipped))) ; task list

In the above, the method orderfulfilled, which can be utilized if orderReceived
is true, shows how the problem of having the order fulfilled decomposes into
the application of operator !checkStock and application of another method called
orderShipped; in no specific order. There may be many alternative methods named
orderfulfilled for the planner to choose from when constructing a plan.

4.1.1 Specification Generation

We now turn to how we translate iStar T models into HTN domain specifications.
Goals and tasks. Each goal and each task in the goal diagram is, firstly, mapped

into two propositions (0-ary predicates) in the HTN domain: one that signifies its
successful attainment (attainment proposition) and one that signifies its attempt
(attempt proposition). Secondly, each goal and task is mapped to a method name.

Thirdly, we look at how the goal or task is refined. If a goal is AND-decomposed
into 𝑛 other goals and/or tasks (sub-elements) a refinement method is introduced,
named after the goal being decomposed and containing an unordered list of method or
operator names corresponding to all 𝑛 sub-elements. When a goal is OR-decomposed
into the 𝑛 sub-elements, 𝑛 refinement methods are introduced instead, each named
after the goal being decomposed. The task list of each of the 𝑛 methods contains
one method or operator name corresponding to each of the sub-elements of the OR-
decomposition. Further, we treat the dependency as a one-subgoal OR-refinement of
the depender goal to the dependee element.

When the element is a task it is associated with an effect or an effect group. The
translation then treats this association as an OR-decomposition and introduces as
many methods as the effects in the group (one in the case of a deterministic effect),
whose name is the method name associated with the task and the action list in each
method has the name of the effect operator associated with the effect (more below).

Fourthly, an attainment axiom is introduced associating the attainment proposition
of the parent goal with the conjunction (AND-decompositions) or disjunction (OR-
decompositions) of attainment propositions of the sub-elements. Fifthly, an attempt
axiom is introduced that associates the attempt proposition of the parent goal with
the disjunction of attempt propositions of the sub-elements independent on whether
it is an AND- or OR-decomposition.

Effects. Each effect element 𝑒 is translated into a distinct effect operator. The add
list of the effect operator contains the domain predicates listed in the effect shape
and the delete list is empty. Calculation of the precondition of the operator is as
follows. Consider first the set 𝐴𝑒 of all the goal and task elements that are ancestors
to effect element 𝑒, i.e., that exist in the path between the effect and the root goal.
Consider next the sources of all precedence links that target the elements in 𝐴𝑒. These

10 Liaskos, Khan, and Mylopoulos

sources can be goals, tasks, or conditions. Construct then the conjunction 𝜙𝑝𝑟𝑒 of
the attainment propositions (goals and tasks) and condition formulae (condition
elements) that correspond to these sources. Consider next all the sources of the
negative precedence links that target the elements in 𝐴𝑒, which are again goals, tasks
or conditions. Construct the disjunction 𝜙𝑛𝑝𝑟 of the attempt propositions (goal and
task elements) and condition formulae (condition elements) that correspond to these
sources. Assign then 𝜙𝑝𝑟𝑒 ∧ ¬𝜙𝑛𝑝𝑟 as the precondition to the effect operator.

Qualities. Each quality 𝑞 is translated into a domain object q and two predicates
sat(q,l) and den(q,l), which carry the level 𝑙 of satisfaction and denial of quality
𝑞, respectively. Consider then a contribution link from effect element 𝑒 towards a
quality 𝑞. The effect element is either associated with a task (deterministic case) or
is part of an effect group (non-deterministic case). The contribution link is translated
into an invocation of a reserved (quality contr ?cont ?dest) method, where ?cont
describes the kind of contribution and ?dest the destination. This is done by simply
adding the method name quality contr in the task list of the method that is associated
with the task that brings about the effect. For example, if task 𝑡 sends an effect link
to an effect group 𝑒1, 𝑒2, 𝑒3, and, say, 𝑒2 sends a helps contribution link to quality 𝑞,
then the method that decomposes 𝑡 into 𝑒2 has a task list that includes both the effect
operator for 𝑒2 and method (quality contr help q).

The quality contrmethod, together with associated helper reserved operators, is
responsible for affecting the sat(q,l) and den(q,l) predicates based, e.g., on the label
of the contribution link and the existing satisfaction and values. The exact structure
of these methods and operators depends on the framework adopted for representing
and aggregating contribution and satisfaction/denial values. For example, established
label propagation rules [12] can be applied for updating the value of sat(q,l) and
den(q,l) every time quality contr is invoked.

4.2 Golog

We now turn to how iStar T goal models can be translated to specifications of the
Golog family. Golog [16] is a high-level agent programming language based on the
situation calculus [15], a language for modeling dynamic domains. Golog has been
the basis of many extensions including ConGolog [14] which allows for concurrency,
interrupts and exogenous actions, Indigolog [7] which allows for interleaved action,
sensing and planning, and DT-Golog [3] that allows for reasoning with probabilistic
actions. In addition, simulating dynamic domains encoded in the underlying situation
calculus can be used for model-free reinforcement learning [17]. Hence, having a
core set of rules for translating iStar T models to Golog facilitates accessing diverse
analysis, reasoning, and execution tools.

Core concepts of Golog are fluents, actions, and situations. Fluents are used
to describe what is true in the domain at a given situation. They are repre-
sented through n-ary redicates with a situation term as their last argument, as in
hasRead(quote,customer,s). A situation is a first-order term that represents a se-

Towards an iStar 2.0 Extension for Analyzing Goal Variability 11

quence of actions from an initial situation S0 where no action has been performed.
The function symbol do(a,s) is used to denote the situation which results from
performing action a in situation s. Situations emerge from nested application of
the function as in: do(a𝑛,do(a𝑛−1,...,do(a1,S0)...))). Finally, a special predicate
poss(a,s) is used to state that action a is executable in situation s.

To describe a domain a set of axioms are defined over the above constructs. The
most important are action precondition axioms and successor state axioms. The
former are defined for each action a and describe the conditions under which actions
can be performed. For example, the following axiom says that for customer 𝑐 to pay
a merchant 𝑚 by cheque in situation 𝑠 the former needs to have a checking account
and the latter needs to be accepting of cheques in the same situation:
poss(payWithCheque(c,m),s) ↔ hasCheckingAccount(c,s) ∧ acceptsCheques(m,s)

Successor state axioms are defined for each fluent and describe how the flu-
ent’s truth value changes due to the performance of tasks. For example, the fluent
quoteSent(s) holds in a given situation if it was already true in the previous situation
or the latest action has made it true:
quoteSent(do(a,s)) ↔ quoteSent(s) ∨ (a = sendQuote)
Golog allows the development of high-level programs that describe agent behavior

while abiding by the action theory defined by the axioms. Programming constructs
of interest are sequences and nondeterministic choices of actions which are used
in procedures. Of the following procedures, orderFulfilled contains an action se-
quence in its body comprising of an action and another procedure to be executed in
that order, and orderShipped is a non-deterministic choice between two actions:
proc(orderFulfilled, checkStock : orderShipped)

proc(orderShipped, shipExpress | shipStandard)

4.2.1 Specification Generation

We now sketch the rules for translating iStar T models into Golog specifications.
Goals and Tasks. Each goal and task in the model is, firstly, translated into

one attainment fluent and one attempt fluent. Secondly, a Golog procedure named
after the element in question is added. If the element is an OR-decomposed goal,
or a depender goal, the body of the procedure contains a non-deterministic action
choice among a set of procedure names referring to the sub-elements or the one
dependee element. If the element is a task, the body contains a non-deterministic
choice among the effect actions (more below) that correspond to the one or more
effects associated with the task. If the element is an AND-decomposed goal, the
procedure body contains a non-deterministic choice among a set of action sequences
that constitute all possible permutations of the sub-elements, except for those that
are impossible due to temporal constraints among the subgoals.

Effects. Each effect is translated into (a) an effect action, (b) as many effect
fluents as the propositions that are contained in the effect. For each of the actions an
action precondition axiom is constructed, exactly as in the case of HTN translation:
the sources of precedence (respectively, negative precedence) links targeting every

12 Liaskos, Khan, and Mylopoulos

ancestor of the effect are collected and together form a conjunction (resp., disjunction)
of the corresponding attainment (resp., attempt) formulae. The conjunction of the
two formulae, with the latter (the one collecting constraints from negative precedence
links) negated, are then placed as precondition for the introduced action.

Furthermore, each of the introduced fluents effFluent𝑖 relating to the effect
corresponds to a successor state axiom of the form:
effFluent𝑖(do(a,s)) ↔ effFluent𝑖(s) ∨

(a = effAction1) ∨ (a = effAction2) ∨ ...
where effAction𝑖 are effect actions corresponding to effects that mention effFluent𝑖 .
Finally, the truth values of attainment and attempt fluents associated with goals and
tasks are determined, via appropriate axioms, by AND/OR formulae grounded on
effect fluents and reflecting the underlying refinement structure.

Qualities. For each quality 𝑞 two fluents sat(q,l,s) and den(q,l,s) are intro-
duced representing the level of satisfaction and denial evidence associated with the
quality in situation s. For each of these fluents, a number of successor state axioms
is constructed showing how different quality satisfaction values are acquired due to
the occurrence of effects that have a contribution to the quality. For example, follow-
ing again the qualitative two-level satisfaction representation system (partially/fully
satisfied/denied) [12] the axiom of the form:
sat(q,full,do(a,s)) ↔ sat(q,full,s) ∨

(a = ppEffect1) ∨ (a = ppEffect2) ∨ ...
says that quality q is fully satisfied in the next situation if it already were in the
previous situation or one of the effects ppEffect𝑖 from where a make contribution
link originates targeting q has occurred.

5 Automated Identification of Solutions

The specifications resulting from the above translations can be used as a basis
for automatically generating goal-satisfying effect histories (solutions) using the
corresponding reasoning tools – HTN planners and Golog interpreters. At least three
kinds of solutions can be generated: arbitrary solutions, solutions under given quality
constraints, and solutions that optimize a preference specification over qualities.

Arbitrary solutions. The tools are useful for identifying any constraint satisfying
solution when no other desiderata exist. In the HTN case, given the resulting domain
specification, a planner is able to search for plans that satisfy a specific problem
specification. The latter consists of a list of initially true predicates and a top-level
task to be fulfilled. Hence, by instantiating the iStar T model’s initialization into
a set of HTN predicates and assigning a root goal of interest to be the top-level
task, we can get the HTN planner to generate plans, each constituent operator of
which mapping to an effect in a goal satisfying history. In the presence of effect
groups, the planner returns non-deterministicaly chosen scenarios of execution. In
the Golog case, the interpreter is capable of running Golog programs relative to
an initial situation, outputting a situation (i.e., a sequence of actions) at which the

Towards an iStar 2.0 Extension for Analyzing Goal Variability 13

GologHTN
1: s0
2: quoteSent
3: quoteAcceptable
4: orderReceived
5: itemInStock
6: arrivedLateEx
7: payWithCreditCard
[sat(happyCustomer, pd, ...),
 sat(strongProfit, ps, ...)]

1: (!QUOTESENT)
2: (!QUOTEACCEPTABLE)
3: (!ORDERRECEIVED)
4: (!ITEMINSTOCK)
5: (!ARRIVEDINTIME)
6: (!CHEQUERECEIVED)
7: (!FINAL)
8: (!SAT HAPPYCUSTOMER PS)
9: (!SAT STRONGPROFIT PS)
 ...

Fig. 4 Reasoner output format (different solutions).
.

program terminates. Thus, by setting the fluents corresponding to an instantiation
of the iStar T model’s initialization to hold in the initial situation S0 we can run the
procedure that represents the top-level goal we are interested in generating a solution
for. Given the mapping of actions to leaf-level effects, the results represent scenarios
of task outcomes.

Solutions under constraints. We often desire to generate solutions under hard
constraints, and, specifically, desired quality satisfaction values. For example, we
may be interested in solutions which never receive a negative contribution to quality
goal Safety, or in which, at the end only, goal Happy Customer is fully satisfied.
To find such solutions relative to a top-level goal 𝑔, in both HTN and Golog cases
we work as follows. Firstly, we create a formula 𝜙𝑞 describing all such constraints.
Then in the iStar T model we introduce a dummy terminal task 𝑡𝑟 and a dummy root
goal 𝑔𝑟 . Next, we set 𝑔 and 𝑡𝑟 be AND-refinements of 𝑔𝑟 and connect them with a
precedence link from 𝑔 to 𝑡𝑟 . We then translate as per the corresponding rules and add
𝜙𝑞 as a precondition to 𝑡𝑟 . We note that there is more nuance than we can cover here:
for example universal/existential constraints on the entire history (e.g.: there does not
exist a negative contribution to the Safety quality) are addressed differently from those
that are posed on aggregates of contributions (e.g.: the cumulative contribution to
Low Cost at the end is above a threshold). A general framework for quality satisfaction
analysis in light of time-ordered contributions to qualities would be a useful future
extension of iStar T.

Optimal solutions. With the appropriate extensions and revisions, the translation
rules can also produce specifications that allow identifying solutions that are optimal
with respect to an objective function. It has been shown that the Golog specification
can be augmented with a relatively simple reward structures to allow decision theo-
retic optimization using DT-Golog [19]. Further, the Golog programs are particularly
useful for performing simulations of the intentional structure, which can be useful
in reinforcement learning applications [17]. Moreover, HTN operators can accept
simple cost parameters allowing HTN planners to search for minimum-cost plans.
Rules can, hence, be defined that map contributions to qualities to such cost values. A
complete treatment of how minimum-cost HTN planning can be used for optimizing
quality goal satisfaction desiderata is another promising extension of iStar T.

Output Format. Sample outputs of the tools can be seen in Figure 4. The action
lists correspond to effect histories in Figure 2. In the HTN output, impacts to quality
goals are displayed as separate trailing actions. In the Golog output, following
solution generation, quality satisfaction fluents that are true in the situation that
corresponds to the solution are printed. Post-processing procedures can use the

14 Liaskos, Khan, and Mylopoulos

quality satisfaction aspect of the output as an input to more advanced satisfaction
propagation analysis algorithms [12] and visualizations.

6 Concluding Remarks

A great many extensions to i* have been introduced to make the language usable for
specific purposes [13], and many procedures have also been proposed for automated
reasoning about goal models via using established reasoning tools and for different
purposes, e.g., SMTs [24] and model checkers [9] to name two. Our proposed
extension, iStar T, attempts to systematize and consolidate extensions that have been
introduced for the purpose of supporting analysis of different kinds of goal variability,
including ordering and outcome variability. It further complements similar work on
goal model formalization (e.g. [4, 10, 26]) in that the set of extensions it introduces is
minimal enough to allow formalization into different formal specification languages.
In this chapter we showcased HTN and Golog, but similar procedures for formalizing
iStar T to other languages appear to be possible. This includes different subsets and
versions of PDDL [11] for compliant planners as well as specification languages for
model-checking [5]. This allows researchers with different analysis needs to have
a common starting point. An additional opportunity for future work is a baseline
for advanced reasoning with quality goals, including different kinds of preference
specifications and a treatment of satisfaction propagation in quality goal graphs
within the context of time-ordered actions.

Further, the visual complexity of iStar T is deserving of some investigation.
The additional elements required for forming a complete model arguably affect the
comprehensibility of the resulting diagram. To address this, interactive model slicing
can be investigated whereby parts of the diagram (precedence links, effect groups,
etc.) are displayed only on demand. Likewise, the definition of separate viewpoints,
such as a temporal and/or a causal one, can be explored for separating concerns, as
per common practice – e.g., URN [2] introduces two sub-languages, GRL and UCM,
for modeling intentional and causal aspects, respectively. Finally, the introduction
and use of a textual syntax, in the spirit of TGRL [1], could prove useful for taming
complexity, particularly during model development.

References

1. Abdelzad, V., Amyot, D., Alwidian, S., Lethbridge, T.: A Textual Syntax with Tool Support
for the Goal-Oriented Requirement Language. In: Proc. of the 8th Intl. i* Workshop (2015)

2. Amyot, D., Mussbacher, G.: User Requirements Notation: The First Ten Years, The Next Ten
Years (Invited Paper). Journal of Software (JSW) 6(5), 747–768 (2011)

3. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-Theoretic, High-Level Agent
Programming in the Situation Calculus. In: Proc. of the 17th Conference on Artificial Intelli-
gence (AAAI-00). pp. 355–362. AAAI Press, Austin, TX (2000)

Towards an iStar 2.0 Extension for Analyzing Goal Variability 15

4. Bryl, V., Massacci, F., Mylopoulos, J., Zannone, N.: Designing security requirements models
through planning. In: Proc. of the 18th International Conference on Advanced Information
Systems Engineering (CAiSE’06) (2006). https://doi.org/10.1007/11767138 4

5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: In Proc.
of Int. Conf. on Computer-Aided Verification (CAV 2002). Copenhagen, Denmark (jul 2002)

6. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. The Computing Research
Repository (CoRR) abs/1605.0 (2016), http://arxiv.org/abs/1605.07767

7. De Giacomo, G., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: A High-Level Pro-
gramming Language for Embedded Reasoning Agents, pp. 31–72. Boston, MA (2009)

8. Fillmore, C.J.: The Case for Case. In Bach and Harms (Ed.): Universals in Linguistic Theory.
New York: Holt, Rinehart, and Winston pp. 1–88 (1968)

9. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and
analyzing early requirements in Tropos. Requirements Engineering 9(2), 132–150 (2004)

10. Gans, G., Jarke, M., Lakemeyer, G., Vits, T.: SNet: A Modeling and Simulation Environment
for Agent Networks Based on i* and ConGolog. In: Proc. of the 14th Int. Conf. on Advanced
Information Systems Engineering CAiSE’02. pp. 328–343. Toronto, Canada (2002)

11. Ghallab, M., Howe, A., Knoblcok, C., McDermott, D., Ram, A., Veloso, M., Weld, D., Wik-
lins, D.: PDDL - The Planning Domain Definition Language. Tech. rep., Yale Center for
Computational Vision and Control. Technical Report CVC TR-98-003/DCS TR-1165. (1997)

12. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with Goal Models. In:
Proc. of the 21st Int. Conf. on Conceptual Modeling (ER’02). pp. 167–181 (2002)

13. Gonçalves, E., Castro, J., Araújo, J., Heineck, T.: A Systematic Literature Review of iStar
extensions. Journal of Systems and Software 137, 1–33 (2018)

14. Lespérance, Y., Kelly, T.G., Mylopoulos, J., Yu, E.S.K.: Modeling Dynamic Domains with
ConGolog. In: Proc. of the 11th International Conference on Advanced Information Systems
Engineering (CAiSE’99). Heidelberg, Germany (jun 1999)

15. Levesque, H., Pirri, F., Reiter, R.: Foundations for a Calculus of Situations. Electronic Trans-
actions of AI (ETAI) 2(3–4), 159–178 (1998)

16. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic programming
language for dynamic domains. The Journal of Logic Programming 31(1-3), 59–83 (1997)

17. Liaskos, S., Khan, S.M., Golipour, R., Mylopoulos, J.: Towards Goal-based Generation of
Reinforcement Learning Domain Simulations. In: Proc. of the 15th International i* Workshop.
CEUR Workshop Proceedings (2022)

18. Liaskos, S., Khan, S.M., Litoiu, M., Jungblut, M.D., Rogozhkin, V., Mylopoulos, J.: Behavioral
adaptation of information systems through goal models. Inf. Syst. (IS) 37(8), 767–783 (2012)

19. Liaskos, S., Khan, S.M., Mylopoulos, J.: Modeling and reasoning about uncertainty in goal
models: a decision-theoretic approach. Software & Systems Modeling 21, 1–24 (2022)

20. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On Goal-based Variability
Acquisition and Analysis. In: Proc. of the 14th IEEE International Requirements Engineering
Conference (RE’06). IEEE Computer Society, Minneapolis, Minnesota (sep 2006)

21. Liaskos, S., McIlraith, S., Sohrabi, S., Mylopoulos, J.: Representing and reasoning about
preferences in requirements engineering. Requirements Eng. Journal (REJ) 16, 227–249 (2011)

22. Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Exploring Alternatives During Require-
ments Analysis. IEEE Software 18(1), 92–96 (2001)

23. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: SHOP2: An
HTN Planning System. Journal of Artificial Intelligence Research (JAIR) 20, 379–404 (2003)

24. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi-objective reasoning with
constrained goal models. Requirements Engineering 23(2), 189–225 (2018)

25. Rolland, C., Souveyet, C., Achour, C.B.: Guiding Goal Modeling Using Scenarios. IEEE
Transactions on Software Engineering 24(12), 1055–1071 (1998)

26. Wang, X., Lespérance, Y.: Agent-oriented requirements engineering using ConGolog and i*.
In: In Bi-Conference Workshop at Agents 2001 and CAiSE’01 (AOIS-2001). (2001)

27. Yu, E.S.K.: Towards Modelling and Reasoning Support for Early-Phase Requirements Engi-
neering. In: Proc. of the 3rd IEEE International Symposium on Requirements Engineering
(RE’97). pp. 226–235. Annapolis, MD (1997)

http://arxiv.org/abs/1605.07767

	Towards an iStar 2.0 Extension for Analyzing Goal Variability
	Sotirios Liaskos19mm Shakil M. Khan19mm John Mylopoulos
	Introduction
	Variability in i* models
	Elements of iStar T
	Formalizing iStar T
	HTN Planning
	Golog

	Automated Identification of Solutions
	Concluding Remarks
	References
	References

