
Diagnosis as Computing Causal Chains from Event Traces

Shakil M. Khan and Mikhail Soutchanski
Department of Computer Science

Ryerson University, Toronto, Canada
{shakilmkhan, mes}@scs.ryerson.ca

Abstract

In this paper, we build on previous work on diagnosis in dy-
namic discrete event systems by proposing to utilize a formal
model of causal analysis in the situation calculus to further
process reconstructed traces of events. By using the situation
calculus, we adopt a language that is well suited for the task
of integrated treatment of planning, plan execution and mon-
itoring, plan repair, etc. Also, given a system, our definition
enables us to model unwanted inter-component interactions,
not just faulty components. We show that our definition has
useful properties and is modular.

1. Introduction
Researchers in Artificial Intelligence have previously tack-
led the problems of planning, plan execution, plan repair,
diagnosis, and causal explanation separately. Nevertheless,
little previous work addressed these problems within a uni-
fied framework. To this end, in this paper we adopt one such
possible framework developed within the scope of logical
KR, namely the situation calculus (Reiter 2001). In partic-
ular, we focus on the problem of diagnosis through causal
analysis within the situation calculus.

While the basic goal of diagnosis is to identify the un-
derlying causes that explain a set of observed effects, it is
understood differently by control and AI communities, and
there are different approaches depending on applications;
see (Travé-Massuyès 2014) for a survey. In the approaches
of model-based diagnosis (MBD) applicable to static sys-
tems, the task is to identify from a given system descrip-
tion the minimal sets of faulty components (if any) that are
consistent with a given set of observations (Reiter 1987;
de Kleer and Williams 1989; de Kleer, Mackworth, and Re-
iter 1992). On the other hand, diagnosis in discrete event sys-
tems (DES) deals with dynamic systems where transitions
are deterministic and a partially ordered set of observations
is available, but some events can be unobservable. The task
is to reconstruct the possible traces of (unobservable and ob-
servable) events and their ordering wrt each other to explain
an effect (Sampath et al. 1995; 1996; Zaytoon and Lafor-
tune 2013). Researchers have long acknowledged a close
connection between diagnosis in dynamic DES and plan-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ning (McIlraith 1994; Cordier and Thiébaux 1994; McIl-
raith 1998). However, the diagnosis methods for DES can
produce several traces that may include irrelevant events. In
complex systems, for each completed trace the question re-
mains which particular sub-sequence of events constitutes
the root-causes of an observed failure?

In this paper, we build on the previous work about diag-
nosis of dynamic DES and propose to further refine the anal-
ysis of reconstructed traces by finding the sub-sequences of
the events that serve as actual causes. We assume a given
logical theory that models how the system responds to all
actions/events. Since our proposal builds on the methods for
diagnosis in DES, we can assume that a reconstructed event
log or trace of the system is available at our disposal. We
are looking for causally important events in the log that can
actually explain an observed effect. Thereby, we contribute
both to the definition of the diagnosis problem and to its so-
lution. We do not conceptually distinguish between agents’
actions and exogenous/nature’s events.

We show how one can define (our notion of) diagnosis
through the computation of causal chains within the sit-
uation calculus (SC). Adopting a first-order language like
the situation calculus for causality analysis allows us to be
more expressive; we can model systems in finer details and
build on a recent problem-free definition of causality (Ba-
tusov and Soutchanski 2018). Moreover, researchers in KR
have enriched the situation calculus by developing mecha-
nisms for planning (Reiter 2001), plan execution and mon-
itoring (De Giacomo, Reiter, and Soutchanski 1998), diag-
nosis (Sohrabi, Baier, and McIlraith 2010), causal explana-
tion (Batusov and Soutchanski 2017), and handling contin-
uous probability distributions (Belle and Levesque 2018),
among other things. Thus, the language of SC is well suited
for the task of integrated treatment of these issues. Further-
more, our formalization enables us to detect unwanted inter-
component interactions, not just faulty components. Finally,
we prove that our definition of diagnosis has some intuitively
desirable properties and is modular.

We start by outlining the situation calculus in the next sec-
tion. In Section 3, we discuss how achievement and mainte-
nance causes can be defined within the situation calculus. In
Section 4, we formalize our definition of diagnosis and dis-
cuss some properties of our approach. Finally we summarize
our results in Section 5.



2. Background
The Situation Calculus (SC). The SC (McCarthy and
Hayes 1969) is a popular formalism for modeling and rea-
soning about dynamic systems. Here, we use a (mostly) first-
order sorted version as described by Reiter (2001). There are
four basic sorts in the language, situation, action, fluent, and
a catch-all object sort. A situation represents a sequence of
actions. A special constant S0 is used to denote the initial
situation where no actions has yet been performed. There is
a distinguished binary function symbol do, where do(a, s)
denotes the successor situation to s resulting from perform-
ing the action a. Thus the situations can be viewed as a tree,
where the root of the tree is S0 and the arcs represent actions.
do([a1, · · · , an], s) is used to denote the complex situation
term obtained by consecutively performing a1, · · · , an start-
ing from s. Also, the notation s @ s′ means that situation
s′ can be reached from situation s by executing a sequence
of actions. s v s′ is an abbreviation of s @ s′ ∨ s = s′.
Relations whose truth values vary from situation to situation
are called relational fluents, and are denoted by predicate
symbols taking a situation term as their last argument. There
is a special predicate Poss(a, s) used to state that action a
is executable in situation s. Finally, a situation s is called
executable if every action in its history was possible in the
situation where it was performed:
executable(s)

def
= ∀a′, s′. do(a′, s′) v s→ Poss(a′, s′).

Following Reiter, we use a basic action theory (BAT)
D that includes the following set of axioms: (1) action
precondition axioms Dapa, one per action a characterizing
Poss(a, s), (2) successor-state axioms Dssa, one per flu-
ent, that succinctly encode both effect and frame axioms and
specify exactly when the fluent changes, (3) initial state ax-
ioms DS0 describing what is true in S0, (4) unique name
axioms for actionsDuna, and (5) domain-independent foun-
dational axioms Σ describing the structure of situations.
Example. We use the dining philosophers problem (Hoare
1985) as our running example. We have three philosophers
seated around a table. In the centre of the table there is
a bowl of spaghetti, and between each two neighbouring
philosophers there is a fork. A philosopher p can pick up
(and put down) a fork f by executing the pickUp(p, f)
(putDown(p, f), resp.) action. A philosopher needs two
forks to be able to eat, and can only reach the two forks
immediately next to him, each of which is shared with the
respective neighbour. Also, to initiate eating, p needs to ex-
ecute the eat(p) action. A philosopher can only think if he
is not holding any forks. There are three fluents in this do-
main, hasFork(p, f, s), thinking(p, s), and eating(p, s),
which mean that philosopher p has fork f in situation s, p is
thinking in s, etc. We say that a philosopher p is waiting in
situation s if he is not eating or thinking, i.e.:

waiting(p, s)
def
= ¬(eating(p, s) ∨ thinking(p, s)).

Also, we use the non-fluent relation neighb to describe
the geometry of the seating arrangement:

∀p, p′,f. neighb(p, f, p′)↔ [(p = P1 ∧ f = F12 ∧ p′ = P2) ∨
(p=P2 ∧ f=F23 ∧ p′=P3) ∨ (p=P1 ∧ f=F13 ∧ p′=P3)].

This says that philosopher P1 is a neighbour of P2 and they

share the fork F12, etc. In the following, we give some exam-
ples for each type of domain-dependant axioms; others (e.g.
the action precondition axiom for action putDown(p, f),
the successor-state axiom for fluent thinking(p, s), etc.)
can be specified similarly and are assumed to be available.
Thus, for instance, the preconditions for pickUp(p, f) and
eat(p) can be specified using action precondition axioms
(APA) as follows (henceforth, all free variables in a sentence
are assumed to be universally quantified):

(a). Poss(pickUp(p, f), s)↔ ¬hasFork(p, f, s) ∧
∃p′.(neighb(p, f, p′) ∨ neighb(p′, f, p)) ∧ ¬hasFork(p′, f, s),

(b). Poss(eat(p), s)↔ ∃f, f ′. f 6= f ′ ∧ hasFork(p, f, s)

∧ hasFork(p, f ′, s) ∧ ¬eating(p, s).

That is, (a) a philosopher p can pick up a fork f in some
situation s if and only if p is not already in possession of f
in s and f is not being used by the respective neighbour of p
in s, and (b) p can eat in s if he is holding two distinct forks
and he is not eating in s.

Moreover, the following successor-state axiom (SSA)
specifies how exactly the fluents hasFork and eating can
change value when an action a happens in some situation s:

(c). hasFork(p, f, do(a, s))↔ a = pickUp(p, f) ∨
hasFork(p, f, s) ∧ ¬a = putDown(p, f),

(d). eating(p, do(a, s))↔ a = eat(p) ∨
eating(p, s) ∧ ¬∃f. a = putDown(p, f).

That is, (c) a philosopher p is in possession of a fork f in the
situation resulting from executing action a in situation s (i.e.
in do(a, s)) if and only if a refers to p’s action of picking f
up from the table or p already had f in s and a is not the
action of p putting it down. The case for the fluent eating in
(d) is similar.

Furthermore, the following initial state axioms state that
initially (e) all three philosophers are thinking and (f) no-
body is eating or is in possession of a fork:

(e). ∀p. thinking(p, S0)↔ p = P1 ∨ p = P2 ∨ p = P3,

(f). ∀p, f. ¬eating(p, S0) ∧ ¬hasFork(p, f, S0).

Finally, we implicitly assume the domain closure axioms
for philosophers; also the following unique name for actions
axiom (UNA) says that (g) pickUp and putDown refer to
different actions, and (h) two pickUp actions refer to the
same action if their arguments are the same (these are nec-
essary for the above SSA to work properly):

(g). ∀p, p′, f, f ′. pickUp(p, f) 6= putDown(p′, f ′),

(h). ∀p,p′,f,f ′. pickUp(p, f)=pickUp(p′, f ′)→ p=p′ ∧ f=f ′.

Regression in the SC. BATs employ regression, a powerful
reasoning mechanism for answering queries about the fu-
ture. Given a query “does φ hold in the situation obtained
by performing the ground action α in situation s, i.e. in
do(α, s)?”,1 the single-step regression operator ρ transforms
it into an equivalent query “does ψ hold in situation s?”,

1A ground term is one whose constituents are ground sub-terms
and constants, i.e. that contains no variables.



eliminating action α by compiling it into ψ. The expression
ρ[φ, α] denotes such an equivalent query obtained from the
formula φ by replacing each fluent atom F in φ with the
right-hand side of the successor-state axiom for F where the
action variable a is instantiated with the ground action α,
and then simplified using unique name axioms for actions
and constants. One can prove that given a BAT D, a for-
mula φ(s) uniform in s (meaning that it has no occurrences
of Poss, v, other situation terms besides s, and quantifiers
over situations), and a ground action term α, we have that
D |= ∀s. φ(do(α, s)) ↔ ρ[φ(s), α]. One can also obtain
a similar regression operator R by repetitive recursive ap-
plication of ρ. Reiter (2001) showed that for a regressable
query φ, D |= φ if and only if Duna ∪ DS0

|= R[φ]. Re-
gression thus reduces second-order entailment to first-order
entailment by compiling dynamic aspects of the theory into
the query.

3. Achievement and Maintenance Causes
Given a (reconstructed) trace of all events, actual achieve-
ment causes are some of the events that are behind achieving
an effect while actual maintenance causes are those that are
responsible for mitigating the threats to the achieved effect.
There can be also the cases of subtle interactions of these
two. In this section, we review how one can define achieve-
ment causality in the SC (Batusov and Soutchanski 2018).
An effect in this framework is an SC formula φ(s) that is
uniform in s. Given an effect φ(s), the actual causes of φ
are defined relative to a causal setting that includes a BAT
D representing the domain dynamics, and a “narrative” (a
trace of events) σ, representing the ground situation, where
the effect was observed.
Definition 1 (Causal Setting). A causal setting is a tuple
〈D, σ, φ(s)〉, where D is a BAT, σ is a ground situation term
of the form do([a1, · · · , an], S0) with ground action func-
tions a1, · · · , an such that D |= executable(σ), and φ(s)
is an SC formula uniform in s such that D |= φ(σ).

As the theory D does not change, we will often suppress
D and simply write 〈σ, φ(s)〉. Also, here we require φ to
hold by the end of the narrative σ, and thus ignore the cases
where φ is not achieved by the actions in σ, since if this is
the case, the achievement cause truly does not exist.

Note that since all changes in the SC result from actions,
we identify the potential causes of an effect φ with a set
of ground action terms occurring in σ. However, since σ
might include multiple occurrences of the same action, we
also need to identify the situations when these actions were
executed. Now, the notion of the achievement cause of an
effect suggests that if some action α of the action sequence
in σ triggers the formula φ(s) to change its truth value from
false to true relative to D, and if there are no actions in σ
after α that change the value of φ(s) back to false, then α is
the actual cause of achieving φ(s) in σ.

When used together with the single-step regression oper-
ator ρ, the above interpretation of achievement condition not
only identifies the single action that brings about the effect
of interest, but also captures the actions that build up to it.
Intuitively, ρ[φ, α] specifies the weakest condition that must
hold in a previous situation (let us call it σ′) in order for φ to

hold after performing the action α in situation σ′, i.e. in situ-
ation do(α, σ′). Thus if the action α is an achievement cause
of φ in situation do(α, σ′), we can use the single-step regres-
sion operator ρ to obtain a formula that holds at situation σ′
and constitutes a necessary and sufficient condition for the
achievement of φ(s) via the action α. This new formula may
have an achievement cause of its own which, by virtue of the
action α, also constructively contributes to the achievement
of φ. By repeating this process, we can uncover the entire
chain of actions that incrementally build up to the achieve-
ment of the ultimate effect. At the same time, we must not
overlook the conditions that make the execution of the ac-
tion α in situation σ even possible, which are conveniently
captured by the right-hand side of the APA for α and may
have achievement causes of their own.

The following inductive definition formalizes this intu-
ition. Let Πapa(α, σ) be the right-hand side of the APA for
action α with the situation term replaced by situation σ.
Definition 2 (Achievement Cause). A causal setting C =
〈σ, φ(s)〉 satisfies the achievement condition of φ via the sit-
uation term do(α∗, σ∗) v σ if and only if there is an action
α′ and situation σ′ such that:

D |= ¬φ(σ′) ∧ ∀s. do(α′, σ′) v s v σ → φ(s),
and either α∗ = α′ and σ∗ = σ′, or the causal set-

ting 〈σ′, ρ[φ(s), α′] ∧ Πapa(α′, σ′)〉 satisfies the achieve-
ment condition via the situation term do(α∗, σ∗). Whenever
a causal setting C satisfies the achievement condition via sit-
uation do(α∗, σ∗), we say that the action α∗ executed in sit-
uation σ∗ is an achievement cause in causal setting C.

Since the process of discovering intermediary achieve-
ment causes using the single-step regression operator ρ can-
not continue beyond S0, it eventually terminates. Moreover,
since the narrative σ is a finite sequence, the achievement
causes of C also form a finite sequence of situation-action
pairs, which we call the achievement causal chain of C.
Example (cont’d). Consider the narrative σ1 =
do([pickUp(P1, F12), pickUp(P3, F23), pickUp(P1, F13),
eat(P1)], S0), i.e. the philosopher P1 picks up the fork
on his left, then P2 picks up the fork on his right, then
P1 picks up the fork on his right, and then P1 eats. We
are interested in computing the actual causes of the effect
φ1 = eating(P1, s). Then according to Definition 2, the
causal setting 〈φ1, σ1〉 satisfies the achievement condition
φ1 via the situation term do(eat(P1), S3), where S3 =
do([pickUp(P1, F12), pickUp(P3, F23), pickUp(P1, F13)],
S0), so the action eat(P1) executed in situation S3 is an
achievement cause of φ1.

Moreover, let us compute ρ[eating(P1, s), eat(P1)] and
Poss(eat(P1), S3), starting with the former. From right-
hand side of the SSA (d) above and by substituting ac-
tion variable a by eat(P1), object variable p by P1,
and situation variable s by σ1 = do(eat(P1), S3), the
result of single-step regression ρ[eating(P1, s), eat(P1)]
amounts to (eat(P1) = eat(P1)) ∨ (eating(P1, S3) ∧
¬∃f. eat(P1) 6= putDown(P1, f)). Since by the unique
names axioms the first disjunct can be replaced with true,
the result of ρ can be simplified to true as well. Let
us now consider Poss(eat(P1), S3); from the right-hand
side of APA (b) above and by replacing object vari-



able p with P1, we have ∃f, f ′. hasFork(P1, f, s) ∧
hasFork(P1, f

′, s)∧f 6= f ′∧¬eating(P1, s). Computing
ρ[eating(P1, σ1), eat(P1)] ∧ Poss(eat(P1), S3) thus gives
rise to a new causal setting 〈S3,∃f, f ′. hasFork(P1, f, s)∧
hasFork(P1, f

′, s) ∧ f 6= f ′ ∧ ¬eating(P1, s)〉. This
setting satisfies the achievement condition via the action
pickUp(P1, F13), so pickUp(P1, F13) executed in S2 =
do([pickUp(P1, F12), pickUp(P3, F23)], S0) is an achieve-
ment cause.

Furthermore, this yields yet another setting
〈ρ(∃f, f ′. hasFork(P1, f, s) ∧ hasFork(P1, f

′, s) ∧
f 6= f ′ ∧ ¬eating(P1, s), pickUp(P1, F13)) ∧
Poss(pickUp(P1, F13), S2), S2〉. Doing simplifications
similar to what we did before, we can arrive at the new
causal setting 〈∃f. f 6= F13 ∧ hasFork(P1, f, s) ∧
¬eating(P1, s) ∧ ¬hasFork(P1, F13, s) ∧
neighb(P1, P3, F13) ∧ ¬hasFork(P3, F13, s), S2〉, which
meets the achievement condition via pickUp(P1, F12)
executed in situation S0 and the analysis terminates.

We can also handle quantified queries. Consider another
example; we want to determine the actual causes of φ2 =
∀p. waiting(p, s) after each philosopher picks up the fork
on his left starting in situation S0, say in the narrative σ2 =
do([pickUp(P1, F12), pickUp(P2, F23), pickUp(P3, F13)],
S0). Note that using the definition of waiting and the do-
main closure axiom that says that the only philosophers
in this domain are P1, P2, and P3, φ2 can be first sim-
plified as follows: ¬eating(P1, s) ∧ ¬thinking(P1, s) ∧
¬eating(P2, s) ∧ ¬thinking(P2, s) ∧ ¬eating(P3, s) ∧
¬thinking(P3, s). Then a similar analysis as above
can be used to show that according to our defini-
tion the achievement causal chain for this example is
as follows: [(pickUp(P3, F13), S2), (pickUp(P2, F23), S1),
(pickUp(P1, F12), S0)], where S1 = do(pickUp(P1, F12),
S0) and S2 = do(pickUp(P2, F23), S1).

As shown in (Batusov and Soutchanski 2017), one can
also define the concept of maintenance causes by appealing
to a counterfactual notion of potential threats in the causal
setting that can possibly flip the truth value of the effect φ to
false, and actions in the narrative that mitigated those threats.
In general, actual causes can be either achievement causes or
maintenance causes and the causal chain can include both.
However, to keep things simple, in this paper we focus ex-
clusively on actual achievement causes.

4. Diagnosis as Computing Causal Chains
We model the behaviour of the system to be diagnosed as a
BAT D in SC. Also, an observation or effect is encoded as a
SC formula φ(s) uniform in s, i.e., it has no other situation
terms except of s. A systemDS in our framework is simply a
causal setting 〈D, σ, φ(s)〉,where σ is a ground situation and
φ(s) is the effect. Some of the (ground) actions in the ground
situation σ can be determined from an explanatory diagnos-
tic system, on which we build on, e.g., by solving a related
planning problem to reconstruct unobservable events.

We are ready to give our formal definition of diagnosis:
Definition 3 (Causal Diagnosis). Given a system DS =
〈D, σ, φ(s)〉, a diagnosis is a causal chain relative to DS.

We don’t need to impose a notion of minimality here since

this is already implied: if α executed in σ is a cause in a
diagnosis relative to a system DS = 〈D, σ, φ(s)〉, then α
is either necessary or contributes to a condition that is nec-
essary for achieving/maintaining φ. Also, we can formally
show that our diagnosis for a given system is unique (here
K1 = K2 means that causal chainsK1 andK2 are the same):
Theorem 1 (Uniqueness). If K1 and K2 are two diagnoses
of a system DS = 〈D, σ, φ(s)〉, then K1 = K2.

The proof follows directly from the uniqueness of the nar-
rative σ and that of the output of the regression operator ρ.

Recall diagnosis of DES can provide several different
traces, and consequently, each trace may bring about a dif-
ferent causal chain, but as the above theorem shows, for
each trace our diagnosis is unique. According to our def-
initions above, actual causes in a causal chain and conse-
quently a diagnosis can include inter-component communi-
cation actions, etc. As such we can model incorrect inter-
component interactions and protocols in addition to mal-
functioning components.

Moreover, the set of actions in a diagnosis is sufficient for
the effect to hold. If K is a diagnosis of a system DS =
〈D, σ, φ(s)〉, let σK be the situation obtained by performing
the actions in K in the order they appear in σ, starting from
S0. Then we can show that:
Theorem 2 (Sufficiency). If K is a diagnosis of a system
DS = 〈D, σ, φ(s)〉, then D |= executable(σK) ∧ φ(σK).
Proof sketch (by induction on n, where n is the length of the
actions in σK). For the base case when n= 1, the situation
σK and thus the causal chain K has only one action, say b.
Thus by Definition 2, φ must hold after this action is per-
formed. Also, since there are no other actions in the causal
chain K, action b must be possible to execute initially in S0,
and all conditions that are required for φ to hold after the
execution of b must have been true initially in S0 as well.
Otherwise, since Definition 2 accounts for these conditions,
some other actions ensuring the preconditions of b and/or
the conditions under which b makes φ true must have been
included in the causal chain; but this is not the case. Thus,
the consequent follows for the base case.

For the inductive step, assume that the theorem holds for
all situations σN of length n = N. We need to prove this
for n=N + 1. First, note that by the inductive hypothesis,
all actions up to bN in σN are executable. Thus, adding one
more action, say bN+1, makes σN+1 = do(bN+1, σN ) non-
executable if and only if bN+1 is not executable in σN . But
this is not possible, since Definition 2 already accounts for
this by requiring that all actions that ensure the conditions
required for the executability of bN+1 (conditions that do not
already follow from the initial situation S0) must be included
in the causal chain. Moreover, since bN+1 is the last action
in σN+1, by Definition 2, φ must hold after it is executed
in σN . Also, Definition 2 ensures that all those conditions
which are required for φ to hold after an action bN+1 is exe-
cuted in σN , and which do not already follow from the initial
situation S0 have been accounted for by including necessary
intermediary actions in σN . Thus, the theorem follows. �

However, perhaps somewhat surprisingly, we can show
that not every action in a diagnosis is necessary for the ef-
fect to follow in the sense that removing any such action



from the trace does not necessarily hamper executability or
make the effect false. Let σa′,s′ denote the situation that can
be obtained by executing the exact sequences of actions as
in σ starting in S0, except for action a′ in situation s′.
Theorem 3. If K is a diagnosis of a system DS =
〈D, σ, φ(s)〉 and action a′ executed in situation s′ is a cause
in the causal chain K, then:

D 6|= ¬(executable(σa
′,s′) ∧ φ(σa

′,s′)).
Proof (by counter-example). Consider the following exam-
ple (assume that the corresponding domain theory D has
been specified): there are three actions a1, a2, and b, such
that a1 and a2 are always executable while b can only
be executed if either a1 or a2 has been previously exe-
cuted. The execution of b in an executable situation brings
about the effect φ. Consider a trace σ = do([a1, a2, b], S0).
Note that although {(a1, S0), (b, do([a1, a2], S0))} is a di-
agnosis of the system 〈D, σ, φ(s)〉, and therefore (a1, S0)
is a cause in the corresponding causal chain, removing a1
from σ does not make it non-executable, namely, D |=
executable(do([a2, b], S0))). According to our assumptions
about the given actions, φ still follows if a1 is omitted from
the trace, namely, D |= φ(do([a2, b], S0))). �
Thus, removing a cause a′ in s′ may not have any affect
on φ(s) as it may be the case that a subsequent action in
the trace restores the executability and/or brings about the
effect, e.g. one that is currently being preempted by the ac-
tual cause.2 In fact the counter-example in the above proof
shows that unlike previous problematic accounts of causal-
ity (see Section 5), our base framework does not choose an
action (a2 in this example) as a cause when its effects are
preempted by some earlier action (that of a1 in this case).

When diagnosing problems in large domain, it is often
useful to sub-divide the system under consideration into dif-
ferent constituents. In our framework, this can be achieved
by specifying the BATD for the system in terms of the speci-
fication of the BATs for its sub-theories. Thus, assuming that
there are N conceptual components in the system, we have
D def

=
⋃N
i=1Di, where Di is the BAT for the ith component.

Note that defining diagnosis via causal analysis allows us to
take advantage of this modularity: we can show that in our
framework causal analysis and hence diagnosis can be per-
formed by examining only the relevant subset of the system
specificationD. To see this formally, first we assume without
loss of generality that all the actions, fluents, and constants
in each Di have distinct names; if not they can be renamed
using the index i of the underlying component.3 Also, we

2Note that this result does not contradict our earlier claim that
every action in the causal chain is either necessary or contributes
to a condition that is necessary for achieving the effect. In particu-
lar, the Theorem 3 does not hold when all the trailing actions (i.e.,
actions in the narrative that come after the last action in the causal
chain) are ignored. Consider the sequence that is composed of all
the actions in the narrative up to and including the last action in the
causal chain. It can be shown that removing any action that appears
in the causal chain either makes it non-executable or fails to bring
about the intended effect.

3If two BATs need to share an action, they should be grouped
under the same component index.

say that the set of BATs D~α ⊆ D is a block of a partition of
D relative to narrative σ = do([~α], S0) if every action in the
action sequence ~α comes from the BATs in D~α. Finally, we
say that φ is a relevant effect relative to block D~α if and only
if D~α |= φ(do([~α], S0)), i.e. D~α entails that φ holds after ~α
has been performed starting in situation S0. Then:
Theorem 4 (Modularity). If D~α is a block of a partition
of a system specification D relative to a ground narrative
σ = do([~α], S0), then for all relevant effects φ relative to
D~α and for all K, K is a causal chain of setting 〈D, σ, φ(s)〉
if and only if K is a causal chain of setting 〈D~α, σ, φ(s)〉.

The proof for this follows straightforwardly from the
structure of the SSAs for the relevant fluents, the APAs for
the relevant actions, and our definition of causal chains. Our
notion of diagnosis is thus computationally modular.

We believe that our theory of causality is well behaved
with respect to abstraction and refinement of actions in ac-
tion hierarchies. Since we define diagnosis using causality,
we should be able to relate diagnosis at various levels of ab-
stractions. To this end, we can start by specifying system
behaviour using modular BATs (Gu and Soutchanski 2008)
instead of our current flat representation, and show “equiv-
alence” of causal chains at different levels. Put otherwise,
our approach allows us to further benefit from the represen-
tational and computational advantages of modular BATs.

5. Discussion
As discussed earlier, there has been much work on diagno-
sis. In the static systems, one is concerned with the question
“what is wrong with the system?” by essentially identify-
ing a minimal set of faulty components that can explain the
effect, e.g. (Reiter 1987; de Kleer, Mackworth, and Reiter
1992). These neither work for dynamic systems nor capture
the cases where all components of the system function well,
but interaction between them is not configured properly.

There have also been much work on fault diagnosis
of DES within control theory, e.g. (Sampath et al. 1995;
1996); also see (Lamperti and Zanella 2003; Lamperti,
Zanella, and Zhao 2018; Zaytoon and Lafortune 2013) for
a review. In those papers, faults are considered to be un-
observable events, and the diagnosis problem is concerned
with determining those linearly ordered traces of events, in-
cluding faults, which are consistent with observations and
can explain a given observed effect based on the model of
the system. AI researchers view this problem of diagnosis
in dynamic systems by addressing the question “what has
happened?”. Such explanatory notion of diagnosis (Cordier
and Thiébaux 1994; McIlraith 1998; Schumann, Pencolé,
and Thiébaux 2007) where one tries to reconstruct the rel-
evant set of histories can be defined as follows: given a sys-
tem specification and some observations, determine the se-
quences of actions each of whose executions entails these
observations. Some recent examples include (Sohrabi, Baier,
and McIlraith 2010), who viewed diagnosis as preference-
based planning, and (Rintanen and Grastien 2007), who re-
duced diagnosis to the path finding problem implemented
using SAT solvers. Recently, there have been work on ex-
tending the notion of conflicts from static diagnostic algo-
rithms to dynamic systems and DES (Grastien, Haslum, and



Thiébaux 2012). This allows the transfer of the efficient
conflict-based approaches used for diagnosis in static sys-
tems to dynamic DES and handles both types of diagnosis
in a uniform way (Haslum and Grastien 2011).

This is where we contribute: we start with the output (i.e.
the set of actions, in our case, encoded by a ground situa-
tion) of an explanatory diagnostic system. The problem for
us is to search in this trace for the exact achievement causes
of the given effect to filter out irrelevant events. Thus, our
work can be used to extract root causes from the candi-
date traces (event logs) obtained by planning techniques for
solving explanatory diagnosis (Cordier and Thiébaux 1994;
McIlraith 1998).

There was an interesting earlier work (Bhandari, Simon,
and Siewiorek 1987), where the authors presented an opti-
mal algorithm to do probe selection in causal chains (un-
derstood differently from our paper) in the context of di-
agnostic programs. However, their framework depends on
numerical data in the form of time required for probes,
probability of errors, etc. Our notion of causality has mo-
tivation that is similar to (Gössler and Le Métayer 2015;
Wang et al. 2015), who also discuss causal analysis rel-
ative to traces. However, they work with less expressive
languages, and unlike us their counterfactual definition of
causality suffers from the preemption problem, which occurs
when two competing events try to achieve the same effect,
and the latter of these fails to do so, as the earlier one has
already achieved the effect. Unlike these, as formally shown
in (Batusov and Soutchanski 2018), our definition above can
correctly compute actual causes even for the more problem-
atic examples with early preemption and overdetermination
that create serious difficulties for the well-known structural
equations based approach developed in (Pearl 1998; 2000;
Halpern and Pearl 2005; Halpern 2016). It is worth men-
tioning here that the above mentioned approaches to actual
causality are not directly related to causal model-based di-
agnosis studied by the Qualitative Reasoning community in
the 1990s (Weld and De Kleer 1990; Travé-Massuyès 2014).

While we propose to utilize and incorporate causal anal-
ysis to further refine outputs from diagnostic systems, we
do not however discuss how this refinement can be actually
done. This in part depends on the DES framework on top
of which our work can be applied. We leave this for future
work.

There has also been earlier work, e.g. (McIlraith et al.
2000), that deals with diagnosis in hybrid systems where the
main concern is a combination of both continuous and dis-
crete dynamic behaviours. While we do not exploit an ex-
plicit representation of time in this paper, with some effort
our model can be modified to deal with hybrid systems and
continuous time, e.g. by using the hybrid SC (Batusov, De
Giacomo, and Soutchanski 2018) to model domain dynam-
ics. In particular, the regression operator can be also defined
in the hybrid SC. We leave this direction for future work.

Acknowledgements
We thank the reviewers for useful comments on an earlier
version. This work was supported in part by the National
Science and Engineering Research Council of Canada.

References
Batusov, V., and Soutchanski, M. 2017. Situation calculus
semantics for actual causality. In Proceedings of the 13th In-
ternational Symposium on Commonsense Reasoning, COM-
MONSENSE 2017, London, UK, November 6-8, 2017.
Batusov, V., and Soutchanski, M. 2018. Situation calculus
semantics for actual causality. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, New Or-
leans, Louisiana, USA, February 2-7, 2018.
Batusov, V.; De Giacomo, G.; and Soutchanski, M. 2018.
Hybrid Temporal Situation Calculus. ArXiv e-prints.
Belle, V., and Levesque, H. J. 2018. Reasoning about Dis-
crete and Continuous Noisy Sensors and Effectors in Dy-
namical Systems. Artificial Intelligence 262:189–221.
Bhandari, I. S.; Simon, H. A.; and Siewiorek, D. P. 1987.
Optimal Diagnosis for Causal Chains. Technical Report
CMU-CS-87-151, Carnegie Mellon University.
Cordier, M.-O., and Thiébaux, S. 1994. Event-Based Diag-
nosis for Evolutive Systems. In Proceedings of the 5th In-
ternational Workshop on Principles of Diagnosis, New Paltz,
NY, 64–69.
De Giacomo, G.; Reiter, R.; and Soutchanski, M. 1998. Exe-
cution monitoring of high-level robot programs. In Proceed-
ings of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR’98), Trento,
Italy, June 2-5, 1998., 453–465.
de Kleer, J., and Williams, B. C. 1989. Diagnosis with
Behavioral Modes. In Proceedings of the 11th Interna-
tional Joint Conference on Artificial Intelligence. Detroit,
MI, USA, August 1989, 1324–1330.
de Kleer, J.; Mackworth, A. K.; and Reiter, R. 1992. Charac-
terizing Diagnoses and Systems. Artificial Intelligence 56(2-
3):197–222.
Gössler, G., and Le Métayer, D. 2015. A general frame-
work for blaming in component-based systems. Science of
Computer Programming 113, Part 3.
Grastien, A.; Haslum, P.; and Thiébaux, S. 2012. Conflict-
Based Diagnosis of Discrete Event Systems: Theory and
Practice. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth International
Conference, KR 2012, Rome, Italy, June 10-14, 2012.
Gu, Y., and Soutchanski, M. 2008. Reasoning about Large
Taxonomies of Actions. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008,
Chicago, Illinois, USA, July 13-17, 2008, 931–937.
Halpern, J. Y., and Pearl, J. 2005. Causes and explanations:
A structural-model approach. part i: Causes. The British
Journal for the Philosophy of Science 56(4):843–887.
Halpern, J. Y. 2016. Actual Causality. The MIT Press.
Haslum, P., and Grastien, A. 2011. Diagnosis as Planning:
Two Case Studies. In 5th Scheduling and Planning Applica-
tions Workshop (SPARK-11).
Hoare, C. A. R. 1985. Communicating Sequential Pro-
cesses. Prentice-Hall.



Lamperti, G., and Zanella, M. 2003. Diagnosis of Active
Systems: Principles and Techniques. Springer Netherlands.
Lamperti, G.; Zanella, M.; and Zhao, X. 2018. Introduction
to Diagnosis of Active Systems. Springer Netherlands.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. Ma-
chine Intelligence 4:463–502.
McIlraith, S. A.; Biswas, G.; Clancy, D.; and Gupta, V. 2000.
Hybrid Systems Diagnosis. In Hybrid Systems: Compu-
tation and Control, Third International Workshop, HSCC
2000, Pittsburgh, PA, USA, March 23-25, 2000, Proceed-
ings, 282–295.
McIlraith, S. A. 1994. Towards a Theory of Diagnosis,
Testing and Repair. In Proceedings of the 5th International
Workshop on Principles of Diagnosis (DX-94), 185–192.
McIlraith, S. A. 1998. Explanatory Diagnosis: Conjectur-
ing Actions to Explain Observations. In Proceedings of the
Sixth International Conference on Principles of Knowledge
Representation and Reasoning (KR’98), Trento, Italy, June
2-5, 1998., 167–179.
Pearl, J. 1998. On the definition of actual cause. Technical
report, University of California Los Angeles.
Pearl, J. 2000. Causality: Models, Reasoning, and Inference.
Cambridge University Press.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32(1):57–95.
Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Rintanen, J., and Grastien, A. 2007. Diagnosability Testing
with Satisfiability Algorithms. In IJCAI 2007, Proceedings
of the 20th International Joint Conference on Artificial In-
telligence, Hyderabad, India, January 6-12, 2007, 532–537.
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen,
K.; and Teneketzis, D. 1995. Diagnosability of Dis-
crete Event Systems. IEEE Transactions Automatic Control
40:1555–1575.
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen,
K.; and Teneketzis, D. 1996. Failure Diagnosis using
Discrete-Event Models. IEEE Trans. Contr. Sys. Techn.
4(2):105–124.
Schumann, A.; Pencolé, Y.; and Thiébaux, S. 2007. A spec-
trum of symbolic on-line diagnosis approaches. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence, July 22-26, 2007, Vancouver, British Columbia,
Canada, 335–340. AAAI Press.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2010. Diagno-
sis as planning revisited. In Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Twelfth Inter-
national Conference, KR 2010, Toronto, Ontario, Canada,
May 9-13, 2010.
Travé-Massuyès, L. 2014. Bridging control and artificial
intelligence theories for diagnosis: A survey. Eng. Appl. of
AI 27:1–16.

Wang, S.; Geoffroy, Y.; Gössler, G.; Sokolsky, O.; and Lee,
I. 2015. A Hybrid Approach to Causality Analysis. In RV
2015 - 6th International Conference on Runtime Verifica-
tion, volume 9333 of LNCS.
Weld, D., and De Kleer, J. 1990. Readings in Qualitative
Reasoning about Physical Systems. The Morgan Kaufmann
series in representation and reasoning. Morgan Kaufmann.
Zaytoon, J., and Lafortune, S. 2013. Overview of fault diag-
nosis methods for Discrete Event Systems. Annual Reviews
in Control 37(2):308–320.


